
CHAPTER 2

Graphs and expansion

2.1. Definitions

In these notes ’graph’ will always mean an undirected, simple and (unless explicitly

stated) finite graph. Here is the definition.

Definition 2.1. A graph is a pair � = (V,E), where V is a non-empty set, and E

a subset of V [2] = {X ✓ V | |X| = 2}. The elements of V are called vertices of the

graph �, those of E edges. The graph is finite if V (and thus E) is finite.

Given two vertices x, y of a graph � = (V,E), we write x ⇠ y if x and y are adjacent,

that is x 6= y and {x, y} 2 E. If e = {x, y} 2 E, we say that x, y are the extremes

of e, and that the vertex x and the edge e (as well as y and e) are incident.

A subgraph of a graph � = (V,E) is just a pair (A0, E0) with ; 6= A0 ✓ A and

E0 ✓ E. More important for our purposes is the concept of induced subgraph,

where if X is a non-empty subset of the set V then the subgraph of � = (V,E)

induced by X is the subgraph of � with vertex set X and edges all those of � whose

extremes belong to X, in formal terms (X,E \X [2]).

For x 2 V , the number of vertices adjacent to x is called the degree of x and denoted

d�(x). Clearly, d�(x) coincides with the number of di↵erent edges that are incident

to x. An immediate double counting argument yields,

(2.1)
X

x2V

d�(x) = 2|E|.

Definition 2.2. Let 1  k 2 N. A graph � is k-regular if d�(x) = k for every

vertex x of �. We say that a graph is regular if it is k-regular for some positve

integer k.

If the graph � = (V,E) is k-regular then, from (2.1), 2|E| = k|V |.

Example 10 (Complete graphs). Given a not empty set V , the complete graph on

V is KV = (V, V [2]). If |V | = n we denote it by Kn. Then Kn is (n � 1)-regular,

and has
�n
2

�

edges.

Example 11 (Cycles). Let n � 3. The n-cycle is the graph Cn = (V,E), where

V = {1, . . . , n} and E = {{i, i + 1} | i = 1, . . . n � 1} [ {{n, 1}}. Cn is 2-regular,

and has as many edges than vertices.
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Example 12 (Hypercubes). Let n � 1. The n-hypercube is the graph Qn where

the set of vertices is the set Zn
2 of all n-tuples in {0, 1} and two vertices are adjacent

if and only if they di↵er for exactly one coordinate. Qn is n-regular.

Definition 2.3. Let � = (V,E) be a graph.

– A walk in � is a sequence of vertices x0, x1, . . . , xn such that xi�1 ⇠ xi for every

i = 1, . . . n; the integer n is the length of the walk.

– A path is a walk in which all edges {xi�1, xi} are distinct; a path x0, x1, . . . , xn

is simple if all vertices are distinct, except possibly for x0 = xn.

– A cycle is a simple path of length n � 3, with x0 = xn (n-cycle).

Exercise 13. Show that if there is a walk from two vertices x and y of a graph �,

then there is in � a simple path from x to y.

Definition 2.4 (Connected Graphs). A graph � = (V,E) is connected if for every

x, y 2 V there exists a (possibly of length 0) walk from x = x0 to y = xn.

More in general, an equivalence relation is clearly defined on the set V of vertices

of a graph � by saying that two vertices are related if there is a walk from one

to the other. The subgraphs induced by the equivalence classes are the connected

components of �. Clearly, every connected component is a maximal connected

subgraph of � (and viceversa).

In a connected graph � a distance function is defined in V a natural way; given

x, y 2 V , the distance d�(x, y) is the smallest length of a path in � from x to y

(included the trivial path of length 0 if x = y). This is indeed a true distance (for

instance the triangular inequality follows from exercise 13) Then, if � = (V,E) is

connected the diameter of � is defined as

diam(�) = sup{d�(x, y) | x, y 2 V }.

For example, diam(G) = 1 if and only if � is complete, diam(Cn) = [n/2], while,

for the hypercubes, diam(Qn) = n.

Exercise 14. Show that a graph is 2-regular if and only if all of its connected

components is a cycle.

Exercise 15. Let k � 2 and � a k-regular graph on n vertices. Find a function

that bounds n in terms of d = diam(�). In particular, show that if � si cubic and

diam(�) = d then n  3 · 2d � 2.

Definition 2.5. An isomorphism of the graph � = (V,E) to the graph �0 =

(V 0, E0) is a bijective map ↵ : V ! V 0 that preserves edges, i.e.

8x, y 2 V : {x, y} 2 E , {↵(x),↵(y)} 2 E0.
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An isomorphism of a graph to itself is an automorphism. It is immediate to verify

that, under composition, the set Aut(�) of all automorphisms of a graph � is a

group.

Definition 2.6. A graph � = (V,E) is said to be vertex–transitive if Aut(�) acts

transitively on V .

Clearly, a vertex–transitive graph is regular (but not vice-versa).

Exercise 16. Show that all graphs in examples 10, 11 and 12 are vertex–transitive.

Trees. A tree is a connected graph with no cycles. The following collects a

couple of largely used equivalent conditions (the easy proof is left as an exercise)

Lemma 2.7. Let � = (V,E) be a connected graph. Then the following conditions

are equivalent.

(a) � is a tree;

(b) |E| = |V |� 1;

(c) for every pair of distinct vertices x, y 2 V there is (one and) only one path from

x to y.

Bipartite graphs. A graph � = (V,E) is bipartite if the set V of vertices may

be partitioned in two non-empty subsets V1 and V2, such that every edge e 2 E has

one extreme in V1 and the other in V2.

Thus, for example, a cycle Cn is bipartite if and only if n is even. Also, every

hypercube (example 12) Qn is bipartite; in fact a partition of the vertex set Zn
2 ,

with the required property of bipartite graphs, is realized by the set V0 of all n-

tuples in Z2 that sum up to 0, and by the set V1 of those n-tuples that sum up to

1 (the figure below shows the case of the true cube Q3: red dots for vertices in V1,

green dots for V2).

The following characterization of bipartite graphs is belongs to any first introduc-

tion to graphs.

Proposition 2.8. A graph is bipartite if and only if it does not have cycles of odd

length.

It turns out that bipartite graph are a rather distinguished class of graphs, and in

many cases they have to be considered as somehow special items.
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Cayley graphs. The concept of Cayley graph is the fundamental link between

graphs and subset products in a group.

Definition 2.9. Let G be a group and S a symmetric (that is S�1 = S) finite

subset of G such that 1 62 S. The Cayley graph �[G,S], is the graph whose vertex

set is G, and whose edges are the 2-subsets

{g, gx} for g 2 G, x 2 S.

Observe that symmetry of S ensures that adjacency is a symmetric relation, while

the condition 1 62 S (this condition we will always tacitly assume when dealing with

Cayley graphs) is introduced to avoid loops.

Example 13. Let A4 be the alternating group on 4 points. The Cayley graph

�[A4, S] for S = {(123), (132), (12)(34)}

1

(123) (132)

(12)(34)

(123) and (132): red edges

(12)(34): blue edges.

Example 14. Let D = hx, y | x2 = 1, yx = y�1i (the infinite dihedral group); the

Cayley graph �[D, {x, y}] looks like

1 y

y

2
y

�1
y

�2

x

xy

�1 = yx y

2
xxy = y

�1
xy

�2
x

Exercise 17. Show that every hypercube (example 12) is a Cayley graph.

It is immediate to show that a Cayley graph �[G,S] is connected if and only if S is

a set of generators of G. Indeed, a walk of length n in �[G,S], starting with g 2 G,

is just a sequence g, gx1, gx1x2, . . . , gx1x2 · · ·xn, with xi 2 S; in other words, for

g, h 2 G there is a walk of length n from g to h if and only if h 2 gSn. From this

it follows that two elements of G are in the same connected component of �[G,S]
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if and only if they belong to the same left coset modulo the subgroup hSi of G.

Hence the number of connected components of �[G,S] coincides with the index of

hSi in G.

Even more important in our perspective is the fact that, if S is a symmetric set of

generators of G, then

(2.2) diam(�) = min{d � 0 | Sd = G}.

Clearly, because of the cancellation law, a Cayley graph �[G,S] is k-regular, where

k = |S|. Another relevant observation is that, for every g in G, left multiplication by

g is an automorphism of every Cayley graph �[G,S]. In other words, the left-regular

representation of G is also a faithful representation of G in the automorphims group

of any Cayley graph on itself. Since this action is transitive on the vertex set G,

we have

Proposition 2.10. Every Cayley graph is vertex–transitive.

Exercise 18. Let S be a symmetric set of generators of the group G; prove that

the Cayley graph �[G;S] is bipartite if and only if there exists a normal subgroup

N of G such that |G : N | = 2 and N \ S = ;.

2.2. Adjacency matrix

Let � = (V,E) be a graph with |V | = n. The adjacency matrix A(�) is the n ⇥ n

square matrix, whose entries are indexed on the vertices of the graph, and defined

by the adjacency relation, i.e. for every (x, y) 2 V ⇥ V

Axy =
n 1 if x ⇠ y

0 if x 6⇠ y

(the actual matrix is obtained by fixing an enumeration {x1, . . . , xn} of V ). Now,

A(�) is symmetric, real and has 0-entries on the diagonal. Hence A(�) is diagonal-

izable, and its eigenvalues are all real. We agree in enumerating them in decreasing

order, that is, counted with multiplicity,

µ0 � µ1 � . . . � µn�1

(occasionally, we may also specify the graph, µ0(�), µ1(�), and so on). This the

spectrum of A(�), or by extension of language, the spectrum of �. Observe that,

since A(�) has trace 0,

µ0 + µ1 + · · ·+ µn�1 = 0.

Example 15. The adjacency matrix of the complete graph Kn on n vertices, is

A(Kn) = Jn � In, where Jn and In are, respectively, the n ⇥ n matrix with all

entries 1 and the identity matrix of order n. Now, the eigenvalues of Jn are 0,

with multiplicity n � 1, and n, with multiplicity 1; hence the spectrum of Kn is

µ0 = n� 1, µ1 = . . . = µn�1 = �1.
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An e↵ective way to look at the adjacency matrix A(�) of a graph � = (V,E) is

to consider the adjacency operator associated to it, which we denote in the same

way as A(�). This is conveniently defined as a linear operator of the C-space of

functions

`2(V ) = {f | f : V ! C}.

Namely (writing A for A(�)), for every f 2 `2(V ) and x 2 V :

(2.3) Af(x) =
X

y2V

Axyf(y) =
X

y⇠x

f(y).

Now, `2(V ) is endowed with the standard hermitian product

(2.4) hf, gi =
X

x2V

f(x)g(x)

and the associated norm:

||f || := ||f ||2 =
�

X

x2V

|f(x)|2
�1/2

.

The operator A = A(�) is thus hermitian (self-adjoint), i.e.

hAf, gi = hf,Agi

for every f, g 2 `2(V ).

Write A = A(�) the adjacency operator of a graph � = (V,E), and let 1V be the

constant map 1 on V ; then for every x 2 V ,

(2.5) A1V (x) =
X

y⇠x

1 = d�(x).

In particular, if � is k-regular, then A1V = k1V , that is k is an eigenvalue of �

and 1V an eigenvector belonging to it. In fact, for regular graphs, we have the

following.

Lemma 2.11. For k � 1, let � = (V,E) be a k-regular graph on n vertices, and let

µ0 � µ1 � . . . � µn�1 be the spectrum of the adjacency matrix A of �. Then

(1) µ0 = k;

(2) µn�1 � �k;

(3) � is connected if and only if k > µ1;

(4) if � is connected, then µn�1 = �k if and only if � is bipartite.

Proof. We have already observed that k is an eigenvalue of A. Let µ be

another eigenvalue, let 0 6= f 2 `2(V ) be an eigenvector relative to µ and x 2 V

with |f(x)| maximum. By replacing f with f(x)f we may suppose that f(x) is a

positive real number. Then

|µ|f(x) = |Af(x)| =
�

�

X

y⇠x

f(y)
�

� 
X

y⇠x

|f(y)| 
X

y⇠x

f(x) = kf(x).
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Hence |µ|  k, proving points (1) and (2).

Let f be an eigenvector relative to k and x 2 V with |f(x)| maximum. As before,

we may suppose R 3 f(x) > 0. Then

kf(x) = |Af(x)| =
�

�

X

y⇠x

f(y)
�

� 
X

y⇠x

|f(y)| 
X

y⇠x

f(x) = kf(x)

which forces f(y) = f(x) for every y adjacent to x. This shows that f is constant

on all vertices belonging to the same connected component containing x. If � is

connected, f = f(x)1V is a constant, and so k = µ0 has multiplicity 1, that is

µ1 < k. Conversely, if V1 and V2 are the (non-empty) set of vertices of two distinct

connected components of �, then 1V1 and 1V2 are linearly independent eigenvectors

relative to k, and so µ1 = k. This proves (3).

To prove (4) assume � is bipartite and let V = V1 [ V2 be a partition of V as in

the definition of bipartire graph. Let g = 1V1 � 1V2 2 `2(V ). If x 2 V1, all vertices

adjacent to x are in V2, and so

Ag(x) =
X

y⇠x

g(y) = �k = �kg(x);

similarly, if x 2 V2, g(x) = �1 and Ag(x) =
P

y⇠x g(y) = k = �kg(x). Therefore g

is an eigenvector for the eigenvalue �k, and by point (2) we have µn�1 = �k.

Conversely, suppose that µn�1 = �k, let 0 6= f 2 `2(V ) be an eigenvector relative to

it and, as before, x 2 V with 0 < f(x) 2 R the maximum among the modules of the

images of f . Setting V1 = {y 2 V | f(y) = f(x)} and V2 = {y 2 V | f(y) = �f(x)},
we prove that V1 [ V2 is a graph partition of V . Clearly, V1 \ V2 = ;. Since � is

connected, for every y 2 V we have a distance d�(x, y) = dy; by induction on dy
we show that y 2 V1 if dy is even, while y 2 V2 if dy is odd. In fact

|f(x)| = f(x) = �1

k
Af(x) = �1

k

X

y⇠x

f(y) =
X

y⇠x

1

k
(�f(y)),

hence f(x) belongs to the inner of the convex hull of {�f(y) | y ⇠ x}; by the choice

of x this is only possible if this hull reduces to a point: thus f(y) = �f(x) and

y 2 V2 for every y ⇠ x. This proves our claim for dy = 1, and exactly the the same

argument provides the inductive step. Therefore, � is bipartite.

Exercise 19. Let � be a k-regular graph.

(i) Prove that the multiplicity of k as eigenvalue of A(�) equals the number of

distinct connected components of �.

(ii) Prove that if � is bipartite then the spectrum of A(�) is symmetric with

respect to 0.

Exercise 20. Let Cn be the n-cycle (n � 3). For t = 0, 1, . . . , n � 1 let ⇣t be the

n-th root of unity ⇣t = e
2⇡i
n t. Prove that the eigenvalues of Cn are the real numbers

⇣t + ⇣t = 2 cos
2⇡t

n
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for t = 0, . . . , n� 1. Thus, µ0 = 2 (with multiplicity 1), while all other eigenvalues

have multiplicity 2, except for n even and µn�1 = �2, which has multiplicity 1.

Exercise 21. Let An = A(Qn) be the adjacency matrix of the hypercube Qn. For

n � 2, one may order the order of the vertices so that

An+1 =

 

An In
In An

!

.

Then, prove that the eigenvalues of A(Qn) are the integers n� 2t, with t 2 N and

0  t  n, and that n� 2t has multiplicity
�n
t

�

.

Powers. The following useful fact is easily proved (e.g. by induction on m).

Proposition 2.12. Let � = � = (V,E) be a graph, m � 1, and Am
the m-th power

of its adjacency matrix (operator). Then, for every x, y 2 G, Am
xy coincides with

the number of distinct walks of length m from x to y.

Proof. Exercise.

In particular, for each x 2 V we have A2
xx = d�(x). Therefore, since the eigenvalues

of Am are the m-th powers of those of A,

n�1
X

i=1

µi(�)
2 = Tr(A2) =

X

x2V

d�(x) = 2|E|

(where n = |V |). If � is k-regular we have
Pn�1

i=1 µ2
i = kn.

The Laplace operator. If � = (V,E) is a connected k-regular graph and

A = A(�), then the set of eigenvectors relative to µ0 = k is the set of constant

functions that we denote by Z. Thus `2(V ) = Z � Z?, where

f 2 Z? ,
X

x2V

f(x) = 0.

In particular we have that all eigenvectors relative to eigenvalues µi for i > 0 are

0-sum functions.

An orientation of the graph � = (V,E) is just a total ordering on V . Any such

orientation determines for every edge an intial and a final point, if e 2 E then

e = {e�, e+} with e� < e+.

Let |E| = m; given an orientation of � we define the incidence matrix M as the

n⇥m matrix indexed on V ⇥ E:

Mxe =

8

>

<

>

:

1 if x = e+
�1 if x = e�
0 if x 62 e

for (x, e) 2 V ⇥ E.

M is associated to an operator � : `2(E) ! `2(V ),

(2.6) (�u)(x) =
X

x=e+

u(e)�
X

x=e�

u(e)
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for u 2 `2(E) := {u | u : E ! C}, and x 2 V .

Its dual operator �⇤ : `2(V ) ! `2(E) is given by, for all f 2 `2(V ) and e 2 E,

(2.7) (�⇤f)(e) = f(e+)� f(e�).

Then, for every f 2 `2(V ), u 2 `2(E), we have

(2.8) h�⇤f, uiE = hf, �uiV

(where the scalar products are those of the appropriate space). The Laplace operator

associated to the graph � is

��⇤ : `2(V ) ! `2(V ).

A simple computation shows that it is independent on the orientation, and that its

matrix form is

L(�) = kIn �A(�).

The Laplace operator L = L(�) is real symmetric, has the same eigenspaces of A

and its eigenvalues are

k � µn�1 � · · · � k � µ1 � k � µ0 = 0.

If � is connected then ker(L), the eigenspace relative to k � µ0 = 0, is the set Z
of all constant functions. While if f 2 Z? (the set of zero-sum functions), we have

the standard Rayleigh bound:

(2.9)
hLf, fi
hf, fi 2 [k � µ1, k � µn�1]

One way of using e↵ectively the Laplace operator L = L(�) is to apply the Rayleigh

bound in connection to the nature of L, for in fact for every f 2 `2(V ),

hLf, fi = h��⇤f, fi = h�⇤f, �⇤fiE

and then use the particularly simple description (2.7) of �⇤. This will be the case

in the proof of Theorem 2.14; another application of this method is suggested in

exercises 22 and 23 below.

2.3. Expansion in graphs

Definition 2.13. Let � = (V,E) be a graph; for a subset ; 6= U ✓ V , the boundary

@U of U is the set of all edges of � that have one extreme in U and the other in

V \ U , that is

@(U) = {e 2 E | |e \ U | = 1}.

If � is finite, the expanding (or isoperimetrical or Cheeger) constant of � is

h(�) = min

⇢

|@U |
|U |

�

�

�

U ✓ V, 0 < |U | < |V |/2
�

.
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(There is also a definition that applies to infinite graphs, but we restrict to the

finite case).

Example 16. The first two items that follow are almost trivial; for (3) you may

try to prove directly the claim, otherwise wait until after the next Theorem.

(1) For the complete graph Kn we have h(Kn) = n�
⇥

n
2

⇤

;

(2) if Cn is the n-cycle, then

h(Cn) =
2

[n/2]
;

(3) if Qn is the n-hypercube, then h(Qn) = 1

Theorem 2.14. Let � be a k-regular, connected graph on n vertices, e let µ1 be the

second eigenvalue of the adjacency matrix of �. Then.

k � µ1

2
 h(�) 

p

2k(k � µ1).

Proof. We prove only the left inequality, which is the one that we need in the

rest of these notes.

Let U ✓ V , with 1  |U |  |V |/2. Fix an orientation on � such that x < y for all

x 2 U , y 2 V \ U , and consider f 2 `2(V ) defined by

f(x) =

(

|V |� |U | if x 2 U

�|U | if x 2 V \ U

Then f 2 Z?, and so, by (2.9),

(2.10)
hLf, fi
hf, fi � k � µ1.

Now, we have

hf, fi =
X

x2V

f(x)2 = |U ||V |(|V |� |U |),

while

hLf, fi = h�⇤f, �⇤fi =
X

e2E

(f(e+)� f(e�))
2 =

X

e2@U

|V |2 = |@U ||V |2

Therefore, substituting in (2.10),

k � µ1  |@U ||V |2

2|U ||V |(|V |� |U |) =
|@U ||V |

|U |(|V |� |U |)

and so
|@U |
|U | � (|V |� |U |)

|V | (k � µ1) �
k � µ1

2
.

The claim h(�)  (k � µ1)/2 follows by definition.
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Example 17. Consider the n-hypercube Qn. Then µ1 = n � 2 by exercise 21,

hence

h(Qn) �
n� (n� 2)

2
= 1

by Theorem 2.14. On the other hand, let U be the set of all n-tuples in Zn
2 = V

whose first coordinate is 0; then |U | = 2n�1 = |@U |, and so h(Qn)  |@U |/|U | = 1.

Thus, h(Qn) = 1.

Exercise 22. Let c � 1; a graph � = (V,E) is c-colorable if there exists a function

� : V ! {1, 2, . . . c} such that for every x, y 2 V ,

x ⇠ y ) �(x) 6= �(y).

The chromatic number �(�) of � is the smallest positive integer c such that � is

c-colorable. Also, we denote by ↵(�) the largest cardinality of a stable subset of V

(a subset U ✓ V is said to be stable (or independent) if no pair of distinct elements

of U are adjacent in �). Show that �(�)↵(�) � |V |.

Exercise 23. Let � = (V,E) be k-regular with |V | = n. Show that

�(�) � 1� k/µn�1.

[Hint: for a stable set U of � with |U | = ↵ = ↵(�), consider f 2 `2(V ) given by

f(x) =
n n� ↵ if x 2 U

�↵ if x 2 V \ U

Show that hLf, fi = n2|@U | = n2k|U |, then apply Rayleigh bound and exercise 22.]

Exercise 24. For every n � 2 the complete bipartite graph Kn,n is the graph

whose set of vertices V = A [ B is the disjoint union of two sets of order n, and

every element of A is adjacent to all the elements of B, while there are no other

edges. Determine the spectrum of the adjacency matrix of Kn,n, and the expansion

constant h(Kn,n).

Definition 2.15. Let " > 0; a graph � such that h(�) > " is said to be an

"-expander.

Of course, every finite connected graph is a "-expander for some " > 0, so this

definition seems to be rather useless. The point is that we look for large (in number

of vertices) graphs which are "-expanders for some constant value ", and the problem

arises when we are interested in graph that are sparse, in the generic sense that

they have few edges. For instance, by bounding by a fixed k � 1 the ratio |E|/|V |
of the graph � = (V,E), we may wonder whether h(�) tends to 0 when |V | goes to
infinity, or not.
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Families of expanders. The search for graphs that are at the same time

sparse and highly connected lead to the following basic definition.

Definition 2.16 (Bassalygo and Pinsker, 1972). An infinite family of finite graphs

�n = (Vn, En), 1  n 2 N, is called a family of expanders if there exist an integer

k � 3 and a " > 0 such that

• �n is k-regular for every n � 1;

• limn!1 |Vn| = 1;

• h(�n) � " for every n � 1.

In view of Theorem 2.14, we have the following immediate algebraic equivalent

formulation (which we adopt as definition)

Definition 2.17. Let k � 3. An infinite family of finite connected k-regular graphs

�n = (Vn, En), 1  n 2 N, with |Vn| ! 1, is a family of expanders if and only

there exists " > 0 such that, for every n � 1,

k � µ1(�) � "

where µ1(�n) is the largest eigenvalue of A(�n) di↵erent from k.

Note 1. Since all the graphs in the previous definitions are connected, for any finite

subset of them there exists a non-zero lower bound for their expansion constants.

Thus, the requirement that h(�n) � " (or k � µ1(�) � ") holds for every n � 1

may be replaced (as it will be often the case in actual proofs) by asking that there

exists n0 � 1 such that the bound applies for every n � n0.

The definition we gave of "-expander, and of families of expanders, is the more

immediate and suggested by a neat graph-theoretical condition. However, from

the point of view of algebraic manipulation it turns out that a slightly stronger

condition seems to be more natural. Thus, given a k-regular (connected) graph �,

we denote by µ = µ(�) the largest absolute value of an eigenvalue 6= k of A(�),

that is, if � has n vertices,

µ(�) = max{|µi(�)| | i = 1, . . . n� 1}.

For " > 0, we say that a k-regular graph � is an algebraic (or, following [31], a

two-sided) "-expander if

(2.11) k � µ > ".

and give a corresponding definition of a family of two-sided expanders. Observe

that, by Lemma 2.11, bipartite graphs are never two-sided expanders.

Existence of families of expanders for every k � 3 is relatively easy to establish.

Soon after the definition, by using a probabilistic approach, Pinsker proved the

following result.
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Theorem 2.18 (Pinsker, 1973). There exists � > 0 such that for every n � 2, and

every k � 3 there exists a k-regular graph � on n vertices with h(�) � �.

For a proof, see [18] or [31]. In fact, the following stronger result may be be proved

along similar methods.

Theorem 2.19. Let k � 3. Then there exists � > 0 such that the probability that

for a k-regular graph � = (V,E) one has h(�) � � tends to 1 as |V | ! 1.

As often in mathematics, more di�cult is to provide explicit constructions of fam-

ilies of expanders. The first such example was due to Margulis (example 19) in

1973: it already exploited certain properties of the Cayley graph of groups. By

now there are several methods available, but many rely on Cayley graphs and on

group theoretical properties (and some on deep number theoretical results); one

of these, developed by Bourgain and Gamburd, has many connections with set-

products and is the one that we will treat in the next chapter and apply in the

following one.

It deserves to be at least mentioned a notable recursive construction, the so called

Zig-Zag product due to Reingold, Vadhan and Wigderson [25], that in principle is

entirely graph-theoretical, and elementary, but we will not say anything else about

it (recommending [18] to the interested reader).

Another issue that we will not touch is the question of optimal spectral gaps k�µ.

In this respect, the basic result is the following.

Proposition 2.20 (Alon and Boppana). Let k � 2. If � is a k-regular connected

graph with n vertices then

µ(�) � 2
p
k � 1� on(1),

where on(1) is a positive quantity that, for a fixed k, tends to zero as n ! 1.

A nice proof of this may be found in [18]. A graph � is called a k-Ramanujan graph

if it is k-regular and

µ(�)  2
p
k � 1.

The existence of k-Ramanujan graphs of arbitrary large order has been established

only for k = q + 1, when q a power of a prime. However, Marcus, Spielman and

Srivastava [21] have recently proved that if, in the definition of Ramanujan graphs,

one replaces µ with the first non-trivial eigenvector µ1 (i.e. if one looks for one-sided

expansion), then for every k � 3 there exist bipartite graphs � of arbitrary large

order such that µ1(�)  2
p
k � 1.

Exercise 25. Let � be a k-regular graph on n vertices. Prove that, for a fixed k,

µ(�) �
p
k � on(1)

where on(1) is a positive quantity that goes to zero as n ! 1. [hint: use the second

power of the adjacency operator.]
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Exercise 26. To any given graph � = (V,E) we associate a bipartite graph D(�) =

(V1 [ V2, E+) in the following way: V1 [ V2 is the disjoint union of two copies of V ,

i.e. there are bijections ↵1 : V1 ! V , ↵2 : V2 ! V , and for u1 2 V1, u2 2 V2 let,

{v1, v2} 2 E+ , {↵1(u1),↵2(u2)} 2 E.

Prove that h(D(�)) � h(�)/2; than show that an infinite family (�n)n�1 of graphs

is a family of two-sided expanders if and only if (D(�n))n�1 is a family of one-sided

expanders.

2.4. Expansion and random walks

We now give a brief and very basic outline of one of the important features of

expanders graphs, which is related to probability, and is fundamental in many

applications like those to derandomization and to the analysis of ”Monte–Carlo”

type algorithms. By doing this, we also introduce a perspective that will turn out

to be almost indispensable to properly understand the ideas behind the method to

establish expansion properties of Cayley graph treated in the next chapter.

We start with a simple but useful Lemma; if � = (V,E) is a graph and X,Y are

subset of V , we denote by e(X,Y ) the set of all adjacent pairs (x, y) with x 2 X,

y 2 Y .

Lemma 2.21 (Expander Mixing Lemma). Let � = (V,E) be a k-regular graph on

n vertices. Then, for every X,Y ✓ V ,

(2.12)

�

�

�

�

|e(X,Y )|� k|X||Y |
n

�

�

�

�

 µ
p

|X||Y |.

Proof. Let A = A(�); then

(2.13) h1X , A1Y i = |e(X,Y )|.

Consider the decompositions 1X = cX + f , 1Y = cY + g, con cX , cY costanti (i.e.

elements of Z) and f, g 2 Z?; then cX = |X|/n and cY = |Y |/n. Substituting in

(2.13), because of orthogonaity, we have

|e(X,Y )| = hcX , AcY i+ hf,Agi = k
|X||Y |

n
+ hf,Agi.

Hence,

(2.14)

�

�

�

�

|e(X,Y )|� k|X||Y |
n

�

�

�

�

= |hf,Agi|.

Now, writing f =
Pn�1

i=1 ↵ivi and g =
Pn�1

i=1 �ivi as linear combinations in an

orthonormal basis {v1, . . . , vn�1} of Z? (made of eigenvectors belonging to the

eigenvalues µ1, . . . , µn�1), we have

|hf,Agi| =
�

�

n�1
X

i=1

µi↵i�i| 
n�1
X

i=1

|µi||↵i�i|  µ
n�1
X

i=1

|↵i�i|.
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Thus, by the Cauchy–Schwartz inequality,

|hf,Agi|  µ · ||f || · ||g|| = µ · ||1X || · ||1Y || = µ
p

|X||Y |

and, by (2.14), the statement.

Observe that the quantity k|X||Y |
n represents the expected number of adjacent pairs

between X and Y in a random graph of edge-density k; therefore, the left hand

side in (2.12) measures the discrepancy between the number |e(X,Y )| in the actual

graph � and its expected value in the random case. The Mixing Lemma tells us

that the smaller is µ(�) (hence the larger the spectral gap k � µ) the closer the

k-regular graph � approximates a random behavior.

This observation, admittedly generic, is reinforced by the analysis of random walks

in a regular graph.

Definition 2.22. Let � = (V,E) be a graph. A probability distribution on � is a

function ⇡ : V ! [0, 1] such that
P

x2V ⇡(x) = 1 (observe that ⇡ 2 `2(V )).

A random walk in a graph � is a walk v0, v1, . . . vi, . . . in � such that, independently

for every i � 0, vi+1 is randomly selected with uniform probability 1/d�(vi) among

the vertices that are adjacent to vi.

The random walk process starts from a given initial probability distribution ⇡0 on �:

for x 2 V , ⇡0(x) = P (x = v0) is then the probability that a walk of length 0 starts

(and ends) in x. Now, ⇡1 is defined as the probability distribution so that ⇡1(x) is

the probability that x = v1 is in a random walk where the initial point v0 is subject

to the probability ⇡0; thus ⇡1(x) is non-zero if and only if x ⇠ y with ⇡0(y) 6= 0.

Continuing this way, one produces a sequence of probability distributions ⇡i such

that, for x 2 V , ⇡i(x) = P (x = vi) in a random walk v0, v1, . . . vi, . . . of �.

It is a fundamental fact that if � is connected and not bipartite, the sequence

{⇡i}i2N converges in `2(V ) to a stationary distribution, and it is not di�cult to

show that if moreover � is regular, then this limit is always the uniform distribution

on V (that is 1
|V |1V ).

Let � = (V,E) be a k-regular graph and write bA = 1
kA(�). Fixed an initial

probability distribution ⇡0 on V , for x 2 V we have

⇡1(x) =
X

y⇠x

1

k
⇡0(y) = bA⇡0(x),

hence ⇡1 = bA⇡0. In the same way, for every n � 0,

(2.15) ⇡i+1 = bA⇡i = bAi+1⇡0.

( bA is called the Markov transition matrix of the process.)

Let |V | = n and let u = 1
n1V be the uniform probability distribution on V . Let

i � 1; since ⇡i and u are probability measures, their di↵erence ⇡i �u is a zero-sum
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function on V , that is ⇡i � u 2 Z?. Observe that, being u a constant, bAu = u.

Therefore

h⇡i+1 � u,⇡i+1 � ui = h bA(⇡i � u), bA(⇡i � u)i = h bA2(⇡i � u),⇡i � ui.

Now, µ/k is the largest absolute value of an eigenvalue 6= 1 of bA, and so

||⇡i+1 � u||2 = h bA2(⇡i � u),⇡i � ui  µ2/k2||⇡i � u||2

That is ||⇡i+1 � u||  (µ/k)||⇡i � u||; and, by an immediate induction

(2.16) ||⇡i � u|| 
⇣µ

k

⌘i
· ||⇡0 � u|| 

⇣µ

k

⌘i
,

for every i � 0.

Thus, the smaller is µ with respect to k, the more rapidly {⇡i}i2N converges to the

uniform distribution on V . Let us be more precise. If, for " > 0, � = (V,E) is a

two-sided "-expander with |V | = n, then

µ

k
 k � "

k
=: ↵.

Let C = �1/ log↵ (observe that, since ↵ < 1, C is positive); then, from (2.16), for

every integer m � C log n and every initial distribution ⇡0,

||⇡m � u||  ↵m  ↵C logn = n�1.

When applied to a family of two sided expanders this is interesting enough to state

as a Theorem.

Theorem 2.23. Let �n = (Vn, En) be a family of two-sided expanders. Then there

is a constant C such that for every n � 1

||⇡m � 1

|Vn|
1Vn ||  |Vn|�1,

for every initial distribution ⇡0 and any integer m � C log |Vn|.

This is commonly referred to by saying that families of expanders have logarithmic

mixing time.

Note 1. We have considered the convergence in the `2 norm, but similar consid-

erations apply for other norms; the most relevant in this contest being the `1 and

`1 norms, defined, respectively, by

||f ||1 =
X

x2V

|f(x)|, ||f ||1 = max
x2V

|f(x)|.

Note 2. Theorem 2.23 is not true, as it stands, for families of one-sided expanders,

because among any of them there might well be bipartite graphs (see Exercise 26),

for which the random process does not even converge. In fact, let � = (V1 [ V2, E)

be a bipartite graph, fix a vertex v 2 V1 and the initial distribution ⇡0 be the one

concentrated in v; then, random walks starting at v alternatively jump from V1 to
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V2 and back; thus, for every i � 0, ⇡2i(x) = 0 for all x 2 V2 while ⇡2i+1(x) = 0

for every x 2 V1, and the sequence (⇡i)i�0 cannot possibly converge in `2(V ) (in

any of the three norms we have mentioned). Things may however be adjusted by

adopting a di↵erent definition of random walks in bipartite graphs (see [18] or [31]

for details).

Diameter of expanders. For k � 3, let �n = (Vn, En) be a family of con-

nected k-regular graphs satisfying the conclusion of Proposition 2.23 for some con-

stant C independent on n. Given n � 1, fix a vertex v 2 Vn and let ⇡0 the

probability distribution on Vn concentrated in v, that is, for every x 2 Vn,

⇡0(x) =
n 1 if x = v

0 if x 6= v

Let m = m(n) be the smallest integer greater or equal than C log |Vn|, and let

� = {x 2 Vn | ⇡m(x) = 0}. Then, writing u = 1
|Vn|1Vn ,

|Vn|�2 � ||⇡m � u||2 =
X

x2Vn

(⇡m(x)� |Vn|�1)2 >
X

x2�

|Vn|�2 = |�||Vn|�2.

Thus |�| = 0 and � = ;. This means that every element of Vn may be reached

from v by a walk of length m. In particular, d�n(v, x)  m for every x 2 Vn, and

this implies

diam(�n)  2m  D log |Vn|

where D = 2(C + 1) is a constant indepenent on n.

By this conclusion, one says that the family of graphs �n = (Vn, En) (or sometimes,

for convenience, each of the graphs in the family) has logarithmic diameter. In

conjunction with Theorem 2.23 we have,

Theorem 2.24. A family of expanders has logarithmic diameter.

This has important algebraic consequences when applied to families of expander

Cayley graphs.

Example 18. For n � 2, define the square grid graph Xn as the graph that has

Vn = Z/nZ ⇥ Z/nZ as set of vertices, and each vertex (a, b) is adjacent to all

and only the vertices (a ± 1, b) and (a, b ± 1), where the sum is modulo n (notice

that Xn is a Cayley graph). Thus, for every n � 2, Xn is a connected 4-regular

graph. Let F = {(a, b) 2 Vn | 0  b  n�1
2 }, then the edges in the boundary

@F have one extreme in the two limit rows of F and for each vertex in these

rows there is exactly one edge of @F incident to it, so |@F | = 2n. Hence, since

|F | = [n/2]n  n2/2 = |Vn|/2,

h(Xn) 
|@F |
|F | =

2n

[n/2]2
=

4

n� 1
.

In particular, limn!1 |h(Xn)| = 0, and so (Xn)n�3 is not a family of expanders.



48 2. GRAPHS AND EXPANSION

We could have reached the same conclusion by invoking Theorem 2.24; in fact

diam(Xn) = n 6= O(log n).

Exercise 27. Let �[Gn, Sn] (n � 1) be a family of k-regular Cayley graphs for

some fixed k � 3, and suppose that all the groups Gn are abelian. Prove that

�[Gn, Sn] is not a family of expanders.

2.5. Cayley graphs as expanders

Possibly because the richness of tools that may be applied to study them, that

of Cayley graphs soon appeared to be an elected area where to look for families

of expanders. The graphs in first production by G. Margulis of such a family,

described below, are not properly Cayley graphs, but belong to a generalization of

them, called Schreier graphs (see example 20 for the definition); also, the expanding

property of Margulis’ example graphs is strictly related to the expanding property

of a class of Cayley graphs.

Example 19 (G. Margulis, 1973). For m � 3, Mm is the graph on the set of

vertices

Vm = Z/mZ⇥ Z/mZ.
To define edges, let

e1 =

✓

1

0

◆

, e2 =

✓

0

1

◆

,

and consider the transformations of Vm given by

S =

 

1 2

0 1

!

, T =

 

1 0

2 1

!

.

Edges are defined by setting that, for every v 2 Vm, v is adjacent to the four vertices

Sv, Tv, Sv+ e1, T v+ e2 and to the other four vertices defined by the four inverse

transformations. In this way an 8-regular graph Mm is obtained, of order m2, for

which it may be proved that

h(Mm) � 8� 5
p
2

2
>

4

9
.

Hence, (Mm)m�3 is a family of expanders.

Note. Mm is not exactly a simple graph, as it has loops and multiple edges, but

these are in number which is linear in m and do not a↵ect in a significant way

expansion.

The following Theorem, which is absolutely beyond the scope of this course, is the

achievement of a research whose many steps where contributed by several authors;

among those, G. Margulis, A. Lubotzky, M. Kassabov, N. Nikolov, P. Sarnak, E.

Breuillard, B. Green, T. Tao, L. Pyber, E. Szab and others.
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Theorem 2.25. There exist k 2 N and " > 0 such that, for every non-abelian finite

simple group G, a symmetric set S of k generators may be selected such that the

Cayley graph �[G,S] is a two-sided "-expander.

For those who know something about the classification of finite simple groups, I

will add that, as often, there is a certain di↵erence between groups of Lie type and

the alternating groups (the sporadics, being only a finite number, are not relevant

in this contest). In fact, it has been proved that, for groups belonging to any given

family of Lie type simple groups, most homogeneous choices (in a sense that for the

moment I will not define precisely) of finite symmetric sets of generators produce

Cayley graphs that form a family of expanders. The aim of the rest of this course is

to provide a proof, as self-contained as feasible, for the case of the family of groups

SL2(p), for p a prime number.

Expansion in a Cayley graph is immediately related to set-products, i.e. the theme

of first Chapter. In fact, let G be a finite group, S a symmetric subset of G and

� = �[G,S] the associated Cayley graph; then, for every F ⇢ G, the set of vertices

that are adjacent to some element of F is the product FS. Thus, the cardinality

of the boundary of F in � is just |FS � F |, and so

h(�) = min{|FS � F |/|F | | F ✓ G, 1  |F |  |G|/2}.

A straightforward argument yields that a family of Cayley graphs (�[Gn, Sn]))n�1,

with |Sn| = k for every n � 1, is a family of expanders if and only |Gn| ! 1, as

n ! 1, and there exists " > 0 such that

|F (Sn [ {1})| � (1 + ")|F |,

for every n � 1 and every ; 6= F ✓ Gn with |F |  |Gn|/2.

Convolutions. The fact that, in a Cayley graph �[G,S], the set of vertices G

is a group allows to endow the space `2(G) with the convolution product ⇤. We have

already introduced it in the case of abelian groups in Section 1.3; the definition for

an arbitrary finite group G is the same, namely, for every f, g 2 `2(G) and x 2 G,

(f ⇤ g)(x) =
X

y2G

f(xy�1)g(y) =
X

y2G

f(y)g(y�1x).

This product is associative but it is not (unless G is abelian) commutative. On the

other hand it is bilinear, in the sense that, for every f, g, h 2 `2(G), a, b 2 C,

(2.17) (af + bg) ⇤ h = a(f ⇤ h) + b(g ⇤ h),

and the other way around.

For f 2 `2(G) and m � 1 we write

f (m) = f ⇤ f ⇤ · · · ⇤ f (m times).
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A function f 2 `2(G) is symmetrical if f(x�1) = f(x) for all x 2 G. Having said

that, here is a number of other immediate properties of the convolution product:

let f, g 2 `2(G),

(1) if f is a constant then f ⇤ g and g ⇤ f are constants;

(2) if f is a sum-zero function (i.e.f 2 Z?) then such are f ⇤ g and g ⇤ f ;

(3) if f is symmetrical then f ⇤ f is symmetrical;

(4) if f, g are probability distributions then such is f ⇤ g.

We also collect some properties of the convolution with respect to norms in `2(G).

Lemma 2.26 (Cauchy-Schwartz and Young’s inequalities). Let f, g 2 `2(G); then

(i) (Cauchy-Schwarz) ||f ||1  |G|1/2||f ||;
(ii) ||f ⇤ g||  ||f ||1 · ||g||  |G|1/2||f || · ||g||;
(iii) ||f ⇤ g||1  ||f ||1||g||1.

Proof. (i) This is an immediate application of the standard Cuchy-Schwarz

inequality; in fact,

||f ||21 =
�

X

x2G

|f(x)|
�2  |G|

X

x2G

|f(x)|2 = |G|||f ||2.

(ii) Writing, for x, y 2 G, |f(xy�1)||g(y)| = |f(xy�1)|1/2|f(xy�1)|1/2|g(y)|, we have,
by Cauchy-Schwarz inequality,

|f ⇤ g(x)|2 
�

X

y2G

|f(xy�1)|
��

X

y2G

|f(xy�1)||g(y)|2
�

= ||f ||1
X

y2G

|f(xy�1)||g(y)|2.

Then,

||f ⇤ g||2 =
X

x2G

|f ⇤ g(x)|2  ||f ||1
X

x,y2G

|f(xy�1)||g(y)|2  ||f ||1
X

x,y2G

|f(x)||g(y)|2

and so

||f ⇤ g||2  ||f ||1
X

x2G

|f(x)|
X

y2G

|g(y)|2 = ||f ||21||g||2.

(iii) By definition, we have

||f ⇤ g||1 = max
x2G

�

�

X

y2G

f(xy�1)g(y)
�

�  (max
x2G

|f(x)|)
X

y2G

|g(y)| = ||f ||1 · ||g||1.

Convolution product will play a fundamental role starting from the next section.

For the moment, let us just observe a couple of immediate consequences of the

definition in relation to Cayley graphs.

If A is the adjacency operator of the Cayley graph �[G,S] then, keeping in mind

that S is symmetrical, we have

Af(x) =
X

y⇠x

f(y) =
X

s2S

f(xs) =
X

y2G

f(xy�1)1S(y)
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for every f 2 `2(G) and x 2 G. Hence, for every f 2 `2(G)

(2.18) Af = f ⇤ 1S

In particular, let S be a symmetrical finite subset of the group G; we denote by ⌫S
the probability distribution on G uniformly centered on S, that is

⌫S = |S|�1
1S .

Suppose further that 1 62 S, with k = |S|, and let bA = 1
kA be the normalized

adjacency operator of the Cayley graph � = �[G,S]. We then take the probability

distribution ⌫0 = �1 concentrated in 1 as the initial distribution on �, and, for every

i � 1, denote by ⌫i its i-th Markov iterate as in section 2.4. Then ⌫1 = ⌫S , and, for

every i � 1, by (2.18) and what said in section 2.4,

⌫i+1 = bA⌫i =
1

k
(⌫i ⇤ 1S) = ⌫i ⇤ ⌫S .

Therefore, for every i � 1,

(2.19) bAi�1 = ⌫i = ⌫(i)S .

where �1 is the probability distribution concentrated at 1.

In other words, for every x 2 G and i � 1, ⌫(i)S (x) is the probability that x may be

written as the product of exactly i factors from S.

Example 20 (Schreier graphs). Given a faithful action of the (finite) group G on

the finite set ⌦, that is, an injective group-homomorphism � : G ! Sym(⌦) (for

g 2 G and x 2 ⌦, we write, xg = �(g)(x) and G  Sym(⌦)). Let S ✓ G be a finite

symmetric subset of G which acts fixed-point-free on ⌦ (this means that xs 6= x

for every s 2 S and x 2 ⌦). The associated Schreier graph is the graph ⌃ = (⌦, E)

where for x, y 2 ⌦, {x, y} 2 E if and only if there is s 2 S such that y = xs. Then

⌃ is |S|-regular and it is connected if and only if the action of hSi is transitive. A
Cayley graph is a Schreier graph with respect to the regular action of G on itself

by right multiplication.

If one drops the assumption that S acts fixed-point-free on ⌦, one still speaks of a

Schreier graph, which is in general a graph with loops and multiple edges.

Note. The first two sections of this Chapter are standard, and belong to any basic

account of (algebraic) graph theory. A good introduction to graph theory, which

includes random graphs, is the book by Diestel [7].

The best general survey on expander graphs, with several proofs and special em-

phasis on motivations and applications, remains the paper [18] by Hoory, Liniel

and Wigderson. Along with Tao’s book [31], and towards di↵erent directions, it is

the place where to look for much more additional material, and find most of the

proofs that are missing in this chapter.




