
CHAPTER 4

Expansion in SL2(q)

4.1. Actions of groups

We have so far used basic facts about group theory without bothering explaining

them. In beginning this chapter, however, we like to remind a few things, mainly

related to actions, that are perhaps slightly more specialized and may not belong

to anybody’s background. We then prove some preliminary results of Helfgott’s

regarding actions in the perspective of set-products.

Actions. Let G be a group. An action of G on a non-empty set ⌦ is a map

G⇥ ⌦ ! ⌦

(g, x) 7! g · x

satisfying the following conditions:

(1) 1 · x = x for every x 2 ⌦;

(2) (g1g2) · x = g1 · (g2 · x) for every g1, g2 2 G, x 2 ⌦.

Assume we are given such an action and let g 2 G. If x 2 ⌦ and y = g�1 · x, then

g · y = g · (g�1 · x) = (gg�1) · x = 1 · x = x.

Next, suppose that, for some x, y 2 ⌦, g · x = g · y; then

x = 1 · x = (g�1g) · x = g�1 · (g · x) = g�1 · (g · y) = (g�1g) · y = y.

This means that the map ⇡(g) : ⌦ ! ⌦ defined by, for every x 2 ⌦,

⇡(g)(x) = g · x

is a permutation of ⌦, that is ⇡(g) 2 Sym(⌦). Moreover, condition (2) implies that

setting g 7! ⇡(g) defines a group homomorphism ⇡ : G ! Sym(⌦).

Conversely, if we are given a homomorphism ⇡ : G ! Sym(⌦) (this is called a

permutation representation of G) then setting g · x = ⇡(g)(x), for every (g, x) 2
G ⇥ ⌦, we obtain an action of G on ⌦. Thus, we have two ways, the action map

and the permutation representation, to look at the same thing, and we will adopt

freely which one seems to be more convenient.

In particular, we say that our action is faithful if the kernel ker(⇡) of the permutation

representation is trivial, or, equivalently if the only element g 2 G which fixes every

x 2 ⌦ that is g · x = x for every x 2 ⌦, is the identity.
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72 4. EXPANSION IN SL2(q)

Given an action G⇥ ⌦ ! ⌦, let x 2 ⌦; if ; 6= A ✓ G we set

A · x = {a · x | a 2 A}.

In particular, G · x is called the G-orbit (or, simply, the orbit) of x. The stabilizer

of x is the set

Gx = {g 2 G | g · x = x}.

It is a basic fact that Gx is a subgroup of G and that, if G is finite,

(4.1) |Gx||G · x| = |G|.

An action G⇥ ⌦ ! ⌦ is transitive if for every x, y 2 ⌦ there is a g 2 G such that

g · x = y (this is equivalent to saying that ⌦ is a single G-orbit).

Exercise 33. Let G⇥ ⌦ ! ⌦ be an action.

(1) Let x, y 2 ⌦; prove that if x and y are in the same G-orbit, then Gx and

Gy are conjugate.

(2) Let |⌦| � 3; prove that the action is 2-transitive if and only if for every

x, y 2 ⌦, with x 6= y, one has Gx · y = ⌦ \ {x}.

A simple result of Helfgott generalizes the orbit-stabilizer principle (4.1) to non-

empty subsets of G.

Proposition 4.1 (Helfgott [17]). Let G be a group acting on a non-empty set ⌦;

let x 2 ⌦ and Gx the stabilizer of x in G. Let A be a non-empty finite subset of G;

then

|A�1A \Gx| �
|A|

|A · x| .

Moreover, for every B ✓ G,

|AB�1| � |A \Gx||B · x|.

Proof. Let � : A ! A · x be the surjective map defined by �(a) = a · x for

every a 2 A. By the pigeon-hole principle there exists a · x 2 A · x such that

|��1(a · x)| � |A|/|A · x|.

Let B = ��1(a · x) = {b 2 A | b · x = a · x}; then a�1B ✓ A�1A \Gx, and so

|A�1A \Gx| � |B| � |A|
|A · x| .

For the second claim, let B0 ✓ B such that |B0| = |B · x|, and b · x 6= b1 · x for

every b, b1 2 B0 with b 6= b1. Then the map � : (A\Gx)⇥B0 ! AB�1, defined by

�(a, b) = ab�1, for all (a, b) 2 (A\Gx)⇥B0, is injective; in fact, if �(a, b) = �(a1, b1)

then b�1b1 = a�1a1 2 Gx, hence b · x = b1 · x, ad so b1 = b and a1 = a. Therefore,

|AB�1| � |(A \Gx)⇥B0| = |A \Gx||B · x|.
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Conjugation. Let G be any group; then a fundamental action of G on itself is that

induced by conjugation. Given x, g 2 G, the conjugate of x by g is

xg := g�1xg.

Fixed g 2 G, it is immediate to check that conjugation by g defines an automor-

phism �g of G, where �g(x) = xg, for all x 2 G. Such automorphisms are called

inner automorphisms of G; moreover the map G ! Aut(G) defined by g 7! �g�1 ,

for every g 2 G, is a group homomorphism.

This means that, by setting g · x = xg�1

, for all g, x 2 G, we have an action

G⇥G ! G (which is called, of course, conjugation action).

With respect to this action, the orbit of a x 2 G is the conjugacy class

xG := {xg | g 2 G},

and the stabilizer of x in G is the centralizer

CG(x) = {g 2 G | gx = xg}.

If G is finite, then the orbit-stabilizer equality (4.1) says that, for every x 2 G,

|xG| = [G : CG(x)].

In general, for H  G and X a nonempty subset of G, we let

CH(X) = {h 2 H | hx = xh 8x 2 X}.

It is straightforward to check that CH(X) is always a subgroup ofG. Z(G) = CG(G)

is called the center of G and its is a normal subgroup of G.

Conjugation in a group G induces in a natural way also an action of G on the set

of all subgroups (or of all subsets) of G. If X ✓ G and g 2 G, we let

g�1 ·X = Xg = {xg | x 2 X}.

Xg is just the image of X under the automorphism �g, hence |Xg| = |X| and, if
H is a subgroup of G, Hg is also subgroup. For H  G, the stabilizer of H with

respect to the conjugation action is called the normalizer, NG(H), of H in G. Thus

NG(H) = {g 2 G | Hg = H},

and, if G is finite, the index [G : NG(H)] in G coincides with the number of distinct

conjugates of H. Needles to say, a subgroup H  G is normal if NG(H) = G.

Let H,K be subgroups of G; in general, unless G is commutative (and a few other

very restricted cases), HK is not a subgroup of G. However, if K ✓ NG(H), then

HK is a subgroup of G and, in this case, HK = KH (in fact, this latter property

is equivalent to HK  G).
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Example 21. To our purposes, a significant example of group-action is that of the

2-dimensional Special Linear Group on the projective line.

Let K be a field, and G = SL2(K) the group of all invertible 2 ⇥ 2 matrices with

entries in K and determinant 1; that is

SL2(K) =

( 

a b

c d

!

�

�

�

a, b, c, d 2 K, ad� bc = 1

)

.

The natural action of G = SL2(K) on the vector space V = K2 induces a sharply

2-transitive action of G on the projective line

P (1,K) = {Ku | 0 6= u 2 V }

(the set of all 1-dimensional subspaces of V ), by the obvious rule

(g,Ku) 7! Kg(u)

The kernelK of this action is the set of scalar matrices in G, henceK = {±I}. That
the action is sharply 2-transitive means that for every two ordered pairs (Ku1,Ku2)

(Ku

0
1,Ku

0
2), of points in P (1,K), with Ku1 6= Ku2 and Ku

0
1 6= Ku

0
2, there exists

exactly one element gK 2 G/K such that

(4.2) g(Ku1) = Ku

0
1, g(Ku2) = Ku

0
2.

This is the same than asking that g 2 G exists for every two ordered pairs of

elements in P (1,K) so that (4.2) is satisfied and no element g 6= ±I fixes more than

two distinct elements in P (1,K).

The same action may be understood by viewing P (1,K) as the set obtained by

adding to K an infinite element, thus letting P (1,K) = K [ {1}; then the action

is defined by associating to any
⇣ a b

c d

⌘

2 G the Moebius transformation

x 7! ax+ b

cx+ d
(x 2 P (1,K)).

Exercise 34. Prove the above statements about the action of SL2(K) on the

projective line.

Actions on left cosets. There is another fundamental class of actions of G that are

strictly linked to the group structure: the actions on left cosets. For a subgroup H

of G we denote by G\H the set of all left cosets xH (x 2 G). There is then a natural

action of G on G\H defined by left multiplication, that is, for every g, x 2 G,

(4.3) g · (xH) = gxH.

These actions, for H  G, are transitive and for every x 2 G, GxH = Hx�1

.

By applying Proposition 4.1 in connection with such an action, we have a Lemma

on set-products, that shows in particular that approximate subgroups behave well

with respect to intersections with subgroups.
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Lemma 4.2 (Helfgott). Let G be a group, H a subgroup, and A a finite non-empty

symmetric subset of G. Then, for every n � 1,

|An+1|
|A| � |An \H|

|A2 \H| .

Proof. We look at the left multiplication action of G on ⌦ = G\H, and we

consider just the class H = 1H 2 ⌦. Since, as mentioned above, the stabilizer in

G of the class H is (the subgroup) H, by Proposition 4.1 we have

(4.4) |A2 \H| � |A|/|A ·H|.

(observe that |A · H| is the number of distinct left H-cosets that intersect A non

trivially). Now, we prove the inequality. This is trivial for n = 1; for n � 2, we

apply the second inequality in Proposition 4.1 and (4.4),

|An+1|
|A| =

|AnA|
|A| � |An \H||A ·H|

|A| � |An \H|
|A2 \H|

and we are done.

4.2. Subgroups of SL2(K)

For most of this section, we let G = SL2(K) (for a generic field K). We first review

a number of basic facts about G; some being straightforward, other requiring proofs

that are not very di�cult, and may be found in many textbooks.

• The identity 2 ⇥ 2 matrix is of course the identical element of G; we will often

denote it simply by 1 (if no confusion with the unit element of K is likely to arise).

• The center Z(G) of is composed only by the two scalar matrices:

Z(G) = {1,�1} =

( 

1 0

0 1

!

,

 

�1 0

0 �1

!)

• The following fact, that we state without proof, is one of the important group

theoretical features of these groups. Its proof is not particularly di�cult and may

be found in most introductory texts in group theory.

Proposition 4.3. If |K| � 4 then the only normal subgroups of G = SL2(K) are

the identity subgroup {1}, the center Z(G), and G.

• The quotient PSL2(K) = G/Z(G) is called the projective special 2-dimensional

linear group on K; by the preceding Proposition, if |K| � 4, PSL2(K) is a simple

group.

• If K = Fq, the finite field of order q, for q a power of a prime, we write G = SL2(q).

Then, one has

(4.5) |SL2(q)| = q(q2 � 1).
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In our approach it will be convenient to consider the algebraic closure K of the field

K (which, with an eye to our target, you may well think to be a finite field) and

view naturally at G = SL2(K) as a subgroup of G = SL2(K).

This has, first of all, the advantage that every element g of G admits two (possibly

equal) eigenvalues ag, a�1
g 2 K, and allows to partition the set of elements of G in

the following way.

Definition 4.4. Let g be an element of G and ag, a�1
g its eigenvalues in K; then

(1) g is unipotent if ag = a�1
g = 1, while we say that g is negative unipotent if

ag = a�1
g = �1;

(2) g is regular semisimple if ag 6= a�1
g .

Thus, every element of G belongs to one and only one of these classes. A useful

fact, that is however peculiar of dealing with matrices of order 2, is that one may

distinguish those types just by looking at the trace tr(g) = ag + a�1
g . In fact, for

g 2 G, g is unipotent if and only if tr(g) = 2, negative unipotent if and only if

tr(g) = �2, and regular semisimple if and only if tr(g) 6= ±2.

Another peculiar property of SL2, which is however very important in keeping the

treatment at an elementary level, and may be easily proved by computation, is the

fact that two non-central elements g, h of G are conjugate in the group G if and

only if tr(g) = tr(h).

Definition 4.5. Important classes of subgroups of SL2(K) are the following

• Unipotent subgroups: all conjugates of

(4.6) U(K) =

( 

1 b

0 1

!

�

�

�

b 2 K
)

.

• Maximal tori: all conjugates of

(4.7) T (K) =

( 

a 0

0 a�1

!

�

�

�

0 6= a 2 K
)

.

• Borel subgroups: all conjugates of

(4.8) B(K) =

( 

a b

0 a�1

!

�

�

�

a, b 2 K a 6= 0

)

.

Then U = U(K) is isomorphic to the additive group of the field K, while T = T (K)

is isomorphic to the multiplicative group K⇤
= K \ {0}, moreover, U is a normal

subgroup of B = B(K) and B = UT .

We also define the projective unipotent radicals as all conjugates of U⇤ = U⇤(K),

which is in turn the set of all unipotent and negative unipotent elements in B; then

U⇤ = U ⇥Z(G) = U [ (�U) is a normal subgroup of B; moreover, U⇤ \H = Z(G).
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Also, NG(U) = NG(U⇤) = NG(B) = B; while |NG(T ) : T ] = 2 and NG(T )/T (the

Weyl group of SL2(K)) is generated by Tw, where

w =

 

0 1

�1 0

!

.

Observe also that the Borel subgroups are the stabilizer of a point in the action of

SL2(K) on the projective line P (1,K) (example 21), while the maximal tori are the

(pointwise) stabilizers of two distinct points. From this fact, a number of immediate

informations are easily available; for instance, we see that the intersection of two

distinct maximal tori is the centre Z(G), that of two distinct Borel subgroups is

a maximal torus, or that every maximal torus is contained in exactly two Borel

subgroups.

From this it follows that for every non-central element u 2 U⇤, CG(u) = U⇤, and

for every non-central (i.e. regular semisimple) element g 2 T , CG(g) = T .

Exercise 35. Let G = SL2(K), U, H as defined in 4.4, and g =

 

1 1

0 1

!

. Prove

that

gH = {gt
2

| t 2 K⇤}.
In particular, if q is a power of an odd prime and K = Fq, then |gU | = q�1

2 .

Exercise 36. Let p be a prime and 0 6= t 2 Fp. Prove that
* 

1 t

0 1

!

,

 

1 0

t 1

!+

= SL2(p).

Deduce that SL2(p) is generated by two conjugates of
⇣ 1 t

0 1

⌘

.

In the theory of simple groups of Lie type, the following Lemma is a consequence

of the fact that groups of type SL2 have a BN-pair of rank 1 (see [7]); it is however

easily proved by computation.

Lemma 4.6. Let K be a field, G = SL2(K), U = U(K) and B = B(K). Then, for

every g 2 G \B, G is the disjoint union

G = B [ UgB;

moreover the map (u, b) 7! ugb is a bijection from U ⇥B to G \B.

Proof. We have

G \B =

( 

a b

c d

!

2 G
�

�

�

c 6= 0

)

,

and, by computing the product
 

1 �ac�1

0 1

! 

0 1

�1 0

! 

�c �d

0 �c�1

!

=

 

a b

c d

!

.
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Thus G \ B = UwB, where w =

 

0 1

�1 0

!

, and so G \ B = UgB for every

g 2 UwB = G \B.

For the final claim, just observe that, for any g 2 G \B, the map in the statement

is surjective, and if ugb = u1gb1 for some u, u1 2 U , b, b1 2 B, then

g�1u�1
1 ug = b1b

�1 2 B,

forcing (u�1
1 u)g 2 B. Since g 62 B = NG(U), this may only happen if u�1

1 u = 1.

Then b1 = b follows, proving that our map is injective.

Corollary 4.7. Let G, B, U be as in Lemma 4.6, and A a finite non-empty subset

of G such that A 6✓ B. Then

|A3| � |A \ U ||A \B|.

Proof. By assumption, there is an element g 2 A \B. Then the claim follows

from the last assertion in Lemma 4.6 and the fact that if u 2 A\U and b 2 A\B

then ugb 2 A3.

Proposition 4.8. Let S be a symmetrical subset of G = SL2(K). Then one of the

following cases occurs

(i) S is contained in a Borel subgroup of G;

(ii) S2
contains a regular semisimple element.

Proof. By possibly conjugating in G, we may well assume that S contains

some non-central element of the standard Borel subgroup B = B(K), and at least

one element h 2 G \ B, which we may also assume to be not regular semisimple.

Thus, for some 0 6= c 2 K,

S 3 h =

 

a b

c d

!

with tr(h) = ±2. Let U⇤ = U⇤(K), Z = Z(G); since we may well assume that S

does not contain any regular semisimple element of B, we have B \ A ✓ U⇤, and

so there exists s 2 (S \ U⇤) \ Z; thus, for some y 6= 0,

s =

 

1 y

0 1

!

or s =

 

�1 y

0 �1

!

.

In the first case, direct computation shows

(4.9) tr(sh) = tr(h) + cy.

If char(K) = 2, then we are done, as tr(sh) = cy 6= 0 and so sh has two distinct

eigenvalues and is a regular semisimple element in S2.

Let char(K) 6= 2. Then, since cy 6= 0, it follows from (4.9) that tr(sh) 2 {2,�2}
(that is, sh is not regular semisimple) if and only if

(4.10) tr(sh) = tr(h) + cy = �tr(h).
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Then, we consider the element s�1h 2 S2, for which direct computation shows

tr(s�1h) = tr(h)� cy. Again, either s�1h is a regular semisimple element in S2, or

tr(h) � cy = tr(s�1h) = �tr(h). But this latter possibility is in contrast to (4.10)

and cy 6= 0.

The case s =

 

�1 y

0 �1

!

is absolutely similar, hence we have the proof.

4.3. The product theorem in SL2

In this section we prove the following fundamental result, which was first established

by Helfgott in his groundbreaking paper [17], for K a field of prime order and a

slightly weaker alternative instead of A3 = G, and later extended to any finite field

by Dinai [10].

Theorem 4.9. There exists an absolute constant � such that for every finite field

K and every symmetric generating subset A of G = SL2(K) containing 1, either

A3 = G or

|A3| � |A|1+�.

In the case in which K has prime order, Kowalski [23] has proved that one my take

� = 1/3024.

In fact, in order to have a statement more immediately providing the product

condition as set in point (2) of Theorem 3.10, we prove the following approximate

subgroup version.

Theorem 4.10. There exists an absolute constant D such that for every finite field

K and every c � 2, if A is c-approximate subgroup of G = SL2(K), then one of the

following cases occurs:

(i) |A| ⌧ cD;

(ii) |A| � c�D|G|;
(iii) hAi is a proper subgroup of G.

Let us see why Theorem 4.9 follows from Theorem 4.10. Let A be a generating

symmetric subset of G = SL2(q) such that A3 6= G. Then by Gowers’ trick (i.e. the

Remark after Frobenius Theorem 3.13), |A|  2|G|8/9. Let � = 1
9(1+5D) , and sup-

pose, by contradiction, |A3| < |A|1+�. Then, by Lemma 1.39, A2 is a c-approximate

subgroup of G, for c = |A|5�. Hence, assuming Theorem 4.10, we have

|A3| � |A2| � |A|�5�D|G| � |A|�5�D|A|10/9 = |A|1�5�D+1/9 = |A|1+�,

which is a contradiction.

Exercise 37. Prove that Helfgott’s Theorem 4.9 implies Theorem 4.10.
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Proving Theorem 4.10. In the following three lemmas, A is a c-approximate

subgroup (for some c � 1) of the group of G = SL2(K). The first of these results

(called non-concentration property) is one of the bulks of the entire proof.

Lemma 4.11. There exist a constant k � 1 such that for every regular semisimple

element x in G,

|A \ xG| ⌧ ck|A| 23 .

Proof. da scrivere.

Definition 4.12. We say that a maximal torus T of SL2(K) is A-involved if A2\T

contains a regular element.

Lemma 4.13. Let T be an A-involved torus. Then

|A2 \ T | � c�(4k+2)|A| 13 .

Proof. Let T  G be an A-involved torus, and let x 2 A2 \ T be a regular

semisimple element. Since for every a 2 A, xa = a�1xa 2 A4, by applying Lemma

4.11 to A4 (remember from section 1.6 that A4 is a c4-approximate subgroup and

|A4|  c3|A|), we have

|xA|  |A4 \ xG| ⌧ c4k|A4| 23  c4k+2|A| 23 .

Now, the centralizer in G of x is T , and so, by considering the conjugation action,

Lemma 4.1 yields

|A2 \ T | � |A|
|xA| � c�(4k+2)|A| 13 .

Lemma 4.14. Let T be an A-involved torus, then either |A| ⌧ c12k+18
or T a =

a�1Ta is an A-involved torus for every a 2 A.

Proof. Let T be an A-involved torus and suppose that there exists a 2 A

such that T a is not A-involved. Then |A2 \ T a|  2. Also, by Lemma 4.13,

|A4 \ T a| � |(A2 \ T )a| = |A2 \ T | � c�k1 |A| 13 ,

with k1 = 4k + 2, and so, by Lemma 4.2,

|A| 13 ⌧ ck1 |A4 \ T a|  ck1
|A5|
|A| |A

2 \ T a|  ck1+4|A2 \ T a|  2ck1+4,

whence |A| ⌧ c12k+18.

We are now ready for the main result of this section.

Proof of Theorem 4.10. Let q be the power of a prime, G = SL2(Fq) =

SL2(q), and G = SL2(Fq).

Let c � 2 and A a c-approximate subgroup of G; suppose further that A generates

G, so that case (iii) in the conclusions is ruled out from start.
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Let D = 12k + 18, where k is the constant in Lemma 4.11 and assume that we are

not in case |A| ⌧ cD, where the implied constant is that arising in Lemma 4.14.

Since A is not contained in a Borel subgroup of G, there exists, by Proposition 4.8,

an A2-involved torus T of G. Then, by Lemma 4.14 and the fact that hAi = G, we

immediately have that T g is an A2-involved torus for every g 2 G. Moreover, by

Lemma 4.13,

(4.11) |A4 \ T g| � c�(4k+2)|A2| 13 ,

for every g 2 G.

Now, the number M of distinct G-conjugates of G \ T (which is properly larger

than Z(G)) is either q(q + 1)/2 or q(q � 1)/2, accordingly to G \ T being of split

type (i.e. diagonalizable in G) or of non-split type; in any case, M � |G|2/3.
Since each regular (that is non-central) semisimple element belongs to one and only

one maximal torus, from (4.11) we obtain

c2|A2| � |A4| � Mc�(4k+2)|A2| 13 � 2M � Mc�(4k+3)|A2| 13 ,

and consequently,

c8/3|A|2/3 � c2|A2|2/3 � Mc�(4k+3) � c�(4k+3)|G| 23 ,

and finally

|A| � c�3(2k+3)|G| � c�D|G|.

Remark. In a vague sense, this Theorem says that in groups of type SL2 the

interesting approximate subgroups (that is, neither too small or too big) are con-

tained in a proper subgroup. To smooth further things, and make sure that, for

groups of type SL2, this provides axiom (2) in the Bourgain-Gamburd Theorem

3.10, let C1 and C2 be the two implicit constants in point (i) and (ii), respectively,

of the statement of Theorem 4.10; we may replace the exponent constant D by D0,

where D0 > D + | log2 Ci|, i = 1, 2, and deduce from Theorem 4.10 that for a c-

approximate subgroup A of G = SL2(q) either A is contained in a proper subgroup

of G, or |A| < cD
0
, or |A| > c�D0 |G|.

For any real number � > 0, we now put c(�) = �/D0. Let G = SL2(q) for some

prime power q, and let Q be a c-approximate subgroup of G, with c = |G|c(�) and
such that

|G|�  |Q|  |G|1��.

Then, |Q| � |G|� = cD
0
and |Q|  |G|1��  c�D0

; hence by Theorem 4.10 (as

restated above), Q is contained in a proper subgroup of G, and this is precisely

axiom (2) in the Bourgain-Gamburd Machine.

We emphatize the fact that the function � 7! c(�) depends only on the type SL2 of

the group and not on the size of the ground field.



82 4. EXPANSION IN SL2(q)

4.4. Non-concentration in SL2(p)

The first two requirements in the Bourgain-Gamburd machine (Theorem 3.10),

queasirandomness and product theorem, are global properties of the considered

group, while the third, non-concentration of probability distribution, depends in

principle also on the symmetric generating set we are dealing with.

In this section, we establish a property of this kind for groups SL2(p), where p is a

prime. This restriction allows to view our groups as quotients of the integral matrix

group SL2(Z), and look at sets of generators that are, as p changes, homogeneous,

in the sense that they are reductions modulo p of a suitable, and fixed, subset of

integral matrices.

Another nice aspect we have in restricting to prime fields is the particularly simply

description of proper subgroups. This goes back to Dickson.

Proposition 4.15 (Dickson, 1905). Let p � 5 be a prime number and H a maximal

subgroup of G = SL2(p). Then one of the following cases occurs:

(1) H is a Borel subgroup of G;

(2) H is the normalizer of a split or a non-split maximal torus;

(3) H/Z(G) is isomorphic to A4, S4 or A5.

Now, if H is a Borel subgroup of G = SL2(p), then |H| = p(p � 1) and H is the

semi-direct product of the unipotent group U , which is isomorphic to the additive

group of Fp by a split maximal torus, which is isomorphic to the multiplicative

group F⇤
p. If H is as in point (2), then H is a dihedral group of order 2(p � 1) (if

it is the normalizer of a maximal split torus), or a dihedral group of order 2(p+ 1)

(if it is the normalizer of a maximal non-split torus). Finally, if H is as in point

(3) then |H|  120. As an immediate consequence of Proposition 4.15 we have

therefore the following useful information.

Corollary 4.16. Let p � 5 be a prime number and H a proper subgroup of SL2(p).

Then either |H|  120 or H is metabelian, that is

[[a, b], [c, d]] = 1

for every a, b, c, d 2 H.

Given a prime p we denote by ⇡p the reduction mod p (which is a homomorphism):

⇡p : SL2(Z) ! SL2(p).

Exercise 38. Prove that

SL2(Z) =
* 

1 1

0 1

!

,

 

1 0

1 1

!+

.
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Proposition 4.17. The following facts hold.

(1) Let �2 be the kernel of the reduction ⇡2, then

(4.12) �2 =

* 

1 2

0 1

!

,

 

1 0

2 1

!+

is a free group of rank 2.

(2) Let H be a finitely generated subgroup of SL2(Z); then either H is soluble

or has a subgroup of finite index which is a free group of rank 2  k < 1.

Proof. (1) Let H be the subgroup in right term of (4.12); clearly H  �2.

Write

x =

 

1 1

0 1

!

, y =

 

1 0

1 1

!

,

so that H = hx2, y2i and, by exercise 38, hx, yi = SL2(Z). Then, one easily checks

that (x2)y, (y2)x 2 H, whence H is normal in SL2(Z). Now, x and y have order 2

modulo H, while

(xy)3 =

 

2 1

1 1

!3

=

 

13 8

8 5

!

= x2y�2x�2y2 2 H.

It follows that SL2(Z)/H is dihedral of order 6 = |SL2(Z)/�2|, and so H = �2.

(2) Let H be a finitely generated subgroup of SL2(Z), and K = �2 \ H. Then

H/K ' H�2/�2 is isomorphic to a subgroup of SL2(2) ' S3; in particular we

have |H : K|  6. On the other hand, by Schreier Theorem (see [8] 7.7), K is a

free group, and it is finitely generated being a finite-index subgroup of a finitely

generated group (see [8] 6.1). Thus K is free of finite rank; if K is cyclic, H is

soluble, and we are done.

We recall that every non-trivial subgroup of a free group is free (the Nielsen–Shreirer

Theorem we already mentioned in the proof of Proposition 4.17); an easy corollary

of this fact is that the centralizer CF (g), of any non-trivial element g in a free group

F , is an infinite cyclic group.

Given a free group F with free generating set X (we then sometime write F =

F (X)), and |X| = k, let S = X [X�1 and consider the Cayley graph � = �[F ;S].

Then � is the infinite regular tree T2k, and for every w 2 F , the distance in d�(1, w)

coincides with the smallest length `S(w) of w as a word in the alphabet S. For

m � 0 we write BS(m) = {w 2 F | `S(w)  m}, the ball of radius m centered in 1.

We begin with an elementary remark.

Lemma 4.18. Let F = F (X) be a free group and S = X [ X�1
. Then, if U is a

cyclic subgroup of F and m � 1, |U \BS(m)|  2m+ 1.

Proof. Exercise.



84 4. EXPANSION IN SL2(q)

Lemma 4.19. Let F , X and S be as in the previous Lemma; let m � 1 and ; 6=
W ✓ BS(m). Suppose that

[[x1, x2], [x3, x4]] = 1

for every x1, x2, x3, x4 2 W . Then

|W |  (4m+ 1)(8m+ 1)  48m2.

Proof. Suppose first that [x, y] = 1 for every x, y 2 W . Then the subgroup

generated by W is abelian and therefore it is cyclic; the claim follows at once from

Lemma 4.18.

Thus, let a, b 2 W be such that u = [a, b] 6= 1. Now, by assumption, [u, [a, x]] = 1

for every x 2 W . Then, we have a map � : W ! CF (u) by setting, for every

x 2 W , �(x) = [a, x]. Observe that, because a, x 2 W ✓ BS(m), they both have

S-length at most m, and so

[a, x] = a�1x�1ax 2 BS(4m).

Since CF (u) is cyclic, Lemma 4.18 yields

(4.13) |�(W )|  8m+ 1.

Now, let x, y 2 W with �(x) = �(y); then

ax = a[a, x] = a[a, y] = ay

and so xy�1 2 CF (a). But also xy�1 2 WW�1 ✓ BS(2m). Since CF (a) is cyclic,

by applying Lemma 4.18 again, we conclude that, for every x 2 W , the inverse

image ��1([a, x]) contains at most 4m + 1 elements. Together with (4.13), this

gives the claimed inequality.

In the following, we write G = SL2(Z), and for every prime p � 5, Gp = SL2(p).

As said, ⇡p : G ! Gp is the projection modulo p.

We also fix a subset X of G, with 2  |X| < 1, such that X is a set of free

generators of a free group hXi  G, let S = X [ X�1 and let C = C(S) be as

defined above. Finally, for every p � 5, we let Sp = ⇡p(S) (observe that, as well as

S in G, Sp is a symmetric subset of Gp).

Now, following an idea of Margulis, we are going to exploit the fact that, up to

a certain distance from identity, the Cayley graph �[Gp, Sp] looks like �[hXi, S]
(Lemma 4.21 below), hence like a tree. Thus, the following calssical result of

Kesten will be quite useful.

Proposition 4.20 (Kesten [22]). Let X be a free set of generators of the free group

Fk of rank k = |X|, and S = X [ X�1
. Denote by ⌫̃ the probability distribution

⌧ = |S|�1
1S on Fk. Then, for every n � 1 and x 2 Fk,

⌫̃(n)(x)  r�n where r =
kp

2k � 1
.
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Now, consider a sub-multiplicative norm on the space of n⇥ n matrices (we use in

fact only the case n = 2); let us say the maximum absolute row sum norm

(4.14) ||a||1 = max
1in

⇣

n
X

j=1

|aij |
⌘

.

Then, given a finite symmetric subset S of SL2(Z), we define C = C(S) > 0 by

letting

(4.15) C�1 = log
�

max
s2S

||s||1
�

.

Lemma 4.21. Let p be a prime, and r a positive integer with r < C log (p/2).

(1) The reduction modulo p is injective in BS(r).

(2) The subgraph induced by BS(r) in �[G;S] is isomorphic to that induced

by BSp(r) in �[Gp;Sp]; in particular, both are trees.

(3) g(�[Gp;Sp]) � 2C log (p/2).

(See section 2.1 for the definition of the girth g(�) of a graph �.)

Proof. (1) This is immediate from the sub-multiplicative property of the

norm. In fact, if s1, . . . , sr 2 S and a = (ai,j) = s1 · · · sr, then

max |ai,j |  ||s1 · · · sr||1  ||s1||1 · · · ||sr||1  erC
�1

< p/2.

From this, it follows that if a, b 2 BS(r), then ⇡p(a) = ⇡p(b) if and only if a = b.

(2) Let � and �p be, respectively, the subgraph induced by BS(r) in �[G;S] and

that induced by BSp(r) in �[Gp;Sp]. Since the reduction ⇡p is a group homo-

morphism, we clearly have ⇡p(BS(r)) = BSp(r); then point (1) ensures that (the

restriction of) ⇡p is a bijective map from the set of vertices of � and that of �p.

By the same reason (being a homomorphism), ⇡p preserves adjacency in both di-

rections.

(3) This is left as an exercise; it follows easily from (2) and the fact (Proposition

2.10) that Cayley graphs are vertex-transitive.

Lemma 4.22. Then there exist 0 < �1 < 1, depending only on S, such that for any

su�ciently large prime p

(4.16) ⌫(n)p (x)  p��1

for every x 2 Gp, with n =
⇥

C
16 log(p/2)

⇤

.

Proof. Let p � 5, n =
⇥

C
16 log(p/2)

⇤

, and x 2 Gp. If x 62 Sn
p , then ⌫(n)p (x) = 0.

If x 2 Sn
p , then x = ⇡p(w) for some w 2 hXi = Fk; more precisely, w 2 BS(n), the

ball of radius n in Fk. Since n  C log(p/2), by Lemma 4.21 and Proposition 4.20,

we have

(4.17) ⌫(n)p (x) = ⌫̃(n)(w) < r�n.
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where

r =
kp

2k � 1
=

|S|
2
p

|S|� 1
.

Now, fix �1 so that 0 < 2�1  min
�

1, C
16 log r

 

. Then, since n > C
16 log(p/2) � 1,

we have from (4.20),

(4.18) ⌫(n)p (x) < r�n < r1�
C
16 log(p/2) < r

⇣p

2

⌘� C
16 log r

 Mp�2�1

for some constant M depending only on S (via C and r). Thus, (4.16) holds for

every p � M��1
1 .

Lemma 4.23. Then there exist 0 < � < 1, depending only on S, such that for any

su�ciently large prime p and n =
⇥

C
16 log(p/2)

⇤

,

(4.19) ⌫(n)p (H)  p��

for every proper subgroup H of Gp.

Proof. Let H be a proper subgroup of Gp, and n as in the assumptions. Since

⌫(n)p is supported in Sn
p , by Lemma 4.22 we have

(4.20) ⌫(n)p (H) =
X

x2H\Sn
p

⌫(n)p (x)  |H \ Sn
p |p��1 .

For |H|  120, this does not have e↵ect on the final estimate. Otherwise, by

Corollary 4.16, [[a, b], [c, d]] = 1 for every a, b, c, d 2 H.

Now, by Lemma 4.21, the reduction ⇡p is injective in the ball BS(r) of hXi = Fk,

for r = 16n. Let W be the inverse image in BS(r) of H \ Sn
p ; then, for every

x1, x2, x3, x4 2 W , we have ⇡p[[x1, x2], [x3, x4]] = 1. But

`S([[x1, x2], [x3, x4]])  16max{`S(xi) | i = 1, 2, 3, 4}  r,

and so [[x1, x2], [x3, x4]] = 1. Therefore, we may apply Lemma 4.19 to W , obtaining

(4.21) |H \ Sn
p | = |W |  48n2  3

16
C2 log2

p

2
 C2 log2

p

2
.

Then, let k = [4��1
1 ] + 1, then, by a well known fact

log2(p/2)  k2(p/2)2/k  (k/21/k)2p�1/2.

From (4.20) and (4.21) we then have

⌫(n)p (H)  |H \ Sn
p |p��1  C2 log2(p/2)p��1  Mp�1/2��1 = Mp��1/2,

� = �1/2 where M a constant that ultimately depends only on S. For p � M4��1
1 ,

and � = �1/4, we finally have

⌫(n)p (H)  p�� ,

for every proper subgroup H of Gp.
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Observe that this implies, as a by-product, that for su�ciently large primes p,

Sp = ⇡p(S) is indeed a set of generators of the whole group SL2(p).

As said, with Lemma 4.23 we have finished verifying the properties needed to let

the Bourgain-Gamburd machine work for the family of groups SL2(p).

Theorem 4.24 (Bourgain, Gamburd). Let X be a finite symmetric subset of SL2(Z)
such that hXi is not soluble, and write S = X [ X�1

. For any prime p let

⇡p : SL2(Z) ! SL2(p) denote the reduction modulo p. Then there exists a prime

p0 such that the family of Cayley graphs

�[SL2(p),⇡p(S)], p � p0

is a family of expanders.

Proof. We just need to show that, for the given X, the three assumptions in

Theorem 3.10 are satisfied, for su�ciently large primes p, with the same parameters

0 < ,� < 1 < ⇤ and map c(�), for every group Gp := SL2(p).

Property (3) we have just proved. In fact |Gp| = p(p2�1) < p3; hence, by letting

⇤ = C, with C as in (4.15), and � = �/3, with � as in (4.19), for su�ciently large

p, we have, by Lemma 4.23,

(4.22) ⌫(n)p (H)  p��  |Gp|��,

for every proper subgroup H of Gp.

Property (2) does not depend on X and follows from the product Theorem 4.10,

as explained in the remark following the proof of it.

Property (1) is Frobenius Theorem 3.13; denoting by d(Gp) the smallest degree

of a non-trivial irreducible C-representation of Gp, given any 0 < � < 1/3 we have

d(Gp) � |Gp|�

for p su�ciently large. Thus, parameters � (in (4.22)) and  to satisfy condition

(1) in Theorem 3.10 may be easily fixed.

Diameter bounds.
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