
CHAPTER 1

Group combinatorics and Freiman’s Theorem

1.1. Introduction

Let A,B be non-empty subsets of a group G; we write, as usual, the set-product

AB = {ab | a 2 A, b 2 B}.

For commutative groups - and to distinguish them - we use the additive notation

A+B = {a+ b | a 2 A, b 2 B}.

Similarly, for the “symmetric” set of A, we write A�1 = {a�1 | a 2 A} in the

general case, and �A = {�a | a 2 A} in the commutative one, when we also define

A � B := A + (�B); if A = {a}, we write aB and Ba for, respectively, {a}B and

B{a} (a+B in the commutative case). For, n � 2 we use exponential notation:

An = {a1a2 · · · an | a1, . . . , an 2 A} = (An�1)A

which becomes ’multiple’ notation in the commutative case:

nA = {a1 + a2 + · · ·+ an | a1, . . . , an 2 A}.

Clearly, the usual rules for integral exponents and multiples hold. In this chap-

ter we will mostly deal with commutative groups; in this case, set-product is not

only associative but also commutative: A + B = B + A for all subsets A,B of a

commutative group.

One of our main concerns will be sizes of set-products; let us therefore begin with

some very obvious facts about those. Let A,B be finite non-empty subsets of a

group G; then

i) |A�1| = |A|, and |AB| = |B�1A�1|;
ii) max{|A|, |B|}  |AB|  |A||B|.

The approach is that, while the upper bound in (ii) is expected to represent the

random case, something should happen when te cardinality of the set-product ap-

proaches the lower bound, not much with regard the relation between A and B (in

many interesting cases they will be the same) but with respect to inner structural

properties of A (and B), and the more the cardinality of the product is ”small” the

closer the factors approximate a structured piece of the ambient group. While this

may not be totally unexpected, it is somehow surprising that they are able, in many
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cases, to precisely recognize such structural properties and describe quantitatively

the discrepancy from them.

In this chapter we will then be interested in what kind of information one can

retrive about the algebraic (or arithmetic) structure of the factors (or about the

rate longer products grow) from arithmetical condition on the cardinalities |AB|,
|AB�1| (these may well be di↵erent), of the set-products (or sum-set); a kind of

questions usually called inverse problems in additive combinatorics (see Nathanson’s

monograph [19]). Expecting, as said, that if any influence the cardinality |AB| has
on A (or B), this should be more e↵ective when |AB| is “close” to the cardinalities

of the factors.

The easiest of such instances (which is nevertheless useful to remember) is the fact

that, for a finite subset A of a group G, |AA| = |A| if and only if A = xH = Hx for

some subgroup H of G and some x 2 G. In fact, a slightly more general observation

we may do. Let A be a non-empty subset of the group G. It is then immediate

to check that SA = {x 2 G | xA = A} is a subgroup of G; observing that SA acts

by left multiplication on A with regular orbits, we have that, if A is finite, SA is

finite and |SA| divides |A|. Let B be another non-empty subset of G and suppose

|BA| = |A|. Then for every b 2 B, |bA| = |A| = |BA|, and so bA = BA. This

implies that, for every b, b1 2 B and any a 2 A, b�1b1a 2 A. Hence B�1BA = A,

or, in other terms, B�1B ✓ SA. We have therefore the following,

Lemma 1.1. Let A,B be non-empty finite subsets of a group. Then |BA| = |A| if
and only if B is contained in a left coset of the subgroup SA.

We now move to commutative groups. Remember that a group G is said to be

torsion-free if it does not contain non-trivial elements of finite order; hence, a

commutative group G is torsion-free if (and only if) nx 6= 0 for every 0 6= x 2 G

and 0 6= n 2 Z.
The basic torsion–free (commutative group) is the additive group of integers, which

we will denote by Z. We ask first for the “direct” question, i.e.: what can, in general,

be said about the cardinality of the sum of two finite subsets of Z? The answer

involves the notion of arithmetic progression, by which we mean what is usually

considered to be a finite segment of an arithmetic progression. Precisely

Definition 1.2. An arithmetic progression in Z is a finite set of type

a+ I(d,n) = {a+ dx | x = 0, 1, . . . , n� 1}

with a, d, n 2 Z, d 6= 0, n � 1 (and I(d,n) = {dx | 0  x  n � 1}). The number n

is the length of the progression (of course, it is also the cardinality of it), while the

positive integer d is called the common di↵erence of the progression.
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Example 1. Let A = {a + xb | 0  x < n} and A1 = {a1 + yb1 | 0  y < m} be

two arithmetic progressions of length, respectively, n and m. Then, we have

A+A1 =
�

(a+ a1) + xb+ yb1 | (x, y) 2 {0, . . . , n� 1}⇥ {0, . . . ,m� 1}
 

,

and point out the following

• If b = b1, then A + A1 is an arithmetic progression of length n +m � 1 (and

common di↵erence b); in other terms |A+A1| = |A|+ |A1|� 1.

In particular, if A is an arithmetic progression then, for every n � 1, nA is an

arithmetic progression and

|nA|  n|A|� n < n|A|.

An arithmetic progression is then something we regard to be “slowly growing”. On

the opposite side stand, for instance, geometric progressions: considering something

like U = {1, d, d2, . . . , dn�1} for 2  d 2 N, we get

|U + U | = (n2 + n)/2 ⇠ |U |2,

and growth is fast in this case.

Lemma 1.3. Let A,B be finite subsets of Z; then
(i) |A+B| � |A|+ |B|� 1.

(ii) |A+B| = |A|+ |B|� 1 if and only if A and B are arithmetic progressions

with the same common di↵erence.

Proof. (i) Let a = maxA, and b = minB. Then (a+B) [ (A+ b) ✓ A+B.

Let y 2 B and x 2 A such that a + y = x + b; then 0  y � b = x � a  0; hence

y = b, x = a and thus (a+B) \ (A+ b) = {(a, b)}. Therefore

|A+B| � |(a+B) [ (A+ b)| = |a+B|+ |A+ b|� 1 = |A|+ |B|� 1.

(ii) We have already observed that if A and B are arithmetic progressions with the

same common di↵erence, then equality holds in (i).

For the converse we may well assume that A and B contain at least two elements.

Thus, let a1 < a2 < . . . < am and b1 < b2 < . . . < bn be, respectively, the elements

of A and of B, and suppose |A+B| = m+ n� 1. Then, as in the proof of (i),

A+B = (A+ b1) [ (am +B);

moreover the whole A+B is ordered as:

(1.1) a1 + b1 < a2 + b1 < . . . < am + b1 < am + b2 < . . . < am + bn�1 < am + bn.

Now, look at A + b2; it has m elements and is included in the integers interval

[a1 + b1, am + b2] \ (A+B), which also contains m elements; hence, by comparing

to (1.1) we have

(1.2) ai + b2 = ai+1 + b1
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for all i = 1, · · · ,m � 1. We now do the same for am�1 + B; by comparing it to

(1.1) we obtain

(1.3) am + bi = am�1 + bj+1

for all j = 1, · · · , n� 1. Then, putting together (1.2) and (1.3), we have

ai+1 � ai = b2 � b1 = am � am�1 = bj+1 � bj ,

for all i = 1, · · · ,m� 1 and j = 1, · · · , n� 1. This clearly finishes the proof.

Suppose we want to find finite subsets A of Z, other than arithmetic progressions,

such that |A+A| is small when compared to |A|; putting it in a quantitative way,

fixed a real number c � 2, we look for large (with respect to c) finite subsets A of

Z such that |A+A| < c|A|. We may then consider any su�ciently long arithmetic

progression B and let A be a big portion of it: A ✓ B with |A| � (2/c)|B|. Then

|A+A|  |B +B| < 2|B|  c|A|.

There is another fundamental way to obtain subsets of Z with small doubles, which

is related to a generalization of the concept of arithmetic progression.

Definition 1.4. Let 1  k 2 N. A k-dimensional generalized progression (or

multi-progression) in Z is a finite set of type

A = a+ I(d1,n1)+ · · ·+ I(dk,nk) = {a+d1x1+ · · ·+dkxk | 0  xi < ni, i = 1, . . . , k}

with a, d1, . . . , dk 2 Z, and n1, . . . , nk positive integers. The number `(A) =

n1n2 · · ·nk is the length of the progression (or, its volume). In general one has

|A|  `(A); the generalized progression A is proper if |A| = `(A).

It is then easy to check that

• if A is a proper generalized progression of dimension k then |A+A| < 2k|A|.

Exercise 1. Prove this claim.

Exercise 2. Let A be a generalized progression of dimension k in Z. Prove that

A�A is a k-dimensional generalized progression and |A�A| < 2k|A|.

The fundamental Theorem of Freiman, which we will be ready to prove towards the

end of this chapter, says that finite subsets of Z with small double are obtained by

a conjunction of these two procedures: if |A+ A| is small then A is a large subset

of a generalized progression.

Theorem 1.5 (Freiman). Let c � 2, and let A be a finite subset of Z such that

|A+A| < c|A|. Then A is contained in a generalized progression of dimension k(c)

and length `(c)|A|, where the positive integers k(c) and `(c) depend on c only.

Search for good estimates of k(c) and `(c) is still an ongoing problem. The following

nice special case, for which the best bounds are known, is often quoted.



1.1. INTRODUCTION 5

Theorem 1.6 (Freiman). Let A be a finite subset of N such that |A+A| < 3|A|�3;

then A is contained in a arithmetic progression of length `  2|A|� 3.

Example 2. Let t � m � 1, be positive integers, and consider

A = {1, 2, . . . ,m} [ {t+ 1, t+ 2, . . . , t+m}

Then |A + A| = 3(2m � 1) = 6m � 3 = 3|A| � 3, while the shortest arithmetic

progression containing A has length at least m + t, which may be arbitrary large.

Indeed, A is sort of intrinsically 2-dimensional (it is a 2-dimensional progression).

Freiman isomorphisms. The notion of Freiman isomorphism (or, more in

general, homomorphism), introduced by Freiman himself, is a very useful basic tool

in studying sum-sets in commutative groups.

Definition 1.7. Let A,B be non empty subsets of, respectively, the commutative

groups G and H, and k � 2; a Freiman isomorphism of order k from A to B is a

bijective map � : A ! B such that

�(a1) + . . .+ �(ak) = �(a01) + . . .+ �(a0k)

if and only if

a1 + . . .+ ak = a01 + . . .+ a0k

for every a1, . . . , ak, a01, . . . a
0
k 2 A.

We say that two non-empty subsets A,B of some commutative groups are Freiman

k-isomorphic if there exists a Freiman isomorphism of order k from A to B.

Example 3. Let A = {(0, 0), (1, 0), (0, 1), (1, 1)} ✓ Z2, B = {0, 1, 3, 4} ✓ Z. The

map (a, b) 7! a+3b induces a bijection from A to B which is a Freiman isomorphism

of order 2 but not of order 3.

Example 4. Let a, b 2 Z, b 6= 0; then the “a�ne” map �(x) = a + xb induces a

Freiman isomorphism of order k, for every k � 2, from A to �(A) ✓ Z, for any

non-empty subset A of Z.
In general, let k � 2, let f : G ! H be a homomorphism of commutative groups,

b 2 H and A a non-empty subset of G; if the restriction of f to kA is injective then

�(x) = b + f(x) induces a Freiman isomorphism of order k from A to �(A) ✓ H

(we just need to observe that if the restriction of f to kA is injective, then the

restriction of f to A is injective).

Clearly, the composition of two Freiman isomorphisms of the same order k � 2 is

a Freiman isomorphism of order k. Also, it is not di�cult to show that a Freiman

isomorphism of order k is a Freiman isomorphism of order k0 for every 2  k0  k

Freiman isomorphisms may be used in reducing sumset questions from generic

torsion-free commutative groups to the group of integers Z. This is the content
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of Theorem 1.8 below. Before, let us recall the well know structure Theorem for

finitely generated commutative groups, which says in particular the following.

• A finitely generated commutative group is isomorphic to a direct product of a

finite number of cyclic groups. Thus, a finitely generated torsion-free commutative

group is isomorphic to Zn
for some 1  n 2 N.

Theorem 1.8. Let A be a non-empty finite subset of a torsion-free abelian group

G; then, for every k � 2, A is Freiman k-isomorphic to a subset of Z.

Proof. We may suppose that G coincides with the subgroup generated by A;

hence G is a finitely generated torsion-free commutative group, and so G = Zm for

some positive integer m.

Let A = {x1, . . . , xn} with, for each i = 1, . . . , n,

xi = (xi1, . . . , xim) 2 Zm.

By translating by a suitable element in Zm, we may assume xij � 0 for every i, j.

Let M be a positive integer with

M > k ·max{aij | i = 1, . . . , n, j = 1, . . . ,m},

and consider the group homomorphism � : Zm ! Z defined by

�(a1, . . . , am) = a1 + a2M + · · ·+ amMm�1.

The choice of M ensures that the restriction of � to kA is injective, hence (see

Example 4) � induces a Freiman isomorphism of order k from A to �(A) ✓ Z.

As an immediate sample application of this Theorem, we obtain the following from

Lemma 1.3.

Proposition 1.9. Let G be a torsion-free commutative group, and A,B two finite

non-empty subsets of G; then |A+B| � |A|+ |B|� 1.

Thus, the total ordering in Z, which was an essential ingredient in the proof of

Lemma 1.3, it is not really the point of it (showing, I guess, the power of the idea

of Freiman isomorphism even at such rather simple instances).

Of course, there is no di�culty in extending the definition of multi-progression

of dimension, say, r, to any commutative group G: for a0, a1, . . . , ar 2 G and

`1, . . . , `r 2 N, one has the r-dimensional progression of length `(P ) = `1 · · · `r:

P = {a0 + n1a1 + · · ·nrar | 0  ni < `i, i = 1, . . . , r}.

Exercise 3. Prove that the property of being a generalized progression of dimen-

sion r is preserved under Freiman 2-isomorphisms.
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Exercise 4. Let A, B two subsets of some commutative groups, and assume that

both A and B contain 0 (of the appropriate group). Prove that if A+A and B+B

are Freiman k-isomorphic, then A and B are Freiman 2k isomorphic. Does the

converse hold?

1.2. Ruzsa and Plünnecke inequalities

Freiman’s original proof was highly non-trivial and, at points, – experts say – di�-

cult to follow (the interested reader may refer to the monograph [9]); it is perhaps

for this reason that his work did not immediately gained the wide recognition it

deserved. In 1994, I. Ruzsa produced its own proof [22], much shorter and easier

to understand; it was this proof that put Frieman’s results in their right prominent

place, revealing to many their deep and seminal nature. It is Ruzsa proof, with

some further simplifications that have been devised since its first appearance, that

will occupy most of the rest of this chapter; although simpler that the original it

is still far from being straightforward, and is full of ingenious arguments, that have

entered the tool box of anybody in the area.

We indeed start with one of these arguments, pointing out the fact that it does

not assume a commutative setting.

Lemma 1.10 (Ruzsa triangle inequality). Let A,B,C be non-empty finite subsets

of the group G; then

(1.4) |A||BC�1|  |BA�1||AC�1|.

Proof. The map B ⇥ C ! BC�1 given by (b, c) 7! bc�1 is surjective; let

⇡ : BC�1 ! B ⇥ C be a fixed right inverse of it (that is ⇡(x) = (bx, cx) 2 B ⇥ C

with bxc�1
x = x). Then define

� : A⇥BC�1 ! BA�1 ⇥AC�1

(a, x) 7! (bxa�1, ac�1
x ).

The map � is injective, and this proves the claim.

Let us observe the following immediate, but not completely trivial, consequence of

Ruzsa inequality. For a non-empty finite subset A of a group, (1.4) yields

|A||AA�1| = |A�1||AA�1|  |AA||A�1A�1| = |AA|2;

hence

(1.5) |AA�1|  |AA|2

|A| .

The Plünneke–Ruzsa inequality (Theorem 1.15) is a far-reaching generalization

of this, which only holds for commutative groups. In proving it, we will follow

the brilliant approach by Petridis in [20], which avoids use of graph theory. We
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emphasize that, again, the first two results do not assume commutativity of the

ambient group.

Lemma 1.11. Let X,B be finite non-empty subsets of the group G, and suppose

that

↵ :=
|XB|
|X|  |ZB|

|Z| ,

for all ; 6= Z ✓ X. Then, for every finite ; 6= C ✓ G,

(1.6) |CXB|  ↵|CX|.

Proof. Let X and B as in the assumptions, and C = {c1, . . . , cn} a non-empty

subset of G. Set X1 = X and, for 2  i  n,

Xi = {x 2 X | cix 62 c1X [ . . . [ ci�1X}.

Then, CX is the disjoint union

CX = c1X1 [ c2X2 [ . . . cnXn,

and, for any 1  j  n

|{c1, . . . , cj}X| = |c1X1 [ . . . [ cjXj | =
j

X

i=1

|ciXi| =
j

X

i=1

|Xi|.

We now prove that (1.6) holds by induction on n. If n = 1, i.e. C = {c},

|CXB| = |cXB| = |XB| = ↵|X| = ↵|cX|.

Let n � 2, and write Y = X \Xn. Then cnY B ✓ {c1, . . . , cn�1}XB, by definition

of Xn. Thus

(1.7) CXB = ({c1, . . . , cn�1}XB) [ (cnXB \ cnY B).

Now, |cnXB \ cnY B| = |cnXB|� |cnY B| = |XB|� |Y B|, and, by choice of X,

|XB|� |Y B|  ↵|X|� ↵|Y | = ↵(|X|� |Y |) = ↵|Xn|.

Also, by inductive assumption

|{c1, . . . , cn�1}XB|  ↵|{c1, . . . , cn�1}X| = ↵
n�1
X

1+1

|Xi|.

Therefore, from (1.7) we obtain

|CXB|  |{c1, . . . , cn�1}XB|+ ↵|Xn|  ↵
n�1
X

i=1

|Xi|+ ↵|Xn| = ↵
n
X

i=1

|Xi| = ↵|CX|

thus finishing the proof.
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Theorem 1.12. Let A,B be finite non-empty subsets of the group G such that

|AB|  ↵|A|

for a positive real number ↵. Then there exists ; 6= X ✓ A such that

|CXB|  ↵|CX|

for every finite subset C of G.

Proof. Choose ; 6= X ✓ A such that |XB|/|X| is as small as possible. Then

|XB|/|X|  ↵ and X, B are as in the assumptions of Lemma 1.11. Now the

Theorem follows at once from Lemma 1.11.

Theorem 1.13 (Plünnecke). Let A,B be finite non-empty subsets of the commu-

tative group G such that

|A+B|  ↵|A|

for a positive real number ↵. Then there exists ; 6= X ✓ A such that

|X + hB|  ↵h|X|

for every 1  h 2 N.

Proof. Select X ✓ A as in Theorem 1.12. Arguing by induction on h � 1, we

show that the claim holds for X. For h = 1 we have |X+B|/|X|  |A+B|/|A|  ↵,

and we are done. Let h � 2 and set C = (h � 1)B; then, by Theorem 1.12 and

inductive assumption,

|X + hB| = |X + C +B| = |C +X +B|  ↵|X + C|  ↵↵h�1|X| = ↵h|X|.

In this proof, I have expressly reported the equality X + C + B = C + X + B,

which may seem unduly fastidious, but I wanted to stress in which, rather subtle,

way commutativity enters the play.

A relevant special case, which immediately follows, is when A = B:

Corollary 1.14. Let A be finite non-empty subset of the commutative group G

with |A+A|  ↵|A|, for a positive real number ↵. Then, for every 1  h 2 N,

|hA|  ↵h|A|.

Let us pause to observe that part of the content of this Corollary is that, for a finite

non-empty subset A of a commutative group, the size of its double A+ A controls

the sizes of the other multiples hA; it in fact says that, for every h � 2,

(1.8) |hA|  |A+A|h

|A|h�1
.
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In a sense, in the commutative case, it is the doubling A+A that sets the pace of

the growth of the sets hA. We will observe in due course (section 1.6) that this is

no longer the case for non-commutative groups.

Theorem 1.15 (Plünnecke-Ruzsa inequality). Let A,B be finite non-empty subsets

of the commutative group G such that |A + B|  ↵|A|, for a positive real number

↵. Then for every k, ` 2 N with k + ` > 1,

|kB � `B|  ↵k+`|A|.

Proof. Let X ✓ A as in Theorem 1.13. Then, by Ruzsa triangle inequality

(Lemma 1.10),

|�X||kB � `B|  |X + kB||�X � `B| = |X + kB||X + `B|  ↵k+`|X|2;

whence

|kB � `B|  ↵k+`|X|  ↵k+`|A|.

Remark. By Ruzsa triangle inequality, the case k = ` = 1 holds in the non

commutative case as well. In fact, if |BA|  ↵|A|, then by Lemma 1.10:

|A�1||BB�1|  |BA||A�1B�1| = |BA|2  ↵2|A|2

and so |BB�1|  ↵2|A|. Observe, however, that in a non-commutative group,

given a non-empty finite set B, the sizes of BB�1 and B�1B may be as divergent

as possible (try B = Hx [H, with H a finite subgroup and x 62 H).

Exercise 5. [Ruzsa] Prove that if A,B1, . . . , Bn are non-empty finite subsets of

the commutative group G, with |A+Bi|  ci|A| for i = 1, . . . , n, then

|A+B1 + · · ·+Bn|  c1 · · · cn|A|.

We are now going to apply Plünneke-Ruzsa inequality to sum-sets in commutative

groups of finite exponent. The following trick (for which commutativity is not

required) will be the fundamental step in the proof.

Lemma 1.16 (Ruzsa covering Lemma). Let A,B be finite non-empty subsets of a

group. Then there exists X ✓ B such that |X|  |BA|/|A| and B ✓ XAA�1
.

Proof. Just take X ✓ B maximal such that xA\ yA = ; for x, y 2 X,x 6= y.

Then, by the very choice of X,

|BA| � |XA| =
�

�

[

x2X

xA
�

� =
X

x2X

|xA| = |X||A|,

hence |X|  |BA|/|A|. Now, let b 2 B; then, by maximality of X, there exists

x 2 X such that bA \ xA 6= ;. Thus, ba = xa1 for some a, a1 2 A and therefore

b = xa1a�1 2 XAA�1.
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Let 1  r 2 N; a group G is said to have exponent r if gr = 1 (rg = 0 in additive

notation) for every g 2 G, and r is the smallest positive integer with this property.

Let us observe that if G is a k-generated commutative group of exponent r, then

|G|  rk.

Theorem 1.17. Let r be a positive integer, and A be a finite non-empty subset of a

commutative group of exponent r, such that |A+A|  C|A|, for some real number

C. Let H = hAi be the subgroup generated by A. Then |H|  C2rC
4 |A|.

Proof. By Theorem 1.15,

|A+ (2A�A)| = |3A�A|  C4|A|.

Let X ✓ 2A�A as in Lemma 1.16; then |X|  C4 and

(1.9) 2A�A ✓ X + (A�A).

Let Q be the subgroup generated by X; then |Q|  rC
4

. By adding A to both sides

in (1.9) we have

3A�A ✓ X + 2A�A ✓ 2X + (A�A) ✓ Q+ (A�A),

and by the same step in induction on m,

(1.10) mA�A ✓ Q+ (A�A)

for every m � 2. Now, if H is the subgroup generated by A. Since we are inside a

periodic group, it is then clear that

H =
[

m�1

(mA�A).

Hence, by (1.10), H ✓ Q+ (A�A) ✓ H. Therefore, H = Q+ (A�A) and

|H|  |Q||A�A|  rC
4

C2|A|.

1.3. Fourier analysis

Let 2  m 2 N; in the rest of these notes we denote by Zm the ring Z/mZ of residue

classes modulo m, and by Z⇤
m the set of its non-zero elements. Remember that, as

an additive group, Zm is cyclic.

The proof of Freiman’s Theorem will be achieved by first proving the same type of

statement for the cyclic groups Zm, then showing how to pass from Z to a suitable

Zm. This final part (section 1.5) is by a clever argument of Ruzsa, while the Zm

case is accomplished in two steps: the first, which is the content of this section, uses

Fourier analysis on Zm, the second (section 1.4) relies on Minkowski’s Theorems

about lattices in Rn.
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In what follows, G will be a finite commutative group and |G| = n. For z 2 C,
z denotes its complex conjugate.) We denote by `2(G) the set of all functions

G ! C. Then `2(G) is in a natural way a n-dimensional vector space over C, and
it is endowed with the inner product

(1.11) hf, gi =
X

x2G

f(x)g(x)

(Usually, especially when dealing with characters, the inner product is normalized

by multiplying by |G|�1. However, I prefer the unscaled version, as there is no harm

by adopting it in this section, while in this form such inner product will return later

on in these notes.)

Definition 1.18. A character of G is a group homomorphism µ : G ! C⇤ (where

C⇤ is the multiplicative group of all non–zero complex numbers).

Let µ be a character of G. Since G is finite, µ(x) is a root of unity for every x 2 G,

hence µ(G) is a subgroup of the complex torus {z 2 C | |z| = 1}.
We denote by bG the set of all characters of G (this is often called the dual of G).

Then bG is a group by pointwise multiplication: (⌘µ)(x) = ⌘(x)µ(x) for ⌘, µ 2 bG

and x 2 G; the identical element of bG is the principal character 1G (that is the

constant map 1 on G), and for every µ 2 bG and x 2 G, µ�1(x) = µ(x).

Exercise 6. Show that for every 0 6= x 2 G there is a character µ 2 bG such that

µ(x) 6= 1.

Proposition 1.19. Let G be a finite commutative group and

bG the group of its

characters. Then

(1) h↵,�i = 0 for every ↵,� 2 bG, ↵ 6= �.

(2)
P

µ2 bG µ(x) = 0 for every 0 6= x 2 G.

(3) | bG| = |G|.

(4) bG is an orthogonal basis of the C-svector space `2(G).

Proof. Of course, (4) is just a restatement of (1) and (3).

(1) Let ↵,� 2 bG and suppose c = h↵,�i 6= 0. Then, for every g 2 G,

c =
X

x2G

↵(x)�(x) =
X

x2G

↵(g + x)�(g + x) =
X

x2G

↵(g)↵(x)�(g)�(x) = ↵(g)�(g)c,

hence ↵(g)�(g) = 1, and so ↵(g) = �(g). Thus, ↵ = �.

(2) Let 0 6= x 2 G; by exercise 6 there is a ↵ 2 bG such that ↵(x) 6= 1. Now, since
bG is a group,

X

µ2 bG

µ(x) =
X

µ2 bG

(↵µ)(x) = ↵(x)
X

µ2 bG

µ(x),

and the claim follows.
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(3) By the previous points we have

| bG| =
X

µ2 bG

µ(0) =
X

x2G

X

µ2 bG

µ(x) =
X

µ2 bG

X

x2G

µ(x) =
X

µ2 bG

hµ, 1Gi = h1G, 1Gi = |G|

and the proof is done.

Exercise 7. Let G be a finite commutative group, x, y 2 G with x 6= y. Prove
X

µ2 bG

µ(x)µ(y) = 0.

Now, the Fourier transform is the tool that allows to describe the coe�cients of

any f 2 `2(G) with respect to the basis bG.

Definition 1.20. Let f 2 `2(G); the Fourier transform of f is the function f̂ 2
`2( bG) defined by

f̂(µ) =
X

x2G

f(x)µ(x)

for every µ 2 bG.

Theorem 1.21 (Fourier inversion formula). For every f 2 `2(G) we have

f(x) = |G|�1
X

µ2 bG

f̂(µ)µ(x).

Proof. Let f 2 `2(G); by standard linear algebra:

f =
X

µ2 bG

hf, µi
hµ, µi · µ =

1

|G|
X

µ2 bG

hf, µ�1i · µ�1.

Hence, for any x 2 G

f(x) =
1

|G|
X

µ2 bG

⇣

X

y2G

f(y)µ(y)
⌘

µ�1(x) =
1

|G|
X

µ2 bG

f̂(µ)µ(x).

Now, a useful identity, whose proof we leave as an exercise.

Lemma 1.22 (Perseval/Plancherel identity). For every f 2 `2(G), we have

X

µ2 bG

|f̂(µ)|2 = |G|
X

x2G

|f(x)|2.

If f 2 `2(G), its reflection is the function f̄ 2 `2(G) defined by

f̄(x) = f(�x)

for every x 2 G. Clearly, ¯̄f = f .

Together with pointwise product, in `2(G) we also have the important convolution

product

(f ⇤ g)(x) =
X

y2G

f(y)g(x� y),
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for f, g 2 `2(G) and any x 2 G. The following is immediate.

Lemma 1.23. For every f, g 2 `2(G) we have:

(1) f̂ = bf ;

(2) [f ⇤ g = f̂ ĝ.

We observe one first reason why this is of interest in our contest. For A ✓ G let

�A be the characteristic function of A; then for every x 2 G,

�A ⇤ �A(x) =
X

x1+x2=x

�A(x1)�A(x2),

hence �A ⇤ �A(x) counts the number of ordered pairs (x1, x2) 2 A ⇥ A such that

x = x1 + x2. In an analogue way, since clearly �A = ��A, for any x 2 G

�A ⇤ �A ⇤ �A ⇤ �A(x)

is not zero only for x 2 2A � 2A, and for any such x it counts the number of

quadruples (x1, x2, x3, x4) 2 A⇥A⇥A⇥A such that x = x1 + x2 � x3 � x4. This

will be of use in the proof of Lemma 1.25 below.

Bohr neighborhoods in Zm. Now, we are specially interested in the case

G = Zm. Then G is cyclic, and a character µ is determined by the image of the

generator 1 of Zm, which may be any m-th root of unity. If we write ! = e2⇡i/m

(or any other primitive m-th root of unit), then bZm = {�0, . . . , �m�1}, where, for
j = 0, . . . ,m� 1, and a 2 Z,

(1.12) �j(a+mZ) = !ja.

Observe that �0 = 1G is the principal character.

For any r 2 R, let ||r|| denote the distance from r to the nearest integer. Let

x, y 2 R and m a positive integer: if x� y 2 mZ then ||x/m|| = ||y/m||. Hence we

have a well defined function Zm ! [0, 1) by setting
�

�

�

�

a+mZ
m

�

�

�

�

:=
�

�

�

a

m

�

�

�

.

Definition 1.24. Let 2  m 2 N. Given a1, . . . ak 2 Zm (k � 1) and 0 < � 2 R,
we define the Bohr neighborhood as the set

B(a1, . . . , ak; �) = {g 2 Zm | kgai/mk  �, for i = 1, . . . k} .

The proof of the following Lemma is essentially due to Bogolyubov (1936).

Lemma 1.25. Let 2  m 2 N, and let A be a non-empty subset of the group Zm with

� = |A|/m < 1. Then 2A� 2A contains a Bohr neighborhood B(j1, . . . , jk; 1/4) for

an integer 1  k < ��2
.
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Proof. Let bZm = {�0, . . . , �m�1} as defined in (1.12), and write �A for the

characteristic function on A. Then, for j = 0, . . . ,m� 1

A(j) := b�A(�j) =
X

x2A

�j(x) =
X

x2A

!xj ,

where ! = e2⇡i/m. Observe that A(0) = |A|, and that (by Perseval identity)

(1.13)
m�1
X

j=0

|A(j)|2 = m|A| = �m2.

Let f = �A ⇤ �A ⇤ �A ⇤ �A; by Lemma 1.23, for every j = 0, . . . ,m� 1,

(1.14) f̂(�j) = |b�A(�j)|4 = |A(j)|4,

hence, by Fourier inversion formula,

f(x) =
1

m

m�1
X

j=0

|A(j)|4�j(x) =
1

m

m�1
X

j=0

|A(j)|4!�jx.

Recall that f(x) takes only integral values and has support in 2A�2A; in particular

(1.15) f(x) = Re(f(x)) =
1

m

m�1
X

j=0

|A(j)|4Re(!jx).

Now, let S = {j 2 {0, . . . ,m � 1} | |A(j)| � �3/2m}. Then S 6= ;; in fact,

A(0) = |A| = �m and so, since � < 1, 0 2 S. Moreover, from (1.13)

�m2 �
X

j2S

|A(j)|2 � �3m2|S|

whence 1  |S|  ��2. Let k = |S| and S = {j1, . . . , jk}; we want to show that

the Bohr neighborhood B(S; 1/4) = B(j1, . . . , jk; 1/4) is contained in 2A� 2A or,

equivalently, that f(x) 6= 0 for every x 2 B(S; 1/4). By definition, if d 2 B(S; 1/4)

then kdj/4k  1/4 for every j 2 S, and this is equivalent to

(1.16) Re(!dj) � 0 for every j 2 S.

Now observe that, by (1.13),

(1.17)
X

j 62S

|A(j)|4 < �3m2
m�1
X

j=0

|A(j)|2  �4m4 = |A|4.

If d 2 B(S; 1/4) then, from (1.15) and (1.16),

mf(d) =
m�1
X

j=0

|A(j)|4Re(!jd) � |A(0)|4 �
�

�

�

X

j 62S

|A(j)|4!�jx
�

�

�

> |A|4 � |A|4 � 0.

Hence f(d) > 0 and so d 2 2A� 2A.
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Example 5. Suppose (for simplicity) that m is odd, and 0 < � < 1/2. Then, for

u 2 Z, ||u/m||  � if and only if u is congruent to an integer y with |y|  �m; thus,

the number of g 2 Zm such that ||g/m||  � is k = 2[�m] + 1. Let a 2 Z with

(a,m) = 1; then multiplying by a is a bijection in Zm, hence |B(a; �)| = k (here,

and in the following, we use the same letter to denote an integer and its congruence

class modulo m). Now, let u be the multiplicative inverse of a in Zm, then for every

y 2 Zm, ||a(uy)/m|| = ||y/m||. It thus follow that

B(a; �) = {yu 2 Zm | �[�m]  y  [�m]},

that is, B(a; �) is an arithmetic progression in Zm of length k.

In the next section we extend this by showing that, in general, Bohr neighborhoods

contain long generalized arithmetic progressions.

1.4. Geometry of numbers

Definition 1.26. Let n � 1, a lattice ⇤ in the euclidean space Rn is a subgroup

of the additive group of Rn generated by n independent vectors. Thus, if U =

{u1, . . . ,un} is a set of n independent vectors in R, the lattice generated by U is

the set

(1.18) ⇤ = Zu1 � · · ·� Zun.

Let me recall the equivalent definition

• A lattice in Rn
is a discrete subgroup that is not contained in any subspace of

smaller dimension.

Where a subgroup H of the additive group Rn is discrete if for every a 2 H there

is an open ball B(a, �) of radius � > 0 such that

H \B(a, �) = {a}.

Let ⇤ = Zu1 � · · ·� Zun be a lattice; a basis for ⇤ is just a set of n generators of

it. If {u1, . . . ,un} is a basis for the lattice ⇤, the set F ✓ Rn

{x1u1 + . . .+ xnun | xi 2 R, 0  xi < 1}

is called a fundamental domain of ⇤. The following fact is easily established.

Lemma 1.27. Let F be a fundamental domain of the lattice ⇤; then Rn = ⇤+ F .

As the lattice ⇤ has many di↵erent bases, it has many di↵erent fundamental do-

mains. However the fundamental domains all have the same volume, which is

obtained as the absolute value of the determinant of the n ⇥ n real matrix whose

columns are the vectors of a basis of ⇤. This is called the determinant or also the

volume of ⇤. Thus, if ⇤ = Zu1 � · · ·� Zun,

det(⇤) = |det(u1, . . . ,un)| .
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(This is because di↵erent bases of ⇤ are obtained from each other by applying a

linear map whose matrix has integral entries and determinant ±1.)

Exercise 8. Prove Lemma 1.27.

Definition 1.28. 1) A subset X 6= ; of Rn is convex if, for every a,b 2 X, the

whole line segment from a to b, {ta+ (1� t)b | 0  t  1}, is contained in X.

2) A convex body in Rn is a bounded open set X ⇢ Rn which is convex.

3) A convex body X is centrally symmetric if: a 2 X ) �a 2 X.

Observe that a centrally symmetric convex body always contains the origin, for

0 = 1
2a+ 1

2 (�a).

Exercise 9. Prove that a subsetX of Rn is convex if and only if aX+bX = (a+b)X

for all a, b 2 R, a, b > 0.

Example 6. The example of a centrally symmetric convex body that we essentially

need in the following is that of a box. Let l = (�1, . . . ,�n) 2 Rn with �i > 0 for

every i = 1, . . . , n. The box defined by l,

Bl = {(x1, . . . , xn) 2 Rn | |xi| < �i, for i = 1, . . . , n}

is a centrally symmetric convex body of Rn.

The proof that Bohr neighborhoods contain progressions is an application of the

second Minkowski Theorem on lattices, whose statement is better understood when

recalling also the first Minkowski Theorem. Because lack of time, both these theo-

rems will go without proof (dedicated readers may consult the textbook [13]).

Theorem 1.29 (First Minkowski Theorem). Let ⇤ be a lattice in Rn
and X ⇢ Rn

a centrally symmetric convex body. If vol(X) > det(⇤) then X contains a non-zero

element of ⇤.

Thus, given a centrally convex body X and a lattice ⇤ there is a smallest positive

real number �1 such that the closure �1X of the dilation �1X contains a non-zero

element of ⇤; indeed

�1 = inf{0 < � 2 R | �X \ ⇤ contains a vector b 6= 0}.

For i = 1, . . . , n, one then defines �i as the smallest positive real number such

that �iX contains i linearly independent elements of ⇤; the numbers �1, . . . ,�n are

called the successive minima of X with respect ⇤; clearly 0 < �1  �2  . . .  �n.

Theorem 1.30 (Second Minkowski Theorem). Let ⇤ be a lattice in Rn
and X ⇢ Rn

a centrally symmetric convex body. Let �1, . . . ,�n be the successive minima of X

with respect ⇤. Then

�1�2 · · ·�nvol(X)  2n det(⇤).
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To make things a little shorter, we prove the result on Bohr neighborhoods in the

case m is a prime, which is enough for our purposes.

Lemma 1.31. Let m 2 N be an odd prime, a1, · · · , an non-zero elements of Zm,

and 0 < � < 1/2. Then the Bohr neighborhood B(a1, . . . , an; �) contains a proper

n-dimensional generalized progression P with `(P ) � (�/n)nm.

Proof. In this proof, we denote by ai both the congruence class mod m and

a (fixed) integer belonging to it; this will not cause any troubles.

In Rn let a = (a1, . . . , an) and consider

(1.19) ⇤ = Za+ (mZ)n.

This is a subgroup of Zn of rank n and so it is a lattice in Rn. Also, because

m is a prime and the ai are not multiples of it, ⇤ is the disjoint union of the m

distinct cosets ka+ (mZ)n for k = 0, . . . ,m� 1. Since det((mZ)n) = mn, we have

det(⇤) = mn�1 (if you do’t believe this then go to exercise 10 below).

Then, let B be the box

B = {(x1, . . . , xn 2 Rn | |xi| < �, i = 1, . . . , n},

and observe that vol(B) = (2�)n. Let �1, . . . ,�n be the successive minima of B

with respect to ⇤, and b1, . . . ,bn linearly independent vectors such that

bi = (bi1, . . . , bin) 2 �iB \ ⇤,

for each i = 0, . . . , n. By Theorem 1.30, we have

(1.20) �1�2 · · ·�n  2n
det(⇤)

vol(B)
=

mn�1

�n
.

The fact that bi 2 �iB implies

(1.21) |bij |  �i�

for all i, j = 0, . . . , n; on the other hand, since bi 2 ⇤, it follows from (1.19) that

there exists vi 2 Z (and, by abuse of notation, vi 2 Zm) such that

(1.22) bi � via 2 (mZ)n.

For i = 1, . . . , n, we set

`i =



m

n�i

�

,

then, in Zm we consider the n-dimensional multi-progression

P = {x1v1 + · · ·+ xnvn | xi 2 Z, |xi|  `i}.

Let x = x1v1 + · · ·+ xnvn 2 P , then, by (1.22),

xa�
n
X

i=1

xibi 2 (mZ)n.
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Therefore, because of (1.21), for j = 1, . . . , n we have

�

�

�

xaj
m

�

�

�

=
�

�

�

n
X

i=1

xibij
m

�

�

�


n
X

i=1

�

�

�

xibij
m

�

�

�


n
X

i=1

`i�i�

m


n
X

i=1

�

n
= �.

This proves P ✓ B(a1, . . . , an; �). Now,

`(P ) � (`1 + 1) · · · (`n + 1) �
n
Y

i=1

m

n�i
=

mn

nn

n
Y

i=1

��1
i ,

and so, by (1.20),

`(P ) � m�n

nn
.

It remains to show that P is proper. Thus, let

x1v1 + · · ·+ xnvn ⌘ x0
1v1 + · · ·+ x0

nvn (mod m)

with �`i  xi, x0
i  `i, hence |xi � x0

i|  2`i, for each i = 1, . . . , n. Then, arguing

as above (i.e. multiplying by aj), we obtain, for every j = 1, . . . , n

(1.23)
n
X

i=1

(xi � x0
i)bij ⌘ 0 (mod m).

On the other hand, since 0 < � < 1/2,

�

�

�

n
X

i=1

(xi � x0
i)bij

�

�

�


n
X

i=1

|xi � x0
i||bij | 

n
X

i=1

2`i�i�  2�m < m.

Therefore
Pn

i=1(xi � x0
i)bij , for every j = 1, . . . , n and, consequently

n
X

i=1

(xi � x0
i)bi = 0.

Because of the linear independence of the b

0
is we conclude that xi = x0

i for every

i = 1, . . . , n, which is what oit is needed for P to be proper. This completes the

proof of the Lemma.

Exercise 10. Let m, a1, . . . , an as in the statement of Lemma 1.31, and let u 2 Z
such that ua1 ⌘ 1 (mod m). In Rn consider the vectors

u1 = (1, ua2, . . . , uan),u2 = (0,m, 0, . . . , 0), . . . ,un = (0, 0, 0, . . . ,m).

Prove that

⇤ = Zu1 � Zu2 � · · ·� Zun

Where ⇤ is the subgroup defined by (1.19) in the proof of Lemma 1.31. Now you

can compute det(⇤) directly by the determinant of the vectors u1, . . . ,un.
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1.5. Proof of Freiman’s Theorem

In this section, to expedite writing, we use the standard interval notation for the

real line as meant to be restricted to Z; thus, for instance (a, b] will be the set of

all z 2 Z, a < z  b (for a a, b 2 R, a < b).

Lemma 1.32 (Ruzsa). Let A be a finite subset of Z, with |A| = n and |A+A| = Cn.

Let 2  k 2 N; then for every m > C2kn there exists A0 ✓ A with |A0| � n/k and

A0
Freiman k-isomorphic to a subset of Zm.

Proof. We begin with an easy observation. For a positive integer p (not

necessarily a prime), let  p : Zp ! Z be the map that assigns to every element in

Zp its unique representative in [0, p), and let k � 2. This map is injective, but not a

homomorphism, and it does not induce a Freiman k-isomorphism on Zp. However,

let 1  i  k and Li = [ i�1
k p, i

kp); then  p does induce a Freiman k-isomorphism

from Ui = ⇡p(Li) to Li (here, ⇡p is the projection modulo p, a left inverse of  p).

In fact, let x̄1 = x1 + pZ, . . . , x̄k = xk + pZ, be elements of Ui, then

[(i� 1)p, ip) 3  p(x̄1) + · · ·+  p(x̄k) ⌘ x1 + · · ·+ xk (mod p).

Since [(i � 1)p, ip) is a set of representatives modulo p, if ȳ1, . . . , ȳk are others

elements of Ui, then  p(x̄1) + · · · +  p(x̄k) =  p(ȳ1) + · · · +  p(ȳk) if and only if

x̄1 + · · ·+ x̄k = ȳ1 + · · ·+ ȳk, and  p|Ui is a Freiman k-isomorphism.

Now for the proof of the Lemma. Fix a prime p such that the reduction mod p,

⇡p : Z ! Zp is injective on kA (for instance, p > k(maxA �minA)); so that (see

Example 4) ⇡p|A is a Freiman k-isomorphism.

For 1  q  p�1 let µq : Zp ! Zp be the multiplication by q in Zp; since (p, q) = 1,

µq is a group isomorphism. It follows that the restriction to A of µq� ⇡p is again a

Freiman k-isomorphism.

Let  p : Zp ! Z be the map defined above. For every 1  i  k, let

Li =



i� 1

k
p,

i

k
p

◆

and Ai = {x 2 A | µq(⇡p(x)) 2 Li}.

By what observed so far we have that the composition map  p� µq� ⇡p induces a

Freiman k-isomorphism Ai ! Li. By the pigeon-hole principle, there is 1  j  k

such that |Aj | � |A|/k = n/k; we write A0 = Aj (notice that A0 depends on q

which at the moment is any integer coprime to p).

Let ⇡m : Z ! Zm be the projection modulo m; thus we have the following compo-

sition chain

Z ⇡p�! Zp
µq�! Zp

 p��! Z ⇡m��! Zm.

The proof will be complete if we show that for some 1  q  p� 1, the restriction

to A0 of the composite map  = ⇡m�  p� µq� ⇡p is a Freiman k-isomorphism.
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Since ⇡m is a group homomorphism and the restriction to A0 of  p�µq�⇡p induces

a Freiman k-isomorphism, we have only to prove that, for a proper choice of q,

(1.24)  (x1) + · · · (xk) =  (y1) + · · ·+  (yk) ) x1 + · · ·+ xk = y1 + · · ·+ yk

for any x1, . . . , xk, y1, . . . yk 2 A0 (injectivity of  on A0 follows easily from this).

Let 0 6= a 2 kA � kA; since then (a, p) = 1, multiplying by a in Z⇤
p is a bijection,

hence

{ p(qa+ Zp) | 1  q  p� 1} = [1, p� 1].

Now |[1, p � 1] \ ker⇡m|  (p � 1)/m, so there are at most (p � 1)/m elements

q 2 [1, p� 1] such that

(1.25)  p(qa+ Zp) ⌘ 0 (mod m)

But, by the Plünneke-Ruzsa inequality (Theorem 1.15), |kA�kA|  C2k|A|. Since

C2k|A|p� 1

m
< p� 1

we conclude that there is at least an integer q 2 [1, p� 1] such that (1.25) fails for

every 0 6= a 2 kA � kA. Picking such q to define  , and remembering that the

restriction to A0 of the map  p� µq � ⇡p is a Freiman k-isomorphism, it is now an

easy task to conclude that (1.24) holds for every x1, . . . , xk, y1, . . . , yk 2 A0, thus

completing the proof that A0 is Frieman k-isomorphic to a subset of Zm.

Lemma 1.33. Let A be a finite subset of Z, with |A| = n and |A+A| = Cn. Then

2A� 2A contains a proper generalized progression Q of dimension r  28C32
, and

size |Q| � f(C)|A| (f(C) depends on C only).

Proof. Let p be a prime with C16n  p  2C16n (it exists by Bertrand

Postulate). By Lemma 1.32, with k = 8, there exists A0 ✓ A with |A0| � n/8 and

A0 Freiman 8-isomorphic to a subset X of Zp. Observe that

p

16C16
 |A0| = |X|  p

8C16
.

By Lemma 1.25, 2X � 2X contains a Bohr neighborhood B(j1, . . . , jr; 1/4) with

r < (16C16)2. It then follows from Lemma 1.31 that 2X � 2X contains a proper

r-dimensional generalized progression Q of size |Q| � (1/4r)rp. Since X and A0

are Freiman 8-isomorphic, we easily have that 2X � 2X and 2A0� 2A0 are Freiman

2-isomorphic, hence (see exercise 3) 2A0 � 2A0 (and 2A � 2A) contains a proper

r-dimensional generalized progression Q0 of size |Q0| � (1/4r)rp � (1/4r)rC16n.

From Lemma 1.33 to Freiman’s Theorem only a last step remains, which just re-

quires an application of Ruzsa covering Lemma.

Theorem 1.34 (Freiman). Let C � 2, and let A be a finite subset of Z such that

|A + A| < C|A|. Then A is contained in a generalized progression of dimension

k(C) and length q(C)|A|, where the numbers k(C) and q(C) depend on C only.
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Proof. Let Q be a proper generalized progression contained in 2A � 2A, of

dimension r1 bounded by a function of C and length `(Q) = |Q| � f(C)|A|, whose
existence is granted by Lemma 1.33. By Plünnecke-Ruzsa inequality (Theorem

1.15)

|A+Q|  |A+ (2A� 2A)|  C5|A|  C5f(C)�1|Q|;

hence, by Lemma 1.16 there exists X ✓ A, with |X| = r2  C5f(C)�1 such that

(1.26) A ✓ X + (Q�Q).

Now, X = {x1, . . . , xr2} is a finite set, so it is trivially contained in the generalized

progression

Q1 = {↵1x1 + . . .+ ↵r2xr2 | ↵i 2 {0, 1}},

of dimension r2 and length `(Q1) = 2r2 . On the other hand Q�Q is a generalized

progression of dimension r1 and length 2r1 |Q| (see Exercise 2). Thus,

P = Q1 + (Q�Q)

is a generalized progression of dimension at most r1+r2, which is a number bounded

by a function of C only. Because of (1.26) it remains to check that `(P )/|A| is also
bounded by a function of C. Now, since |Q|  |2A� 2A|  C4|A|, we have

`(P )  `(Q1)`(Q�Q) = 2r22r1 |Q|  2r22r1C4|A|.

This completes the proof of Freiman’s Theorem.

Remark. The actual bounds for k(C) and q(C) that are obtained by tracing back

them along the proofs of the various steps we have presented are vary crude. The

search for good bounds (more exactly, for good pairs of bounds) by various authors

led to the best ones presently known, due to Sanders [25]: slightly better than

k(C) = O(K log5 K) and q(C) = expO(K log5 K).

The general commutative case. Freiman’s Theorem has been extended (by

Ruzsa) to arbitrary torsion-free commutative groups (the proof is technically a bit

more delicate, but essentially the same we gave for Z).
However, in commutative groups that have torsion (i.e.non-trivial elements of finite

order), non-trivial finite subgroups exists and their cosets are small-doubling sub-

sets. Thus, mixing finite subgroups and multi-progression, the following definition

reveals to be the right one.

Definition 1.35. Let G be a commutative group. A coset–progression Q of di-

mension r is a subset Q = H + P of G, where H is a finite subgroup of G and P a

set of representatives of a multi-progression of dimension r in G/H.

We may now state a result that extends to arbitrary commutative groups Freiman’s

Theorem (and reduces to it when G = Z).
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Theorem 1.36 (Green and Ruzsa [12]). Let A be a non-empty finite subset of

the commutative group G, with |A + A|  c|A|. Then A is contained in as coset

progression of dimension at most r(c) and cardinality at most |A|`(c), where k(c)

and `(c) depend on c only.

1.6. The non-commutative case: approximate subgroups

Extending, in some way, Freiman’s Theorem to the non-commutative case, or also

some of the other results we have established along its proof (like e.g. Plünnecke

inequalities), or even just putting the right questions, is complicated by many

factors. In this section we prove a couple of results at an elementary level about

products of few copies of a finite non-empty subset of a group, that we will be

useful in later applications. Following that, we will not be able to avoid mentioning

a recent generalization of Freiman’s Theorem (due to Breuillard, Green and Tao):

nothing more that giving its mere statement, plus a few explanations on its meaning,

can be done within the scope of these lectures.

In the general setting, it is the concept of approximate subgroup, introduced by

T.Tao, that has proved to better suited to manipulation, and has the advantage of

making sense for infinite subsets as well as finite ones. Before giving the definition,

let us agree to saying that a subset U of a (multiplicative) group is symmetric if

1 2 U and U�1 = U .

Definition 1.37. Let 1  K 2 R be a parameter. A finite symmetric subset A of

a group G is called a K-approximate subgroup if there exists X ✓ G with |X|  K

and A ·A ✓ X ·A (that is, A2 is covered by K left translates of A).

If A is K-approximate subgroup of the group G and X ✓ G is such that |X|  K

and A2 ✓ X ·A, then |A2|  K|A| and, by an obvious induction,

An+k ✓ XnAk and |An+1|  Kn|A|.

for every 1  n, k 2 N. In particular, An is a Kn-approximate subgroup. Also, we

see that a K-approximate subgroup is a slowly growing subset.

For commutative groups the connection between approximate subgroups and small

doubling subsets is tight.

Proposition 1.38. Let A be a finite non-empty subset of the commutative group

G and |A+A|  c|A| for some real number c � 1. Then A�A is a c5-approximate

subgroup of G.

Proof. Now, U = A�A is a symmetric subset of G, and, by Theorem 1.15,

|A+ 2U | = |3A� 2A|  c5|A|.
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By Ruzsa covering trick (Lemma 1.16) there is a set X ✓ 2U such that |X|  c5

and 2U ✓ A � A +X = X + U , showing that U is a c5-approximate subgroup of

G.

This, in general, does not hold in the non-commutative case; for small doubling

does not always imply slow growth.

Example 7. The standard example is A = H [ {g}, where H is a subgroup of the

non-commutative group G and g 2 G \H; then A2 = AA = H [ gH [Hg [ {g2},
whence |A2|  3|A|, while A3 contains the double class HgH, whose cardinality

may be arbitrary large with respect to the coe�cient ↵ = 3 (in fact, one easily finds

cases in which |HgH| = |H|2). Therefore, neither A nor A2 may be K-approximate

subgroups for any K independent on |A|.

However, small tripling works.

Lemma 1.39. Let A be a finite non-empty subset of a group G with |A3|  c|A| for
some real number c � 1. Then AA�1

is a c5-approximate subgroup of G.

Proof. By Ruzsa triangle inequality (Lemma 1.10),

|A||A�1A�1A|  |A�1A�1A�1||AA|  |A3||A3|  c2|A|2,

hence |A�1A�1A|  c2|A|. Similarly one proves |AAA�1|  c2|A|. Again

|A�1||AAA�1A|  |AAA||A�1A�1A|  c|A|c2|A| = c3|A|2,

and so |AAA�1A|  c3|A|. One more application of Lemma 1.10 yields

|A||AA�1AA�1A|  |AA�1A�1||AAA�1A|  c2|A|c3|A|.

Therefore

(1.27) |AA�1AA�1 ·A|  c5|A|.

Now the proof proceeds as in Proposition 1.38. Write U = AA�1; then (1.27)

becomes |U2A|  c5|A|. By Lemma 1.16 there exists X ✓ U2 such that |X|  c5

and

U2 ✓ XAA�1 = XU.

Since U is symmetric, it is a c5-approximate subgroup of G.

Thus, small tripling implies slow growth. This fact may be directly proved by

using Ruzsa triangle inequality, in essentially the same way as we did in the proof

of Lemma 1.39.

Lemma 1.40. Let A be a finite symmetric subset of a group with |A3|  K|A| for
1  K 2 R; then, for every n � 3

|An|  Kn�2|A|.
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However, despite example 7, a rather strict connection between small doubling

subsets and approximate subgroups exists in arbitrary groups, as shown by the

following result.

Proposition 1.41 (Tao [26]). Let A be a finite subset of a group, with |A2|  c|A|
for 1  c 2 R; then A is contained in the union of at most c right–translates of a

c10-approximate subgroup Q, with c�1|A|  |Q|  c2|A|.

Proof. Let ; 6= X ✓ A be minimal such that |XA|/|X|  c. Then, by Petridis

Lemma 1.11 we have

|X3|  |XXA|  c|XX|  c|XA|  c2|X|.

Hence, Q = X�1X is a c10-approximate subgroup by Lemma 1.39 (applied to

X�1). Now, from |XA|  c|X| and Lemma 1.16 turned the other way, there exists

a subset Y ✓ A, such that |Y |  c and

A ✓ X�1XY = QY,

and so A is contained in c right translates of the approximate subgroup Q. Finally,

by Ruzsa triangle inequality,

|X||X�1X|  |X�1X�1||XX|  |X2||XA|  c|X||X2|,

whence c�1|A|  |Q| = |X�1X|  c|X2|  c|A2|  c2|A|.

This allows to establish that small-doubling subsets are roughly equivalent to ap-

proximate subgroups, where the term ’roughly’ may be given a precise technical

meaning, which we will not give here (see exercise 30).

In fact, a slightly stronger form of Proposition 1.41, which will need later on, holds.

Proposition 1.42. Let A be a finite subset of a group G such that

max{|AA�1|, |A�1A|}  c|A|

for 1  c 2 R; then A is contained in the union of at most c right–translates of a

c20-approximate subgroup Q, with c�1|A|  |Q|  c4|A|.

Proof. By Lemma 1.11 we find X,Y ✓ A such that |DXA�1|  c|DX| and
|DY �1A|  c|DY �1| for every finite U ✓ G. Let U = XY �1; then

|U3| = |XY �1XY �1XY �1|  c|XY �1XY �1X|  c2|XY �1XY �1|  c4|U |.

Hence, Q = U�1U is a c20-approximate subgroup by Lemma 1.39. Now we have

|QA| = |Y X�1XY �1A|  c|Y X�1XY �1| = c|Q|, and to conclude as in the previ-

ous proof we just need to observe that

c�1|A|  |Q| = |U�1U |  c|XY �1XY �1|  c3|XY �1|  c2|AA�1|  c4|A|.
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Exercise 11. Working out the proof of Lemma 1.39 in an inductive argument try

to prove a Plünnecke-type inequality for arbitrary groups, as follows: let A be a

non-empty finite subset of a group, with |A3|  c|A| for some 1  c 2 R; then for

every n � 3 and ✏1, ✏2, . . . , ✏n 2 {�1, 1},

|A✏1A✏2 · · ·A✏m |  c3(n�2)|A|.

Exercise 12. (Freiman, Tao) Let X be a non-empty finite subset of a group G,

and suppose |X�1X| < 3
2 |X|. Write U = {g 2 G | X \ gX 6= ;}, and prove the

following facts.

(1) If g 2 U then |X \ gX| > 1
2 |X|;

(2) U = XX�1;

(3) XX�1 and X�1X are (conjugate) subgroups of G.

Progressions in arbitrary groups. In the rest of this section we like to

introduce (without proofs, needless to say) an impressive result, due to Breuillard,

Green and Tao (but the fundamental contribution of Hrushovski should also be

acknowledged) providing a rather outstanding extension of Freiman’s Theorem to

arbitrary groups.

We start by observing that, in a general group G, analogues of progressions in Z
look like

A = {bt | 0  t < n}

for 1 6= b 2 G and n a positive integer. In this case A2 = {bt | 0  t < 2n � 1},
hence, if |A| = n then (as in the commutative case) |A2|  2|A|� 1. Also, A[A�1

is a 2-approximate subgroup (take X = {b1�n, bn�1}).
However, if we just add an ”initial point”, that is, for a, b 2 G \ {1}, we consider

A = {abt | 0  t < n}

we have A2 = {abiabj | 0  i, j < n}. Recalling the definition of the commutator:

[x, y] = x�1y�1xy, (for x, y 2 G), we write

A2 = {a2bi[bi, a]bj | 0  i, j < n}

which may have order as large as n2.

Example 8. In the group G = GL(2,R) let a =

 

0 1

1 0

!

, b =

 

2 0

0 1

!

; then, for

every r, s 2 Z,

abrabs =

 

2r 0

0 2s

!

For a fixed n � 1, if A = {abt | 0  t < n}, then |A| = n and |A2| = n2 = |A|2.
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Of course, this a fortiori apply to natural analogues of generalized d-dimensional

arithmetic progressions; in a non-commutative group G, things like

(1.28) A = {aibj | 0  i < n1, 0  j < n2}

for a, b 2 G, are in general far from having small doubling.

Assume for simplicity that, in (1.28), |A| = n1n2 (in the terminology of the com-

mutative case, A is proper). Of course, if a and b commute (i.e. [a, b] = 1) then

|A2| < 4n1n2 = 4|A|. Troubles begin when a and b do not commute; let us then

suppose that they are close to be commuting, in the sense that c = [b, a] commutes

with both a and b (for those who know about groups, a and b generate a class-2

nilpotent group). Now, an easy fact in basic commutator calculus says that, for

every r, s 2 Z,

(1.29) [br, as] = crs = [as, br]�1.

This suggest that, rather than A as in (1.28), we consider an extended kind of

progression:

P = P (a, b, c | n1, n2, n1,2) = {arbsct | 0  r < n1, 0  s < n2, 0  t < n1,2}

where c = [b, a] commutes with both a and b. Suppose that P is proper and that

n1,2 � n1n2; then, by using (1.29) we easily obtain

P 2 ✓ {arbsct | 0  r < 2n1 � 1, 0  s < 2n2 � 1, 0  t < n1n2 + 2n1,2}

whence

|P 2| < n1n2 + 2n1,2  4n1n2 · 3n1,2  12|A|.

Let us exhibit a tangible example.

Example 9. In the Heisenberg group G of 3⇥ 3 upper unitriangular matrices over

Z consider

a =

0

B

@

1 0 0

0 1 1

0 0 1

1

C

A

, b =

0

B

@

1 1 0

0 1 0

0 0 1

1

C

A

, and c = [b, a] =

0

B

@

1 0 1

0 1 0

0 0 1

1

C

A

.

Then c commutes with a and b (in fact c is in the centre of G). Given positive

integers n1, n2 � 1, consider

A = {arbsct | 0  r < n1, 0  s < n2, 0  t < n1n2}.

Since one easily checks that

(1.30) arbsct =

0

B

@

1 s t

0 1 r

0 0 1

1

C

A

,
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we have |A| = (n1n2)2. Similarly, all elements of A2 are matrices of type (1.30)

with

0  r < 2n1 � 1, 0  s < 2n2 � 1, 0  t < 2n1n2 � (n1 + n2),

whence

|A2|  4n1n2 · 2n1n2 = 8|A|.

This is the easiest (non-commutative) example of what is called a nil-progression;

or, more precisely, of in what it is a complete nil-progression; the definition of

a generic nil-progression is less strict, but still enough to provide small-growing

subsets (and approximate subgroups).

Definition 1.43. 1) Let g1, . . . , gr be elements of a group G, and t1, . . . tr positive

integers. The associated progression of rank r is the set P (g1, . . . , gr; t1, . . . , tr) of

all elements of G that are product of the elements gi and their inverses, with at

most ti ocurencies of gi and g�1
i , for every i = 1, . . . , r.

2) A progression P (g1, . . . , gr; t1, . . . , tr) is called a nil-progression of step s, if

hg1, . . . , gri is a nilpotent group of nilpotency class s.

Recall that the normalizer NG(H) of a subgroup H in a group G is the set of all

g 2 G such that Hg = g�1Hg = H. Clearly, NG(H) is a subgroup of G containing

H as a normal subgroup.

Definition 1.44. A coset nil-progression in a group G is a subset Q = HP where

H is a finite subgroup of G, P ✓ NG(H) and P is a set of representatives for a nil-

progression {Hx | x 2 P} in NG(H)/H. Rank and step of a coset nil-progression

HP are those of the nil-progression HP/H.

Observe that if Q is a coset nil-progression in a group G then the subgroup hQi,
generated by Q, has a finite normal subgroup H such that the factor group hQi/H
is nilpotent. Form standard group theory it follows that hQi is virtually nilpotent.

Definition 1.45. A group G is virtually nilpotent if it contains a (normal) nilpotent

subgroup of finite index.

We may now state the fundamental result of Breuillard, Green and Tao [5], pre-

senting - as authors do - two versions of it. As said, the proofs are beyond the

scope of this course. They are based on fundamental work of Hrushovski ([17]),

combined with Gleason-Yamabe structure theorem for locally compact groups, and

much more. As a first approach, the interested reader may look for the expository

papers [6], [2], [8] (the last one, by L. van den Dries, is recommended to those

interested in the part of the proof using tools from logic), that also include some

comments on applications.
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Theorem 1.46 (Br.Gr.T. - weak form). Let A be a finite non-empty subset of a

group G with |AA|  c|A| for a parameter c � 1. Then there exist a finite subset X

of G and a virtually nilpotent subgroup �  G such that |X|  �(c) and A ✓ X�.

Theorem 1.47 (Br.Gr.T. - strong form). Let K � 1 and A a K-approximate

subgroup of a group G. Then there exist a finite subset X of G, with |X|  �(K),

and a coset nil-progression P of G of rank and step bounded by a function of K,

such that A ✓ XP and |P |/|A| is bounded in terms of K only. |X|  �(c) and

A ✓ XS.

An application. These are deep (and di�cult) Theorems. As an illustration,

let us show how the celebrated Gromov’s Theorem on groups with polynomial

growth may be easily deducted from 1.46.

Definition 1.48. A finitely generated group G is said to have polynomial growth

if given a finite symmetric set S of generators of G there exist positive constants

M and D such that

|Sn|  MnD

for every n � 1. This fact does not depend on the choice of the finite set of

generators S (this is easy to prove).

In 1968, J. Wolf proved that a finitely generated (virtually) nilpotent group has

polynomial growth. Gromov’s Theorem says that the converse is true.

Theorem 1.49 (M.Gromov, 1981). Every finitely generated group of polynomial

growth is virtually nilpotent.

Proof. Let G have polynomial growth, S a finite symmetric set of generators

of G, and let M , D be constants such that |Sn|  MnD for every n � 1.

We first observe the following:

• for every n0 2 N there exists n � n0 such that

(1.31) |S4n| < 5D|Sn|.

In fact, suppose by contradiction, that for some n0 � 1 and every n � n0, we have

|S4n| � 5D|Sn|. Then, via a simple induction, for every t � 1 we obtain

M(4tn0)
D � |S4tn0 | � 5tD|Sn0 | � 5tD

which is false for su�ciently large t.

Now, let R = �(5D) (� is the function in the statement of 1.46), and let n � 5DR

satisfying (1.31). Write A = Sn; then |A2|  |A4| < 5D|A|; hence by Theorem 1.46

there exist a virtually nilpotent subgroup � and a subset X of G such that |X|  R

and A ✓ X�. Observe that we may then take X ✓ A.
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Let a 2 X ✓ A such that |a� \A| is maximum. Then

|A| =
�

�

�

[

x2X

(x� \A)
�

�

�

 |X||a� \A|  R|a� \A|.

Hence

(1.32) |A2 \ �| � |A \ a�| � |A|
R

>
|A4|
5dR

� |A4|
n

.

where the first inequality we have by multiplying on the left by a�1.

Suppose that |G : �| = 1. Then, since G = hSi, there exist at least 2n elements

g1, . . . , g2n 2 S2n = A2 such that gi� = gj� ) i = j. Thus, from (1.32),

|A4| �
�

�

�

2n
[

i=1

(A2 \ gi�)(A
2 \ �)

�

�

�

� 2n|A2 \ �| � 2|A4|,

a contradiction. Therefore, |G : �| is finite and so, being � virtually nilpotent, G is

virtually nilpotent.

Note. The material of the first five sections of this chapter is by now classic and

may be learnt from several sources, in surveys and notes by various authors. In

particular I have taken a lot from Ruzsa [24] and Green [11] lecture notes, which are

both available on web (the second at the author’s website), and contain a wealth of

interesting additional material. The book of Nathanson [19] includes a very detailed

proof of Freiman’s Theorem, as well as that by Tao and Vu [28], which is of course

more up-to-date, somehow more demanding to read, but an indispensable reference

for the scholar. For a continuous source of interesting facts about the subject of this,

as well as of the others, chapter, T. Tao weblog (https://terrytao.wordpress.com)

is a compelling reference.

In section 1.6, I just meant to take a peep at recent important achievements. The

reader interested in seeing more may begin from a number of valuable expository

papers like Breuillard, Green and Tao [6] or Breuillard [3] (available at author’s

websiite). For an account (after Hrushovski) of the model theoretic methods in-

volved in the proofs see van den Driess [8].


