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Chapter 1

Locally nilpotent groups

In this chapter we review part of the basic theory of locally nilpotent groups.
This will mainly serve to fix the notations and recall some definitions, together
with some important results whose proofs will not be included in these notes.
Also, we hope to provide some motivation for the study of groups with all
subgroups subnormal (for short N1-groups) by setting them into a wider frame.
In fact, we will perhaps include more material then what strictly needed to
understand N1-groups.

Thus, the first sections of this chapter may be intended both as an unfaithful
list of prerequisites and a quick reference: as such, most of the readers might
well skip them. As said, we will not give those proofs that are too complicate or,
conversely, may be found in any introductory text on groups which includes some
infinite groups (e.g. [97] or [52], for nilpotent groups we may suggest, among
many, [56]). For the theory of generalized nilpotent groups and that of subnormal
subgroups, our standard references will be, respectively, D. Robinson’s classical
monography [96] and the book by Lennox and Stonehewer [64].

In the last section we begin the study of N1-groups, starting with the first
basic facts, which are not diffucult but are fundamental to understand the rest
of these notes.

1.1 Commutators and related subgroups

Let x, y be elements of a group G. As customary, we denote by xy = y−1xy the
conjugate of x by y. The commutator of x and y is defined in the usual way as

[x, y] = x−1y−1xy = x−1xy.

Then, for n ∈ N, the iterated commutator [x,n y] is recursively defined as follows

[x,0 y] = x, [x,1 y] = [x, y]

and, for 1 ≤ i ∈ N,
[x,i+1 y] = [[x,i y], y].

5



6 CHAPTER 1. LOCALLY NILPOTENT GROUPS

Similarly, if x1, x2, . . . xn are elements of G, the simple commutator of weight n
is defined recursively by

[x1, x2, . . . , xn] = [[x1, . . . , xn−1], xn].

We list some elementary but important facts of commutator manipulations.
They all follow easily from the definitons, and can be found in any introductory
text in group theory.

Lemma 1.1 Let G be a group, and x, y, z ∈ G. Then

(1) [x, y]−1 = [y, x];

(2) [xy, z] = [x, z]y[y, z] = [x, z][x, z, y][y, z];

(3) [x, yz] = [x, z][x, y]z = [x, z][x, y][x, y, z];

(4) (Hall-Witt identity) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.

Lemma 1.2 Let G be a group, x, y ∈ G, n ∈ N, and suppose that [x, y, y] = 1;
then [x, y]n = [x, yn]. If further [x, y, x] = 1, then

(xy)n = xnyn[y, x](
n
2).

If X is a subset of a group G then 〈X〉 denotes the subgroup generated by
X. If U and V are non-empty subsets of the group G, we set

[U, V ] = 〈[x, y] | x ∈ U, y ∈ V 〉

and define inductively in the obvious way [U,n V ], for n ∈ N. Finally, if A ≤ G,
and x ∈ G, we let, for all n ∈ N, [A,n x] = 〈[a,n x] | a ∈ A〉.

If H ≤ G, HG denotes the largest normal subgroup of G contained in H,
and HG the normal closure of H in G, i.e. the smallest normal subgroup of G
containing H. Clearly,

HG =
⋂
g∈G

Hg and HG = 〈Hg | g ∈ G〉.

More generally, if X and Y are non-empty subsets of the group G, we denote
by XY the subgroup 〈xy | x ∈ X, y ∈ Y 〉.

The following are easy consequences of the definitions.

Lemma 1.3 Let H and K be subgroups of a group. Then [H,K] E 〈H,K〉.

Lemma 1.4 Let X,Y be subsets of the group G. Then

[〈X〉, 〈Y 〉] = [X,Y ]〈X〉〈Y 〉.

If N E G, then [N, 〈X〉] = [N,X].

The next, very useful Lemma follows from the Hall-Witt identity.
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Lemma 1.5 (Three Subgroup Lemma). Let A,B,C be subgroups of the group
G, and let N be a normal subgroup such that [A,B,C] and [B,C,A] are con-
tained in N . Then also [C,A,B] is contained in N .

The rules in Lemma 1.1, as well as others derived from those, may be ap-
plied to get sorts of handy analogues for subgroups. For instance, if A,B,C
are subgroups of G and [A,C] is a normal, then [AB,C] = [A,C][B,C]. More
generally, we have

Lemma 1.6 Let N , H1, . . . ,Hn be subgroups of the group G, with N E G, and
put Y = 〈H1, . . . ,Hn〉. Then

[N,Y ] = [N,H1] . . . [N,Hn].

The same commutator notation we adopt for groups actions: let the group
G act on the group A. For all g ∈ G and a ∈ A, we set [a, g] = a−1ag, and
[A,G] = 〈[a, g] | a ∈ A, g ∈ G〉. With the obvius interpretations, the properties
listed above for standard group commutators continue to hold.

For a group G, the subgroup G′ = [G,G] is called the derived subgroup of
G, and is the smallest normal subgroup N of G such that the quotient G/N
is abelian. The terms G(d) (1 ≤ d ∈ N) of the derived series of G are the
characteristic subgroups defined by G(1) = G′ and, inductively ,

G(n+1) = (G(n))′ = [G(n), G(n)]

(the second derived subgroup G(2) is often denote by G′′). The group G is soluble
if there exists an n such that G(n) = 1; in such a case the smallest integer n for
which this occurs is called the derived length of the soluble group G. Of course,
subgroups and homomorphic images of a soluble group of derived length d are
soluble with derived length at most d.

A group is said to be perfect if it has no non-trivial abelian quotiens; thus,
G is perfect if and only if G = G′.

By means of commutators are also defined the terms γd(G) of the lower
central series of a group G: set γ1(G) = G, and inductively, for d ≥ 1,

γd+1(G) = [γd(G), G] = [G,dG].

These are also characteristic subgroups of G. A group G is nilpotent if, for some
c ∈ N, γc+1(G) = 1. The nilpotency class (or, simply, the class) of a nilpotent
group G is the smallest integer c such that γc+1(G) = 1.

Lemma 1.7 Let G be a group, and m,n ∈ N \ {0}. Then

(1) [γn(G), γm(G)] ≤ γn+m(G);.

(2) γm(γn(G)) ≤ γmn(G);

From (1), and induction on n, we have
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Corollary 1.8 For any group G and any 1 ≤ n ∈ N, G(n) ≤ γ2n(G). In par-
ticular a nilpotent group of class c has derived length at most [log2 c] + 1.

Also, by using (1) and induction, one easily proves the first point of the following
Lemma, while the second one follows by induction and use of the commutator
identities of 1.1,

Lemma 1.9 Let G be a group, and 1 ≤ n ∈ N. Then

(1) γn(G) = 〈[g1, g2, . . . , gn] | gi ∈ G, i = 1, 2, . . . , n〉.

(2) If S is a generating set for G, then γn(G) is generated by the simple
commutators of weight at least n in the elemets of S ∪ S−1.

The upper central series of a group G is the series whose terms ζi(G) are
defined in the familiar way: ζ1(G) = Z(G) = {x ∈ G | xg = gx ∀g ∈ G} is the
centre of G, and for all n ≥ 2, ζn(G) is defined by

ζn(G)/ζn−1(G) = Z(G/ζn−1(G)).

A basic observation is that, for n ≥ 1, ζn(G) = G if and only if γn+1(G) = 1,
and so G is nilpotent of class c if and only if G = ζc(G) and c is the smallest
such positive integer. This follows at once from the following property.

Lemma 1.10 Let G be a group, and 1 ≤ n ∈ N. Then [γn(G), ζn(G)] = 1.

The next remark is often referred to as Grün’s Lemma.

Lemma 1.11 Let G be a group. If ζ2(G) > ζ1(G) then G′ < G.

Let us recall here some elementary but more technical facts, which we will
frequently use, about commutators in actions on an abelian groups.

Thus, let A be a normal abelian subgroup of a group G, F ≤ A, and let
x ∈ G. It is then easy to see that, for all i ∈ N,

[F,i x] = { [a,i x] | a ∈ F } and F 〈x〉 = 〈 [F,i x] | i ∈ N 〉.

Lemma 1.12 Let A be a normal abelian subgroup of the group G, and H ≤ G.
Suppose that H/CH(A) is abelian. Then, for all a ∈ A, x, y ∈ H:

[a, x, y] = [a, y, x].

Proof. Since H/CH(A) is abelian, [a, xy] = [a, yx], and, by espanding the com-
mutators using Lemma 1.1, [a, y][a, x]y = [a, x][a, y]x. Since A is abelian, we get
the desired equality [a, x]−1[a, x]y = [a, y]−1[a, y]x.

Corollary 1.13 Let A be a normal abelian subgroup of the group G, such that
G/CG(A) is abelian. Then, for all X,Y ≤ G: [A,X, Y ] = [A, Y,X].

Lemma 1.14 Let A be a a normal elementary abelian p-subgroup of a group
G. Then, for all x ∈ G, [A,pm x] = [A, xpm

] for all m ∈ N.
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Proof. It is convenient to look at x as to an endomorphism, via conjugation, of
the abelian group A. Then, for all a ∈ A, [a, x] = a−1ax = ax−1, whence, as A
has exponent p,

[a,p x] = a(x−1)p

= axp−1 = [a, xp],

and the inductive extension to any power xpm

is immediate.

Corollary 1.15 Let 1 6= A be a normal elementary abelian p-subgroup of the
group G. If G/CG(A) is a finite p-group, then there exists n ≥ 1 such that
A ≤ ζn(G).

Proof. Let C = CG(A). We argue by induction on m, where |G/C| = pm. If
m = 0, A is central in G. Thus, let m ≥ 1, N/C a maximal subgroup of G/C,
and x ∈ G \N . Then, by inductive assumption, A ≤ ζk(N), for some k ≥ 1. Let
A0 = ζ(N) ∩ A; then A0 6= 1 and CG(A0) ≥ N . Now, xp ∈ N , and by Lemma
1.14

[A0,p x] = [A0, x
p] ≤ [A0, N ] = 1.

This means that A0 ≤ ζp(G). Ny repeating this same argument for all the
central N -factors contained in A, we get [A,pk G] = 1, whence A ≤ ζpk(G).

Lemma 1.16 Let A be an abelian group, and x an automorphism of A such
that [A,n x] = 1, for n ≥ 1.

(i) If x has finite order q, then [Aqn−1
, x] = 1.

(ii) If A has finite exponent e ≥ 2, then [A, xen−1
] = 1.

(iii) Let the group H act on A with [A,nH] = 1 (n ≥ 1); then γn(H) ≤ CH(A).

Proof. (i) By induction on n. If n = 1 we have nothing to prove. Thus, let n ≥ 2,
and set B = [A, x]. Then [B,n−1 x] = 1, whence, by inductive assumption,

[Aqn−2
, x, x] = [[A, x]q

n−2
, x] = [Bqn−2

, x] = 1.

Now, let b ∈ Aqn−2
. Then, since [b, x, x] = 1 = [b, x, b], by Lemma 1.2 we have

[bq, x] = [b, x]q = [b, xq] = 1. Hence, [Aqn−1
, x] = [(Aqn−2

)q, x] = 1, as wanted.

(ii) By induction on n. If n = 1, then 1 = [A, x] = [A, xe0
]. Let n ≥ 2, and

set B = [A, xen−2
] ≤ [A, x]. Then, by inductive hypothesis,

[A, xen−2
, xen−2

] = [B, xen−2
] = 1 .

By Lemma 1.2, we then have [A, xen−1
] = [A, xen−2e] = [A, xen−2

]e = 1.
(iii) By induction on n, being the case n = 1 trivial. Let n > 1. Then H

acts on [A,H] and [A,H,n−1H] = 1, hence, by inductive assumption

[A,H, γn−1(H)] = 1. (1.1)

Let A0 = [A,n−1H] and A = A/A0. Then H acts on A and [A,n−1H] = 1. By
inductive assumption we have [A, γn−1(H)] = 1, which means [γn−1, A] ≤ A0.
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Since [A0,H] = 1, we get [γn−1(H), A,H] = 1, which, together with (1.1 and
the Three Subgroup Lemma, yields γn(H), A] = [H, γn−1(H), A] = 1.

Point (iii) of Lemma 1.16 is a particular case of a theorem of Kalužnin, which
we will state later, together with an important generalization due to P. Hall.

It is not difficult to extend similar remarks to the case when A is nilpotent.
in which case it is to be espected that the numerical values will depend also on
the nilpotency class of A. We show only one of these possible generalizations.

Lemma 1.17 Let A be a nilpotent group of class c, and x an automorphism of
A such that |x| = q and [A,n x] = 1, for n ≥ 1. Then [Aqcn−1

, x] = 1.

Proof. We argue by induction on the class c of A. The case c = 1 is just point
(i) of the previous Lemma. Thus, we assume c ≥ 2 and write B = Aq(c−1)n−1

.
Then, by inductive assumption,

[B, x] ≤ γc(A) ≤ Z(A).

In particular, [B, x,B] = 1, and so by Lemma 1.2, [Bqn−1
, x] = [B, x]q

n−1
.

Also, [B, x] is abelian and so [[B, x], x] = [B, x, x]. Thus, by case c = 1,
[[B, x]q

n−1
, x] = 1. Hence [Bqn−1

, x, x] = 1. Thus

[Bqn

, x] = [Bqn−1
, x]q = [Bqn−1

, xq] = 1.

Therefore, Aqcn−1
= Bqn ≤ CA(x), as wanted.

Let us state a handy corollary, for which we need to fix the following notation.
Given a group G, and an integer n ≥ 1, we denote by Gn the subgroup of G
generated by the n-th powers of all the elements of G, and set Gω =

⋂
n∈N G

n.

Corollary 1.18 Let G be a periodic nilpotent group. Then Gω ≤ Z(G).

Now a technical result (Lemma 1.21) which will be very useful. For the proof
we first need the following observation

Lemma 1.19 Let A be a nilpotent group of class c > 0, and let x be an au-
toomorphism of A. Then, for every q ≥ 1,

[Aqc

, 〈x〉] ≤ [A, 〈x〉]q.

Proof. By induction on c. If c = 1 we have equality [Aq, 〈x〉] = [A, 〈x〉]q. Thus,
let c ≥ 2, T = γc(A), and set D = [A, 〈x〉]q. Then, D is normal in A and 〈x〉-
invariant. By inductive assumption, [Aqc−1

, 〈x〉] ≤ DT ; i.e., setting A = A/D,

[A
qc−1

, 〈x〉] ≤ T ≤ Z(A).

If a ∈ A and u = aqc−1
, we have [Du, 〈x〉] ≤ T , and so [Duq, x] = [Du, x]q = 1,

which is to say that

[aqc

, 〈x〉] = [uq, 〈x〉] ⊆ D = [A, 〈x〉]q,

thus completing the proof.
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Corollary 1.20 Let A be a nilpotent group of class c > 0, and let x1, . . . , xd be
autoomorphisms of A. Then, for every q ≥ 1,

[Aqcd

, 〈x1〉, . . . 〈xd〉] ≤ [A, 〈x1〉, . . . , 〈xd〉]q.

Lemma 1.21 Let A be a nilpotent group of class c, let x1, x2, . . . , xd be auto-
morphisms of A such that [A,n 〈xi〉] = 1 for all i = 1, . . . , d. Let q1, . . . , qd be
integers ≥ 1, and q = q1 · · · qd. Then

[Aqncd

, 〈x1〉, . . . , 〈xd〉] ≤ [A, 〈xq1
1 〉, . . . , 〈x

qd

d 〉].

Proof. We argue by induction on d ≥ 1. If d = 1, q = q1, write R = [A, 〈xq〉].
Then R E 〈A, x〉, and by applying Lemma 1.17 to the action of x on A/R, we
have (since xq centralizes A/R)

[Aqcn

, 〈x〉] ≤ R

which is what we want.
Let then d ≥ 2. Write s = q1 . . . qd−1 and B = [Asncd−1

, 〈x1〉, . . . , 〈xd−1〉].
By inductive assumption

B ≤ [A, 〈xq1
1 〉, . . . , 〈x

qd−1
d−1 〉]. (1.2)

Now, qncd

= sncd

qncd

d ; thus, using Corollary 1.20,

[Aqncd

, 〈x1〉, . . . , 〈xd〉] ≤ [[Asncd

, 〈x1〉, . . . , 〈xd−1〉]q
nc
d , 〈xd〉] ≤ [Bqnc

d , 〈x〉].

By the case d = 1 we then have

[Aqncd

, 〈x1〉, . . . , 〈xd〉] ≤ [B〈xq〉, 〈xqd

d 〉] = [B, 〈xqd

d 〉],

from which, applying (1.2), we get the desidered inclusion.

1.2 Subnormal subgroups and generalizations

A subgroup H of the group G is said to be subnormal (written H / /G) if H is
a term of a finite series of G; i.e. if there exists d ∈ N and a series of subgroups,
such that

H = Hd E Hd−1 E . . . E H0 = G.

If H//G, then the defect of H in G is the shortest lenght of such a series; it will
be denoted by d(H,G). We shall say that a subgroup H of G is n-subnormal if
H / /G and d(H,G) ≤ n.

Clearly, subnormality is a transitive relation, in the sense that if S / /H
and H / /G, then S / /G. Moreover, if S / /G, then S ∩ H / /H for every
H ≤ G, and SN/N / /G/N for every N E G. Also, the intersection of a finite
set of subnormal subgroups is subnormal; but this is not in general true for the
intersection of an infinite family of subnormal subgroups. The join 〈S1, S2〉 of
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two subnormal subgroups S1 and S2 is not in general a subnormal subgroup
(see [64] for a full discussion of this point).

The reason why groups with all subgroups subnormal became a subject of
investigation lies in the following elementary facts.

Proposition 1.22 (1) In a nilpotent group of class c every subgroup is subnor-
mal of defect at most c.

(2) A finitely generated group in which every subgroup is subnormal is nilpo-
tent.

Let H ≤ G; the normal closure series (HG,n)n∈N of H in G is defined recursivley
by

HG,0 = G, HG,1 = HG, and HG,n+1 = HHG,n

.

By definiton, HG,n+1 E HG,n, and it is immediate to show that if H / /G
and H = Hd E Hd−1 E . . . E H0 = G is a series from H to G, then, for all
0 ≤ n ≤ d, HG,n ≤ Hn. Thus, a subgroup H is subnormal in G if and only if
HG,d ≤ H for some d ≥ 0, and the small such d is the defect of H. The following
is easily proved by induction on n.

Lemma 1.23 Let G be a group, and H ≤ G. Then

(1) HG,n = H[G,nH] for all n ∈ N.

(2) For d ≥ 1, H is d-subnormal if and only if [G,dH] ≤ H.

For our pourposes it is convenient to explicitely state also the following easy
observation.

Lemma 1.24 Let H be a subgroup of the group G and suppose that, for some
n ≥ 1, HG,n 6= H. Then there exist finitely generated subgroups G0 and H0 of
G and H, respectively, such that [G0,nH0] 6≤ H.

We recall another elemenatry and useful fact (for a proof see [64]).

Lemma 1.25 Let H and K be subnormal subgroups of the group G. If 〈H,K〉 =
HK, then 〈H,K〉 is subnormal in G.

Series. Although we will not be directly interested in generalizations of sub-
normality, we will sometimes refer to them, notably to ascendancy; also, when
working with subnormal subgroups in infinite groups, in order to have a bet-
ter understanding of what is going on, or to think to feasible extensions of our
results, it may be useful to be aware of them.

Our definition of a (general) subgroup series in a group is the standard one
proposed by P. Hall (which in turn includes the earlier Mal’cev’s definition).
We give only a brief resume of the principal features of this basic notion, by
essentially reproducing part of §1.2 of [96], to which we refer for a fuller account.

Let Γ be a totally ordered set; a series of type Γ of a group G is a set

{(Vγ ,Λγ) | γ ∈ Γ}
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of pair of subgroups Vγ ,Λγ of G such that

(i) Vγ E Λγ for all γ ∈ Γ;

(ii) Λα ≤ Vβ for all α < β (α, β ∈ Γ);

(iii) G \ {1} =
⋃

γ∈Γ(Λγ \ Vγ).

Each 1 6= x ∈ G lies in one and only one of the difference sets Λγ \ Vγ .
Moreover, for each γ ∈ Γ,

Vγ =
⋃

β<γ

Λβ Λγ =
⋂

β>γ

Vβ (1.3)

unless γ is the least element (if it exists) of Γ, in which case Vγ = 1, or the
greatest element, for which Λγ = G. The subgroups Vγ ,Λγ are called the terms
of the series, and the quotient groups Λγ/Vγ the factors of the series.

A series of a group G is called normal if every term is a normal subgroup of
G, and central if every factor is a central factor of G (i.e. [Λγ , G] ≤ Vγ for all
γ ∈ Γ). Clearly, every central series is also a normal series.

Let S and S ′ be two series of the same groupG. We say that S ′ is a refinement
of S if every term of S is also a term of S ′. This relation clearly defines a partial
order relation on the set of all series of the group G, which it is easily seen to
satisfy the chain condition, in the sense that every chain of series of G (with
respect to the refinement relation) admits an upper bound. Thus, we may apply
Zorn’s Lemma to the set of all series of G to get series that are not refinable.
These unrefinable series of G are called composition series. Thus,

Proposition 1.26 For every series S of the group G there exists a composition
series which is a refinement of S.

Clearly, a series S of G is a composition series if and only if all factors of S are
non-trivial simple groups. If we restrict attention to normal series of G (or, more
generally, to series all of whose terms are invariant under the action of a given
operator group A), we can still apply Zorn’s Lemma, and obtain maximal, that
is unrefinable, normal series (or A-invariant series) of G; these are called chief
series, or principal series, of G, and their factors are chief factors of G. Every
group G admits composition series and chief series, but there is no analogue
of the Jordan-Holder Theorem for finite groups (even the infinite cyclic group
violates it).

A series of finite type is obviously called a finite series. If Γ is a well-ordered
set then a series of type Γ is called an ascending series. Now, a well-ordered set
is isomorphic (as an ordered set) to a set of ordinal numbers {γ | γ < α} for a
suitable ordinal α; we then say that the series has type α. If {(Vγ ,Λγ) | γ < α}
is an ascending series of G of type α for some ordinal α, then for every γ < α,
there is a smallest ordinal β = γ+1 such that β > γ; thus the second equality in
identity (1.3) imply Λγ = Vγ+1, and so the terms Λγ are superfluos in defining
the ascending series. For such a series it is customary to add the term Vα = G
if α is a limit ordinal. Hence, given an ordinal α, an ascending series of type α
of G is a set of subgroups {Vγ | γ ≤ α} such that V0 = 1, Vγ E Vγ+1 for γ < α,
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Vα = G and
Vγ =

⋃
β<γ

Vβ

for every limit ordinal γ ≤ α.
Analogous remarks apply to descending series. These are defined as those

series whose order type is the opposite Γop of a well-ordered set Γ. It will be
more convenient to set the definition by refering again to the ordinal of Γ. Thus,
for a given ordinal α, a descending series of type αop of G is a set of subgroups
{Λγ | γ ≤ α} such that Λ0 = G, Λγ+1 E Λγ+1 for γ < α, Λα = 1 and
Λβ =

⋂
γ<β Λγ for every limit ordinal β ≤ α.

A subgroup H of the group G is said to be serial if H is a term in some
series of G; H is called ascendant (resp: descendant) if H is a term of a suitable
ascending (descending) series of G.

Example. Let Q2 be the additive group of all rationals whose denominator is a
power of 2, and let x be the automorphism of Q2 mapping every element into its
opposite. Form the semidirect product G = Q2o〈x〉. For each z ∈ Z (Z viewed
as a totally ordered set) let Vζ = Λz−1 = 〈2−z, x〉. By adding Λ−∞ = 〈x〉,
V−∞ = 1, V∞ = Λ∞ = G, we have a series of G, and thus 〈x〉 is a serial
subgroup of G. However, 〈x〉 is not ascendant in G since it coincides with its
normalizer, neither is descendant, for a proper descendant subgroup must be
contained in a proper normal subgroup, while 〈x〉G = G. By mans of the same
series, one also sees that

(1) 〈x〉 is ascendant in 〈1, x〉 = Z〈x〉;
(2) Z〈x〉/Z is descendant in Q = G/Z.

The group Z〈x〉 in (1) is called the infinite dihedral group (and denoted by D∞),
while the group Q in (2) is called the locally dihedral 2-group.

Remark. If S is a serial subgroup of the group G and H ≤ G, then H ∩ S is
a serial subgroup of H (and it is ascendant, descendant or subnormal if such
is S in G). Ascendant (and subnormal) subgroup behave well also with respect
to quotients (or, equivalently, homomorphic images): if S is an ascendant (sub-
normal) subgroup of the group G, then also SN/N is ascendant (subnormal) in
G/N for all normal subgroups N of G. This is not true for serial and descen-
dant subgroups: let, for example, G =

〈
x, y | yx = y−1, x2 = 1

〉
be the infinite

dihedral group; then G D 〈y2, x〉 D 〈y4, x〉 D . . . is a descending series from G
to 〈x〉 = X, while, if n is not a power of 2, 〈yn〉X/〈yn〉 is not even serial in
G/〈yn〉.

Every group G admits a couple of standard normal series that will be of
interest for us. They are natural extensions of the upper and lower central series
defined in section 1.1.

Given the group G, the (extended) upper central series of G is the series
whose factors ζα(G) (α an ordinal number)are recursively defined by setting:

ζ0(G) = 1 ζα+1(G)/ζα(G) = ζ(G/ζα(G)),

for any ordinal α, and
ζα(G) =

⋃
λ<α

ζλ(G)
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if α is a limit ordinal (to be strictly adherent to our conventions on series we
should add the group G as last term, but this omission will not cause any
troubles, and will keep the exposition more linear). Clearly, it is a central series
of G. The union of the terms of this series is a fully invariant subgroup of G
called the hypercentre of G. Thus, the hypercentre is the term ζα(G) of the
upper central series of G correspending to the smallest ordinal α such that
ζα(G) = ζα+1(G). The group G is called hypercentral if G is a term of the upper
central series of G.

Similarly, we talk also of the extended lower central series of a group G. Its
terms are inductively defined for every ordinal α, in the natural way, by setting
γ0(G) = G, γα+1(G) = [γα(G), γα(G)] for every ordinal α, and

γβ(G) =
⋂

α<β

γα(G)

if β is a limit ordinal. The series of the γα(G) is clearly a descending series
whose factors γα(G)/γα+1(G) are central. As for the upper central series, given
a group G there is a least ordinal α such that γα = γα+1; the γα(G) is called
the hypocentre of G.

1.3 Classes of groups

By a class of groups we mean a family of groups that is closed under isomorphism
and contains the trivial group. We will adopt the symbols F, A, N to denote,
respectively, the class of all finite, abelian and nilpotent groups. We will denote
by N1 the class which is the principal object of these notes, namely that of all
groups in which every subgroup is subnormal.

If X and Y are group classes, XY denotes the class of all groups G which
admit a normal subgroup N such that N belongs to X and G/N belongs to Y.
For instance, NA is the class of nilpotent by abelian groups, i.e. those groups
whose derived subgroup is nilpotent.

If X is a class of groups, then sX and qX denote, respectively, the class of
all groups that are isomorphic to a subgroup of a group in X, and the class of
all groups that are a homomorphic image of a group in X. A class X is subgroup
closed (respectively quotient closed) if X = sX (X = qX). It is plain that s(sX) =
sX, and that q(qX) = qX for any class X.

Let X be a class of groups. We say that a group G is locally–X if every finite
subset of G is contained in a subgroup of G belonging to X. The class of all
locally–X groups is denoted by lX, and a class (or a group property that defines
a class) X is called local if lX = X. An obvious example of a local class is the
class A of abelian groups. Like s- and q-, l- is a closure operator in the sense
that X ⊆lX and l(lX) = lX for any class X. Observe that if the class X is
closed by subgroups, then a group G is locally-X if and only if every finitely
generated subgroup of G belongs to X. Thus, a locally finite group is a group in
which every finitely generated subgroup is finite, and a locally nilpotent group
is a group in which every finitely generated subgroup is nilpotent. A group G
admitting a normal ascending series all of whose factors belong to X is called
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a hyper–X–group. We will often refer in particular to hyperabelian groups; that
is, groups admitting a normal ascending series with abelian factors. Similarly, a
group G is said to be a hypo-X-group if G admits a descending normal series all
of whose factors are X-groups. Thus, a hypoabelian group is a group admitting
a normal descending series with all factors abelian. (Of course, we may define
an extended derived series of the group G, by setting: G(1) = G′ = [G,G],
G(α+1) = [G(α), G(α)] and G(β) =

⋂
α<β G

(α) for every ordinal α and every
limit ordinal β. Thus, a group G is hypoabelian if and only if G(α) = 1 for some
ordinal α).

Residuality. Let P be a class of groups. A group G is residually–P if for every
1 6= x ∈ G there exists N E G such that G/N ∈ P and g 6∈ N . This is
equivalent to saying that the trivial subgroup of G is the intersection of all
normal subgroups N of G such that G/N ∈ P. The class of all residually–P
groups is denoted by rP.

Let R be a set of normal subgroups of the group G. It is not difficult to see
that if

⋂
N∈RN = 1 then G embeds in the cartesian product CarN∈R(G/N),

and it projects surjectively onto every factor. Conversely, in a cartesian product
the kernels of the projections intersect in the trivial subgroup. Thus a group G
is residually–P if and only if it is isomorphic to a subgroup G of a cartesian
product of P-groups such that the restrictions to G of the projections on the
factors are surjective. If the class P is s-closed, we have that the residually–P
groups are precisely the subgroups of cartesian products of P-groups.

The two cases that are more relevant in our contest are those of residually
finite and of residually nilpotent groups. Thus, a group G is residually finite if
for each 1 6= x ∈ G there exists a H ≤ G such that |G : H| is finite G and
x 6∈ H, while G is residually nilpotent if

⋂
n∈N γn(G) = 1. We recall that, by a

result of Magnus, every free group is residually–(finite and nilpotent).

We now make some technical observations of elementary character that will
be used later on.

Lemma 1.27 Let Nn (n ∈ N) be a family of normal subgroups of the group G,
such that Ni ≥ Ni+1 for all i ∈ N, and

⋂
n∈N Nn = 1. Let F be a finite subgroup

of G. Then F =
⋂

n∈N FNn.

Proof. Clearly, F ≤
⋂

n∈N FNn. Let u ∈
⋂

n∈N FNn. Then, for every n ∈ N,
there exist xn ∈ F and yn ∈ Nn, such that u = xnyn. Now, as F is finite, there
exists an infinite subset Γ of N such that xi = xj = x for all i, j ∈ Γ. Hence, for
all i ∈ Γ, yi = x−1y, and so x−1y ∈

⋂
i∈ΓNi = 1. Thus, u = x ∈ F , proving the

equality.

Proposition 1.28 Let G be a countable residually finite group. Then every
finite subgroup of G is the intersection of subgroups of finite index.

Proof. Let G = {x0, x1, x2, . . .}, and for each i ∈ N, letHi be a subgroup of finite
index that does not contain xi. By replacing Hi with its normal core (Hi)G, we
may take all Hi to be normal. Now, for all n ∈ N, we set Nn = H0∩H1∩. . .∩Hn.
Hence, for all n ∈ N, Nn is a normal subgroup of finite index, Nn+1 ≤ Nn, and⋂

n∈N Nn = 1. Our claim is now an immediate application of Lemma 1.27.
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Lemma 1.29 Let (Nλ)λ∈Λ be a family of normal subgroups of the group G,
such that

⋂
λ∈ΛNλ = 1. Let H ≤ G, and Z = CG(H). Then Z =

⋂
λ∈Λ ZNλ.

Proof. Let g ∈
⋂

λ∈Λ ZNλ. Then, for all a ∈ H, and all λ ∈ Λ,

[a, g] ∈ [H, ZNλ] ≤ [H, Nλ] ≤ Nλ.

Thus [a, g] = 1 and so g ∈ CG(H) = Z.

Varieties. Let W be a subset of the free group F on a countable set of free
generators X. The variety V(W ) defined by W is the class of all groups G such
that φ(w) = 1 for every homomorphism φ : F → G and every w ∈ W . A
convenient way to look at this is to consider every element w = w(x1, . . . , xn)
of W (with {x1, . . . , xn} a subset of X) as a law that has to be satisfied by
the groups in the variety V(W ); in the sense that G ∈ V(W ) if and only if, in
G, w(g1, . . . , gn) = 1 for every substitution xi ↔ gi by elements gi ∈ G. For
example, the class of abelian groups is the variety defined by the single word
[x1, x2] = x−1

1 x−1
2 x1x2.

It is clear that every variety V(W ) is a group class which is closed by sub-
groups, quotients and cartesian products (and thus it is r-closed too). The
converse of this fact is also true (for a proof ee e.g. [97], 2.3.5; or [52], 15.2.1).

Theorem 1.30 (Birkhoff) A class of groups is a variety if and only if it is
closed by subgroups, quotients and cartesian products.

In general, given a set W ⊆ F and a group G, the subgroup W (G) generated
by all possible substitutions by elements of G in the words w = w(x1, . . . , xn)
of W , is called the verbal subgroup of G defined by W . Thus

W (G) = 〈w(g1, . . . , gn) | w(x1, . . . , xn) ∈W, gi ∈ G〉.

Hence G ∈ V(W ) if and only if the W -verbal subgroup of G is trivial. For
instance, if n ≥ 2, in any group G, the n-th term of the lower central series
γn(G) is the verbal subgroup defined by the single law [x1, x2, . . . , xn].

It is obvious that for every group homomorphism φ : G → H we have
φ(W (G)) ≤ W (H). Therefore verbal subgrous are fully characterstic, and in
particular if N E G then W (G/N) = W (G)N/N .

Locally graded groups. A group G is said to be locally graded if every non-
trivial finitely generated subgroup of G has a non-trivial finite homomorphic
image. This is a rather large class of groups, containing for instance all residually
finite groups and all locally–(soluble by finite) groups. It is often considered
in order to avoid finitely generated simple groups, and in particular the so-
called Tarski monsters, i. e. infinite groups in which all proper subgroups are
cyclic of the same order. Tarski monsters do exist and have been constructed
by Ol’shnskii (see [88] for the periodic case, and [87] for the torsion–free case)
and Rips (unpublished).

Groups like the Golod-Shafarevic finitely generated infinite p-groups (for a
simple approach see Ol’shnskii [88]) are locally graded (in fact they are even
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residually finite). In the theory of locally nilpotent groups, to avoid such groups
too, it is sometimes convenient to restrict to a proper, but still large, subclass
of the class of locally graded groups, which is denoted by W and was intro-
duced by Phillips and Wilson in [92]: a group G is in W if every non-nilpotent
finitely generated subgroup of G has a non-nilpotent finite image. A theorem of
Robinson [95] ensures that W contains all locally (hyperabelian by finite) groups.

Observe that the class of locally graded groups and the class W are clearly
local and closed by subgroups, but are not closed by quotients, as considerartion
of free groups of rank at least 2 shows.

Countable recognition. In many situations, it is convenient to be able to deal
just with countable groups in a certain class. Thus, the following concept is of
importance. We say that a class of groups P is countably recognizable if a group
G belongs to P provided that all countable subgroups of G belong to P. Observe
that a finitely generated group is countable.

Theorem 1.31 Let 1 ≤ c ∈ N. The following classes of groups are countably
recognizable: nilpotent groups, nilpotent groups of class at most c, soluble groups,
soluble groups of derived length at most c,

Proof. The claim is clearly true for the classes of nilpotent groups of class at
most c, and of soluble groups of derived length at most c. In fact for these cases
it is enough to make the assumption on finitely generated subgroups.
Now, suppose that all countable subgroups of the group G are nilpotent. In
particular all finitely generated subgroups of G are nilpotent. Suppose that, for
all i ≥ 1 there exists a finitely generated subgroup Ui of G whose nilpotency
class is greater that i. Then the subgroup 〈Ui ; i ∈ N〉 is countable and not
nilpotent, which contradicts our assumption. Hence there exists a bound on the
nilpotency class of finitely generated subgroups of G, and so G is nilpotent. The
proof for the class of soluble groups is similar.

In fact, it is not difficult to prove that a countable union of countably recog-
nizable group classes is countably recognizable. For this and more general result
on this subject see section 8.3 in [96].

Radicable groups. A property which is somehow opposite from being a finite-
ness condition, in the sense that the trivial group is the only finite group that
satisfies it, is radicability. A group G is radicable if for every 1 6= g ∈ G and
every 0 6= d ∈ N, there exists in G a d-rooth of g, i.e. an element h ∈ G such
that hd = g. The most obviuos example of a radicable group is the additive
group Q of the rationals.

Radicable abelian groups are called divisible groups. Besides the group Q,
the fundamental divisible groups are the groups of Prüfer type Cp∞ (often called
quasicyclic groups); these latter ones are defined for every prime number p: Cp∞

is isomorphic to the multiplicative group of all pn-th complex roots of unity for
all n ∈ N. The Prüfer group Cp∞ has the following presentation

Cp∞ = 〈u0, u1, u2, . . . | u0 = 1, up
i+1 = ui for i ∈ N〉,
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and the property that every proper subgroup is one of the 〈ui〉 (and thus a cyclic
p-group). An abelian group is divisible if and only if it is isomorphic to a direct
product of copies of Q and groups of Prüfer type (see for instance [97] 4.1.5).

A group G is semi-radicable if, with the notation introduced in 1.18, Gω = G.
It is rather strightforward to see that a semi-radicable abelian group is divisible.
This is true for nilpotent groups also, but observe that Lemma 1.18 implies that a
periodic semi-radicable nilpotent group is abelian; on the other hand the groups
of upper unitriangular rational matrices UT (n,Q) are examples of torsion-free
radicable nilpotent groups that are not abelian.

The following Lemma is a sort of refinement of 1.16(i).

Lemma 1.32 Let A be a normal abelian divisible subgroup of G, and H ≤ G
such that [A, nH] = 1 for some positive integer n. If H/H ′ is periodic, then
[A,H] = 1.

Proof. Let B = [A,H,H]. Then B is normal in 〈A,H〉 and, by the Three-
Subgroup Lemma 1.5, [H ′, A] = [H,H,A] ≤ B. Thus H ′ ≤ CH(A/B), and,
since A/B is divisible, it follows from Lemma 1.16 (i) that [A/B,H] = 1 or, in
other words, [A,H] = B. From this, the result follows.

Next, an interesting property of subnormal (more generally, ascendant) di-
visible subgroups.

Lemma 1.33 Let A be a periodic abelian divisible subgroup of the group G. If
A is ascendant, then AG is abelian and divisible.

Proof. Let A be an ascendant periodic divisible abelian subgroup of G and let
A = A0 E A1 E . . . E Aα = G be an ascending series from A to G. For every
ordinal β ≤ α let Uβ = AAβ ; then Uβ+1 ≤ A

Aβ+1
β = Aβ . Hence Uβ+1 normalizes

Uβ and so the Uβ (1 ≤ β ≤ α) are the terms of an ascending series from A to
Uα = AG. Suppose, by contradiction, that AG is not abelian, and let β be the
least ordinal such that Uβ is not abelian. Then, clearly, 1 < β cannot be a limit
ordinal, so Uβ = AAβ = U

Aβ

β−1. Let g ∈ Aβ . Then the abelian subgroups Uβ−1

and Ug
β−1 are both normal in Uβ , hence [Uβ−1, U

g
β−1, U

g
β−1] = 1, and so, by

Lemma 1.32, [Uβ−1, U
g
β−1] = 1. This shows that AAβ = Uβ is abelian, against

our choice. Thus AG is abelian, and it is then clear that it is divisible.

With the same arguments it is easy to see that two ascendant periodic divis-
ible abelian subgroups of a group generate an abelian (ascendant) subgroup. For
non-periodic groups the situation can be very different: see, for instance, [64]
2.1.7 for an example of a group generated by two subnormal torsion-free abelian
divisible group which is not hypoercentral.

We continue by mentioning some important classes of groups defined by
finiteness conditions. We ecall that a finiteness condition is a property which
is satisfied by all finite groups (often for trivial reasons). So, for instance, the
properties of being periodic, finitely generated, locally finite or linear (i.e. iso-
morphic to a subgroup of some matrix group GL(n,K) for some field K) all are
finiteness conditions
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Periodic, locally finite, and groups with finite exponent. A group G is
periodic if it does not contain elements of infinite order, while G is locally finite
if every finitely generated subgroup of G is finite. The class of locally finite
group is strictly contained in the class of periodic group. In particular, there
exist finitely generetad p-groups that are not finite. Since a finitely generated
nilpotent periodic group is finite, we infer that p-groups need not be locally
nilpotent. The first examples of groups of this kind were constructed by Golod
and Shafarevic (see [31]).

The exponent of a group G is, if it exists, the smallest integer n ≥ 1 such that
gn = 1 for all g ∈ G. Otherwise we say that the group G has infinite exponent.
Clearly, if G has finite exponent then G is periodic and its exponent is the least
common multiple of the orders of its elements. The Golod-Shafarevic groups
have infinite exponent.

The question as to whether a finitely generated group with finite exponent
can be infinite is known as ”Burnside Problem’ (after W. Burnside who proposed
it back in 1902). To set it more properly, let r, n be positive integers: the r-
generator Burnside group of exponent n is defined as B(r, n) = Fr/N , where
Fr is the free group with r generators and N is the normal subgroup of Fr

generated by {xn | x ∈ Fr}. Burnside’s question is then for which pairs (r, n)
is B(r, n) finite. A part the trivial case r = 1 (for B(1, n) is obviously cyclic of
order n), B(r, n) is known to be finite for arbitrary r and n = 2, 3, 4, 6. Case
n = 2 is easy (a group of exponent 2 is elementary abelian), while the cases
n = 3, 4, 6 are due, respectively, to Burnside himself, to Sanov and to M. Hall.
In 1968 Novikov and Adjan proved that, for r > 1 and n a large enogh odd
number, B(r, n) is infinite. Subsequently Adjan improved the previous lower
bound for n by showing that B(r, n) is infinite for every r > 1 and every odd
n ≥ 665. Later, Ol’shanskii proved that for every prime p > 1040 there exists
an infinite p-group all of whose proper subgroups are cyclic of order p. As far
as I know, it is still undecided whether B(2, 5) and B(2, 8) are infinite.

Since B(r, n) need not be finite, even more important it appears the so-called
restricted Burnside problem. This asks if there is a bound for the orders of finite
r-generated groups of exponent n. That is, if the finite residual K of B(r, n)
has finite index, or, in other words, if R(r, n) = B(r, n)/K is finite. In 1956 P.
Hall and G. Higman [39] established a reduction theorem to prime powers, by
showing that R(r, n) is finite if and only if R(r, q) is finite for every prime power
q dividing n. Meanwhile, Kostrikin [55] proved that R(r, p) is finite for all r and
p a prime. It took many years before Zel’manov ([124], [125]) was able to prove
that R(r, pk) is finite for every prime power pk, thus completing the proof that
R(r, n) is finite for every r and n.

Zel’manov results, whose proofs are far beyond the scope of this survey, have
important consequences for the theory of locally nilpotent groups. We report
two of the more immediate in the following statement.

Theorem 1.34 (Zel’manov)

(1) For every n ≥ 1 the class of locally nilpotent groups of exponent dividing n
is a variety.

(2) A residually nilpotent group of finite exponent is locally nilpotent.
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In fact, modulo the Hall-Higman reduction, both these statements are equivalent
to the finiteness of R(r, n) for all r, n.

For a good account of the questions and results related to the Burnside
Problems we refer to the the book of Vaughan-Lee [120].

Max and Min. Among the most natural and important finiteness conditions
are Max and Min: respectively, the maximal and the minimal condition on
chain of subgroups. The easiest examples of infinite groups satisfying Max and
Min are, respectively, the infinite cyclic group (Z,+) and the Prüfer groups
Cp∞ . We recall that, besides being clearly subgroup and quotient closed, both
classes of all groups satisfying Max and of those satisfying Min are extension
closed: in the sense that if N is a normal subgroup of the group G and both
N and G/N satisfy Max (respectively, Min), then G satisfies Max (Min). In
general, if P be a family of subgroups of the group G, then G is said to satisfy the
minimal (maximal) condition on P-subgroups if every descending (ascending)
chain of P-subgroups of G is finite.

Černikov groups. We will often encounter groups belonging to this class, which
are defined as follows. A group is a Černikov group if it admits a normal subgroup
of finite index which is the direct product of a finite number of groups of Prüfer
type. Thus, a Černikov group is (abelian divisible)-by-finite. The classical result
of Černikov is

Theorem 1.35 A soluble group satisfies Min if and only if it is a soluble
Černikov group.

Since Černikov groups are locally finite, a locally nilpotent such group is the
direct product of Černikov p-groups. These may be described as follows.

Proposition 1.36 Let p be a prime, and G a Černikov p-group. Then G is
isomorphic to a subgroup of the wreath product Cp∞ o P , where P is a suitable
finite p-group.

From this, it easily follows that a nilpotent Černikov group is central-by-finite.
We recall also a deep result due to Šunkov [116], and independently to Kegel
and Wehrfritz [53].

Theorem 1.37 A locally finite group which satisfies the minimal condition on
abelian subgroups is a Černikov group.

Polycyclic groups. A group is polycyclic if it admits a finite series with cyclic
factors. For soluble groups satisfying Max the basic remark is

Theorem 1.38 A group is a soluble group satisfying Max if and only if it is a
polycyclic group.

When G is nilpotent, we may say more.

Proposition 1.39 Let G be a nilpotent group. Then the following conditions
are equivalent.

(i) G is finitely generated;
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(ii) G/G′ is finitely generated;

(iii) G is polycyclic;

(iv) G satisfies Max.

We also recall a couple of well known and important results. The first is due to
Mal’cev, and the second to Hirsch (for proofs, see [97], or Segal [99] which is the
standard reference for polycyclic groups).

Theorem 1.40 Let G be a polycyclic group. Then

(i) Every subgroup of G is the intersection of subgroups of finite index of G;

(ii) G is nilpotent if and only if every finite quotient of G is nilpotent.

A further related and useful result is the following one.

Theorem 1.41 A finitely generated torsion-free nilpotent group is resiidually
a finite p-group for every prime p.

An important feature of polycyclic groups is the fact that if G is polycyclic,
then in any finite series with cyclic factors of G the number of infinite factors
is an invariant, called the Hirsch length of G (and denoted by h(G)).

Finite rank. There are several notions of rank of a group. When not otherwise
specified, by a group of finite rank we will always mean a group of finite Prüfer
rank, i.e. a group G with the property that there exists a d ∈ N such that
every finitely generated subgroup of G can be generated by d elements. If this
happens, the smallest such d is called the (Prüfer) rank of G. This is clearly a
finiteness condition. For example the additive groups Z, Q and the groups Cp∞

all are abelian groups of rank 1.
Amomg others, a much weaker condition is that of finite abelian subgroup

rank: a group G has finite abelian subgroup rank if every abelian subgroup of
G which is either free abelian or elementary abelian is finitely generated.

FC-groups. An FC-group is a group in which every element has a finite number
of conjugates. Thus, G is an FC-group if and only if |G : CG(g)| is finite for
every g ∈ G.

Proposition 1.42 (R. Baer, B. Neumann) Let G be an FC-group. Then

(i) G/Z(G) is periodic and residually finite;

(ii) if g is an element of finite order of G, then 〈g〉G is finite;

(iii) the set T (G) of all elements of finite order of G is a characteristic
subgroup of G, and G′ ≤ T (G).

Strictly related to elements with a finite number of conjugates is Dic’man
Lemma.

Lemma 1.43 Let U be a normal subset of the group G (i.e. xg ∈ U for every
x ∈ U and g ∈ G). If U is finite and consists of elements of finite order, then
〈U〉 is a finite normal subgroup of G.
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1.4 Nilpotent groups and their generalizations

In nilpotent groups the nature of the lower central factors, and sometimes that
of the whole group, is strictly related to the properties of the first of them. This
is elucidated by the following result.

Theorem 1.44 (Robinson [94]) Let H be a group and A = H/H ′. Then, for
every c ≥ 1, there is an epimorphism:

A⊗A⊗ · · · ⊗A︸ ︷︷ ︸ −→ γc(H)/γc+1(H)

c times

From this, a number of facts connecting the properties of a nilpotent group H
to that of its abelianization H/H ′, follow more or less easily; for instance, the
following elementary but basic observation.

Proposition 1.45 Let G be a nilpotent group, and π a set of primes. If G
admits set S of generators all of whose elements have finite bounded π-order,
then G is a π-group of finite exponent; if, further. S is finite, then G is finite.

The following useful property may be also duduced rather easily from 1.44.

Proposition 1.46 The rank of a finitely generated nilpotent group G does not
exceed a value which depends on the numeber of generators and the nilpotency
class of G.

Another handy fact that can be proved using 1.44 is

Lemma 1.47 Let H be a nilpotent group of class c ≥ 1; then the map

H × . . .×H → γc(H)
(x1, . . . , xc) 7→ [x1, . . . , xc]

is a homomorphism in every variable.

Thus, we have in particular,

Corollary 1.48 Let S be a generating set for the group G. Then G is nilpo-
tent of class at most c if and only if [x1, x2, . . . , xc+1] = 1 for any elements
x1, x2, . . . , xc+1 ∈ S.

The centre of a nilpotent group (i.e. the first factor of the upper central
series) has also a certain influence on the whole group. Here is an important
instance of this.

Proposition 1.49 Let G be a nilpotent group of class c and suppose that the
centre of G has finite exponent e. Then G has exponent dividing ec.

Proof. We let Z = Z(G), and proceed by induction on the nilpotency class c of
G. If c = 1 thenG = Z and there is nothing to prove. Let c ≥ 2 and let y ∈ ζ2(G),
g ∈ G. Then [g, y] ∈ Z and so, by Lemma 1.2, 1 = [g, y]e = [g, ye]. Therefore
ye ∈ Z, showing that ζ2(G)/Z has exponent dividing e. By inductive assumption
G/Z has exponent dividing ec−1 and from this the conclusion follows.
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There are two more properties relative to the mutual behaviour of the terms
of the lower and upper central series of a group, which are often useful, that we
like to recall. Their proofs may be found, for instance, in §14.5 of [97].

Proposition 1.50 (Baer) Let G be a group such that, for some i ≥ 1, G/ζi(G)
is finite, then γi+1(G) is finite.

Proposition 1.51 (P. Hall) Let G be a group such that, for some i ≥ 1, γi+1(G)
is finite, then G/ζ2i(G) is finite.

The class of all nilpotent groups whose nilpotency class does not exceed a
certain integer c ≥ 1 will be denoted by Nc. Needless to say, for every c ≥ 1,
the class Nc is closed by subgroups, quotients and cartesian products (in fact,
it forms a variety). The class of nilpotent groups N =

⋃
c∈N Nc is closed by

subgroups and quotients, but it is not closed under direct products (indeed, the
smallest variety containg N is the class of all groups). However, a fundamental
result (due in its generality to Fitting), ensures that the subgroup generated by
two normal nilpotent subgroups is still nilpotent (i.e. N =n0N); for the proof
see for instance [97] or [52].

Theorem 1.52 (Fitting’s Thorem). Let H and K be nilpotent normal sub-
groups of a group G, of nilpotency class c and d, respecyively. Then their join
HK is a nilpotent normal subgroup of G of nilpotency class at most c+ d.

Nilpotency criteria. For finite groups there are a number of conditions each
of those is equivalent to nilpotency. The next theorem lists some of the most
relevant and simple of them.

Theorem 1.53 Let G be a finite group. Then the following conditions are equiv-
alent to nilpotency.

(i) every chief factor of G is central;
(ii) every maximal subgroup of G is normal;
(iii) G is the direct product of its primary (i.e. Sylow) subgroups;
(iv) for every proper subgroup H of G, NG(H) > H.

For infinite groups all of these conditions are weaker than nilpotence, and
imposing any of them gives rise to different classes of so-called generalized nilpo-
tent groups. In fact there are many other ways to define classes of generalized
nilpotent groups, and those obtained by imposing any of the conditions (i) - (iii)
of the theorem determine classes of groups that are rather far even from being
locally nilpotent.

However, there are relevant nilpotency criteria which work for arbitrary
groups. The following is one of the most useful, specially when dealing with
groups that are known to be soluble.

Theorem 1.54 (P. Hall [36]) Let N be a normal subgroup of the group G. If
N is nilpotent of class c and G/N ′ is nilpotent of class d, then G is nilpotent of
class at most

(
c+1
2

)
d−

(
c
2

)
.
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Proof. See [97], 5.2.10.

As a consequence, we have that if the group class X is closed by quotients
and normal subgroups, and has the property that all metabelian groups in X
are nilpotent (of class bounded by c), then all soluble groups in X are nilpotent
(of class bounded by a function of c and the derived length of the group).

Another nilpotency criterion (also due to P. Hall) arises from the idea of a
series stanbilizer. Let S = {(Vγ ,Λγ) | γ ∈ Γ} be a series of the group G. The
stability group of S is the set of all automorphisms φ of G that centralize every
factor of S; that is [Λγ , φ] ≤ Vγ for all γ ∈ Γ. It is readily seen that the stability
group of a series is a subgroup of Aut(G). Obviously, a group H ≤ Aut(G) is
said to stabilize the series S of G if H is contained in the stability group of S.

Theorem 1.55 (P. Hall [36]) Let H ≤ Aut(G) stabilize a finite series of length
n of the group G. Then H is nilpotent of class at most

(
n
2

)
.

Proof. Let G = G0 D G1 D . . . D Gn = 1 be a series of length n of G
stabilized by H. We argue by induction on n, being the case n = 1 trivial. Let
n ≥ 2 and Y0 = Y = CH(G1). By inductive hypothesis, H/Y is nilpotent of
class at most

(
n−1

2

)
. For i ≥ 1, write Yi = [Y,iH] = [Yi−1,H]; we show, by

induction on i, that [G, Yi] ≤ Gi+1. This is clear for i = 0; let i ≥ 1, then
[Yi, G] = [Yi−1,H,G]. Let h ∈ H, y ∈ Yi−1, g ∈ G, then, taking into account
that [H,G, Yi−1] ≤ [Gi, Y ] = 1, by the Hall-Witt identity 1.1 we have

[y, h−1, g]h[g, y−1, h]y = 1.

So [y, h−1, g] ∈ [G, Yi−1,H]H and, applying the inductive assumption

[Yi, G] = [H,Yi−1, G] ≤ [Gi,H] ≤ Gi+1.

For i = n − 1 we get [Yn−1, G] ≤ Gn = 1, that is Yn−1 = [Y,n−1H] = 1. Thus,
Y ≤ ζn−1(H). Since H/Y has class at most

(
n−1

2

)
, this completes the proof.

The bound
(
n
2

)
on the nilpotency class of the stability group H has been

improved by Hurley in [49]. For stabilizers of finite normal series, it is in fact
much stricter.

Theorem 1.56 (Kalužnin) The stability group of a finite normal series of
length n of a group is nilpotent of class at most n− 1.

Proof. Essentially the same of that of point (iii) of Lemma 1.16.

A class of groups is a class of generalized nilpotent groups if it contains N
and every finite member of it is nilpotent (see chapter 6 in [96]).

Local nilpotency. That of locally nilpotent groups is perhaps the most obvious
class of generalized nilpotent groups. We remind from section 1.3 that a group
G is locally nilpotent if every finitely generated subgroup of G is nilpotent. The
locally dihedral 2-group is among the simplest examples of non-nilpotent locally
nilpotent groups.

Although it will not play a great role in tthe rest of these notes, the Hirsch–
Plotkin Theorem is one of the basic results in the theory of infinite groups.
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Theorem 1.57 In any group G the product of two normal locally nilpotent
subgroups is locally nilpotent. Thus G has a unique maximal locally nilpotent
normal subgroup, which is called the Hirsch-Plotkin radical of G, and contains
all locally nilpotent ascendant subgroups of G.

Proof. See [97], 12.1.3; or [52], 18.1.2.

As we assume knowledge of the basic theory of nilpotent groups, we will not
in general provide proofs for those results on locally nilpotent groups that are
easy consequences of the corresponding results for the nilpotent case, and can
be found in most textbooks (e.g. Chapter 12 of [97]). Among these, the following
one is fundamental.

Theorem 1.58 Let G be a locally nilpotent group. Then the set of all elements
of finite order of G is a fully invariant subgroup, called the torsion subgroup
of G, and denoted by T (G). Moreover, T(G) is a direct product of locally finite
p-groups.

We call the unique maximal normal p-subgroup (which may well be trivial)
of a periodic locally nilpotent group G, the p-component of G. Let us stress
the fact that a perdiodic locally nilpotent group is locally finite and the direct
product of its non-trivial primary components. Conversely, a direct product of
locally finite p-groups (for various primes p) is a locally nilpotent group.

Our next observation is an easy generalization of Fitting’s Theorem.

Lemma 1.59 Let N,H be nilpotent subgroups of the group G, of nilpotency
class c and d, respectively. If N E G, and H is subnormal of defect n, then NH
is nilpotent of class at most nc+ d.

Proof. We can assume G = NH, and proceed by induction on the defect n of H
in G. If n = 0, then H = G = NH is nilpotent of class d. Thus, let n ≥ 1. Then
H has defect n − 1 in HG, and HG = HG ∩NH = (HG ∩N)H. By inductive
assumption, HG is nilpotent of class at most (n − 1)c + d. Hence, by Fitting’s
Theorem, G = NHG is nilpotent of class at most c+ (n− 1)c+ d = nc+ d.

Lemma 1.60 Let H be a non-trivial finitely generated subgroup of the locally
nilpotent group G. Then H 6≤ [G,H].

Proof. Suppose, by contradiction, that H ≤ [G,H]. Then, since H is finitely
generated, there exists another finitely generated subgroup F of G such that
H ≤ [F,H], and we may clearly assume H ≤ F . Now, F is nilpotent, and
so there exists a least term γn(F ) of the lower central series of F which does
not contain H. Then, [F,H] ≤ [F, γn−1(F )] = γn(F ) does not contain H, a
contradiction.

Although this Lemma suggests that a locally nilpotent group is rich in normal
subgroups, it should be noted that the property stated in it is a rather weak one.
In fact the same argument in the proof of 1.60 shows that if G is a residually
nilpotent group (for instance, a free group), then H 6≤ [G,H] for all non-trivial
subgroups H of G (see [96] §6.2, for a thorough discussion of this and related
properties).
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Theorem 1.61 Let G be a locally nilpotent group. Then

(a) (Baer [3]) Every maximal subgroup of G is normal.

(b) (Mal’cev, McLain [71]) Every chief factor of G is central. Thus, every
chief series of a locally nilpotent group is central and it is a composition series.

Proof. (a) Let G be locally nilpotent and suppose by contradiction that M is a
maximal subgroup of G which is not normal. Then N 6≥ G′, and so there exists
g ∈ G′ \M . Since G = 〈M, g〉, there exists a finitely generated subgroup X of M
such that g ∈ 〈X, g〉′. Let H = 〈X, g〉; then X ≤M ∩H, and H = (M ∩H)H ′.
Since H is nilpotent, this forces M ∩H = H and the contradiction g ∈M ∩H.

(b) It is enough to show that a minimal normal subgroup A of the locally
nilpotent group G is central. If this is not the case there exist a ∈ A and g ∈ G
such that b = [a, g] 6= 1. Since, by minimality of A, A = 〈b〉G, we get

〈a〉 ⊆ 〈b〉G ⊆ [〈a〉, G]G = [〈a〉, G],

thus contradicting Lemma 1.60.

Note that locally nilpotent groups need not admit maximal subgroups: for
example, the wreath product Cp∞ o Cp∞ is a locally finite p-group with no
maximal subgroups.

Lemma 1.62 Let G be a group. Then all subgroups of G are serial if and only
if for every H ≤ G all maximal subgroups of H are normal.

Proof. Suppose that every subgroup of G is serial; let H ≤ G and M a maximal
subgroup of H. By intersecting with H every term of a series of G containing
M , we get a series of H containing M . But M is maximal in H, so M E H.

Conversely, suppose that for every H ≤ G all maximal subgroups of H are
normal. Let L ≤ G and let C be the family of all chains of subgroups of G that
contain L as a term and satisfiy conditions (ii) and (iii) (but not necessarily (i))
of the definition of a series. By standard application of Zorn’s Lemma, C has
a maximal element, which, because of the assumption on G, must also satisfy
normality condition (i), and it is therefore a series of G with L as a term.

Now, by point (a) of Theorem 1.61, we have:

Corollary 1.63 (Baer [3]) In a locally nilpotent group every subgroup is serial.

This Corollary, as well as Theorem 1.61, follows also as an application of
Mal’cev’s general (and by now classical) method for proving local theorems in
algebraic systems. For this important method we refer to the Appendix of [52]
or Section 8.2 of [96].

Seriality of all subgroups does not imply local nilpotence. In fact, in [121]
J. Wilson constructs finitely generated infinite p-groups - hence not (locally)
nilpotent - in which every subgroup is serial (and every chief factor is central).
On the other hand groups in which every subgroup is ascendant (called N -
groups) are locally nilpotent and, as such, will be considered more at length in
the next section.



28 CHAPTER 1. LOCALLY NILPOTENT GROUPS

Engel conditions. Along with that of locally nilpotent groups, the class of
Engel groups is the class of generalized nilpotent groups that have received most
attention through the years.

An element g of the group G is said to be left Engel if, for any x ∈ G, there
exists a positive integer n = n(g, x) such that [x,n g] = 1. If further such an
integer n does not depend on x, then g is called a left n-Engel element. A group
G is called an Engel group if every element of G is left Engel, and it is called
an n-Engel group if every element of G is left n-Engel, for a fixed n. A group
which is n-Engel for some n is called a bounded Engel group. For a given n ≥ 1,
the class of all n-Engel groups is a variety.

A classical result of Zorn (see [97], 12.3.4) ensures that finite Engel groups are
nilpotent. Observe that every locally nilpotent group is an Engel group. In fact,
if G is locally nilpotent, and x, g ∈ G, then 〈x, g〉 is nilpotent, and this implies
that, for some n ∈ N, [x,n g] = 1. On the other hand, the celebrated examples
due to Golod are finitely generated Engel groups that are not nilpotent (in fact,
for every d ≥ 2 and any prime p, Golod constructs d-generated infinite p-groups
in which all (d−1)–generated subgroup are nilpotent - an thus finite). However,
it appears to be still an open question whether bounded Engel groups are locally
nilpotent. Although no counterexample is known, and there are important recent
rusults that prove this in some relevant cases, it seems unlikely that to be true
in general.

The general theory of Engel groups is well beyond the scope of these notes.
In fact, we will restrict to a few facts, that are more closely connected to our
subject. A few results on n-Engel groups with small n will be recalled in Section
4.1, while, moving to general bounded Engel conditions, we like to mention here
a couple of recent and deep theorems.

Theorem 1.64 (J. Wilson [122]) A residually finite bounded Engel group is
locally finite.

Theorem 1.65 (Zel’manov [123]) A torsion–free locally nilpotent n-Engel group
is nilpotent of nilpotency class depending only on n.

By using these and Zel’manov solution of the restricted Burnside problem, it is
possible to show that locally graded bounded Engel groups are locally nilpotent
(see [54]), and then the following general statement (see, for instance, [12]).

Theorem 1.66 For every n ≥ 1 there exist integers e(n) and c(n) such that if
G is a locally graded n-Engel group then γc(n)(G)e(n) = 1.

These represent the reaching point of the work of many authors, and the proofs
cannot be included here; what will be enough for most of our pourposes is a
much earlier version, first due to Gruenberg (and whose proof can be found in
[96], 7.36).

Proposition 1.67 For n, d ≥ 1 there exist integers e = e(n, d) and c = c(nd, )
such that if G is a soluble n-Engel group of derived length d, then γc(G)e = 1.
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e(n, d) and c(n, d) may be given explicit upper bounds; in particular one has

Corollary 1.68 A torsion-free soluble n-Engel group of derived length d is
nilpotent of class bounded by nd−1.

1.5 Classes of locally nilpotent groups

In this section we give a brief account of some relevant classes of locally nilpotent
groups. Our approach follows that of D. Robinson in the second volume of [96],
in the sense that most of the classes that we will point out are defined in terms
of embedding properties of all their (finitely generated or arbitrary) subgroups.

Baer and Gruenberg groups. The following basic result is due to Baer [4]
for the case of subnormal subgroups and to Gruenberg [32] for that of ascendant
ones.

Theorem 1.69 Let H and K be finitely generated nilpotent subgroups of the
group G. If H and K are subnormal (ascendant), then J = 〈H,K〉 is a subnor-
mal (ascendant) nilpotent subgroup of G.

For the proof we need a Lemma which will be useful on other occasions.

Lemma 1.70 (Gruenberg [32]) Let G be a locally nilpotent group and X a
finitely generated subgroup of G. If A is an ascendant (subnormal) subgroup of
G normalized by X then there exists an ascending (finite) series containing A
all of whose terms are normalized by X.

Proof. Let A = A0 E A1 E . . . E Aα = G be an ascending series from A to G.
For each ordinal β ≤ α put

Bβ =
⋂

x∈X

Ax
β .

Clearly the Bβ (β ≤ α) are normalized by X and are the terms of a chain of
subgroups of G with B0 = A0 = A and Bα = Aα = G; we show that they
form an ascending series. For every β < α it is clear that Bβ E Bβ+1, so
what we have to prove is that for every limit ordinal β ≤ α,

⋃
λ<β Bλ = Bβ .

Inclusion
⋃

λ<β Bλ ≤ Bβ is obvious. Conversely, let g ∈ Bβ ; then 〈g,X〉 is
finitely generated and thus nilpotent. It follows that 〈g〉X is finitely generated;
but

〈g〉X ≤ BX
β = Bβ ≤ Aβ =

⋃
λ<β

Aλ,

whence 〈g〉X ≤ Aµ for some µ < β. Therefore 〈g〉X ≤
⋃

x∈X Ax
µ = Bµ. This

proves the equality
⋃

λ<β Bλ = Bβ and thus completes the proof.

Proof of Theorem 1.69. Let H,K be finitely generated nilpotent ascendant sub-
groups of the group G. Then, by Theorem 1.57, J = 〈H,K〉 is contained in the
Hirsch-Plotkin radical of G and so, being finitely generated, it is nilpotent. We
have then to show that J is ascendant in G (the subnormal case is proved with
the same arguments and it is easier). Now, since J is nilpotent, H is subnormal
in it; we proceed by induction on the defect d of H in J . If d = 0 then H = J
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and there is nothing to prove. Let d ≥ 1; then HJ is finitely generated and so
it is generated by a finite number of conjugates of H. Let Hx be such a conju-
gate; then, like H, Hx is ascendant and the defect of H in 〈H,Hx〉 is at most
d − 1, so that 〈H,Hx〉 is ascendant in G by inductive assumption. Repeating
this argument a finite number of times, we conclude that HJ is ascendant in
G. Since K normalizes HJ , by Lemma 1.70 there exists an ascending series
HJ = T0 E T1 E . . . E Tα = G all of whose terms are normalized by K.
For each ordinal β ≤ α, let Jβ = TβK. As, clearly,

⋃
λ<β Jλ = Jβ for every

limit ordinal β, these are terms of an ascending chain of subgroups of G. Now,
since K is ascendant in G, for β < α we have that Jβ = TβK is ascendant in
Jβ+1 = Tβ+1K. Hence the chain of Jβ(β ≤ α) may be refined to an ascending
series from J0 = HJK = 〈H,K〉 to Jα = G, and this completes the proof.

A Baer group is a group all of whose cyclic subgroups are subnormal. A
Gruenberg group is a group all of whose cyclic subgroups are ascendant.

The classes of Baer and Gruenberg groups are closed by subgroups and
homomorphic images. The next theorem implies in particular that they are
closed by normal products (a group G is said to be a normal product of its
subgroups H and K if H,K are both normal in G and G = HK).

Theorem 1.71 Let G be a group. The following conditions are equivalent.

i) G is a Baer (Gruenberg) group;

ii) Every finitely generated subgroup of G is subnormal (ascendant);

iii) Every finitely generated subgroup of G is subnormal (ascendant) and nilpo-
tent;

iv) G is generated by cyclic subnormal (ascendant) subgroups.

Proof. The only implication that needs to be proved is iv) ⇒ iii). Thus, let S
be a generating set of the group G such that 〈x〉 is subnormal (ascendant) in
G for all x ∈ S. Let F be a finitely generated subgroup of G. Then F ≤ 〈S0〉
for some finite subset S0 of S. By Theorem 1.69 and an obvious induction 〈S0〉
is nilpotent and subnormal (ascendant), whence F is nilpotent and subnormal
(ascendant).

In particular, Gruenberg (and Baer) groups are locally nilpotent.

Clearly, every Baer group is a Gruenberg group. The simplest example of a
Gruenberg group which is not a Baer group is the locally dihedral 2-group. This
is defined as the semidirect product G = Ao〈x〉, where A is a Prüfer group C2∞

and x the automorphis of A which maps every element in its inverse; it is easy
to check that [G, x] = [A, x] = A, and so 〈x〉 cannot be subnormal in G; on the
other hand, if, for all n ∈ N, An is the unique subgroup of order 2n of A, then
AnH E An+1H for any subgroup H of G, and from this it follows that every
subgroup of G is ascendant. Now a torsion-free example.
Example. For each n ≥ 1 let An = Zn be a free abelian group of rank n, with
set of free generators {e1,n, . . . , en,n}, and let A be the direct product of all An
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(n ≥ 1). Let g be the automorphism of A that fixes every direct summand An

and acts on it as a unitriangular matrix whose non-diagonal entries are 1 over
the main diagonal and 0 everywhere else (thus, g is the linear extension of the
map eg

1,n = e1,n and eg
i,n = ei,n + ei−1,n if 0 < i ≤ n). Let G = Ao〈g〉 be

the semidirect product defined by this action. Then G is clearly torsion-free. To
prove that G is a Gruenberg group it is enough to show (by Theorem 1.71) that
〈g〉 is ascendant in G. But this is clear: for every n ≥ 1, let Bn = A1 × . . .×An

and B0 = 1; then Bn+1〈g〉/Bn ' An+1〈g〉 and so Bn〈g〉 is subnormal in Bn+1〈g〉
for all n ≥ 0. By refining each these intermediate finite series we get an ascending
series (of type ω) from 〈g〉 to G (more formally, assign the inverse lexicographic
order to the base {ei,n | 1 ≤ i ≤ n, 0 6= n ∈ N} of A, and for each (i, n) let
B(i,n) = 〈ej,k | (j, k) ≤ (i, n)〉; then the subgroups H(0,0) = 〈g〉 and H(i,n) =
B(i,n)〈g〉, for 1 ≤ i ≤ n, are the terms of an ascending series). However, G is
not a Baer group. In fact, for each n ≥ 2, [An, n−1〈g〉] 6= 1, and so 〈g〉 cannot
be subnormal in G.

Not all locally nilpotent groups are Gruenberg groups (see [96] for an exam-
ple). On the other hand, by observing that a countable locally nilpotent group
is the union of an ascending chain of (finitely generated) nilpotent groups, one
easily proves that every countable locally nilpotent group is a Gruenberg group.
Thus, in particular, the class of Gruenberg groups is not countably recogniz-
able; while it easily follows from Lemma 1.24 that the class of Baer groups is
countably recognizable.
We now give another characterization of Gruenberg groups inside the class of
locally nilpotent groups. Following Mal’cev we say that a group G is a SN∗-
group if G admits an ascending series with abelian factors. Since subgroups and
quotients of abelian groups are abelian, it is easy to see that every subgroup
and every quotient of a SN∗-group is an SN∗-group.

Lemma 1.72 A group G has a unique maximal normal SN∗-subgroup, which
contains every ascendant SN∗-subgroup of G.

Proof. Suppose that N1 E N2 E N3 E . . . is a chain of SN∗-subgroups of the
group G. Then, for every n ≥ 1, Nn/Nn−1 is a SN∗-group. So, if we start from
the terms of an abelian ascending series of N1 and successively add the inverse
images modulo Nn−1 of the terms of an abelian ascending series of Nn/Nn−1,
we eventually get an abelian ascending series of N =

⋃
n∈N Nn; therefore, N

is a SN∗-subgroup of G. If we further assume that all the subgroups Nn are
normal in G, we get that

⋃
n∈N Nn is a normal SN∗-subgroup of G. Thus, by

Zorn’s Lemma every group G admits maximal normal SN∗-subgroups. A similar
argument shows that if N and K are normal SN∗-subgroups of G, then NK is
a normal SN∗-subgroup of G. This proves that G has a unique maximal normal
SN∗-subgroup, which we may call the SN∗-radical of G.

Just for this proof, let us denote by Θ(G) the SN∗-radical of a group G. Let
H be an ascending SN∗-subgroup of G, and H = H0 ≤ H1 ≤ . . . ≤ Hα = G
an ascending series from H to G. We prove that H ≤ Θ(G) by induction on
the ordinal α. Let α = β + 1; since Θ(Hβ) is characteristic in Hβ , Θ(Hβ) is a
normal SN∗-subgroup of G, and so it is contained in Θ(G). Now, H ≤ Θ(Hβ)
by inductive assumption, and we are done. Thus, let α be a limit ordinal. Then
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the inductive assumption ensures that Θ(Hλ) ≤ Θ(Hµ), for all λ ≤ µ < α.
Hence S =

⋃
β<α Θ(Hβ) is a normal subgroup of G, and, by the observation at

the beginning of the proof, S is a SN∗-group. Thus S ≤ Θ(G). Since H ≤ S,
this completes the proof.

We are ready to give the announced characterization of Gruenberg groups.

Theorem 1.73 (Gruenberg [32]) A locally nilpotent group is a Gruenberg group
if and only if it is a SN∗-group.

Proof. In one direction, the Theorem is an immediate corollary of 1.72.
For the converse, let us first assume that G = A〈x〉 is a locally nilpotent

group with A a normal abelian subgroup and x an element of G. For all n ∈ N,
let Xn = (ζn(G) ∩ A)〈x〉. Then, clearly, 〈x〉 = X0 E X1 E X2 E . . . Now, let
a ∈ A; then 〈a, x〉 is a nilpotent group of class, say, c, and observe that, since
A is abelian, ζd(〈a, x〉) ∩ A ≤ ζd(G) for every 1 ≤ d ≤ c. Thus, a ∈ Xc. Hence⋃

n∈N Xn = G and 〈x〉 is ascendant in G.
Let now G be a locally nilpotent group admitting an ascending series with

abelian factors, and let g ∈ G. By Lemma 1.70 there exists an ascending series
with abelian factors 1 = G0 E G1 E . . . E Gα = G whose terms are all
normalized by g. For each ordinal β ≤ α we set Hβ = 〈Gβ , g〉 = Gβ〈g〉. The Hβ

(β ≤ α) are the elements of an ascending chain of subgroups of G, and clearly
Hβ =

⋃
λ<β Hλ if β is a limit ordinal. If λ + 1 ≤ α, then Hλ+1 normalizes

Gλ. Now, the group Hλ+1/Gλ = 〈Gλ+1, g〉/Gλ is abelian by cyclic and so, by
what observed before, Hλ/Gλ is ascendant in Hλ+1/Gλ, i.e. Hλ is ascendant in
Hλ+1. Thus the chain of subgroups of G whose terms are the Hβ (β ≤ α) may
be refined to an ascending series of G. Since the first term is H0 = 〈g〉, we have
that 〈g〉 is ascendant in G, thus proving that G is a Gruenberg group.

Corollary 1.74 A soluble locally nilpotent group is a Gruenberg group.

After these general facts, let us mention a couple of useful properties of Baer
groups. For the second one (1.76), observe that if p is a prime and G is a soluble
p-group of finite exponent, then G has a finite normal series with elementary
abelian factors.

Lemma 1.75 Let G be a Baer group, and N a normal nilpotent subgroup of
G. If G/N is finitely generated, then G is nilpotent. In particular, if G has a
nilpotent subgroup of finite index, then G is nilpotent.

Proof. Let G be a Baer group, and let N be a normal nilpotent subgroup such
that G/N is finitely generated. Let x1N,x2N, . . . , xnN be a set of generators
of G/N . Then, since G is a Baer group, H = 〈x1, x2, . . . , xn〉 is a nilpotent
subnormal subgroup of G. It now follows from Lemma 1.59 that G = NH is
nilpotent. Now, suppose that G has a nilpotent subgroup H of finite index. Then
H has only a finite number of conjugates in G, and so G/HG is finite. By the
previous fact it follows that G is nilpotent.

Proposition 1.76 Let p be a prime and 1 6= G a soluble p-group of finite
exponent. Let n be the length of a shortest normal series of G with elementary
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abelian factors, and let d = 1+p+. . .+pn−1. Then for every g ∈ G, [G,d 〈g〉] = 1.
Thus, a soluble p-group of finite exponent is a Baer group and a bounded Engel
group.

Proof. Fixed a prime p, for n ≥ 1 we write d(n) = 1 + p+ . . .+ pn−1. We then
argue by induction on n. If n = 1 our claim is trivial, so let n ≥ 2, g ∈ G and let
A by the first non trivial term of a normal series of G with elementary abelian
factors. Then G/A has a series of this kind with n − 1 factors, therefore, by
inductive assumption [G,d(n−1) 〈g〉] ≤ A. Now, observe that certainly gpn−1 ∈ A.
Thus, since A is an elementary abelian p-group, by Lemma 1.14 we have

[A,pn−1 〈g〉] = [A,pn−1 g] = [A, gpn−1
] = 1.

Therefore 1 = [G,d 〈g〉] , where d = d(n− 1) + pn−1 = d(n).

Corollary 1.77 A p-group with a normal nilpotent subgroup of finite index and
finite exponent is nilpotent.

Proof. A group satisfying the assumptions in the statement is certainly soluble,
so the result follows immediately from 1.76 and 1.75.

As we are interested in subnormal subgroups, let us also mention the following.

Lemma 1.78 A perfect subnormal subgroup of a Baer group is normal.

Proof. See [64], 2.5.10.

Let G be a group. Then the subgroup B(G) generated by all cyclic subnormal
subgroups of G is called the Baer radical of G; the subgroup Γ(G) generated by
all cyclic ascendant subgroups of G is called the Gruenberg radical of G.

Clearly, Baer and Gruenberg radicals are characteristic subgroups contained
in the Hirsch-Plotkin radical, and, by Theorem 1.71 they contain, respectively,
every subnormal (ascendant) Baer (Gruenberg) subgroup of the group. We re-
mark that, even in a locally nilpotent group, the subgroup generated by two
subnormal nilpotent subgroups need not be nilpotent (see [64] for more details).

Finally, observe the following consequence of Theorem 1.73.

Corollary 1.79 Let G be a locally nilpotent group and let Γ(G) be its Gruenberg
radical. Then Γ(G/Γ(G)) = 1.

Fitting groups. A group G is called a Fitting group if every finitely generated
subgroup of G is contained in a normal nilpotent subgroup

By Fitting’s Theorem, a group G is a Fitting group if and only if, for every
element x of G, the normal closure 〈x〉G = 〈{xg|g ∈ G}〉 is nilpotent. The class
of Fitting groups is contained in the class of Baer groups, and it is closed by
subgroups and homomorphic images, but not by normal products (see Theorem
2.1.2 in [64]). The following remark is easy to prove.

Proposition 1.80 A Fitting group is hyperabelian.
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The Fitting radical F (G) of a group G is the subgroup generated by all x ∈ G
such that 〈x〉G is nilpotent.

In other terms, the Fitting radical of G is the subgroup generated by all nor-
mal nilpotent subgroups of G. Clearly, F (G) is a Fitting group and is contained
in the Baer radical B(G), but in general it does not contain all normal Fitting
subgroups of G. On the other hand, examples constructed by Dark show that
there exist Baer groups with no non-trivial normal abelian subgroup.

Lemma 1.81 A nilpotent by abelian Baer group is a Fitting group.

Proof. Let G be a Baer group such that G′ is nilpotent, and let x ∈ G. Then
〈x〉G = 〈x〉[G, 〈x〉] ≤ 〈x〉G′, which is nilpotent by Lemma 1.75.

Wreath products (and wreath powers) are a very useful tool when consruct-
ing groups with particular features. The next example is a simple issue of that.
Before, let us recall an easy property of standard restricted wreath products.

Lemma 1.82 Let A,H be groups and G = A oH the standard wreath product.
We look at H as a subgroup of G (complementing the base group). Let K be an
infinite subggroup of H. Then NG(K) = NH(K) (in particular, if H is infinite,
NG(H) = H).

Proof. Let A, H, G and K be as in the statement, and let G = BH, where B is
the base group. Then, NG(K) = NB(K)NH(K). Now [NB(K),K] ≤ B∩K = 1
and so NB(H) = CB(H). Now, an element f ∈ B centralizes K if and only if
f is constant on all orbits of K. Since H is taken in its regular permutation
representation and K is infinite, such orbits are all infinite, and so (being our
product the restricted one) CB(K) = 1. Thus NG(K) = NH(K).

Example. An abelian by nilpotent Baer group that is not Fitting. Let p be a
fixed prime and let A be a vector space over the field GF (p) with base indexed
on N, {ai | i ∈ N}. Let x be the automorphism of A defined by

ax
i = ai + ai−1 if i 6≡ 0 (mod p) and ax

np = anp (∀n ∈ N).

Observe that x has order p. We look at x as an automorphism of the additive
group A (which is an elementary abelian p-group) and consider the semidirect
product H = Ao〈x〉. Then, being A abelian, an easy computation shows that
ζ(H) = CA(x) = 〈ai | i ≡ 0 (mod p)〉, and for 1 ≤ n ≤ p− 1,

ζn(H) = 〈ai | i ≡ 0, 1, . . . , n− 1 (mod p)〉.

So, H/ζp−1(H) is abelian, and thus H is nilpotent of class p (and exponent
p2). Consider now the wreath product G = Cp oH = BH, where Cp is a cyclic
group of order p. Then G is soluble of exponent p3 and so, by Proposition 1.76,
it is a Baer group. On the other hand, 〈x〉H contains all elements [ai, x] and
so 〈x〉H = H ′〈x〉 is an infinite subgroup of H. By 1.82, NG(〈x〉H) = H. But
〈x〉G ∩H = 〈x〉H , and so 〈x〉H is self-normalizing in 〈x〉G which therefore is not
nilpotent (for, clearly, 〈x〉G > 〈x〉H). Thus G is not a Fitting group.
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Hypercentral groups. Hypercentral groups, often called ZA-groups, are a
natural generalization of nilpotent groups. We recall their definition.

A group G is hypercentral if it admits an ascending central series.
Arguing as in the finite case, it is easy to show that a group G is hypercentral
if and only if G coincides with its hypercentre, or, in other words, if there exists
an ordinal α such that ζα(G) = G. If G is hypercentral, then the least ordinal
α such that ζα(G) = G is called the (hypercentral) length of G. One has the
following easy characterization of hypercentral groups.

Proposition 1.83 A group G is hypercentral if and only if every non-trivial
homomorphic image of G has non-trivial centre.

Proof. Since the quotient of any group modulo its hypercentre has obviously
trivial center, one implication is clear. Conversely, letG be hypercentral of length
α, and let N be a proper normal subgroup of G. Then there exists a smallest
ordinal β < α such that N does not contain ζβ(G). Clearly β is not a limit
ordinal, and is not 0. Thus, ζβ−1(G) ≤ N , and so it follows that ζβ(G)N/N is
a non-trivial central subgroup of G/N .

Thus, the class of hypercentral groups is closed by subgroups and quotients;
we leave to the reader the exercise of proving that it is countably recognizable.

A simple way to constract hypercentral groups of length ω is to take direct
products of nilpotent groups with unbounded nilpotency class. The locally dihe-
dral 2-group is hypercentral of length ω+1, and, similarly, all Černikov p-groups
are hypercentral. The group in the example above is a torsion-free hypercentral
group of length ω + 1.

In fact, for every ordinal α there exist hypercentral groups of length α.

It is not difficult to show directly that every hypercentral group is locally
nilpotent. However, we take a different approach.

Proposition 1.84 Every subgroup of a hypercentral group is ascendant.

Proof. Let H be a subgroup of the hypercentral group G, and suppose that
G has hypercentral length α. Then, by setting Hλ = ζλ(G)H, for all ordinals
λ ≤ α, one clearly obtains an ascending series from H to G.

Therefore a hypercentral group is a Gruenberg group and so it is locally
nilpotent. The locally dihedral 2-group is the simplest example of a hypercentral
group which is not a Baer group (on the other hand it is clear that a hypercentral
group of length ω is a Fitting group). Hypercentral groups share with nilpotent
groups a number of useful properties, that may be proved by adjusting in an
easy way the proof for the nilpotent case;.

Lemma 1.85 Let G be a hypercentreal group. Then
(i) If 1 6= N E G then N ∩ ζ(G) 6= 1;
(ii) if A is a maximal normal abelian subgroup of G, then A = CG(A).

With the aid of 1.85 it is easy to prove that the class of hypercentral groups is
closed by normal products.
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Proposition 1.86 (P. Hall [37]) Let H,K be two normal hypercentral subgroups
of a group; then HK is hypercentral.

Proof. If a group G is the product of two normal hypercentral subgroups, andW
is the hypercentre of G, then G/W is also a product of two normal hypercentral
subgroups and, by definition of hypercentre, it has trivial centre. Thus, in order
to prove that W = G, it will suffice to show that a product 1 6= G = HK of
two normal hypercentral subgroups H and K necessarily has non-trivial centre.
Thus, we may assume H 6= 1, and let Z = ζ(H). Clearly, Z ∩ ζ(K) ≤ ζ(G),
so we suppose Z ∩ ζ(K) = 1. But then, since Z ∩K E K, Lemma 1.85 forces
Z ∩K = 1. Hence [Z,K] ≤ Z ∩K = 1, and so Z ∈ ζ(G).

For further reference, we also observe the following fact.

Lemma 1.87 Let N be a normal subgroup of the locally nilpotent group G. If
N is hypercentral and G/N is finitely generated, then G is hypercentral.

Proof. Let S be a finite subset ofG that generates GmoduloN , and letH be the
hypercentre of G. Assume, by contradiction, that H 6= G. Then, since G/N is
nilpotent, H 6≥ N , and so K = H ∩N < N . Clearly K E G and, by Proposition
1.83, A/K = ζ(N/K) 6= 1. Let a ∈ A \ K, and U = 〈a, S〉K. Then, being
finitely generated, U/K is nilpotent and (A∩U)/K is a non-trivial subgroup of
it. Hence V/K = ζ(U/K) ∩ (A ∩ U)/K is not trivial. Now [V,N ] ≤ K because
V ≤ A, and [V, 〈S〉] ≤ K because V/K ≤ ζ(U/K). Thus, since G = N〈S〉, we
get V/K ≤ ζ(G/K) and the contradiction V ≤ H ∩N = K.

We add some considerations about the dual and much more intricate case
of groups with a lower (i.e. descendant) central series. Such groups are called
hypocentral. A simple example of a hypocentral group which is not locally nilpo-
tent is the infinite dihedral group D∞. If G is hypocentral and α is the smallest
ordinal such that γα(G) = 1, we say that G has hypocentral type length α. For
instance, the infinite dihedral group has hypocentral type length ω. Hypocentral
groups form a class of generalized nilpotent groups; however, this class is too
large to be considered in general. For instance, by a famous theorem of Magnus,
it includes every free group.

In fact, free groups (and the infinite dihedral group as well) belong to the
narrower class of residually nilpotent groups. A group G is residually nilpotent
if for each 1 6= x ∈ G there exists a normal subgroup N of G such that G/N is
nilpotent and x 6∈ N . It is immediate to prove that G is residually nilpotent if
and only if γω(G) =

⋂
n∈N γn(G) = 1. Notice also that a locally nilpotent group

which is residually finite is residually nilpotent (but not the converse).
Golod examples prove the existence of finitely generated residually finite p-

groups that are not finite (observe that a residually finite p-group is residually
nilpotent). Also, we have already mentioned (Theorem 1.34) that the recent so-
lution by Zelmanov of the Restricted Burnside Problem implies that a residually
finite p-group of finite exponent is locally nilpotent.

Let us give a simple example of a locally nilpotent hypocentral group that
is not residually nilpotent.
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Example. Let K be a field and, for every 1 ≤ n ∈ N, let Tn be the unitriangular
matrix group UT (n,K). Let W = Dirn≥1Tn; then γk(W ) = Dirn≥1γk(Tn) for
all k ∈ N. Thus, γω(W ) = 1 and W is residually nilpotent (and hypercentral of
length ω). Let Z = ζ(W ) = Dirn≥1ζ(Tn). Now, for all n ≥ 1, ζ(Tn) is isomorphic
to the additive group of K via, say, the isomorphism φn. Let N be the kernel of
the homomorphism

Z → (K,+)
(x1, x2, . . .) 7→

∑
n≥1 φn(xn).

Then N E W , Z/N ' (K,+), and Nζ(Tn) = Z for all n ≥ 1. Finally, let
G = W/N . Since G/Z ' W/Z ' Dirn≥1(Tn/ζ(Tn)), we clearly have that G/Z
is residually nilpotent, i.e. γω(G) ≤ Z/N . On the other hand, for all k ∈ N,

γk(G) =
γk(W )N

N
≥ ζk(Tk+1)N

N
=
ζ(Tk+1)N

N
=
Z

N
.

Thus γω(G) = Z/N and G is not residually nilpotent (but γω+1(G) = 1.)

Observe that this example incidentally shows that, even in the class of locally
nilpotent groups, homomorphic images of residually nilpotent groups need not
be residually nilpotent. In fact, we will show in section 3.5 that every locally
nilpotent group is a homomorphic image of a suitable residually finite locally
nilpotent group.

The normalizer condition. A group G is said to satisfy the normalizer con-
dition if H 6= NG(H) for all proper subgroups H of G. Following [96], we denote
by N the class of all groups satisfying the normalizer condition.

Proposition 1.88 A group G satisfies the normalizer condition if and only if
every subgroup of G is ascendant. Thus N -groups are Gruenberg groups.

Proof. Since, clearly, a proper ascendant subgroup of a group cannot be self-
normalizing, in one direction the implication is obvious. Conversely, let G be an
N -group, and H a proper subgroup of it. Then one defines an ascending series of
successive normalizers by setting N0(H) = H, Nα+1(H) = NG(Nα(H)) for any
ordinal α, and Nβ(H) =

⋃
α<β N

α(H), for any limit ordinal β. Since G satisfies
the normalizer condition, this series will eventually reach G, thus showing that
H is ascendant.

This shows, in particular that the class of N -groups is closed by subgroups
(a fact which is not immediately obvious). The class N is also clearly closed by
quotiens; it will be observed that it is not closed by direct products and that it
is countably recognizable..

By Propositions 1.84 and 1.88, every hypercentral group is an N -group, and
we have the following chain of proper inclusions for group classes:

nilpotent ⊂ hpercentral ⊂ N -groups ⊂ Gruenberg;

and we have another chain of proper inclusions for group classes:

nilpotent ⊂ Fitting ⊂ Baer ⊂ Gruenberg.
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To prove that the class of hypercentral groups is properly contained in N
is not that easy. The first examples of N -groups with trivial centre are due
to Heineken and Mohamed [47] and appeared in 1968. These groups, whose
construction we will report in chapter 3, are extensions of an elementary abelian
p-group by a Prùfer group Cp∞ (for any fixed prime p), and have the property
that all of their proper subgroups are nilpotent and subnormal.

Example. Let G = Cp wrCp∞ , and let B be the base group of G. If H is a
subgroup of G such that BH 6= G, then BH is nilpotent and normal in G (in
particular H is nilpotent and subnormal of G). On the other hand, if H = Cp∞ ,
by Lemma 1.82 we have H = NG(H), and so ζ(G) = 1. Thus, G is a Fitting
group but it is not hypercentral.

Example. The group of the example at page 32 is a Baer group that is not Fitting,
and that also does not satisfy the normalizer condition. Another example with
these properties is the group G = Cp o (Cp oA), where A is an infinite elemenatry
abelian p-group. G is a soluble group of exponent p3, and so it is a Baer group
by Proposition 1.76. But G is not a Fitting group, and does not satisfy the
normalizer condition.

Let us add some more comments on radicable groups. For torsion-free groups
this property is not very decisive: a theorem of Mal’cev ensures that every
nilpotent torsion-free group N may be embedded in torsion-free radicable group
which is still nilpotent of the same nilpotency class of N . For periodic groups
the situation is different: a periodic hypercentral semi-radicable group is abelian
(and radicable). Nevertheless, radicable locally finite p-groups may also be rather
complicated: in fact, a consequece of a result of Baumslag [6] is that every p-
group may be embedded in a radicable p-group. Here is a sketch of the argument.
Let P be any group, Cn a cyclic group of order n, and embed P as the diagonal
subgroup δ(P ) in the base group of the standard wreath product P1 = P o Cn;
then every element of δ(P ) has a n-th root in P1. If we start from a p-group
P = P0, take n = p, and iterate the process (the embedding is in the diagonal
subgroup Pi 7→ δ(Pi) ≤ Pi o Cp = Pi+1), we get a direct limit group P , which
is a radicable p-group, and contains a copy of the original P as a subgroup.
Observe that if P is locally finite then such is P ; moreover if P is nilpotent then
P is subnormal in P (of defect equal to its nilpotency class) and P is a Fitting
group. On the other hand we have:

Proposition 1.89 A radicable periodic group satisfying the normalizer condi-
tion is abelian.

Proof. Let G be a radicable periodic N -group. We may clearly assume that G
is a p-group for a prime p. Let x = x0 ∈ G. Then there exists x1 ∈ G such
that xp

1 = x0, and for i ≥ 2, inductively we find xi ∈ G with the property that
xp

i = xi−1. Let U = 〈xi | i ∈ N〉; then U ' Cp∞ . Since G is a N -group, U
is ascendant in G and so, by Lemma 1.33, UG is abelian. This means that x
commutes with all of its conjugates. Hence [y, x, x] = 1 for all x, y ∈ G. Now,
let x, y ∈ G with m = |x|, and let t ∈ G such that tm = y; then by Lemma 1.2
we have [x, y] = [x, tm] = [xm, t] = 1, thus proving that G is abelian.
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This does not hold for semi-radicable groups: in fact, let U be one of the p-
groups constructed by Heineken and Mohamed. Then U/U ′ ' Cp∞ (see, in fact,
Chapter 3), and it is not difficult to see that U is semi-radicable not radicable.

Finiteness conditions. Locally nilpotent groups satisfying various finiteness
conditions have been largely studied in the past, and much is known about
thme. While refering to the first volume of Robinson’s monograph [96] for a full
account, we restrict to mentioning, for further reference, just a special case of a
result of Plotkin

Theorem 1.90 Let G be a locally nilpotent group. Then

(1) G satisfies the maximal condition on abelian subgroups if and only if G is
a finiltely generated nilpotent group;

(2) G satisfies the minimal condition on abelian subgroups if and only if G is
a direct product of finitely many Černikov p-groups.

1.6 Preliminaries on N1

The class of groups in which every subgroup is subnormal, which we denote by
N1, represents a case for which it is difficult to make any immediate but not
trivial observation.

Among the natural classes of generalized nilpotent groups, N1 is perhaps
the closest to nilpotency, as it will be seen in these notes. Indeed, it may be
useful to warn that, although Lemma 1.60 seems to confirm the idea that locally
nilpotent groups are plenty of normal (and subnormal) subgroups, this is not
quite true in general. For instance, F. Leinen (see [62]) has shown that, given a
prime p, in the unique countable existentially closed locally finite p-group (which
was discovered by P. Hall, and contains as a subgroup every finite p-group) all
subnormal subgroups are normal and form a unique chain of subgroups.

Besides groups of Heineken–Mohamed type (non-nilpotent groups with all
of their proper subgroups nilpotent and subnormal), another way of explicitely
constructing non–nilpotent N1-groups (which we treat in Chapter 6), was dis-
covered by H. Smith. It produces in particular hypercentral, residually finite,
N1-groups of finite rank. Thus, none of these properties: hypercentrality, finite
rank, residual finiteness, associated to N1 is enough to ensure nilpotency.

Clearly, a N1-group is a Baer group satisfying the normalizer condition,
but not viceversa, as the direct product of infinitely many nilpotent groups
with unbounded classes shows. It is also obvoius that the class N1 is closed by
subgrops and quotients; but it is not closed by direct products. In fact, taking
for granted the existence of a N1-group H with trivial centre, then the diagonal
subgroup D = {(x, x) | x ∈ H} of the direct power H ×H, is self-normalizing.
Indeed, it is not difficult to prove the following fact.

Lemma 1.91 Let H be a group and let D be the diagonal subgroup of H ×H.
Then:

(a) D 6= NH×H(D) if and only if ζ(H) 6= 1;
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(b) D is subnormal in H ×H if and only if H is nilpotent;
(c) D is ascendant in H ×H if and only if H is hypercentral;

Observe that point (c) gives a sort of ’outer’ characterization of hypercentral
groups inside the class N : a group G is hypercentral if and only if the direct
product G×G satisfies the normalizer condition.

Let us repeat another elemantary but basic fact (in fact, Lemma 1.24). Let
H be a subgroup of the group G. Then H is subnormal of defect at most n if and
only if [G,n U ] ≤ H for any finitely generated subgroup U of H. In particular,
if all finitely generated subgroups of H are subnormal of defect at most n, then
H is subnormal of defect at most n.

We now start proving something. The first result is indeed one of the most
useful arguments in studying N1-groups. In essence it was firstly observed by
C. Brookes in [7].

Theorem 1.92 (Brookes). Let G be a group in N1, and let Θ be a family of
subgroups of G such that G ∈ Θ. Then there exists a subgroup H ∈ Θ, a finitely
generated subgroup F of H, and a positive integer d, such that every F ≤ K ≤
H, with K ∈ Θ, has defect at most d in H.

Proof. Let G be a counterexample. By an inductive procedure we construct two
chains of subgroups

{1} = F0 ≤ F1 ≤ . . . ≤ Fi ≤ Fi+1 ≤ . . .

G = H0 ≥ H1 ≥ . . . ≥ Hi ≥ Hi+1 ≥ . . .

such that, for each i, j ∈ N, Fi is finitely generated, Hi ∈ Θ, Fi ≤ Hj and
[Hi, iFi+1] 6≤ Hi+1.

Set F0 = {1},H0 = G, and suppose we have already defined F0, . . . , Fi

and H0, . . . ,Hi. Since Fi ≤ Hi ∈ Θ, and G is a counterexample, there exists
a subgroup Θ 3 Hi+1 ≤ Hi with Fi ≤ Hi+1, and d(Hi+1,Hi) = i + 1. This
implies that there exists a finitely generated subgroup K of Hi+1 such that
[Hi, iK] 6≤ Hi+1. We put Fi+1 = 〈Fi, K〉 . Then Fi+1 is finitely generated,
Fi ≤ Fi+1 ≤ Hi+1, and [Hi, iFi+1] 6≤ Hi+1.

By induction, we thus construct the two chains {Fi}i∈N, {Hi}i∈N with the
desired proprties. We then put

F =
⋃
i∈N

Fi .

Then F ≤
⋂

i∈N Hi is subnormal in G. So there exists an integer k such that
[G,k F ] ≤ F . In particular we have

[G, kFk+1] ≤ [G, kF ] ≤ F ≤ Hk+1

which contradicts the choice of Fk+1.

Next proposition generalizes a result appearing in [101], where its proof is
credited to D. Robinson.
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Proposition 1.93 Let G ∈ N1, and A a normal nilpotent periodic subgroup of
G. Let Aω =

⋂
n∈N A

n. Then there exists d ≥ 1 such that Aω ≤ ζd(G).

Proof. Write D = Aω. We may clearly suppose that G/D is countable; thus let
G/D = {a1D, a2D, a3D, . . .}. Assume that, for a 1 ≤ n ∈ N we have integers
m1,m2, . . . ,mn such that, if Un = 〈am1

1 , am2
2 , . . . , amn

n 〉, then A ∩ Un = 1. Now,
Un is a subgroup of the finitely generated nilpotent group 〈Un, an+1〉. Also, since
A is periodic, A∩〈Un, an+1〉 is finite. then, by Theorem 1.40, there exists a sub-
group of finite index of 〈Un, an+1〉 that contains Un and has trivial intersection
with A. In particular, there exists a mn+1 ≥ 1 such that Un+1 = 〈Un, a

mn+1
n+1 〉

has trivial intersection with A. In this way we get, by induction, a sequence
(mn)n≥1 of integers such that, for all n, A ∩ 〈am1

1 , . . . , amn
n 〉 = 1. We now set

U = 〈amn
n | 1 ≤ n ∈ N〉. Then A ∩ U = 1, and for each x ∈ G there exists a

1 ≤ k ∈ N such that xk ∈ U .
Now, G ∈ N1, so U is a subnormal subgroup; let d be the defect of U in G.
Then [A,d U ] ≤ A ∩ U = 1. Let x1, . . . , xd ∈ G, and let m1, . . . ,md ∈ N with
xmi

i ∈ U . Then Lemma 1.21 yields

[D,x1, . . . , xd] ≤ [A, 〈xm1
1 〉, . . . , 〈xmd

d 〉] ≤ [A,d U ] = 1.

This proves that D ≤ ζd(G).

It is convenient to state explicitely an immediate corollary of this.

Corollary 1.94 Let G ∈ N1, and D be a normal abelian divisible periodic sub-
group of G. If G/D is nilpotent (hypercentral), then G is nilpotent (hypercentral).
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Chapter 2

Torsion-free Groups

The proof that torsion–free N1-groups are nilpotent is relatively simple and does
not require a lot of preparation. Thus, inverting the historical development, we
present it before anything else in this short chapter. The price will be that, in
order to be as self consistent as possible, we will state and prove for a special
case some results that will be later (and with much more effert) shown to hold
in general (notably Proposition 2.17 and Lemma 2.19); the proofs in the torsion-
free case are considerably shorter, and we hope that the repetition will not annoy
the reader.

2.1 Locally nilpotent torsion–free groups

Let us begin with some simple properties of the ascending central series of a
torsion-free group.

Lemma 2.1 Let G be an Engel group, and a, b ∈ G with 〈a〉G torsion-free.
Assume that there exists 1 ≤ n ∈ N such that [a, bn] = 1. Then [a, b] = 1.

Proof. Since G is an Engel group there exists an integer k such that [a,k b] = 1.
We make induction on k (for k = 1 there is nothing to prove). Our assumption
implies that bn is in the centre of 〈a, b〉, and so [[a, b], bn] = 1. Now, [a, b] ∈ 〈a〉G
and by inductive assumption we then have [a, b, b] = 1, whence, by Lemma 1.2,
[a, b]n = [a, bn] = 1. Since [a, b] ∈ 〈a〉G, which is torsion-free, we conclude that
[a, b] = 1.

Corollary 2.2 Let G be a locally nilpotent group, and a, b ∈ G. Suppose that
[an, bm] has finite order, for some n,m ≥ 1. Then [a, b] has finite order.

Proof. Apply Lemma 2.1 to G/T , where T is the torsion subgroup of G.

Another immediate application of this Lemma is the following useful fact.

Proposition 2.3 Let G be a locally nilpotent group.

(1) If N is a normal torsion-free subgroup of G then G/CG(N) is torsion-free;

43
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(2) if G is torsion-free then G/ζα(G) is torsion-free for every ordinal α.

Proof. (1) Let b ∈ G and 1 ≤ n ∈ N be such that bn ∈ CG(N). Then, by
Lemma 2.1, b ∈ CG(N). This shows that G/CG(N) is torsion-free.

(2) Let G be torsion-free. Then point (1) applied to N = G yields G/ζ1(G)
torsion-free; and the same argument, applied to any ordinal of type α+1 shows
that G/ζα+1(G) is torsion-free if such is G/ζα(G). To complete the proof by
induction on α, it remains to consider the case of a limit ordinal β. Thus, take
ζβ(G) =

⋃
α<β ζα(G); if gn ∈ ζβ(G) for g ∈ G and 1 ≤ n ∈ N, then gn ∈ ζα(G)

for some α < β. By inductive assumption we have g ∈ ζα(G) ≤ ζβ(G), and we
are done.

Lemma 2.4 Let A be a normal abelian torsion-free subgroup of the locally nilpo-
tent group G. Let a ∈ A and x1, . . . , xn ∈ G. If [a, x1, . . . , xn] 6= 1 then the
elements of A: a, [a, x1], [a, x1, x2], . . . , [a, x1, . . . , xn] are independent.

Proof. Assume the contrary; then there exists 0 ≤ s ≤ n and ds, . . . , dn ∈ Z,
with ds 6= 0, such that

[a, x1, . . . , xs]ds [a, x1, . . . , xs+1]ds+1 . . . [a, x1, . . . , xn]dn = 1.

Now, the group X = 〈a, x1, . . . , xn〉 is nilpotent, and so there exists an integer
k ≥ 1 such that b = [a, x1, . . . , xs] ∈ ζk(X) \ ζk−1(X). Then

b−ds = [b, xs+1]ds+1 . . . [b, xs+1, . . . , xn]dn ∈ ζk−1(X).

Thus, since A is normal and abelian, 1 = [b−ds , k−1X] = [b, k−1X]−ds . Hence
[b, k−1X] = 1 because A is torsion-free. But this means b ∈ ζk−1(X), a contra-
diction.

Lemma 2.5 (Čarin). Let G be a locally nilpotent group, and A a normal abelian
subgroup of G. If A is torsion-free of finite rank d, then A ≤ ζd(G) and G/CG(A)
is torsion-free nilpotent.

Proof. The first assertion follows immediately from Lemma 2.4 and the defini-
tion of rank of an abelian group. From Proposition 2.3 we have that G/CG(A)
is torsion-free. Finally, CG(A) ≥ γd(G) (and so G/CG(A) is nilpotent) follows
from Lemma 1.7 (3).

The point in Čarin’s Lemma is that the (abstract) divisible closure D of the
torsion-free abelian group A (i.e. A⊗Z Q) is a direct product of d copies of the
additive group of the rationals Q, and the action of G on A can be uniquely
extended to an action on D. Then local nilpotency easily yields that G acts
unipotently on D and so G/CG(D) = G/CG(A) may be embedded in the uni-
triangular group UT (d,Q) which is nilpotent torsion-free of class d− 1 and has
finite rank (see [96] for a proof along thses lines).

Now, recall that if H is a polycyclic group (thus, in particular, if H is a
finitely generated nilpotent group), then the number of infinite cyclic factors in
a polycyclic series of H is an invariant of H (see [97], 5.4.13), which is denoted
by h(H) and called the Hirsch length of H.
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Corollary 2.6 Let G be a locally nilpotent torsion-free group, and H a finitely
generated normal subgroup of G. Then H ≤ ζh(G), where h is the Hirsch length
of H.

Proof. This follows easily from Lemma 2.5 and induction on the Hirsch length
h(H), keeping in mind that 1 6= Z(H) is normal in G, H/Z is torsion free, and
h(H/Z(H)) + h(Z(H)) = h(H).

2.2 Isolators

The basic aspects of root extraction in locally nilpotent groups are subsumed
in the elegant P. Hall’s theory of isolatorsl [38], which is a fondamental tool in
what follows, and that we introduce in its simpler form.

Recall that if π is a set of primes, an integer n 6= 0 is a π-number if all of its
prime divisors belong to π.

Definition 2.1 Let π be a set of primes and let H be a subgroup of a group G.
The π-isolator of H in G is the set

Iπ
G(H) = { x ∈ G | xn ∈ H for some π-number n ≥ 1} .

If π is the set of all primes, we then omit it in the notation and speak about
the isolator IG(H) of H ≤ G; thus

IG(H) = {x ∈ G | xn ∈ H for some 1 ≤ n ∈ N}.

The results we prove thereafter are stated for the full isolator, since it is this case
that we will need, although some of them (in particular Lemmas 2.7 and 2.8)
admit a ’local’ version which may be proved by specializing the same arguments.

Lemma 2.7 Let G be a locally nilpotent group. Then, for all H ≤ G, IG(H) is
a subgroup of G.

Proof. Let x, y ∈ IG(H), where H is a subgroup of the locally nilpotent group
G. Then there exists 1 ≤ m ∈ N, such that 〈xm, ym〉 ≤ H. Now, U = 〈x, y〉
is nilpotent, of class, say, c. We prove, by induction on c, that |U : 〈xm, ym〉|
is finite, from which U ⊆ IG(H) clearly follows. If U is abelian, this fact is
clear. Otherwise, by inductive assumption, we have that Y = γc(U)〈xm, ym〉
has finite index in U . Now, γc(U) is generated by the simple commutators of
length c whose entries are x and y. If w = [u1, . . . , uc] is such a commutator, then
(see Lemma 1.47) wmc

= [um
1 , . . . , u

m
c ] ∈ γc(U) ∩ 〈xm, ym〉). Thus, the abelian

group Y/〈xm, ym〉) ' γc(U)/(γc(U)∩〈xm, ym〉) is finitely generated by elements
of bounded exponent, and is therefore finite. Hence, as wanted, |U : 〈xm, ym〉|
is finite.

Needless to say, if H is a subgroup of the locally nilpotent group G, then
IG(IG(H)) = IG(H), and IG(H) E G if H E G. We say that a subgroup H of
the group G is isolated (respectively π-isolated) if H = IG(H) (H = Iπ

G(H)).
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Lemma 2.8 Let G be a locally nilpotent group, and let H,K ≤ G. Then, for
every 1 ≤ n ∈ N,

(1) [G, IG(H)] ≤ IG([G,H]), thus if U/V is a central factor of G, then also
IG(U)/IG(V ) is a central factor;

(2) γn(IG(H)) ≤ IG(γn(H));

(3) IG(H)(n) ≤ IG(H(n)).

Proof. (1) Let M = IG([G,H]). Then M E G, since [G,H] E G, and G/M is
torsion–free. Let b ∈ IG(H), and n ∈ N such that bn ∈ H. Then, for any g ∈ G,
[g, bn] ∈ [G,H] ≤ M . Now, G/M is torsion-free and thus from Lemma 2.1 it
follows [g, b] ∈M . This shows that [G, IG(H)] ≤M .
(2) We proceed by induction on n. If n = 1, then the inclusion reduces to
IG(H) = IG(H). Let now n ≥ 2, and set K = γn(H). Let x1, . . . , xn ∈ IG(H);
then there exists 1 ≤ m ∈ N such that xm

i ∈ H for all 1 ≤ i ≤ n. By inductive
hypothesis, y = [x1, . . . , xn−1] ∈ IG(γn−1(H)), and so there exists 1 ≤ t ∈ N
such that yt ∈ γn−1(H). Hence, [yt, xm

n ] ∈ K ≤ IG(K). By Lemma 2.1, this
implies [y, xn] ∈ IG(K), which is what we wanted.
(3) For n = 1, H(1) = γ2(H) and we have proved the inclusion in point (1).
Thue, let n ≥ 2. Applying the induction hypothesis and again point (1), we get:

IG(H)(n) = γ2(IG(H)(n−1)) ≤ γ2(IG(H(n−1))) ≤ IG(γ2(H(n−1))) = IG(H(n)),

which is our assertion.

Lemma 2.8 is an instance of a more general result established by P. Hall in
[38]: if H1, . . . ,H, n are subgroups of a group G and θ is any word in n variables,
we define θ(H1, . . . ,Hn) to be the subgroup of G generated by all the elements
of the form θ(h1, . . . , hn) where hi ∈ Hi for all i = 1, . . . , n. If G is locally
nilpotent, then θ(Iπ

G(H1), . . . , Iπ
G(Hn)) ≤ Iπ

G(θ(H1, . . . ,Hn)). To prove this, we
begin with a lemma.

Lemma 2.9 Let A1, . . . , An be subgroups of the locally nilpotent group G, and
for each i = 1, . . . , n, let Bi ≤ Ai with |Ai : Bi| finite. Let π be the set of all
prime divisors of the indices |Ai : Bi| and θ(x1, . . . , xn) a word. Then the index
|θ(A1, . . . , An) : θ(B1, . . . , Bn)| is finite and a π-number.

Proof. Let H = θ(A1, . . . , An), K = θ(B1, . . . , Bn), and suppose by contra-
diction that |H : K| is not a π-number. Then, since G satisfies the maximal
condition on subgroups (Proposition 1.39), there exists N E G maximal such
that |HN : KN | is either infinite or diveded by a prime not in π. We may well
assume N = 1. Let Z be the centre of G. Then Z∩K E G and so (by our choice
of N) Z ∩K = 1. Suppose that Z contains an infinite cyclic subgroup Y . Then
|HY : KY | is a π-number, and therefore 1 6= Y ∩ H. Thus C = Y ∩ H is an
infinite cyclic group. Let q be a prime with q 6∈ π. Then 1 6= Cq E G, whence
|CqH : CqK| is a π-number. But, as K ∩ C = 1, we have the contradiction

|CqH : CqK| = |H : CqK| = |H : CK||CK : CqK| = q|H : CK|.
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Thus Z does not have any elements of infinite order. Let R by a cycli sub-
group of prime order q of Z. As before we have R ≤ H, R∩K = 1, and |H : RK|
a π-number. Hence

|H : K| = |H : RK||RK : K| = |H : RK||R : R ∩K| = |H : RK|q.

Since we are assuming that |H : K| is not a π-number, this forces q 6∈ π.
Therefore Z is a finite π′-group. But then, by Proposition 1.49, G is a π′-group,
which is clearly a contradiction.

We may now prove Hall’s result.

Theorem 2.10 (P. Hall) Let θ(x1, . . . , xn) be a word, π a set of primes, and
H1, . . . ,Hn subgroups of a locally nilpotent group G, then

θ(Iπ
G(H1), . . . , Iπ

G(Hn)) ≤ Iπ
G(θ(H1, . . . ,Hn)).

Proof. Let U = θ(Iπ
G(H1), . . . , Iπ

G(Hn)), V = θ(H1, . . . ,Hn), and take an el-
ement g = θ(g1, . . . , gn) with gi ∈ Iπ

G(H1). For any i = 1, . . . , n we then
have gmi

i ∈ Hi for some π-number mi; we write Ai = 〈gi〉 and Bi = 〈gmi
i 〉.

Since 〈A1, . . . , An〉 is nilpotent, we can apply Lemma 2.9 and deduce that
|θ(A1, . . . , An) : θ(B1, . . . , Bn)| is a π-number. As θ(B1, . . . , Bn) is subnormal
in θ(A1, . . . , An) and g ∈ θ(A1, . . . , An), it follows that gm ∈ θ(B1, . . . , Bn) ≤ V
for some π-number m. Thus g ∈ Iπ

G(V ). Since the elements like g generate U ,
we have U ≤ Iπ

G(V ), as wanted.

Corollary 2.11 Let H,K be subgroups of a locally nilpotent group G, then
[IG(H), IG(K)] ≤ IG([H,K]).

Remarks. Let H be a subgroup of a locally nilpotent group G. Observe that the
Corollary implies that IG(NG(H)) ≤ NG(IG(H)); in particular, the normalizer
of an isolated subgroup is also isolated. Another immediate consequence is that
if H is subnormal of defect d, then IG(H) is subnormal of defect at most d.

We now move to torsion-free groups, for which the results are stronger.

Lemma 2.12 Let G be a locally nilpotent, torsion-free group, and let H ≤ G.
Then, for every ordinal α,

ζα(IG(H)) = IG(ζα(H))

Proof. We make induction on α. If α = 0, then the equality reduces to 1 = IG(1)
which is satisfied since G is torsion-free. Assume now that α = β + 1 for some
ordinal β, and let K = ζβ(H). Let x ∈ IG(ζα(H)), and let g ∈ IG(H). Then
there exists 1 ≤ m ∈ N such that [gm, xm] ∈ K. By Lemma 2.1, it follows that
[g, x] ∈ IG(K), and this holds for all g ∈ IG(H). Now, by inductive assumption,
IG(K) = ζβ(IG(H)), and so x ∈ ζα(IG(H)). Conversely, let y ∈ ζα(IG(H)).
Then yn ∈ H for some 1 ≤ n ∈ N. Hence,

[H, yn] ≤ [IG(H), yn] ∩H ≤ ζβ(IG(H)) ∩H = IG(K) ∩H = IH(K).

Now, by Lemma 2.3, IH(K) = K. Thus, yn ∈ ζα(H) and so y ∈ IG(ζα(H)).
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Syuppose now that α is a limit ordinal, i.e. α =
⋃

β<α β. Then, by definition,

ζα(IG(H)) =
⋃

β<α

ζβ(IG(H)) =
⋃

β<α

IG(ζβ(H)) = IG(
⋃

β<α

ζβ(H)) = IG(ζα(H)),

thus completing the proof.

Corollary 2.13 Let G be locally nilpotent torsion-free group. If G has a sub-
group H, with IG(H) = G, and which is nilpotent (soluble, hypercentral) of
class c (of derived length d, of length α), then G is nilpotent of class c (soluble
of derived length d, hypercentral of length α).

Proof. Since being G torsion-free is equivalent to IG(1) = 1, the assertions for
the three cases follow, respectively, from 2.8 (2) (or 2.12), 2.8 (3), and 2.12.

Lemma 2.14 Let G be a locally nilpotent group G which admits a nilpotent
subgroup H of finite index. If T (H) has finite exponent, then G is nilpotent.

Proof. By replacing H with its normal core, we may assume that H is normal.
T (H) is nilpotent of finite exponent, and it admits a characteristic finite series
all of whose factors are central and elementary abelian for a finite number of
primes. If U/V is a factor of this series which is a p-group, then H ≥ CG(U/V )
so G/CG(U/V ) is finite and therefore a p-group. By Corollary 1.15, U/V is
contained in some term ζm(G/V ) (m ∈ N) of the upper central series of G/V .
By repeated application, this shows that T (H) ≤ ζn(G) for some n ∈ N. Now,
T (G)/T (H) ' T (G)H/H is a finite normal section of G and so T (G) ≤ ζk(G)
for some k ∈ N. Finally, Corollary 2.13 ensures that G/T (G) is nilpotent, thus
proving that G is nilpotent.

A Lemma of Möhres. Möhres Lemma is a simple but very useful application
of the concept of isolators in torsion–free groups.

Lemma 2.15 (Möhres [78]) Let G be a locally nilpotent, countable group, F a
finitely generated subgroup of G, and M a finite subset of G with F ∩M = ∅.
Then there exists a subgroup H of G such that IG(H) = G, F ≤ H, and
H ∩M = ∅.
Proof. Let G = {xi | i ∈ N}. Suppose that for n ∈ N we are given positive
integers m0,m1, . . . ,mn such that

〈F, xm0
0 , . . . , xmn

n 〉 ∩M = ∅.

Let Hn = 〈F, xm0
0 , . . . , xmn

n 〉, and K = 〈Hn, xn+1〉. Then K is finitely gener-
ated and so polycyclic. By Mal’cev Theorem 1.40, Hn is the intersection of all
subgroups of K of finite index containing it. Since M is finite, it follows that
there exists a subgroup W of finite index in K which contains Hn, and such
that W ∩M = ∅. Thus, there is a 0 6= mn+1 ∈ N such that xmn+1

n+1 ∈W . Setting
Hn+1 = 〈Hn, x

mn+1
n+1 〉, we have F ≤ Hn+1, and Hn+1 ∩M = ∅. We now put

H =
⋃
i∈N

Hi = 〈F, xmi
i | i ∈ N〉.

Then F ≤ H, IG(H) = G, and H ∩M = ∅.
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2.3 Torsion–free N1-groups

In this section we show that a torsion-free group with all subgroups subnormal
is nilpotent. In [78], W. Möhres proved that such a group is soluble and hy-
percentral, and later H. Smith [108] was able to establish nilpotency, Here, we
will follow the proof given in [15], which in turn makes a heavy use of Möhres’s
ideas. Let us begin with a general observation.

Lemma 2.16 Let H be a torsion-free nilpotent group of class c, and assume
that H/H ′ can be generated by r elements. Then the Hirsch length of H is
bounded by r + r2 + . . .+ rc.

Proof. Let A = H/H ′. Then, for every 1 ≤ i ≤ c, there is an epimorphism:

A⊗A⊗ · · · ⊗A︸ ︷︷ ︸ −→ γi(H)/γi+1(H)

i times

(Theorem 1.44). Now, A is a r-generated abelian group, and so it has Hirsch
length at most r. Similarly, for each i ≥ 1, the i-th tensor power A⊗· · ·⊗A has
Hirsch length at most ri. Hence, for each 1 ≤ i ≤ c, γi(H)/γi+1(H) has Hirsch
length at most ri. Since γc+1(H) = 1, it plainly follows that H has Hirsch length
at most r + r2 + . . .+ rc.

We first deal with groups with all subgroups subnormal of bounded defect.
Thus, for each 1 ≤ n ∈ N, let us denote by Un the class of groups in which
every subgroup is subnormal of defect at most n. It is clear that every Un group
is locally nilpotent and (n + 1)-Engel. We observe that a torsion-free group G
in Un is in fact a n-Engel group. Let x ∈ G and Y = 〈x〉G,n−1; then 〈x〉 E Y .
Since Y is torsion-free and locally nilpotent, it follows from Lemma 2.5 that
x ∈ Z(Y ); in particular [g,n x] = [g,n−1 x, x] ∈ [Y, x] = 1 for all g ∈ G.

The next Proposition is a special case of Roseblade’s Theorem (see section
4.2), and, of course of Zel’manov theorem 1.65.

Proposition 2.17 There exists a function ρ0 : N → N, such that a torsion-free
group in which every subgroup is subnormal of defect at most n, is nilpotent of
nilpotency class not exceeding ρ0(n).

Proof. We will define by recursion on n a value ρ0(n), such that, if G is a
torsion-free Un-group, then γρ0(n)+1(G) = 1.

A U1-group is a group in which every subgroup is normal, and it is well
known since Dedekind that a torsion-free such group is abelian. Thus ρ0(1) = 1.

Let n ≥ 1, and assume we have defined ρ0(i) for 1 ≤ i ≤ n− 1. Let G be a
torsion-free Un-group. Then, for each H ≤ G, we have a series

H = HG,n E HG,n−1 E . . . E HG,1 = HG E G.

Now, if H ≤ K ≤ HG, then clearly KG = HG. It follows that HG,1/HG,2

belongs to Un−1. Similarly, we have, for all i = 1, . . . , n− 1,

HG,i

HG,i+1
∈ Un−i.
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For 1 ≤ i ≤ n − 1, we put Hi+1 = IHG,i(HG,i+1). Then Hi+1 E HG,i, and
HG,i/Hi+1 is a torsion-free Un−i-group. By inductive assumption, HG,i/Hi+1

is nilpotent of class at most ρ0(n − i) and so it is solvable of derived length at
most [log2(ρ0(n− i))] + 1. Let c(n) =

∑n−1
i=1 ([log2(ρ0(i))] + 1). then

(HG)(c(n)) ≤ IG(H)

and this holds for every H ≤ G. Write M = (HG)(c(n)). Then from M ≤ IG(H),
we cleary get IHG(M) ≤ IG(H). Now, HG/IHG(M) is a soluble torsion-free n-
Engel group, hence by Corollary 1.68, it is nilpotent of class at most

α(n) = nc(n).

Thus γα(n)+1(HG) ≤ IHG(M) ≤ IG(H), and this holds for every H ≤ G. In
particular, for all x ∈ G, 〈x〉G is nilpotent of class at most α(n).

Now, let x1, x2, . . . , xα(n) be elements of G, and let H = 〈x1, x2, . . . , xα(n)〉.
Then, by Fitting Theorem, HG is nilpotent of class at most α(n)2. In particular,
H has nilpotency class at most α(n)2. Since H is generated by α(n) elements,
it follows from Lemma 2.16 that its Hirsch length is bounded by

g(n) = α(n) + α(n)2 + . . .+ α(n)α(n)2 ≤ α(n)α(n)2+1.

Hence, γα(n)+1(HG) has Hirsch length at most α(n)α(n)2+1, and so, by Corollary
2.6,

γα(n)+1(HG) ≤ ζα(n)α(n)2+1(G).

This yields that G is nilpotent of class at most α(n) + α(n)α(n)2+1.

The exact values of ρ0(n) (in the torsion–free case) are known only for n ≤ 4,
and in these cases we have ρ0(n) = n. For n = 2 this follows from Levi’s results
on 2-Engel groups, while for n = 3, 4 it has been established, respectively, by
Traustason [118] and Smith and Traustason [114] (see also Section 4.2).

Question 1 (see [114]) Is the nilpotency class of every torsion–free group with
all subgroups n-subnormal bounded by n?

We now drop the assumption of bounded defects.

Proposition 2.18 (Möhres [78]) Let G be a non-nilpotent torsion-free N1-
group. Then there exist a n ∈ N, a non-nilpotent subgroup H of G and a finitely
generated subgroup F of H, such that all subgroups U with F ≤ U ≤ H have de-
fect at most n in H. If G is countable, then H can be taken such that IG(H) = G.

Proof. Without loss of generality, we may assume that G is countable coun-
terexample. Set H0 = 1, and suppose that, for a 1 ≤ n ∈ N, we have found a
finitely generated subgroup Hn−1 of G, and elements x1, . . . , xn−1, such that
{x1, . . . , xn−1} ∩ Hn−1 = ∅. Then, by Lemma 2.15, there exists a Kn ≤ G,
with IG(Kn) = G and such that {x1, . . . , xn−1} ∩Kn = ∅¿ Since G is a coun-
terexample to the proposition, there exists a finitely generated subgroup Hn of
Kn, containing Hn−1, that has defect at least n+ 1 in G. Hence, there exists a
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xn ∈ [G,nHn] \Hn. Then {x1, . . . , xn−1, xn}∩Hn = ∅. Let now H =
⋃

n∈N Hn.
H is subnormal in G of defect, say, d. Thus,

xd ∈ [G,dHd] ≤ [G,dH] ≤ H =
⋃
n∈N

Hn,

whence xd ∈ Hj for some j > d, which contradicts the choice of Hj .

Lemma 2.19 (Möhres). A torsion-free group in which all subgroups are sub-
normal is soluble.

Proof. Let G be a torsion-free group N1-group. Since solubility is a countably
recognizable property (see 1.31), we may assume that G is countable and not
nilpotent. Then by Proposition 2.18 there exist a n ∈ N, a non-nilpotent sub-
group H of G and a finitely generated subgroup F of H, such that IG(H) = G,
and all subgroups U with F ≤ U ≤ H have defect at most n in H. We now
proceed by induction on n to prove that H is soluble. If n = 1, then F E G and
H/F is Hamiltonian. Hence |(G/F )′| ≤ 2, and, as F is nilpotent, we have in
particular that H is soluble. Let now n ≥ 1, and observe that if F ≤ U ≤ FH ,
then UH = FH . Hence, all subgroups of FH containing F have defect at most
n − 1 in FH . By inductive assumption, FH is solvable, and by Lemma 2.8,
N = IH(FH) is a normal soluble subgroup of H. Finally, H/N is solvable by
Proposition 2.17, and soH is soluble. As G = IG(H), by Lemma 2.8 we conclude
that G is soluble.

The next Lemma is indeed a key argument. Given a prime p, and positive
integers k, n, we define

fp(k, n) = (n+ 2)p[logpk(n+2)]+1 .

Lemma 2.20 Let G = A〈x〉 be a nilpotent group, where A E G is an elemen-
tary abelian p-group. Assume also that there exists a subgroup F of A, and a
n ∈ N, such that |F | = pk, and every subgroup H of G with F ≤ H is subnormal
of defect at most n in G. Then [A,fp(k,n)−1 x] = 1.

Proof. Set s = fp(k, n), and m = [logpk(n + 2)] + 1. Then pm > k(n + 2).
Assume, by contradiction, that [A,s−1 x] 6= 1. By obvious induction we may
then assume [A,s x] = 1. Also, the subgroups

A, [A, x], [A,2 x], [A,3 x], . . . , [A,s−1 x], [A,s x] = 1

are all distinct. In particular, we have

|[A,(n+1)pm x]| ≥ ps−(n+1)pm

= p(n+2)pm−(n+1)pm

= ppm

> pk(n+2) = |F |n+2.

Now, by Lemma 1.14,

[A,n+2 x
pm

] = [A,(n+2)pm x] = [A,s x] = 1

whence [F,n+2 x
pm

] = 1. As F 〈xpm
〉 is generated by the subgroups [F,i xpm

], it
there follows that

|F 〈xpm
〉| ≤ |F |n+2.
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Let now H = 〈A, xpm〉. Since A is normal abelian and F 〈xpm
〉 ≤ A, we have

FH = F 〈xpm
〉. Now, H/FH = (A/FH)(〈xpm〉FH/FH), where A/FH is normal

abelian, and 〈xpm〉FH/FH is a cyclic subgroup of defect at most n. By Lemma
1.59, A/FH is nilpotent of class at most n+ 1. In particular we have

[A,n+1 x
pm

] ≤ FH = F 〈xpm
〉 .

Since, by Lemma 1.14, [A,(n+1)pm x] = [A,n+1 x
pm

], we finally have

|[A,(n+1)pm x]| ≤ |F 〈xpm
〉| ≤ |F |n+2

contradicting what we had obtained above.

Lemma 2.21 Let G be a torsion free locally nilpotent group. Let A be an abelian
normal subgroup of G such that G/A is abelian. Suppose that there exist a finitely
generated subgroup F of A and n ∈ N such that all subgroups of G containing
F are subnormal of defect at most n. Then G is nilpotent (and its nilpotency
class is bounded by a function of (n, rk(F ))).

Proof. Assume the hypothesis of the Lemma, and let k be the rank of F .
Let x ∈ G and X = F 〈x〉. Then X ≤ A because F ≤ A E G. Since G is

locally nilpotent, 〈F, x〉 is nilpotent and X is a finitely generated torsion free
abelian group. Let r be the rank of X. Now set Y = X2. Then Y E 〈F, x〉
and X/Y is an elementary abelian group of order 2r. Let F = FY/Y . Then
|F | = 2k and all subgroups of 〈F, x〉/Y that contain F have defect at most n.
Also, X = X/Y = F

〈x〉
. By Lemma 2.20, [X,s x] = 1, where s = f2(k, n) − 1.

Let 2h the smallest power of 2 larger than s. Then [X, x2h

] = [X,2h x] = 1, so F
has at most 2h conjugates in 〈F, x〉/Y . Since X is an abelian group generated
by the conjugates of F , we get 2r = |X/Y | ≤ |F |2h

= 2k2h

and thus r ≤ k2h

(observe that h does not depend on x, but only on k and n).
We have then obtained that, for all x ∈ G, F 〈x〉 is a torsion free abelian

group of rank at most u = k2h. Since 〈F, x〉 is torsion free and nilpotent, it
follows that, for all x ∈ G,

[〈F, x〉,u x] = 1 .

Now, F ≤ 〈F, x〉, so 〈F, x〉 is subnormal of defect at most n in G. Thus we have,
for all g, x ∈ G

[g,n+u x] = [[g,n x],u x] ∈ [〈F, x〉,u x] = 1.

Then G is a metabelian torsion free (n + u)-Engel group and so by Corollary
1.68, G is nilpotent of class at most n+ u.

The following variant of Theorem 1.54 appears in W. Möhres doctoral dis-
sertation.

Lemma 2.22 Let N be a nilpotent normal subgroup of the locally nilpotent
torsion-free group G. If G/IG(N ′) is nilpotent, then G is nilpotent.
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Proof. Observe that, by Lemma 2.8, IG(IG(N)′) ≥ IG(N ′) = IG(IG(N ′)) ≥
IG(IG(N)′). Thus, IG(IG(N)′) = IG(N ′). Since IG(N) is nilpotent by Lemma
2.12, we may assume that N = IG(N).
We now proceed by induction on the nilpotency class c of N ; the case c = 1
being just our assumption. Let c ≥ 2, and let K = IG(γc(N)). Then K E G, and
G/K is torsion-free. Moreover, K ≤ Z(N), and N/K has class at most c − 1.
Thus, by inductive hypothesis, G/K is nilpotent. Let K/K = K0/K ≤ K1/K ≤
. . . ≤ Kd/K = N/K be the intersection of the upper central series of G/K with
N/K; and for s = 0, 1, . . . , 2d let Ts = 〈 [Ki,Kj ] | 0 ≤ i, j ≤ d, i+ j = s〉. Now,
if 1 ≤ i, j ≤ d, by the three subgroup Lemma 1.5, we have

[Ki,Kj , G] ≤ [Kj , G,Ki][G,Ki,Kj ] ≤ [Kj−1,Ki][Ki−1,Kj ] ≤ Ti+j−1,

showing that [Ts, G] ≤ Ts−1 for all s ≥ 1. In other words, G centralizes the
series 1 = [K,K] = T0 ≤ T1 ≤ . . . ≤ T2d = N ′. By Lemma 2.8, G centralizes
the series of the isolators 1 = IG({1}) ≤ IG(T1) ≤ . . . ≤ IG(N ′). As G/IG(N ′)
is nilpotent by assumption, it follows that G is nilpotent.

We are finally in a position to prove the main result.

Theorem 2.23 (H. Smith [108]). A torsion-free group in which all subgroups
are subnormal is nilpotent.

Proof. Let G be a torsion free group with all subgroups subnormal. By a Lemma
2.19, G is soluble. We argue by induction on the derived length d of G.

Suppose first that G is metabelian and, by contradiction, that G is not
nilpotent. Then, by Proposition 2.18 we may assume that there exists a finitely
generated subgroup F of G and a n ∈ N such that all subgroups of G containing
F are subnormal of defect at most n. Let H = FG′ and L = IG(H ′). H is
a normal subgroup of G, so L is normal, and G/L is torsion-free. Since G′ is
abelian and F is finitely generated and subnormal, H is nilpotent. Since G is
not nilpotent, it follows from 2.22 that G/L is not nilpotent. So we may assume
that H is abelian. By Lemma 2.21, G is nilpotent.

The general case is now an immediate application of Lemma 2.22. Let d be
the derived length of G and let N = G′. By inductive hypothesis, N is nilpotent.
By the metabelian case G/IG(N ′) is nilpotent, and so G is nilpotent by 2.22.
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Chapter 3

Groups of Heineken and
Mohamed

In the literature two quite different methods for constructing non-nilpotent N1-
groups are known. The first goes back to a celebrated 1968 paper by H. Heineken
and I. J. Mohamed, and produces p-groups with trivial centre and no proper
subgroup of finte index, while the second was discovered by H. Smith in 1982,
and gives rise to mixed groups that are hypercentral and residually finite. We
describe Smith’s contructions later in Chapter 6, when we will specifically deal
with hypercentral N1-groups, while to the Haineken-Mohamed groups, which
have been much more investigated, we devote the present Chapter.

3.1 General remarks

In their mentioned paper [47], H. Heineken and I. J. Mohamed provided the
first examples of N1-groups with trivial centre. The groups they constructed are
(locally finite) p-groups for a prime p, and the extension of an infinite elementary
abelian group by a Prüfer group; furthermore, all their proper subgroups are
subnormal and nilpotent.

Heineken and Mohamed construction was studied and extended by many
authors (see e.g. [9], [40], [41], [73], [75]) and it became customary to call a
group G of Heineken-Mohamed type if G is not nilpotent and all of its proper
subgroups are nilpotent and subnormal. In particular, in [48] the same authors
show that there exist 2ℵ0 non-isomorphic groups sharing these properties, Bruno
and Phillips [9] and Möhres [75] studied, respectively, the Schur multiplier and
the automorphisms group of certain groups of Heineken-Mohamed type, and
Hartley [41] showed that, for every n ≥ 1, there exist p-groups of Heineken-
Mohamed type G such that G′ is an abelian group of exponent pn. For some
time all groups thus constructed were metabelian, and the question as to whether
a soluble group G of Heineken-Mohamed type may have arbitrary derived length
was eventually solved in the affermative by Menegazzo in [72]. In the same paper,
Menegazzo gave a very general method for constructing groups of Heineken-

55
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Mohamed type, which was in turn inspired by Hartley approach ([40]), and
which is the one that we will present here.

Before the actual construction, let us prove the following fact.

Proposition 3.1 (Heineken and Mohamed [47]) Let p be a prime and let G be
a p-group of Heineken-Mohamed type such that G 6= G′. Then

(i) G is countable;
(ii) G/G′ ' Cp∞ and (G′)p 6= G′ = γ3(G);
(iii) for every H ≤ G, G′H = G implies H = G.

Conversely, if G is a non-nilpotent p-group with a normal nilpotent subgroup N
of finite exponent such that G/N ' Cp∞ and NH 6= G for every proper subgroup
H of G, then G is a group of Heineken-Mohamed type.

Later we shall prove Möhres Theorem that every N1-group is soluble; thus
the extra condition G 6= G′ in the statement of Proposition 3.1 is redundant,
and all groups of Heineken-Mohamed type have the properties listed.

For further reference, we isolate part of the proof of 3.1 in a separate and
elementary Lemma.

Lemma 3.2 (Newman and Wiegold [86]) Let G be a non-trivial group such that
UV 6= G for all pairs of proper normal subgroups U and V . Then there exists
a prime number p such that G/G′ is either a cyclic p-group (possibly trivial) or
G/G′ ' Cp∞ and G′ = γ3(G).

Proof. Let first assume that G is abelian. Let 1 6= x ∈ G; then there exists a
prime p such that 〈xp〉 6= 〈x〉. Let U be a subgroup of G maximal such that
xp ∈ U but x 6∈ U (it exists by Zorn’s Lemma). Then all subgroups of G/U
contain xU . Since G/U is abelian, we have that G/U is either a non-trivial
cyclic p-group or isomorphic to Cp∞ . If G is not a p-group there exists a y ∈ G
and a prime q 6= p such that 〈yq〉 6= 〈y〉. Arguing as before, we then get a proper
subgroup V of G such that G/V is a q-group. But then, clearly, G = UV ,
contradicting the assumptions on G. Thus, G is a p-group, and from this it
easily follows that G is either cyclic or of type Cp∞ . Now for the general case
we are left to show that G′ = γ3(G). But this is immediate, since H = G/γ3(G)
is a nilpotent group and H/H ′ ' G/G′ is cyclic or a Prüfer group, and so H is
abelian.

Proof of Proposition 3.1. Since, by definition, G is not nilpotent but all of
its proper subgroups are nilpotent, G must be countable by Theorem 1.31. By
assumption, G′ 6= G and so G′ is nilpotent. It thus follows from Lemma 1.75
that G/G′ is not finitely generated. Also, by Fitting’s Theorem, G cannot be the
product of two proper normal subgroups and therefore G/G′ ' Cp∞ by Lemma
3.2. Finally, suppose that (G′)p = G′. Then G′ is an abelian divisible group
by Lemma 1.18. Now, every cyclic subgroup X of G is subnormal and so G′ is
centralized by X by Lemma 1.32. It follows that G′ ≤ ζ(G), which contradicts
the non-nilpotence of G. Hence (G′)p 6= G′.

For the converse, suppose that the non-nilpotent p-group G satisfies the
conditions of the second part of the statement, and let H be a proper subgroup
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of G. Then NH 6= G and so, since G/N ' Cp∞ , NH/N is finite. Thus, NH
is nilpotent by Corollary 1.77. Therefore H is nilpotent and subnormal in NH.
Since NH is normal in G, it follows that H is subnormal in G. Hence G is a
group of Heineken-Mohamed type.

3.2 Basic construction

As mentioned before, our approach follows closely Menegazzo [72].
For the rest of this section, we fix a prime p and denote by U the Prüfer

group Cp∞ , which we take with a fixed set of standard generators u1, u2, u3, . . .:

U = 〈u1, u2, . . . | up
1 = 1, up

i+1 = ui (i ≥ 1)〉.

For each i ≥ 1, we write Ui = 〈ui〉. Also, we denote by R = Fp[U ] the group
algebra of U over the field Fp = Z/pZ, and by U its augmentation ideal. This
means that U is the kernel of the (ring) epimorphism ε : R→ Fp defined by

ε
( ∑

u∈U

auu
)

=
∑
u∈U

au.

Then, U is the ideal of R generated by all the elements of type u− 1 for u ∈ U .
Similarly, for each i ≥ 1, we put Ri = Fp[Ui] and let Ui denote the augmentation
ideal of Ri. Then, clearly, R =

⋃
i≥1Ri, U =

⋃
i≥1 Ui, and

Ui = (ui − 1)Ri

for every i ≥ 1. Moreover (ui − 1)pi

= upi

i − 1 = 0; hence all elements of U
are nilpotent and therefore, by elementary ring theory, all elements of R \U are
invertible. Our first Lemma is standard and not difficult to prove.

Lemma 3.3 The ideals of Ri are exactly the principal ideals

(ui − 1)kRi for 0 ≤ k ≤ pi.

These are all distinc and form a totally ordered set with respect to inclusion.

An immediate consequence is

Lemma 3.4 The set of ideals of R is totally ordered.

Proof. It is enough to show that, for all u, v ∈ R, if u does not belong to vR
then v belongs to uR. Now, given u, v ∈ R, there clearly exists i ≥ 1 such that
u, v ∈ Ri. But then, by Lemma 3.3, either uRi ≤ vRi or vRi ≤ uRi. Thus, the
Lemma is proved.

We observe a consequence of this, which will be used in the next section.

Corollary 3.5 Let M be a (right) R-module and y ∈ M , r ∈ R with 0 6= x =
yr. Then AnnR(y) = rAnnR(x).
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Proof. Clearly, rAnnR(x) ⊆ AnnR(y). Since 0 6= x = y(r1), AnnR(y) 6⊆ rR,
and so (by Lemma 3.4) AnnR(y) ⊆ rR. From this the claim easily follows.

Lemma 3.3 suggests also a convenient way to parametrize the set of all
ideals of R. In fact, let I be an ideal of R; then, for each i ≥ 1, there is a unique
0 ≤ ki ≤ pi such that

I ∩Ri = (ui − 1)kiRi.

We thus associate to I the sequence (k1, k2, . . .). Since R =
⋃

i≥1Ri, this se-
quence uniquely determines I. Observe also that, since (I∩Ri+1)∩Ri = I∩Ri,
the sequence is such that, for every i ≥ 1,

p(ki − 1) < ki+1 ≤ pki. (3.1)

Conversely, a sequence (k1, k2, . . .) of integers 0 ≤ ki ≤ pi satisfying (3.1) is the
sequence associated to the ideal

∑
i≥1(ui − 1)kiR of R.

Lemma 3.6 Let I be a non-zero ideal of R, and let (k1, k2, . . .) be the sequence
associated to I. Then IU = I if and only if for every i ≥ 1 there exists j ≥ i
such that pkj > kj+1.

Proof. Suppose that the sequence for I satisfies the condition in the statement
and let i ≥ 1. Choose j ≥ i such that pkj > kj+1. Then, for some t > 0,

(uj − 1)kj = (uj+1 − 1)pkj = (uj+1 − 1)kj+1(uj+1 − 1)t.

This implies (uj − 1)kj ∈ IU and, consequently, (ui − 1)ki ∈ IU. Therefore IU
has the same sequence as I and so IU = I.

Conversely, assume IU = I, and let i ≥ 1 with (ui − 1)ki 6= 0. Then it
is easy to see that there exists t ≥ i such that (ui − 1)ki ∈ (I ∩ Rt)Ut. Since
I∩Rt = (ut−1)ktRt and Ut = (ut−1)Rt, we have that (ui−1)ki = (ut−1)kt+1v
for some v ∈ Rt. Hence (ui − 1)kiR < (ut − 1)ktR, and so in the chain

(ui − 1)kiR ≤ (ui+1 − 1)ki+1R ≤ . . . ≤ (ut − 1)ktR

at least one of the inclusions is proper, say (uj−1)kjR < (uj+1−1)kj+1R, which
means jj+1 < pkj .

We now come to the key definition of an HM-system. Let V be a right R-
module which is generated by a sequence of elements a = (ai)i≥` (for some
positive integer `). For any sequence v = (vi)i≥` of elements of V , we set

τi,k(v) = −vi +
k∑

s=0

ai+s(ui+s − 1)ps−1 + vi+k+1(ui+k+1 − 1)pk+1−1

for all i ≥ `, k ≥ 0. We then say that a is a HM-system in V if

V = 〈τi,k(v) | i ≥ `, k ≥ 0〉

for every sequence v = (vi)i≥`.
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Proposition 3.7 (Menegazzo [72]) Let G be a p-group with a normal elemen-
tary abelian subgroup N 6= 1 such that [G,N ] = N and G/N ' Cp∞ = U . Let
η : U → G/N be an isomorphism, and make N into a R-module in the obvious
way. For each i ≥ 1, let gi ∈ Ri such that giN = uη

i , and let ai = g−1
i gp

i+1 (thus
ai ∈ N). Suppose further that G = 〈gi | i ≥ `〉 for some ` ≥ 1. If the sequence
a = (ai)i≥` is a HM-sequence for N then G is a group of Heineken-Mohamed
type.

Proof. Since [G,N ] = N 6= 1, G is not nilpotent. Hence, by proposition 3.1 it
sufficies to show that HN = G forces H = G for every H ≤ G. For n ∈ N and
u ∈ U we write nu = n(uη), and for all i ≥ `, k ≥ 0, we set

σi,k =
k∏

s=0

a
(ui+s−1)ps−1

i+s .

We show, by induction on k ≥ 0, that gpk+1

i+k+1 = giσi,k for all i ≥ `. For k = 0

this is trivial since σi,0 = ai. Thus, let k ≥ 1 and assume gpk

i+k = giσi,k−1. Then

gpk+1

i+k+1 = (gp
i+k+1)

pk

= (gi+kai+k)pk

= gpk

i+ka
upk−1

i+k +...+ui+k+1

i+k =

= giσi,k−1a
(ui+k−1)pk−1

i+k = giσi,k.

Now, let H ≤ G with NH = G. Then, for every i ≥ `, H contains an element
of the form givi with vi ∈ N . Let v be the sequence (vi)i≥`. For every i ≥ `,
k ≥ 0, writing τi,k = τi,k(v), and using the identities established above, we have

(gi+k+1vi+k+1)pk+1
= gpk+1

i+k+1v
(ui+k+1−1)pk+1−1

i+k+1 = giσi,kv
(ui+k+1−1)pk+1−1

i+k+1 =

= givi

(
v−1

i σi,kv
(ui+k+1−1)pk+1−1

i+k+1

)
= giviτi,k.

Hence, τi,k ∈ H for every i ≥ ` and k ≥ 0, and thus H contains the subgroup
generated by the elements τi,k, which is N , since a is a HM-system. Therefore
H ≥ NH = G, and so H = G as wanted.

Our next task is then to find R-modules admitting HN-systems. We de that
with the aid of Lemmas 3.4 and 3.6.

Proposition 3.8 Let I be a non-zero ideal of R such that I = IU < U, and let
(k1, k2, . . .) be the sequence associated to I. Fix ` ≥ 1 with 0 < k` < p`, and for
each i ≥ ` set

ci =
{

(ui − 1)ki if ki+1 = pki

(ui+1 − 1)pki−1 if ki+1 < pki.

Then c = (ci)i≥` is a HM-system for I as a R-module.

Proof. We first make sure that c is a generating set for I. Thus, let J be the
ideal (i.e. R-submodule) generated by c. Then J ≤ I: in fact ci ∈ I by definition
if ki+1 = pki, and, if ki+1 < pki, ci = (ui+1−1)pki−1 ∈ (ui+1−1)ki+1R ≤ I. For
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the reverse inclusion, consider first i ≥ `. If ki+1 = pki then Ri ∩ I = ciRi ≤ J;
if ki+1 < pki,

Ri ∩ I = (ui − 1)kiRi = (ui+1 − 1)pkiRi = ci(ui+1 − 1)Ri ≤ J.

If 1 ≤ i < `, then (ui − 1)ki ∈ (u` − 1)k`R ≤ J. Hence J = I.
We now prove that c satisfies the requirements of a HM-system for I as a

R-module. Let v = (vi)i≥` be a sequence of elements of I, and for every i ≥ `,
k ≥ 0, write τi,k = τi,k(v). We prove that for every i > ` there exists k ≥ 0 such
that

(ui+1 − 1)ki−1 ∈ τi,kR. (3.2)

This of course will imply that I is generated by the set {τi,k | i ≥ `, k ≥ 0}.
therefore assuring that c is a HM-system for I.
Thus, let i ≥ `. If ki = pki−1 then, by Lemma 3.6, there is a j ≥ i such
that(ui−1 − 1)ki−1 = (uj−1 − 1)kj−1 and kj < pkj−1. Hence we may assume
ki < pki−1. Now, there exists h > 0 such that vi ∈ I ∩ Ri+h, and there exists
k ≥ h such that ki+k+1 < pki+k. Then ci+k = (ui+k+1 − 1)pki+k−1, and

τi,k = −vi + ci + . . .+ ci+k+1(ui+k+1 − 1)pk−1−1 + w (3.3)

where w = ci+k(ui+k − 1)pk−1 + vi+k+1(ui+k+1 − 1)pk−1−1. We then have

w = (ui+k+1 − 1)pki+k−1(ui+k − 1)pk−1 + vi+k+1(ui+k+1 − 1)pk+1−1 =

= (ui+k+1 − 1)pki+k−1+pk+1−p + vi+k+1(ui+k+1 − 1)pk+1−1 =

= (ui+k+1 − 1)pk+1−1
(
(ui+k+1 − 1)p(ki+k−1) + vi+k+1

)
=

= (ui+k+1 − 1)pk+1−1
(
(ui+k − 1)ki+k−1 + vi+k+1

)
.

Now, vi+k+1 ∈ I and (ui+k − 1)ki+k−1 6∈ I, and so it follows from Lemma 3.4
that (ui+k − 1)ki+k−1 and (ui+k − 1)ki+k−1 + vi+k+1 generate the same ideal of
R. Therefore, there exists an invertible element ε ∈ R such that

(ui+k − 1)ki+k−1 + vi+k+1 = (ui+k − 1)ki+k−1ε.

Thus, w = (ui+k+1 − 1)pk+1−1+p(ki+k−1)ε. All other summands in the right
term of (3.3) belong to I ∩ Ri+k; hence, denoting by w′ their sum, we have
w′ = (ui+k − 1)mη = (Ui+k+1 − 1)pmη for some m ≥ ni+k and some invertible
element η of Ri+k. By observing that the exponents of ui+k+1 − 1 in w and
in w′ are not congruent modulo p, we deduce that the ideals w′R and wR are
distinct. Therefore, τi,k = w′ + w generates the largest of the two ideals w′R
and wR. In particular,

(ui+k+1 − 1)pk+1−1+p(ki+k−1) = wε−1 ∈ τi,kR. (3.4)

Now, taking into account that pki−1 ≥ ki + 1, we have

pk+2ki−1 ≥ pk+1(ki + 1) ≥ pki+k + pk+1 > pk+1 − 1 + p(ki+k − 1),

and therefore, by (3.4), (ui−1 − 1)ki−1 = (ui+k+1 − 1)pk+2ki−1 belongs to τi,kR.
This proves (3.2) and the Proposition.

We can now proceed to the construction of Heineken-Mohamed groups.
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Theorem 3.9 (Menegazzo [72]) To every non-zero ideal I of R such that I =
IU < U there corresponds a group of Heineken-Mohamed type G = G(I) such
that G/G′ ' U and G′ ' I (as R-modules). Moreover, if J is another ideal of
R with J = JU < U and I 6= J, then G(I) and G(J) are not isomorphic.

Proof. Let I be as in the statement and let (k1, k2, . . .) be the associated se-
quence. Choose ` ≥ 1 such that 1 < k` < p` and for every i ≥ ` define the
element ci as in Proposition 3.8. We will inductively define a sequence (ai)i≥`

of elements of R satisfying the following conditions:

ai ∈ (ui − 1)R and ai+1(ui+1 − 1)p−1 = ai + ci (3.5)

for every i ≥ `. Set a` = 0, and assume that, for i ≥ `, we have found a`, . . . , ai

with the desired properties. Now, ki ≥ k` > 1 and ci is either (ui − 1)ki or
(ui+1 − 1)pkI−1; in any case ci ∈ (ui − 1)R and so there exists b ∈ R such that
ci + ai = (ui − 1)b = (ui+1 − 1)pb. By setting ai+1 = (ui+1 − 1)b we get a new
element in the sequence that satisfies (3.5).

Consider now the semidirect product W = RoU , where R is meant to
be the additive group of the ring (thus the multiplication in W is given by
(r, u)(r′, u′) = (ru′+r′, uu′)), and for every i ≥ `, let gi = (ai, ui). Let G = G(I)
be the subgroup of W generated by all the gi’s:

G = 〈 (ai, ui) ∈W | i ≥ ` 〉.

Then, for every i ≥ `,

gp
i+1 = (ai+1(ui+1 − 1)p−1, up

i+1) = (ai + ci, ui) = gi(ci, 1),

and therefore G∩(R×1) contains the U -invariant subgroup N generated by the
set {(ci, 1) | i ≥ `}, which, as a U -module, is isomorphic to I. Clearly G/N =
〈giN | i ≥ `〉 ' U ; moreover, since IU = I, we have N = [N,U ] = [N,G].
Finally, the sequence (g−1

i gp
i+1)i≥` = ((ci, 1))i≥` is a HM-system for N 'U I,

and so we may apply Proposition 3.7 to conclude that G is a group of Heineken-
Mohamed type.

Now, for the second part of the statement, let J be another ideal of R
with J = JU < U, write G1 = G(I), G2 = G(J), and assume that there is a
group isomorphism α : G1 → G2. By construction, there are canonical isomor-
phism G′

1 'R I and G′
2 'R J (as R-modules). Now, α induces an isomorphism

G1/G
′
1 → G2/G

′
2, which, combined with the natural isomorphisms with U , gives

an isomorphism of U , which we extend by linearity to an isomorphism θ of R.
Then, for every x ∈ I = G′

1 and u ∈ R:

(xu)α = xαuθ.

It follows that AnnR(xα) = AnnR(x), for every x ∈ I. Now, if x = (ui−1)mpi−k

,
with 1 ≤ k ≤ i and (m, p) = 1, it is easy to see that

AnnR(x) = (uk − 1)pk−mR.

Therefore, for all i ≥ `, AnnR(cαi ) = AnnR(ci) implies cαi R = ciR. Thus we
conclude that I = Iα = J.
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Comments. (1) The groups G constructed in Theorem 3.9 are certainly not
nilpotent as G′ = [G,G′]. A similar behaviour has the upper central series of
any G = G(I). In fact, if 0 6= r ∈ R, there exists u ∈ U such that ru 6= r.
This implies (with the notetion used in the proof of 3.9) that ζ(G) ∩ N = 1,
and therefore [ζ2(G), G] ≤ ζ(G) ∩ G′ ≤ ζ(G) ∩ N = 1, forcing ζ2(G) = ζ(G).
Factoring G by ζ(G) we thus obtain groups of Heineken-Mohamed type with
trivial centre. Observe also that ζ(G(I)) is contained in U ; hence ζ(G(I)) is not
trivial if and only if I(u1 − 1) = 0.
(2) There are 2ℵ0 distinct ideal-sequences (k1, k2, . . .) that satisfy the conditions
of Lemma 3.6, each of those is associated to a different ideal of R,. Therefore,
by the second part of Theorem 3.9, we have

Corollary 3.10 For every prime p there are 2ℵ0 non-isomorphic groups G of
Heineken-Mohamed type such that G/G′ ' Cp∞ and G′ elementary abelian.

A result which was also proved by Heineken and Mohamed [48], Hartley [40]
and Meldrum [73].

3.3 Developements

In [72] Menegazzo is able to exploit the tecniques reported above to establish the
existence, for every prime p, of a p-group of Heineken-Mohamed type G whose
derived subgroup is abelian of infinite exponent (as we are dealing with p-groups,
this means that G′ contains elements of order pn for every n ≥ 0). Since Hartley
had previously proved in [41] that there exist Heineken-Mohamed groups with
derived subgroup of arbitrary finite exponent pn, we have the following result,
whose proof we do not include here.

Theorem 3.11 For every prime p and any e ∈ {pn | n ∈ N}∪{∞} there exists
a p-group G of Heineken-Mohamed type such that G′ is abelian of exponent e.

Another important result from [72] is the following one.

Theorem 3.12 (Menegazzo) For every prime p and every n ≥ 1 there exist
p-groups of Heineken-Mohamed type whose derived length is exactly n.

We try at least to indicate the ideas used in the proof of this. We start by
describing a method of lifting an action on an abelian gruop to an action on a
nilpotent one, which we will soon specialize to the extend the action of U on
R = Fp[U ].

Let A be a commutative ring (with identity) of prime characteristc p, and
let 1 ≤ n ∈ N. To each odered n-tuple (a1, . . . , an) ∈ An we associate a unitri-
angular (n+ 1)× (n+ 1)-matrix

Σ(a1, . . . , an) =



1 a1 a2 . . . an

0 1 ap
1 . . . ap

n−1

0 0 1 . . . ap2

n−2

. . . 1 apn−1

1

1


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We then set
Σn(A) = {Σ(a1, . . . , an) | a1, . . . , an ∈ R}.

It is easily checked that Σ(A) is a subgroup of the group of all upper unitri-
angular A-matrices of order n + 1. In particular, Σn(A) is a nilpotent p-group
of finite exponent. Also, Q = Qn(A) = {Σ(0, a2, . . . , an) | a2, . . . , an ∈ A} is a
normal subgroup of Σ = Σn(A), Σ/Q is isomorphic to the additive group of A,
and the set of matrices {Σ(a1, a2, . . . , an) | a2 = · · · = an = 0} is a set of coset
representatives of Σ modulo M (all these facts are not hard to chek by direct
computations). For every 1 ≤ i ≤ n, we define πi : Σn(A) → A as the natural
projection Σ(a1, . . . , an) 7→ ai.

The following observatrion may be easily proved by matrix computations,
and we omit the details.

Lemma 3.13 Let α = Σ(a1, . . . , an) and β = Σ(b1, . . . , bn) be elements of
Σn(A), and suppose that 1 ≤ t, s ≤ n are such that ai = 0 for all i < t and
bi = 0 for all i < s. Let [α, β] = Σ(q1, . . . , qn). Then qi = 0 for all i < t+ s, and
qt+s = atb

pt

s − bsa
ps

t .

Let now X be a group of multiplications of A. Then X acts on Σn(A) in the
following way

Σ(a1, a2, . . . , an)x = Σ(a1x, a2x
p+1, . . . , anx

pn−1+...+p+1). (3.6)

That this defines a group action may be seen immedaitely by observing that
(3.6) coincides with conjugating Σ(a1, . . . , an) (in the group of all invertible
A-matrices of order n+ 1) by the diagonal matrix

D(x) =



1
x

xp+1

xpn−1+...+p+1


and that x 7→ D(x) clearly defines a group isomorphism. Under this action the
normal subgroup Q = Qn(A) defined before is X-invariant, and the action of X
on the factor group Σn(A)/Q is equivalent to the natural action by multiplica-
tion of X on A.

Now, using the notations of section 3.2, we specialize to the case X = U =
〈u1, u2, . . .〉 ' Cp∞ and A = Fp[U ] = R. Recall, in particular, that U denotes
the augmentation ideal of R.

Lemma 3.14 Let I be an ideal of R with I = IU < U.

(i) Let H be a subgroup of Σn(R) such that for 1 ≤ s ≤ n, Hπi = 0 for all
i < s, and Ips−1+...+1 ⊆ Hπs; then [H,H]πj = 0 for j < 2s, and

Ip2s−1+...+1 ⊆ [H,H]π2s.
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(ii) Let d = [log2(n)], m = p2d−1 + . . . + p + 1, and suppose further that
Im 6= 0. Let H ≤ Σn(R) with I ⊆ Hπ1; then H has derived length d.

Proof. Let (k1, k2, . . .) be the sequence associated to I. Then ki+1 ≤ pki for all
i ≥ 0, and, by Lemma 3.6, I is generated by the set {(ui − 1)ki | ki+1 < pki}.
For j ≥ 1, we write Ij = Ipj−1+...+1.

(i) By Lemma 3.13, [H,H]πi = 0 for every j < 2s, and [H,K]πs+t contains
all elements of the form

x(a, b) = abp
t

− baps

with a, b ∈ Is. Observe that x(a, b) ∈ I2s. For i ≥ 1 such that ki+1 < pki, we
take

a = (ui − 1)ki(p
s−1+...+1) = (ui+1 − 1)ki(p

s+...+p)

b = (ui+1 − 1)ki+1(p
s−1+...+1)

.

Then, we have

ki+1(p2s−1+. . .+ps)−ki+1(ps−1+. . .+1) < ki(p2s+. . .+ps+1)−ki(ps+. . .+p).

which implies that baps ∈ abps

R, and baps

R < abp
s

R. By the total ordering of
R–ideals, it follows that x(a, b)R = abp

s

R contains

baps

(ui+1 − 1)(pki−ki+1)(p
s−1+...+1) = (ui − 1)ki(p

s+t−1+...+1).

Since the set of all elements (ui − 1)ki(p
s+t−1+...+1), generates I2s as an ideal,

the proof of point (i) is completed by observing the [H.H]π2s contains the ideal
generated by all the elements x(a, b) for a, b ∈ Is. Now, under our assumptions
on H, (xy)π2s = xπ2s + yπ2s for all x, y ∈ [H,H]; moreover, if a, b ∈ Is, and
u ∈ U , then

x(a, b)ups+1 = absu1+ps

− asbu1+ps

= x(au, bu) ∈ [H,H]π2s;

since the power ps + 1 is an automorphism of the group U , we conclude that
[H,H]π2s contains the ideal I2s.

(ii) Let H ≤ Σn(R) be such that Hπ1 ⊇ I. Then, point (i) and an obvious
induction shows that H(r)π2r ⊇ I2r , for every 0 ≤ r ≤ d. Therefore

H(d)π2d ⊇ I2d = Im 6= 0,

and thus H has derived length d (it cannot be more).

Observe that if the sequence (k1, k2, . . .) assoociated the ideal I = IU < U,
satisfies kj = 1 for j ≤ m, then Im 6= 0; thus, there exist 2ℵ0 ideals I that
satisfy the condition in point (ii) of the Lemma.

From now on, we suppose n ≥ 2 to be fixed, and simply write Σ = Σn(R).
Let W be the semidirect product W = ΣoU , and let I be a fixed ideal of R
such that I = IU < U. We then refer to the notations used in section 3.2;
in particular ` is an integer choosen as in Proposition 3.8, and (ci)i≥` is the
HM-system for the R-module I defined in the same Proposition.
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Let (ki)i≥1 be the sequence associate to I, we define integers ri (for i ≥ `),
as follows:

r` =
{
p`+1 − pk` if k`+1 = pk`

p`+1 − pk` + 1 if k`+1 < pk`
(3.7)

and, for i > `,

ri =


0 if ki+1 = pki and ki = pki−1

p(pki−1 − ki − 1) if ki+1 = pki and ki < pki−1

1 if ki+1 < pki and ki = pki−1

p(pki−1 − ki − 1) + 1 if ki+1 < pki and ki < pki−1

(3.8)

These numbers are singled out because of the following fact.

Lemma 3.15 With the notations of Proposition 3.8, and definitions (3.7) and
(3.8), set, for every i ≥ `, wi = (ui+1 − 1)ri . Then the following hold.

(i) c`w` = 0; and ciwi = ci−1 for all i > `.

(ii) Fore every i ≥ `, AnnR(ci) =
( ∏i

s=` ws

)
R.

Proof. Point (i) follows easily from the definitions of the elements ci and of the
numbers ri. Now, using point (i), Corollary 3.5 and an obvious induction, we
see that, in order to prove (ii), it is enough to observe that AnnR(c`) = w`R,
which is again clear by the definition.

The relevance of this is in turn motivated by the following Lemma.

Lemma 3.16 Let M be a R-module, which is generated by the sequence (di)i≥`,
such that d`w` = 0 a, and diwi = di−1 for all i > `. Then there exists a R-
homomorphism σ : I −→ M , with σ(ci) = di, for every i ≥ `. In particular,
(di)i≥` is a HM-system for M .

Proof. Since w` ∈ AnnR(d`), by Lemma 3.5, Lemma 3.15 and an obvious
inductive argument, we have AnnR(ci) ⊆ AnnR(di), for every i ≥ `. Thus,
for every i ≥ `, there is the natural projection R/AnnR(ci) → R/AnnR(di),
which in turn yields a homomorphism of R-modules σi : ciR → ddR (since
ciR 'R R/AnnR(ci) and diR 'R R/AnnR(di)). Now, by Lemma 3.15

σj(ci) = σj

(( j∏
s=i+1

ws

)
cj

)
=

( j∏
s=i+1

ws

)
dj = di = σi(ci)

for every ` ≤ i < j. Hence the maps σi are compatible, and so the position
ci 7→ di (for i ≥ `), may be extended to a R-homomorphism σ : I −→ M . The
last assertion follows easily from the definition of HM-system.

Next step is to prove the existence of elements of Σ that will allow to apply
Lemma 3.16 (in suitable abelian factors). Thus, Menegazzo extablishes the fol-
lowing crucial fact, whose proof (by induction on n, being the case n = 1 part
of the proof of Theorem 3.9) is rather long; and we refer to the original paper
[72] for it.
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Lemma 3.17 There exist elements xi, yi in Σ, for all i ≥ `, such that:
(i) xiπj , yiπj ∈ (ui − 1)R for every i ≥ ` and every j = 1, . . . , n;
(ii) yiπ1 = ci for every i ≥ `; and x` = 1;
(iii) [y`,r`

u`+1x`+1] = 1, and [yi,ri
ui+1xi+1] = yi−1 for every i > `;

(iv) x
up−1

i+1
i+1 . . . x

ui+1
i+1 xi+1 = xiyi for every i ≥ `.

Now, for the proof of Theorem 3.12, we set gi = uixi for every i ≥ `, and
consider the subgroup G of W given by

G = 〈gi | i ≥ `〉.

By property (iv) in Lemma 3.17, we have, for every i ≥ `.

gp
i+1 = (ui+1xi+1)p = up

i+1x
up−1

i+1
i+1 . . . x

ui+1
i+1 xi+1 = uixiyi = giyi. (3.9)

Write N = 〈yi | i ≥ `〉G. Then (3.9) shows that G′ ≤ N ≤ Σ∩G, and G/N ' U .
In fact, as G 3 g` = u`, and G/N ' U , we have Σ ∩G = Σ ∩N〈u`〉 = N . Also,
for i ≥ `, let j > i minimal such that rj > 0; then, by point (iii) of 3.17,
yi = yj−1 = [yi,ri

gi+1] ∈ [N,G]. Hence N = [N,G] = G′.
Now, let D = N ′Np and write N = N/D; let also η denote the iomorphism

U → G/N which maps ui 7→ giN for all i ≥ `. Then, N becomes a R-module
by letting, for all u ∈ U and yD ∈ N ,

(yD)u = yuηD.

As an R-module, N is generated by the sequence (yiD)i≥`. Now, point (iii) in
Lemma 3.17, yields

(y`D)w` = [y`,r`
g`+1]D = 1

and, for every i > `,

(yiD)wi = [yi,ri
gi+1]D = yi−1D.

Thus, by Lemma 3.16, (yiD)i≥` is a HM-system for the R-module N . It then
follows from Proposition 3.7 that G/D is a group of Heineken–Mohamed type.

To deduce that G is also a group of Heineken–Mohamed type it is now easy,
and requires only the following observation.

Lemma 3.18 Let G be a p-group of finite exponent, and let N be a normal
nilpotent subgroup G. If G/NpN ′ is a Heineken–Mohamed group, then G is a
Heineken–Mohamed group.

Proof. Let G and N be as in the assumptions, write K = NpN ′, and let S be
a proper subgroup of G. If SK < G, then SK/K is nilpotent and subnormal,
whence in particular NS/K is also nilpotent by Lemma 1.59. Since N/N ′ has
finite exponent, it is easy to deduce that SN/N ′ is nilpotent. Thus, by P. Hall’s
nilpotency criterion 1.54, NS is nilpotent. In particular, S is nilpotent, and
S / /NS / /G.
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Thus, let KS = G. In such a case, KS = G by Proposition 3.1, and so
K(N ∩ S) = N ∩KS = N . Since N is nilpotent, it follows N ∩ S = N . Thus
N ≤ S, and consequently S = G.

The proof of Theorem 3.12 will be completed once we prove that the group
G constructed above may have arbitrary derived length. As G′ = [G,N ] = N ,
we have to show that n ≥ 2 and ideal I may be chosen such that N has arbitrary
derived length. This is easily achieved by first observing that, by point (ii) of
Lemma 3.17, I = Nπ1: in fact (ab)π1 = aπ1 + bπ1 for every a, b ∈ N , and
if ui ∈ U (i ≥ `), Nπ1 3 (agi)π1 = (aπ1)ui, for every a ∈ N . Now, given
d ≥ 1, we take n ≥ 2d, and I an ideal with I = IU < U and Im 6= 0, where
m = p2d−1+. . .+p+1. Then Lemma 3.14 yields the desired conclusion. Observe
also that, using the remark following the proof of Lemma 3.14, it is not difficult
to show that there exists 2ℵ0 pairwise non-isomorphic Heineken–Mohamed p-
groups of a given derived length (we recall also that we will see in Chapter 6
that every Heineken-mohamed group is in fact soluble).

Another construction which somehow extends that of Heineken and Mo-
hamed, and we like to mention, appears in W. Möhres doctoral thesis [75].

Proposition 3.19 For every prime number p and every integer n ≥ 1, there
exists a group G ∈ N1 such that

(1) Z(G) = 1;
(2) G′ is an elementary abelian p-group;
(3) G/G′ is isomorphic to the direct product of n copies of the Cp∞ .

Clearly (see Proposition 3.1), if n ≥ 2, the groups obtained by this Proposition
are not of Heineken-Mohamed type. Nevertheless the existence of N1-groups
with the properties described in 3.19 becomes relevant in view of the content of
our final result on periodic N1-groups (Theorem 6.23).

3.4 Minimal non-N groups

Despite of its simplicity, Möhres’ Lemma 2.15 (and its variations, see e.g. [82]) is
often useful in reducing certain problems to the periodic (or to the finitely gen-
erated) case. We now leave for a while our main theme to treat just a particular
case, somehow related to HM -groups, in which this occurs.

Let P be a class of groups. A group G is called minimal non-P if G does
not beleng to P, but all its proper subgroups are P-groups. We are interested in
minimal non-nilpotent groups (minimal non-N). Finite minimal non-N groups
are very well understood by a result of O. J. Schmidt (see [97] 9.19). Infinite
examples are the Heineken-Mohamed groups and the infinite dihedral 2-group.
We show

Proposition 3.20 Let G be a minimal non-nilpotent group. Then, either G is
finitely generated or it is a countable locally finite p-group (for some prime p)
of one of the following types:
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(i) a perfect group;
(ii) a Černikov p-group;
(iii) a (soluble) group of Heineken-Mohamed type.

Proof. Let G be a minimal non-nilpotent group, and assume that G is not
finitely generated. Then G is locally nilpotent and it is countable by Theorem
1.31. Let T be the torsion subgroup of G.

Suppose T 6= G. Then G/T is a countable locally nilpotent torsion-free
group, so, by Lemma 2.15, it admits a proper subgroup H/T with IG/T (H/T ) =
G/T . Now H (and H/T ) is nilpotent by minimality of G, whence G/T is nilpo-
tent by Corollary 2.13. Let N/T be the derived subgroup of G/T . Since G/T is
not trivial, G/N cannot be a p-group (for any prime p), so by Lemma 3.2 there
exist two proper subgroups U/N and V/N of it such that UV = G. Now, U
and V are then normal nilpotent subgroups of G, and it follows from Fitting’s
Theorem that G is nilpotent, contradicting our assumption.

Thus T = G, and so, being locally nilpotent, G is the direct product of its
primary components. If there are two of more such components, then G is the
direct product of two proper subgroups and so it is nilpotent. Therefore only
one primary component may exist, and so G is a locally finite p-group for some
prime p.

Suppose that G is not perfect (which is case i)), and let N = G′. Then by
Lemma 3.2 G/N is either cyclic or Cp∞ .

Assume firts that G/N is cyclic, and let x ∈ G such that G = N〈x〉. Observe
that G/Np is nilpotent by Corollary 1.77; in particular X = 〈x〉Np is subnormal
in G. Now, if Np 6= N = G′, X is a proper subgroup, and so XG is also a proper
subgroup of G. But then G = NXG is nilpotent by Fitting’s Theorem. Thus,
Np = N or, in other words, N is semi-radical, and it follows from Lemma 1.18
that N is an abelian divisible p-group, a direct prodoct of groups of type Cp∞ .
Let A ≤ N be such a subgroup; then A has a finite number of conjugates in
G, so AG is the product of finitely many copies of A. If AG 6= N then AG〈x〉
is nilpotent, forcing [AG, x] = 1, which is a contradiction. Thus, AG = N has
finite rank, and G is a Černikov p-group.

Assume finally that G/N ' Cp∞ . Let H be a proper subgroup of G, If
NH 6= G then NH is nilpotent and normal in G and so H is subnormal in
G. Thus G is a group of Heineken-Mohamed type if we show that no proper
subgroup H of G exists such that NH = G. Suppose, by contradiction, that H
is such a subgroup. Then H ∩N is a proper subnormal subgroup of N , and it is
normal in H; hence, being N nilpotent, M = (H ∩N)NN ′ is a proper subgroup
of N which is normalized by NH = G. It follows that MH is a proper subgroup
of G. We may than assume M = 1. Hence N is abelian, and N ∩H = 1 (this last
condition imply H ' Cp∞). Since N is not centralized by H (otherwise H E G
and G is nilpotent), there exists an element x ∈ H such that CN (x) 6= N .
Now, as H is abelian, CN (x) is normalized by H, so CN (x)H is a proper, and
hence nilpotent, subgroup of G. But also [N,x] 6= N , as N〈x〉 is nilpotent and
N ∩〈x〉 = 1; whence [N,x]H is nilpotent. It follows that there exists n ∈ N such
that [[N,X], nH] = 1, where X = 〈x〉. Then, by 1.13,

1 = [N,X,H, . . . ,H] = [N,H, . . . ,H,X]
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which means that [N, nH] ≤ CN (X). Since we observed above that CN (X)H is
nilpotent, we conclude that H is subnormal, and this implies that G is nilpotent,
a contradiction.

Clearly, not every Černikov p-group is minimal non-N, and we leave to the
reader to work out a more precise description for this case. More relevant is to
report that Asar [1] has proved that case (i) cannot occur. It is also important to
note that finitely generated minimal non-N groups appear to be very difficult
to understand: the finitely generated groups with all proper subgroups cyclic
(the so-called Tarski monsters), constructed by Ol’shanskii [87] and Rips, are,
obviously, of this kind (and they can be torsion-free). In view of these examples,
it is common in the literature on the argument to restrict investigations to classes
of groups that are large enough to comprise important cases but exclude Tarski
monsters and objects alike. The usual restriction is to locally graded groups.

Now, let G be a locally graded finitely generated group with all proper
subgroups nilpotent, and assume that G is not finite. Then G is a finite extension
of a nilpotent group N ; since finite minimal non-N groups are soluble, we may
takeN ≥ G′. We know that (being finitely generated)G/N is a cyclic p-group for
some prime p. Also, as a subgroup of finite index of a finitely generated group, N
is finitely generated nilpotent infinite group; hence the torsion subgroup T (N) is
finite and, by 1.41, N/T (N) admits a characteristic subgroup X/N with N/X
a finite non-trivial p-group. But then X E G and G/X is a finite p-group,
contradicting N = γ3(G) (which in turn follows from Lemma 3.2).
Thus, together with the aforementioned result of Asar, we have:

Theorem 3.21 Let G be a locally graded minimal non-nilpotent group. Then,
G is either finite, or a Černikov p-group, or a p-group of Heineken-Mohamed
type (in particular - as we will see later - G is soluble).

In fact, Heineken-Mohamed groups are nilpotent-by-Černikov, and with sim-
ilar (but more elaborated) methods it is possible to prove the following Theorem.

Theorem 3.22 Let G be a locally graded group in which every proper subgroup
is nilpotent-by-Černikov. Then G is nilpotent-by-Černikov.

A result that, as well as Theorem 3.21, is due to the combined efforts of a number
of people; see Newman and Wiegold [86], Bruno [8], Otal and Peña [90], Bruno
and Phillips [10], H. Smith [105], Napolitani and Pegoraro [82] and Asar [1].
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Chapter 4

Bounded defects

The main result to be proved in this chapter (at least in view of its subsequent
applications in these notes) is a fundamental theorem of Roseblade, stating that
a group in which every subgroup is subnormal of defect at most n (for n ≥ 1)
is nilpotent of nilpotency class not exceeding a value depending only on n. We
also include some related material (mostly without proofs).

4.1 n-Baer groups

For every n, r ≥ 1, we denote by Un,r the class of all groups in which every
subgroup that can be generated by r elements is n-subnormal (i.e. subnormal
of defect at most n). By definition, Un,r+1 ⊆ Un,r for every n, r ≥ 1; we set

Un =
⋂
r≥1

Un,r.

Then, from Lemma 1.24 it immediately follows,

Proposition 4.1 for every n ≥ 1, Un is the class of groups in which every
subgroup is n-subnormal.

Given n ≥ 1, Un,1 is the class of groups in which every cyclic subgroup is n-
subnormal; such groups are usually called n–Baer groups. Occurencies of groups
of this kind we have already encountered. For instance, Proposition 1.76 states
that a soluble p-group of finite exponent is an n-Baer group, where n depends on
the exponent and on the derived length of the group. However, not many general
results are known about n-Baer groups, and we have precise informations only
for small values of n, which we will briefly report.

Before, let us notice the obvious fact that every n-Baer group G is (n+ 1)-
Engel, that is it satisfies the identity xn+1y] = 1. Thus, as a first step in treating
n-Baer groups we recall some known facts about n-Engel groups (for n small).
Clearly, 1-Engel groups are just the abelian groups. 2-Engel groups are also well
understood; their description is essentially due to Levi [65], who also proved
that every group of exponent 3 is 2-Engel.

71
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Theorem 4.2 (Levi [65]). Let G be a 2-Engel group. Then γ4(G) = 1, and
γ3(G) has exponent dividing 3. Thus, a torsion–free 2-Engel group is nilpotent
of class at nost 2.

3-Engel groups are much more complicated. They need not be nilpotent: the
standard wreath product G = C oA of a cyclic group C of order 2 by an infinite
elementary abelian 2-group A is not nilpotent (for example Z(G) = 1) but it is
3-Engel, as it is easily cheched. The fact that 3-Engel groups are locally nilpotent
is not at all immediate and was established in [43] by Heineken, who also proved
that if G is a 3-Engel group with no elements of order 2 or 5, then γ5(G) = 1.
On the other hand, Bachmuth and Mochizuki showed in [2] that there exists a
3-Engel group of exponent 5 that is not even soluble (while 3-Engel 2-groups
are soluble, see [33]). The following stetements collect the most relevant known
facts about 3-Engel groups.

Theorem 4.3 (N. Gupta, M. Newman [35]) Let G be a 3-Engel group. Then

1. if G is n-generated, with n > 2, then it is nilpotent of class at most 2n− 1,
if, further, G does not have elements of order 5, then G has class at most
n+ 2;

2. γ5(G) has exponent dividing 20, and this is best possible;

3. the subgroup G5 generated by the fifth powers of elements of G satisfies the
law [[a, b, c], [d, e]] = 1

To complete the statement of point 1. we mention that if G is a 2-generated
3-Engel group, then |γ4(G)| ≤ 2 (Heineken [43]), and this is best possible (C.
K. Gupta, see [34]).

Proposition 4.4 (L. C. Kappe and W. P. Kappe [50]). Let G be a group. The
following are equivalent:

1. G is a 3-Engel group;

2. 〈x〉G is a 2-Engel group for every x ∈ G;

3. γ3(〈x〉G) = 1 for every x ∈ G.

Recently Havas and Vaughan-Lee [42] succeeded in proving that 4-Engel groups
are locally nilpotent (see also Traustason [117] for a mostly computer–free ap-
proach).

Of course, for n-Baer groups local nilpotency is not in question. We already
observed that a n-Baer group is (n+1)-Engel group (but not necessarily n-Engel,
se e.g. [67]). However, if G is not periodic then G is in fact n-Engel.

Lemma 4.5 Let G be a non-periodic group in which the set Tor(G) of torsion
elements is a finite subgroup. Suppose that, for some n ≥ 1, all elements of
infinite order in G are left n-Engel. Then G is n-Engel.
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Proof. Write T = Tor(G). Since T E G is finite and G is not periodic, the
centralizer CG(T ) contains an element x of infinite order.
Let g ∈ G. If |g| = ∞ then g is left n-Engel by assumption. Thus, let g ∈ T .
Then, for any y ∈ G, [y, xg] = [y, g][y, x]g = [y, g][y, x], as 〈x〉G ≤ CG(T ).
Continuing by induction on i ≥ 1, we have

[y,i+1 xg] = [[y,i g][y,i x], xg] = [y,i g, xg][y,i x][y,i x, xg]

and, since [y,i g, xg] ∈ T ,

[y,i+1 xg] = [y,i g, xg][y,i x, xg] = [y,i+1 g][y,i+1 x].

Thus, for every k ≥ 1, [y,k xg] = [y,k g][y,k x]. Now, both x and xg have infinite
order and so are left n-Engel. Hence, in particular,

1 = [y,n xg] = [y,n g][y,n x] = [y,n g].

This proves that g is left n-Engel. Therefore, G is n-Engel.

Proposition 4.6 (see [51]) Let n ≥ 1. Every non-periodic n-Baer group is n-
Engel.

Proof. Let G be a non-periodic n–Baer group. To show that G is n-Engel, we
may clearly assume that G is finitely generated. Then G is nilpotent, and so, in
particular, T = Tor(G) is a finite normal subgroup of G. By Lemma 4.5, it is
then sufficient to show that all elements of infinite order of G are left n-Engel.
Thus, let x ∈ G have infinite order, and let g ∈ G. Then [g,n x] ∈ 〈x〉, and so
there exists m = m(g) ≥ 0 such that [g,n x] = xm. Hence xm ∈ γn+1(G), and

xm2
= [g,n−1 x, x]m = [g,n−1 x, x

m] ∈ γ2n+1(G).

Proceeding in this way, we have, for any r ≥ 1, xmr ∈ γrn+1(G). But G is
nilpotent, so there exists r ≥ 1 such that xmr

= 1. Since |x| = ∞, the only
possibility is then m = 0. Thus, [g,n x] = 1, and we are done.

Clearly, 1-Baer groups are just those groups in which every subgroup is
normal. These are the well-known Dedekind groups (see [97] 3.5.7)

Proposition 4.7 (Dedekind). U1 = U1,1, and G ∈ U1 if and only if G is either
abelian or the direct product G = Q×D of a quaternion group of order 8 and a
periodic abelian group D that does not have elements of order 4. In particular,
if G ∈ U1, then |γ2(G)| ≤ 2. Torsion–free U1 are abelian.

The class of 2-Baer groups was first studied by Heineken, who proved that
if G is a 2-Baer group then G/ζ(G) is 2-Engel;. from Theorem 4.2 nilpotency of
G follows, togheter with informations on the lower central factors. These were
later completed by Mahdavianary. The combined result is

Theorem 4.8 (Heineken [44], Mahdavianary [66]) Let G be a 2-Baer group,
then γ4(G) = 1.
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Special classes of 2-Baer p-groups (p = 2, 3) are classified in further papers
of Mahdavianary ([67], [68]), while in [89], E. Ormerod describes all 2-Baer
p-groups for p ≥ 5.

It follows immediately from Proposition 4.4 that every 3-Engel is a 3-Baer
group; thus, 3-Baer groups need not be even be soluble (in fact the Bachmuth-
Mochizuki group shows that 3-Baer groups of finite exponent need not be soluble
(cfr. Proposition 1.76)). Also, by 4.4 and 4.6, a non-periodic group is 3-Baer if
and only if it is 3-Engel. Some positive results on arbitrary 3-Baer groups are to
be found in Traustason [118]; in particular, Traustason proves that every 3-Baer
group G admits a normal subgroup N , which is nilptent of class at most 3 (and
in fact abelian if G does not have 2-elements) such that G/N is a 3-Engel group.
Finally, metabelian n-Baer groups are the subject of a paper by L. C. Kappe
and Garrison [29].

4.2 Roseblade’s Theorem

As mentioned before, Roseblade’s Theorem says (in particular) that, for every
n ≥ 1, there exists a positive integer ρ(n) such that a group in which every
subgroup is n-subnormal (thus, a Un-group) is nilpotent of nilpotency class
bounded by ρ(n). Thus (recalling that N denotes the class of all nilpotent groups,

N =
⋃
n∈N

Un.

Theorem 4.9 (Roseblade [98]) There exist functions f, ρ : N → N such that,
for every n ≥ 1, a group in which every f(n)-generated subgroup is subnormal
of defect at most n is nilpotent of nilpotency class not exceeding ρ(n). Thus

Un,f(n) ⊆ Nρ(n).

Before coming to it, let we mention that the value of ρ(n) that one obtains from
the proof of Roseblade’s Theorem is quite likely far larger than the real bound.
The actual bound has been determined only for n = 1 and n = 2. Clearly
ρ(1) = 1, while ρ(2) = 3 follows from Mahdavianary Theorem 4.8 (although
it is not hard to see that the class U2 is strictly smaller than the class of 2-
Baer groups). For n = 3, we have the following proposition (to be considered in
connection to the metioned results on 3-Baer groups in [118])

Proposition 4.10 (Traustason [117]) Let G be a 3-Engel U3-group with no
elements of order 2. Then γ5(G) = 1.

(Thus, a U3-group with no elements of order 2 has derived length at most 4.)

We already mentioned in Chapter 2, that if n ≤ 4, and the group G ∈ Un is
trosion-free, then γn+1(G) = 1; this is due Stadelmann [115] for n = 2 (but this
follows at once from 4.2 and 4.6), Traustason [117] (the previous Proposition
plus 4.6) for n = 3, and Smith and Traustason [114] for n = 4.

For the proof of 4.9 we follow [64], and start with a preliminary result dealing
with Engel groups.
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Lemma 4.11 Let A be a normal abelian subgroup of the group G. Suppose that
G/CG(A) is abelian and there exists n ≥ 1 with [a,n x] = 1 for all a ∈ A. Then
there exists 0 < β(n) ∈ N such that

[A,2n−1 G]β(n) = 1

or, eqiuivalently, Aβ(n) ≤ ζ2n−1(G).

Proof. See e.g. [64], Lemma 6.1.6.

This Lemma is in fact the key ingredient (together with an inductive argu-
ment using Hall”s nilpotency criterion) in the proof of Proposition 1.67. As we
mentioned in Chapter 1, nowadays (thanks to Zelmanov’s solution of the re-
stricted Burnside Problem plus some tools from the theory of profinite groups)
it is possible to say much more (at least for locally graded groups) as seen in
Theorem 1.66. However, for the proof of Roseblade Theorem, we need only those
facts (like. 4.11) that can be proved without invoking such deep results, and so
we proceed along this line.

Lemma 4.12 There exists a function c : N × N → N such that if G ∈ Un,n is
soluble of derived length d, then G ∈ Nc(n,d).

Proof. Clearly c(n, 1) = 1 for every n ≥ 1 and c(1, d) = 12. Now, assume d = 2,
n ≥ 2, set t = 2n−1. Let A = G′; then A is a normal abelian subgroup of G
and G/CG(A) is abeliian; since G is (n+ 1)-Engel it follows from Lemma 4.11
that Aβ(n+1) ≤ ζ2n(G). Thus, we may assume that A has exponent dividing
b = β(n). By Lemma 1.16 we then have that G/CG(A) is abelian of exponent
dividing bn. Let x0, x1, . . . , xn ∈ G and set H = 〈x0, x1, . . . , xn〉. Then H ′ is
generated by the H-conjugates of the commutators [xi, xj ], 0 ≤ i < j ≤ n.
Since H ′ ≤ A and H/CH(A) is a (n + 1)-generated abelian group of exponent
dividing bn, it follows that the number of generators of H ′ does not exceed
c = c(n) =

(
n+1

2

)
bn(n+1), whence |H ′| ≤ bc since H ′ has exponent dividing b.

Now, by Lemma 1.12,

[A, x0, x1, . . . , xn, g] = [a, g, x0, x1, . . . xn]

for every g ∈ G, and a ∈ A, showing that K = [A, x0, x1, . . . , xn] is a normal
subgroup of G. Since G ∈ Un,n, [A, x0, x1, . . . , xn−1] ≤ H and so K ≤ H ′ has
order bounded by bc. As G is locally nilpotent, this implies that K is contained
in the bc-th term of the upper central series G. Thus

γn+3(G) = [A,n+1G] ≤ ζbc(G).

Recalling that we worked modulo Ab, we conclude that G is nilpotent of class
at most

c(n, 2) = 2n + bc + n+ 2.

We now fix n ≥ 1 and proceed by induction on the derived length d of
G ∈ Un,n. Then, by inductive assumption, N = G′ ∈ Nc(n,d−1), while G/N ′

is metabelian and so, by what proved above, it is nilpotent of class at most
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c(n, 2). By Theorem 1.54, we conclude that G is nilpotent of class at most
c(n, d) =

(
c(n,d−1)+1

2

)
c(n, 2)−

(
c(n,d−1)

2

)
.

The following property of the automorphims group of an abelian p-group
was first proved by P. Hall for the finite case, and later extended by Baer and
Heineken [5].

Lemma 4.13 Let A be a abelian p-group of rank r. Then any p-subgroup of
Aut(A) can be generated by at most r(5r − 1)/2 elements.

Proof. See [5], or [64] page 178.

We are now ready to prove Roseblade’s Theorem.

Proof of Theorem 4.9 By Dedekind’s Theorem 4.7, f(1) = 1 and ρ(1) = 2. We
then let n ≥ 2 and proceed by inductione on n.

We set d = (n− 1)([log2(ρ(n− 1))] + 1), and define

f(n) = c(n, d) + f(n− 1) + 1

where c(n, d) is the value obtained in Lemma 4.12 (observe that f(n) ≥ n). Let
G ∈ Un,f(n); we have to show that G is nilpotent of bounded class.

Let X be a s-generated subgroup of G, with s ≤ c(n, d) + 1, and denote
as usual by XG,i the i-th term of the normal closure series of X in G. Since
s ≤ f(n), XG,n ≤ X. For i = 1, . . . , n − 1, and let Y be a f(n − 1)-generated
subgroup of HG,i, then V = 〈X,Y 〉 is generated by s+f(n−1) ≤ f(n) elements
and so it is subnormal of defect at most n in G, whence it is subnormal of defect
at most n − i in V G,i = XG,i. Thus (since f(n − 1) ≥ f(n − i)), we have the
following:

XG,i

XG,i+1
∈ Un−i,f(n−i). (4.1)

for all 1 ≤ i ≤ n − 1. Now, by inductive assumption, XG,i/XG,i+1 is nilpotent
of class at most ρ(n − i) ≤ ρ(n − 1), and so its derived length is at most
[log2(ρ(n− 1))] + 1 by 1.8. Thus, by the definition of d given above,

(XG)(d) ≤ XG,n ≤ X. (4.2)

Let c = c(n, d) + 1 (as we will write from now on). By applying Lemma 4.12 to
(4.2), we have that for any c-generated subgroup X of G

γc(XG) ≤ X (4.3)

In particular, it follows from 4.2 that for every x ∈ G, 〈x〉G is soluble of
derived length at most d+ 1, and therefore it is nilpotent of class not exceeding
` = c(n, d + 1). By Fitting’s Theorem it follows that, for every s ≥ 1, and any
x1, . . . , xs ∈ G

γs`+1(〈x1, . . . , xs〉G) = 1. (4.4)

By Proposition 1.46, we conclude that there exists r = r(n) such that

every c−generated subgroup of G has rank at most r. (4.5)
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We now observe that we may assume that G is a p-group for some prime
p. In fact, in order to prove that G has bounded nilpotency class it is enough
to prove this for a finitely generated (and thus nilpotent) G; but then G is
residually finite; thus we may suppose that G is finite and, consequently, a p-
group for some prime p.

LetA be a normal abelian subgroup of G. Let x1, . . . , xc ∈ G and write
H = 〈x1, . . . , xc〉. Then, by (4.3),

[A,cHG] ≤ γc(HG) ≤ A ∩H. (4.6)

Thus, by (4.5) we have that B = [A,cHG] is a normal abelian subgroup of G
of rank at most r. We may then apply Lemma 4.13 to conclude that G/CG(B)
is generated by at most r(5r− 1)/2 elements. Then (4.4) tels us that G/CG(B)
has nilpotency class at most r1 = (r(5r − 1)/2)`, and so [B, γr1+1(G)] = 1. In
particular, setting C = γr1+1(G),

[A, x1, x2, . . . , xc] ≤ CG(C). (4.7)

Since A is normal and abelian, this yields [A,cG,C] = 1. Since c ≤ r1 + 1 and
[A, γc(G)] ≤ [A,cG], we obtain

[A,C ′] ≤ [A,C,C] = 1 (4.8)

for any abelian normal subgroup A of G. Now, let x ∈ G. If K = 〈x〉G, then
K/K ′ is an abelian normal subgroup of G/K ′, and so [K,C ′] ≤ K ′, by (4.8).
Since, by the remark following (4.3), K has class at most `, a simple inductive
argument using the Three Subgroups Lemma, shows that

[K,` C ′] = 1.

This holds for every x ∈ G; in particular we have γ`+1(C ′) = 1. Therefore, G is
soluble of derived length bounded by [log2 r1] + [log2 `] + 3. By Lemma 4.12, we
conclude that G is nilpotent of class at most

ρ(n) = c(n, [log2 r1] + [log2 `] + 3).

This completes the proof of the Theorem.

For torsion-free groups, it follows form Zel’manov deep result on bounded
Engel groups (Theorem 1.65) that groups in Un,1 are nilpotent of bounded class.
Obviously, this is not in general the case: for instance, letG = C oA be the wreath
product of a group of order 2 by an infinite elementary abelian 2-group, and
let B denote its base group; then for every x ∈ G, 〈x〉G ≤ B〈x〉 is nilpotent
of class at most 2 and from Fitting theorem it follows that, for every n ≥ 1
and x1, . . . xn ∈ G ,〈x1, . . . xn〉G has class at most 2n; hence, every n-generated
subgroup of G has defect at most 2n in its normal closure, and so G ∈ U2n+1,n

(for every n ≥ 1), but G is not nilpotent . Indeed groups in U2n+1,n need not
even be soluble: using the same argument (via Proposition 4.4) one shows that
the mentioned Bachmuth–Mochizuki group ([2]), which is not soluble, belongs
to U2n+1,n for every n ≥ 1. In his original paper, Roseblade asks the following:
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Question 2 Is Un,n ⊆ Nρ1(n), for some positove integer ρ1(n)?

(in view of the examples given above, the feeling is that Un,r ⊆ N for some
n/2 ≤ r ≤ n). Also, it follows from Roseblade’s Theorem that, for every n ≥ 1,
there exists r(n) ≥ 1, such that Un,r(n) = Un (it is plain that r(1) = 1 and not
difficult to see that r(2) = 2); thus, a related question is

Question 3 Find a reasonable bound for r(n).

An Engel-type version of these questions could be the following.

Question 4 Let G be a group, n ≥ 1, and suppose that

[g, x1, . . . , xn] ∈ 〈x1, . . . , xn〉

for every g, x1, . . . , xn ∈ G. Is it true that G is nilpotent of class bounded by a
function of n?

For locally nilpotent torsion groups, Roseblade’s Theorem has been generali-
zed by E. Detomi ([24]) along a direction which is clearly suggested by Brookes’
trick (Theorem 1.92).

Theorem 4.14 Let G be a periodic locally nilpotent group. Assume that there
exist a finite subgroup F of G, and n ∈ N, such that every subgroup of G
containing F is subnormal of defect at most n in G. Then γβ(n)+1(G) is finite
for a positive integer β(n) depending only on n. In particular, G is nilpotent.

We begin the proof with a rather simple observation.

Lemma 4.15 Let A be a normal subgroup of the group G, such that G/CG(A)
is abelian. Suppose that there exists 1 ≤ n,m ∈ N such that |[A, x1, . . . , xn]| ≤ m
for all x1, . . . , xn ∈ G. Then |[A,2nG]| ≤ g(n,m), where g(1,m) = (m!)2, and
g(n+ 1,m) = (g(n,m)!)2.

Proof. Observe first that, since G/CG(A) is abelian, [A, xy] = [A, yx] for every
x, y ∈ G. Hence, for all x, y ∈ G [A, x] is normal in G, and [A, x, y] = [A, y, x].

Assume first n = 1 and proceed by induction onm. Ifm = 1, we have nothing
to prove. Thus, let m ≥ 2. If [A, x, y] = 1 for all x, y ∈ G then we are done.
Otherwise, there exist x, y ∈ G such that [A, x, y] 6= 1. Let N = [A, x][A, y], and
G = G/N .
Now, if z = zN ∈ G, then [A, z] = [A, z]N/N ∼= [A, z]/([A, z] ∩ N). Suppose
that there exists an element z ∈ G such that |[A, z]| ≥ m. Then [A, z] ∩N = 1.
In particular, [N, z] ≤ N ∩ [A, z] = 1, which in turn implies

[A, x, z] = [A, y, z] = 1.

Also, as [A, x] = 1, we get [A, xz] = [A, x][A, z][A, x, z] = [A, z], and so, by the
same argument used above, N ∩ [A, xz] = 1 and [a, y, xz] = 1. Hence, for all
a ∈ A, we have

[a, y, xz] = [a, xz, y] = [[a, x][a, x, z][a, z], y] = [a, x, y][a, z, y] = [a, x, y].
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Thus, we reach the contradiction 1 = [A, y, xz] = [A, x, y] 6= 1. Therefore,
|[A, z]| ≤ m− 1 for all z ∈ G. By inductive hypothesis, we then have

|[A,2G]| ≤ ((m− 1)!)2,

and consequently,

|[A,2G]| ≤ |[A,2G]||N | ≤ ((m− 1)!)2m2 = (m!)2.

Thus, the Lemma is proved for n = 1, and we now continue the proof by
induction on n. If we fix x ∈ G, then [A, x] E G and G/CG([A, x]) is abelian, as
CG([A, x]) ≥ CG(A). Moreover, for all x2, . . . , xn ∈ G, |[[A, x], x2, . . . , xn]| ≤ m.
Hence, by inductive assumption,

|[[A, x],2(n−1)G]| ≤ g(n− 1,m).

This holds for every x ∈ G. But [[A, x],2(n−1)G] = [[A,2(n−1)G], x]. It then
follows by the case n = 1 that

|[A,2nG]| = |[[A,2(n−1)G],2G]| ≤ g(1, g(n− 1,m)) = (g(n− 1,m)!)2 = g(n,m),

thus completing the proof.

To shorten the notation, let us denote by U+
n the class of all locally nilpotent

groups which admit a finite subgroup F such that all subgroups F ≤ H ≤ G
are subnormal of defect at most n in G.

Lemma 4.16 Let G ∈ U+
n , and suppose that G has a nilpotent subgroup N ,

with finite index in G and nilpotency class c. Then γcn+1(G) is finite.

Proof. Since N has finite index, we may possibly replace it by its normal core
NG. Thus, we assume N E G. Let T be the torsion subgroup of G. Then G/T
is a locally nilpotent torsion-free group with a subgroup of finite index NT/T ,
which is nilpotent of class at most c; by Corollary 2.13, G/T is nilpotent of class
at most c; thus γc+1(G) ≤ T .

Let F be a finite subgroup of G such that all subgroups of G containing F
are subnormal of defect at most n. Let T be a transversal of G modulo N , and
set H = 〈F, T 〉. Then H is finitely generated (hence nilpotent) and subnormal
of defect d ≤ n in G. If d = 1, then G/H = NH/H ' N/N ∩H is nilpotent of
class at most c; hence γc+1(G) ≤ H ∩ T is finite (because H ∩ T = Tor(H)),
and we are done. Continuing by induction on d, let d ≥ 2. Now, HG ∈ U+

n

and N ∩ HG is a finite-index subgroup of HG; so γc(d−1)+1(HG) is finite by
inductive assumption. Therefore, by Fitting’s Theorem applied to G = NHG,
we conclude

|γcd+1(G)| ≤ |γ(d−1)c+1(HG)| · |γc+1(N)| <∞
which is what we wanted.

This allows to prove the specific Hall–type reduction needed.

Lemma 4.17 There exists a function f(d, c;n) with the following property. Let
G ∈ U+

n and N a normal subgroup of G; if γc+1(N) and γd+1(G/N ′) are finite,
then γf(d,c;n)(G) is finite.
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Proof. Since γc+1(N) is a finite normal subgroup of G, we may well assume
that γc+1(N) = 1. Now, by a result of P. Hall (Proposition 1.51), we have that
A/N ′ = ζ2c(G/N ′) has finite index in G/N ′. Since A/N ′ has nilpotency class
at most 2d, Fitting Theorem yields that AN/N ′ has nilpotency class at most
2d+1. Then, by Hall criterion (Theorem 1.54), AN is nilpotent of class at most
m =

(
c+1
2

)
(2d+ 1)−

(
c
2

)
. As AN has finite index in G, we finally apply Lemma

4.16 to get the desired conclusion.

Proof of Theorem 4.14. We proceed by induction on n ≥ 1. If n = 1, F E G and
G/F is a Dedekind group; thus β(1) = 1.

Assume n ≥ 2, and let N = FG. Then N ∈ U+
n−1, and so, by inductive

assumption, γβ(n−1)+1(N) is finite. By Lemma 4.17 we are done if we show that
γk(G/N ′) is finite for some k depending only on n. Thus, we may assume that
N = FG is abelian.

By Roseblade Theorem, G/N is nilpotent of class bounded by ρ(n); in par-
ticular the derived length ` of G/CG(N)) is bounded by log2(ρ(n)). Fixed n, we
argue by induction on `.

Thus, assume first that ` = 1, i.e. G′ cetralizes N . Let π = π(F ) be the set
of all prime divisors of |F |. Then N is an abelian π-group. Given p ∈ π, let Xp

be the product of all q-components of N with q 6= p; then Xp E G and N/Xp is
a p-group. If we prove that γµ(G/Xp) is finite for a uniform µ = µ(n), then we
are done because π is a finite set of primes. Thus, we may suppose that N = FG

is an abelian p-group for some prime p. Let |F | = pk, let pr be the exponent of
F , and observe that pr is also the exponent of N . Write G = G/Np, N = N/Np,
and so on. Let x ∈ G, and x = xNp. By assumption, 〈F , x〉 is nilpotent and
subnormal; hence, by 1.59, 〈N,x〉 is nilpotent. Also, every subgroup of 〈N,x〉
containing F has defect at most n, so by Lemma 2.20 we have

[N,fp(k,n)−1 x] = 1.

Let s be the smallest power of p grater than fp(k, n)−1. As N is an elementary
abelian p-group, it follows from 1.14 that [N,xs] = 1; i. e.

[N,xs] ≤ Np for all x ∈ G. (4.9)

Write now t = spr(logp r+1). Since N has exponent pr, (4.9) yields

[N,xt] = 1 for all x ∈ G. (4.10)

Thus, the exponent of G/CG(N) is at most t. Now, take x1, x2, . . . , xρ(n) ∈ G,
and let H = 〈F, x1, . . . , xρ(n)〉 = FH〈x1, . . . , xρ(n)〉. Since H/CH(N) is abelian
(as such, by assumption, is G/CG(N)), its order is at most tρ(n), and conse-
quently

|FH | ≤ |F |t
ρ(n)

.

Now, F ≤ FH E NH, and all subgroups of NH/FH are subnormal of defect at
most n. By Roseblade’s Theorem, NH/FH is nilpotent of class at most ρ(n);
hence [N,ρ(n)H] ≤ FH , and, in particular,∣∣[N, x1, . . . , xρ(n)]

∣∣ ≤ ∣∣FH
∣∣ ≤ |F |t

ρ(n)
. (4.11)
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We may then apply Lemma 4.15 and have that [N,2ρ(n)G] is finite. Now, G/N
is nilpotent of class at most ρ(n), and so we conclude that

γ3ρ(n)+1(G) = [γρ(n)+1(G),2ρ(n)G] ≤ [N,2ρ(n)G]

is finite. Thus, the case in which G/CG(N) is abelian is done.
Suppose now ` ≥ 2. Let K = CG(N)G′. Then, by inductive assumnption,

γν(K) is finite for some ν which depends only on n and `−1. Also, N ≤ K, and
CG(NK ′/K ′) ≥ K ≥ G′. It is now easy to see that we may apply the previous
case to the group G/K ′, concluding that γ3ρ(n)+1(G/K ′) is finite. Applying
Lemma 4.17 we thus conclude that γk(G) is finite, for some k that ultimately
depends oinly on n. By the remarks made at the beginning, this completes the
proof.

In her paper, Detomi also shows that Theorem 4.14 does not hold when
dropping the assumption of G being locally nilpotent (an example in which
|F | = 2 and γ2(G) = γ3(G) is infinite is given), nor it is true for locally nilpotent
non-periodic groups; although she proves that, in this case, G is hypercentral.

Proposition 4.18 Let F be a finitely generated subgroup of the locally nilpotent
group G, and suppose that there exists n ≥ 1 such that every subgroup of G
containing F has defect at most n. Then G is hypercentral (and soluble).

Proof. By assumption F is nilpotent and subnormal in G, and, by Roseblades
Theorem, each section of the normal closure series of F in G is nilpotent; thus,
G is soluble.

Now, it is clearly enough to prove that G has non-trivial centre. If n = 1,
then F E G, G/F is nilpotent of class at most two, and F , as a finitely generated
normal subgroup of a locally nilpotent group, is contained in some term of the
upper central series of G, which is then nilpotent. Thus, letting n ≥ 2, and
assuming that the claim is true for smaller values, we may suppose Z(FG) 6= 1;
in particular, F is contained in a normal subgroup N of G which has non-trivial
centre. We now proceed by induction on the derived length d of G/N . If d = 0,
then G = N has non-trivial centre. Let d ≥ 1, set G1 = G′N and A = Z(G1).
Then A 6= 1, by inductive hypothesis. Also, A is a normal subgroup of G. Let
U be a finitely generated subgroup of G containing F . By assumption, U is
subnormal of defect at most n in G, hence [A,n U ] ≤ U and [A,n U ] is finitely
generated,. As G′ ≤ CG(A), for every g ∈ G we get

[A,n U ]g = [A,n Ug] ≤ [A,n U [U, g]]] = [A,n U ],

and so [A,n U ] is normal in G. As [A,n U ] is finitely generated, [A,n U ] ≤ ζk(G)
for some k ≥ 1. Thus, if [A,n U ] 6= 1, then Z(G) 6= 1. Otherwise, if [A,n U ] = 1
for any finitely generated subgroup U of G (containing F ), then [A,nG] = 1,
i.e. A ≤ ζn(G), and again Z(G) 6= 1.

4.3 First applications

A first immediate application of Roseblade’s Theorem allows to reduce the study
of periodic N1-groups to the case of p-groups.
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Lemma 4.19 Let G be periodic N1-group. Then there exists 1 ≤ m ∈ N, such
that all but finitely many primary components of G are nilpotent of nilpotency
class at most m. in particular, G is nilpotent if and only if all of its primary
components are nilpotent.

Proof. Since G is locally nilpotent, it is isomorphic to the direct product of its
primary components. In one sense, the implication is trivial. Conversely, suppose
that all primary components of G are nilpotent. If the nilpotency class of the
components is not bounded, then by Roseblade’s Theorem, for each positive
integer n there is a primary component Pn of G and a subgroup Hn of Pn of
defect n (and Pn 6= Pk if n 6= k). But then, the subgroupH = 〈Hn|n ∈ N〉 cannot
be subnormal in G. Thus, the nilpotency class of the primary components of G
is bounded, and therefore G is nilpotent.

Then, in conjunction with Brookes’ trick, a first step towards the proof of
solubility of N1-groups.

Lemma 4.20 Let G be a N1-group. Then there exists a 1 ≤ n ∈ N such that
G(n) = G(n+1).

Proof. Let G be a N1-group which we may clearly assume not to be soluble.
Then, by Theorem 1.92 applied to the family on non-soluble subgroups of G,
there exists a non-soluble subgroup H of G, a finitely generated subgroup F of
H, and a positive integer d, such that for every F ≤ K ≤ H, if K is not soluble,
then K has defect at most d in H. Let ρ = ρ(d) be the bound in Roseblade’s
Theorem 4.9, and let d = [log2(ρ)] + 1. Now, if K is a non-soluble subgroup of
H containing F , then KH is not soluble, and so all subgroups of H/KH have
defect at most n. By Roseblade’s Theorem, H/KH is nilpotent of class at most
ρ, and so it is soluble of derived length at most d.

Corollary 4.21 ([13]). A residually soluble N1-group is soluble.

Now, an application of Detomi’s Theorem.

Proposition 4.22 (H.Smith [107]). A periodic residually finite N1-group is
nilpotent.

Proof. Let G be a periodic residually finite N1-group. Since every subgroup of
G is residually finite, we may assume that G is countable. By Theorem 1.92
there exists a subgroup H of finite index, a finitely generated subgroup F of
H, and a positive integer d, such that every F ≤ K ≤ H, such that |H : K| is
finite, has defect at most d in H. Now, let K be a finitely generated subgroup
of H containing F . Since G is periodic, K is finite, whence, by Lemma 1.28, K
is a intersection of subgroups of finite index of H. It follows that K has defect
at most d in H. This implies that every subgroup of H containing F has defect
at most d in H. By Theorem 4.14, H is nilpotent. Since |G : H| is finite, we
conclude that G is nilpotent.

Both Corollary 4.21 and Proposition 4.22 will be later superseded (respec-
tively, by Theorem 6.4 and Theorem 5.29).



Chapter 5

Periodic N1-groups

5.1 N1-groups of finite exponent

In this section we prove that a soluble N1-group of finite exponent is nilpotent;
a most important result, due to W. Möhres, which lies at the core of the whole
theory of N1-groups. Möhres proof is based on a delicate analysis ([76] and [77])
of p-groups which are the extension of two (infinite) elementary abelian groups,
and we rather closely follow his approach.

For the next results, up to Proposition 5.9, we fix the following notation: p is
a given prime, A an elementary abelian p-group, and B an elementary abelian
p-group acting on A.

We recall a couple of elementary facts. From Lemma 1.12, we have that if
n ≥ 1, x1, . . . , xn ∈ B and σ is a permutation of {1, . . . , n} then

[a, x1, . . . , xn] = [a, xσ(1), . . . , xσ(n)]

for any a ∈ A, while from Lemma 1.14 it follows that [A,p x] = 1 for all x ∈ B.
We set Z0 = {1} and, for every n ∈ N, Zn+1/Zn = CA/Zn

(B). Then, for
every a ∈ A and n ≥ 1, a ∈ Zn if and only if [a, x1, . . . , xn] = 1 for every
x1, . . . , xn ∈ B. Observe also that if U is a finite B-invariant subgroup of A,
then U ≤ Zlogp |U |. Finally, if B is finite then, by Corollary 1.77, the natural
semidirect product AB is nilpotent, so there exists n ∈ N such that [A,nB] = 1.

The first Lemma we prove is a standard tool in the theory of (soluble) p-
groups of finite exponent and Lie algebras in characteristic p.

Lemma 5.1 Let 0 ≤ n ≤ p − 1, a ∈ A and x1, . . . , xn ∈ B. Suppose that
[a, x1, . . . , xn] 6= 1. Then there exists x ∈ 〈x1, . . . , xn〉, such that [a,n x] 6= 1.

Proof. We argue by induction on n. If n = 1 the claim is trivial. Thus, let
n ≥ 2, and let X = 〈x1, . . . , xn〉. Since X is finite, there exists k ∈ N such that
[A,k X] = 1. So, in order to prove the Lemma, we may well assume [a,n+1X] = 1.
By inductive assumtion there exists y ∈ 〈x2, . . . , xn〉 such that [[a, x1],n−1 y] 6= 1.
For every i ∈ {0, 1, . . . , n} let bi = [a,n−i x1,i y](

n
i). Now, since [A,n+1X] = 1 the

substitution of elements from X in commutators of type [a, t1, . . . , tn] is linear

83
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in every component (see Lemma 1.47). From this it easily follows that, for every
0 ≤ k ≤ n,

[a,n x1y
k] =

n∏
i=o

[a,n−i x1,i y
k](

n
i) =

n∏
i=o

bk
i

i .

Now, the reduction modulo p of the (n + 1) × (n + 1) matrix (ki)k,i=0,...,n

is a Vandermonde matrix on Z/pZ, and so its determinant is not zero. Since
bn−1 = [a, x1,n−1 y] 6= 1, it thus follows that there exists 0 ≤ k ≤ n such that
[a,n x1y

k] 6= 1. As x1y
k ∈ X, this is what we wanted to show.

The case of this Lemma that we will use frequently is when n = p−1. Observe
that if a ∈ A and x ∈ B are such that [a,p−1 x] 6= 1 then M = 〈a〉〈x〉 has order pp

(in fact, if |M | ≤ pp−1 then, as M is 〈x〉-invariant, [M,p−1 x] = 1). Thus, both
{a, ax, . . . , axp−1} and {a, [a, x], . . . , [a,p−1 x]} are independent generating sets
for M (in general, if, for some 1 ≤ n ≤ p− 1, [a,n x] 6= 1, then a, ax, . . . , axn

are
independent). In other words, M is the regular Fp[〈x〉]–module. Observe also
that, for every a ∈ A and x ∈ B, [a,p−1 x] = aax · · · axp−1

.
These remarks are further extended in the next Lemma.

Lemma 5.2 Let n ≥ 1, and a ∈ A.
(i) If a 6∈ Zn(p−1), there exist x1, . . . , xn ∈ B with [a,p−1 x1, . . . ,p−1 xn] 6= 1.
(ii) If x1, . . . , xn ∈ B are such that [a,p−1 x1, . . . ,p−1 xn] 6= 1, then x1, . . . , xn

are independent in B (whence 〈x1, . . . , xn〉 = pn).
(iii) If x1, . . . , xn ∈ B are such that [a,p−1 x1, . . . ,p−1 xn] 6= 1, then the set

of all elements [a,t1 x1, . . . ,tn xn], for every (t1, . . . , tn) ∈ {0, 1, . . . , p − 1}n is
linearly independent.

Proof. (i) For n = 1 the claim follows from Lemma 5.1. Let n ≥ 2 and assume
the property holds for n− 1. If a ∈ A \ Zn(p−1) then, by inductive assumption,
there exists x1, . . . , xn−1 such that [a,p−1 x1, . . . ,p−1 xn−1] 6∈ Zp−1, whence by
case n = 1, we find xn ∈ G, with [a,p−1 x1, . . . ,p−1 xn−1,p−1 xn] 6= 1.

(ii) The fact is trivial for n = 1. Thus, arguing by induction on n, we suppose
that x1, . . . , xn−1 are linearly independent. Now, [a,p−1 x1, . . . ,p−1 xn−1, xi] = 1
for every i = 1, . . . , n − 1. Hence b = [a,p−1 x1, . . . ,p−1 xn−1] is centralized by
Y = 〈x1, . . . , xn−1〉. If xn ∈ Y we have a contradiction. Therefore xn 6∈ Y and
x1, . . . , xn−1, xn are linearly independent.

(iii) By induction on n. For n = 1 this fact has already been observed.
Thus, let n ≥ 2, ∆ a non-empty subset of {0, . . . , p − 1}n, and for each let
be given an integer kt with t ∈ ∆ let 1 ≤ kt ≤ p − 1. We have to show that
b =

∏
t∈∆[a,t1 x1, . . . ,tn

xn]kt 6= 1. Let m = min{tn | t ∈ ∆}, s = p− 1−m, and
∆0 = {t ∈ ∆ | tn = m}. If c = [a,p−1 xn], then

[b,s xn] =
∏

t∈∆0

[a,t1 x1, . . . ,tn−1 xn−1,p−1 xn]kt =
∏

t∈∆0

[c,t1 x1, . . . ,tn−1 xn−1]kt .

By inductive assumption [b,s xn] 6= 1, whence b 6= 1.

In the hypothesis of point (iii) of the previous Lemma, let X = 〈x1, . . . , xn〉.
It then follows from (ii) and (iii) that |X| = pn and |〈a〉X | = ppn

. Hence CX(a) =
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1 and {ax | x ∈ X} is a set of independent generators of 〈a〉X . After these
remarks one easily deduce the following Lemma.

Lemma 5.3 Let n ∈ N, a ∈ A \ Zn(p−1), and let X = 〈x1, . . . , xn〉 ≤ B, with
[a,p−1 x1, . . . ,p−1 xn] 6= 1; then

(i) if y1, . . . , ym ∈ X are independent, then [a,p−1 y1, . . . ,p−1 ym] 6= 1;
(ii) X ∩ CB(a) = 1, and so CB(a) has index at least pn in B.

We now move to some more specific facts.

Lemma 5.4 Let n, s ∈ N with n ≥ 1 and ps > n. If a1, . . . , an ∈ A \ Zs(p−1)

then there exists x ∈ B such that [aa, x] 6= 1 for every i = 1, . . . , n.

Proof. By point (i) of Lemma 5.2 and point (ii) of Lemma 5.3, we have that
|B : CB(ai)| ≥ ps for every i = 1, . . . , n. Since ps > n, a result of B. H. Neumann
[84] implies B 6=

⋃n
i=1 CB(ai), and the claim follows.

Lemma 5.5 Let n ≥ 1, t = tn = (p − 1)2n−1, a1, . . . , an ∈ A, x1, . . . xt ∈ B,
and suppose that [ai,x1, . . . ,xt] 6= 1, for every i = 1, . . . n. Then there exists
y ∈ 〈x1, . . . , xt〉 such that [ai,p−1 y] 6= 1 for every i = 1, . . . , n.

Proof. By induction on n. Case n = 1 follows from Lemma 5.1. Thus, let n ≥ 2,
t = (p− 1)2n−1, and asssume the claim true for n− 1. Let s = (p− 1)2n−2; then
t = (p− 1)s = (p− 1)2tn−1. We show that for each j = 1, . . . , p− 1, there exists
yj ∈ Xj = 〈x(j−1)s+1, . . . , xjs〉, such that{

[an, y1, . . . , yj , xjs+1, . . . , xt] 6= 1

[ai,p−1y1, . . . ,p−1yjxjs+1, . . . , xt] 6= 1 for i = 1, . . . , n− 1.
(5.1)

We start by finding y1. For each i = 1, . . . , n, we set bi = [ai, xs+1, . . . , xt].
Then, by assumption, [bi, x1, . . . , xs] 6= 1 for all i = 1, . . . , n. Now, by Lemma
5.3, CX1(bn) has index at least ps/(p−1) = ptn−1 in X1. Thus, there is a lineraly
independent subset {z1, . . . , ztn−1} of {x1, . . . , xs}, such that Y = 〈z1, . . . , ztn−1〉
intersects trivially CX1(bn). By the inductive assumption on n, we then find
y1 ∈ Y such that [bi,p−1 y1] 6= 1 for for all j = 1, . . . , n− 1. Then

[ai,p−1y1, xs+1, . . . , xt] = [bi,p−1 y1] 6= 1

for i = 1, . . . , n − 1; and [an, y1, xs+1, . . . , xt] = [bn, y1] 6= 1. So conditions 5.1
are satisfied for j = 1.

Suppose that, for 1 ≤ k < p − 1, we are given y1, . . . , yk with the re-
quired properties. Then, by setting bi = [ai,p−1 y1, . . . ,p−1 yk, x(k+1)s+1, . . . , xt]
for i = 1, . . . , n − 1, bn = [an, y1, . . . , yk, x(k+1)s+1, . . . , xt], and repeating the
same argument used for j = 1 we find yk+1 ∈ 〈xks+1, . . . , x(k+1)s〉 that together
with y1, . . . , yk satisfies 5.1.

Thus, we eventually get elements y1, . . . , yp−1 ∈ 〈x1, . . . , xt〉 such that{
[an, y1, . . . , yp−1] 6= 1

[ai,p−1y1, . . . ,p−1yp−1] 6= 1 for i = 1, . . . , n− 1.
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By the first of these inequalities and Lemma 5.1 it follows that there exists
y ∈ 〈y1, . . . , yp−1〉 such that [an,p−1 y] 6= 1. But from the remaining inequalities
and Lemma 5.3 we also have [ai,p−1 y] 6= 1 for all i = 1, . . . , n−1, thus finishing
the proof.

Proposition 5.6 There exists a function α : N \ {0} → N, with the property
that if U is a subgroup of A of order at most pn and U ∩ Zα(n) = 1, then there
exists y ∈ B such that [a,p−1 y] 6= 1 for all 1 6= a ∈ U .

Proof. For 1 ≤ n ∈ N, we set α(n) = n(p − 1)2pn−2. Let U be a subgroup
of A with |U | ≤ pn and U ∩ Zα(n) = 1. Let s = (p − 1)2pn−3; thus α(n) =
n · s · (p − 1). Since pn > |U | \ {1}, it follows from Lemma 5.4 that there exist
elements x1, . . . , xs in B such that [a, x1, . . . , xs] 6= 1 for all a ∈ U \ {1}. But
s ≥ (p − 1)2|U\{1}|−1, and so, by Lemma 5.5, there exists y ∈ B such that
[a,p−1 y] 6= 1 for all 1 6= a ∈ U .

Observe that, if U and y are as in the statement of 5.6, then |U 〈y〉| = |U |p.
In fact, by the Jordan canonical form, U 〈y〉 = 〈u1〉〈y〉× . . .×〈us〉〈y〉 for suitable
u1, . . . , us ∈ U with U = 〈u1, . . . , us〉. By the remark following Lemma 5.1,
|〈ui〉〈y〉| = pp for every i = 1, . . . , s. Hence |U 〈y〉| = pps = |U |p.

Lemma 5.7 For every n ≥ 1 there exists a function fn : N×N → N, such that
the following holds:

if |B| ≥ pfn(r,s), U ≤ Zn, z ∈ Z1 \U , and |U | ≤ pr, then there exists H ≤ B,
with |H| = ps and z 6∈ UH .

Proof. We argue by induction on n. Clearly, f1 is given by f1(r, s) = s, for all
(r, s) ∈ N × N. We then assume that, for n ≥ 2, functions fi have been found
for 1 ≤ i ≤ n− 1, and procced to define the values fn(r, s).

Trivially, for any r, s ∈ N, fn(0, s) = s and fn(r, 0) = 0.
To provide fn(1, 1) let us introduce an auxiliary function h : N \ {0} → N, by
setting h(1) = fn−1(1, 1) and, for t ≥ 2, h(t) = fn−1(n− 2, h(t− 1)) + 1. Then
let fn(1, 1) = h((p− 1)2 + 1).

Suppose that, for the given A and B, the conclusion of the statementt fails
for r = s = 1 (and holds for n− 1). Then, there exist

1 6= a ∈ Zn \ Zn−1, z ∈ Z1 \ 〈a〉 such that z ∈ 〈a〉〈y〉 for all 1 6= y ∈ B. (5.2)

If n ≥ p+ 1 then a 6∈ Zp and so, by 5.1 there exists y ∈ B with [a,p−1 y] 6∈ Z1,
whence Z1 ∩ 〈a〉〈y〉 = Z1 ∩ 〈a, [a, x], . . . [a,p−1 x]〉 = 1. Thus, n ≤ p.
For every 1 6= y ∈ B we denote by d(y) the smallest positive integer such that
[a,d(y) y] 6= 1. Thus 〈[a,d(y) y]〉 = CA(y) ∩ 〈a〉〈y〉. By our assumptions, for every
1 6= y ∈ B, we have 1 ≤ d(y) ≤ n−1 and 〈z〉 = 〈[a,d(y) y]〉. So there is a uniquely
determined 1 ≤ m(y) ≤ p− 1 with [a,d(y) y] = zm(y).

We say that a subset {y1, . . . , yt} of B is stable (with respect to a and z) if
– y1, . . . , yt are independent;
– for every ∅ 6= {i1, . . . , is} ⊆ {1, . . . , t}, d(xi1 · · ·xis

) = n− 1 and

m(xi1 · · ·xis) ≡
s∑

j=1

m(xij ) (mod p).
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Let K ≤ B; we show, by induction on t ≥ 1, that

if |K| ≥ h(t) then K admits a stable subset of cardinality t. (5.3)

For t = 1, |K| ≥ pfn−1(1,1). Then, by the inductive assumption on n and the
assumption (5.2), a 6∈ Zn−1(K), and so, by Lemma 5.1, there exists x ∈ K such
that d(x) = n− 1.
Thus, let t ≥ 2, and suppose |K| ≥ ph(t). As above, there exists x1 ∈ K such
that d(x1) = n− 1. Let V = 〈[a, x1], . . . , [a,n−2 x1]〉. Since [a, x1], . . . , [a,n−1 x1]
are linearly independent, we have |V | = pn−2 and z = [a,n−1 x]−m(x1) 6∈ V . Let
K = K1 × 〈x1〉; then |K1| ≥ pfn−1(n−2,h(t−1)). Since V ≤ Zn−1, the inductive
assumption on n implies that there exists H ≤ K1 with |H| = ph(t−1) and
z 6∈ V H . Then z 6∈ V H(〈a〉 ∩ Zn−1) = V H〈a〉 ∩ Zn−1, whence z 6∈ V H〈a〉. We
work with A/V H acted on by H. If there exists y ∈ H such that z 6∈ V H〈a〉〈y〉,
then obviously z 6∈ 〈a〉〈y〉, which is in contrast with (5.2). Thus, H satisfies
(5.2) on A/V H with respect to aV H and zV H . By induction on t it follows that
H ≤ K1 admits a subset {x2, . . . , xt} of cardinality t − 1, which is stable with
respect to aV H and zV H (observe that, since z ∈ Z1, this means, in particular,
that {x2, . . . , xt} is stable with respect to a and z).
Now, {x1, x2, . . . , xt} is an independent subset of K, and d(xi) = n−1 for every
i = 1, . . . , t. Let 1 6= y ∈ 〈x2, . . . , xt〉. Then, as a ∈ Zn, for 1 ≤ k ≤ n− 1,

[a,k x1y] = [a,k x1][a,k y]
k−1∏
i=1

[a,i x1,k−i y](
n−1

i ) ∈ [a,k x1][a,k y]V H . (5.4)

Let 1 ≤ s ≤ t, {i1, . . . , is} a subset of {2. . . . , t}, y = xi1 · · ·xis
, and d = d(x1y).

By (5.4),
1 6= zm(x1y) = [a,d x1][a,d y]v,

with v ∈ V H , and so [a,d+1 y] ∈ V H . Since the set {x2, . . . , xt} is stable with
respect to aV H and zV H , necessarily we have d = n−1. Moreover, by applying
again (5.4) with k − n − 1, we have [a,n−1 x1y] = [a,n−1 x1][a,n−1 y]w with
w ∈ V H ; but then w ∈ V H ∩ 〈z〉, i.e. w = 1. Hence

zm(x1y) = [a,n−1 x1y] = [a,n−1 x1][a,n−1 y] = zm(x1)zm(y),

and, since {x2, . . . , xt} is stable with respect to a and z,

m(x1xi1 · · ·xis) = m(x1y) ≡ m(x1) +m(y) ≡ m(x1) +
s∑

j=1

m(xij ) (mod p).

This completes the proof of claim (5.3).
Now, letting t = (p−1)2+1, if we suppose (by contradiction) that |B| ≥ ph(t),

then by (5.3), B admits a stable subset {x1, . . . , xt} with respect to a and z,
of cardinality t. Since, for each 1 ≤ i ≤ t, m(xi) ∈ {1, 2, . . . , p − 1}, there
exists a subset {i1, . . . , ip} of {1, . . . , t} such that m = m(xi1) = m(xij

) for all
j = 1, . . . , p. But then stability of {x1, . . . , xt} implies the contradiction.

0 6= m(xi1 · · ·xis
) ≡

p∑
j=1

m(xij
) = pm ≡ 0 (mod p).
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Therefore, if |B| ≥ ph((p−1)2+1), then B, in its action on A, cannot verify (5.2).
Thus we may define fn(1, 1) = h((p− 1)2 + 1).

Now, for s ≥ 1, let fn(1, s) = max{fn−1(n− 1, fn(1, s− 1))+1, fn(1, 1)}; we
prove by induction on s that this setting satisfies the desired property.

For s = 1 this has already been established. Thus, let s ≥ 2, |B| ≥ pfn(1,s),
1 6= a ∈ Zn and z ∈ Z1 \ 〈a〉. By the inductive assumption on n we may well
suppose a ∈ Zn \ Zn−1. Let x ∈ B such that z 6∈ 〈a〉〈x〉 (it exists by case
s = 1) and write D = [〈a〉, 〈x〉] = 〈[a, x], . . . , [a,n−1 x]〉. Then, D ≤ Zn−1 and
|D| ≤ pn−1. Let B = B1 × 〈x〉; then |B1| ≥ pfn−1(n−1,fn(1,s−1)), and so, by
the inductive assumption on n, there exists V ≤ B1, with |V | = pfn(1,s−1) and
z 6∈ DV . Thus z 6∈ DV (〈a〉 ∩ Zn−1) = DV 〈a〉 ∩ Zn−1, and, in particular, z 6∈
DV 〈a〉. Therefore, by the inductive assumption on s, there exists W ≤ V with
|W | = ps−1 and sDV 6∈ 〈a〉WDV /DV ; thus z 6∈ 〈a〉WDV . Let then H = 〈W,x〉.
Since W ≤ V ≤ B1, H = W × 〈x〉. Thus |H| = ps, and

〈a〉H = (〈a〉〈x〉)W = (D〈a〉)W = DW 〈a〉W 63 z.

This completes the discussion of the case r = 1.

To conclude the proof we put, for every r, s ≥ 1,

fn(r, s) = max{fn−1(r, s), fn(r − 1, fn(1, s))},

and show by induction on r that this satisfies the property in the statement.
For r = 1 this has been proved above. Thus, let r ≥ 2. |B| ≥ pfn(r,s), U ≤ Zn

with |U | ≤ pr, and let z ∈ Z1 \ U . By induction on n we may also assume
U 6∈ Zn−1. Then, let a ∈ U \ Zn−1, and let U = 〈a〉 × U1, with U ∩ Zn−1 ≤ U1.
Now, |U1| ≤ pr−1 and so, by the inductive assumption on r and the definition
of fn(r, s), there exists V ≤ B, with |V | = pfn(1,s) and z 6∈ UV

1 . Then

z 6∈ U1[U1, V ] ≥ [U1, V ](U ∩ Zn−1) = [U1, V ]U ∩ Zn−1

and so z 6∈ [U1, V ]U = UV
1 〈a〉. Considering the action of V on A/U1V , we have,

by case r = 1, that there exists H ≤ V , with |H| = ps and zUV
1 6∈ 〈a〉HUV

1 /U
V
1 .

Then z 6∈ 〈a〉HUV
1 ≥ 〈a〉HUH

1 = UH . This completes the proof of the inductive
step on r, and thus the proof of the Lemma.

We go on by eliminating the role of the parameter n in Lemma 5.8.

Lemma 5.8 There exists a function α1 : N → N, such that, for every r ∈ N,
the following holds:

if |B| ≥ pα1(r), U ≤ A with |U | ≤ pr, and z ∈ Z1 \ U , then there exists
1 6= x ∈ B, with z 6∈ U 〈x〉.

Proof. We set α1(0) = 1 and, inductively, α1(n) = fα(n)+1(n, α1(n− 1)), where
α and fk are the functions of Proposition 5.6 and Lemma 5.7. We prove by
induction on n that α1 has the desired properties.

Thus, let n ≥ 1, and |B| ≥ α1(n). Let U ≤ A with |U | ≤ pn, and z ∈ Z1 \U .
Write U = U1 × U2, where U1 = U ∩ Zα(n)+1.
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If U1 = 1, then UZ1/Z1 ∩ Zα(n)(A/Z1) = 1 and so, by Proposition 5.6
(since α1(n) ≥ α(n)), there exists x ∈ B with |U 〈x〉Z1/Z1| = |U |p. But then
U 〈x〉 ∩ Z1 = 1, and we are done.

Assume now U1 6= 1; then |U2| ≤ pn−1. By the definition of α1(n) and
Lemma 5.7, there exists H ≤ B with |H| = pα1(n−1) and z 6∈ K = UH

1 . Now,
K ≤ Zα(n)+1, and soKU2∩Zα(n)+1 = K(U2∩Zα(n)+1) = K; hence z 6∈ KU2. By
considering the action ofH on A/K, we know, by the inductive assumption, that
there exists 1 6= x ∈ H such that zK 6∈ (KU2/K)〈x〉 = KU

〈x〉
2 /K.. Therefore

z 6∈ KU 〈x〉
2 ≥ U 〈x〉, and we are done.

We are ready to prove the main result of this part.

Proposition 5.9 (Möhres [76], Satz 3.5) There is a function β : N × N → N
such that for every r, s ∈ N the following holds:
if |B| ≥ pβ(r,s), U ≤ A with |U | ≤ pr and a ∈ A \ U , then there exists H ≤ B
with |H| = ps and a 6∈ UH .

Proof. Trivially, β(r, 0) = 0 for every r ≥ 0. For s ≥ 1 and all r ≥ 0, we set

β(r, s) = α1(rps−1) + s− 1,

where α1 is the function of Lemma 5.8, and proceed by induction on s to prove
that such function β satisfies the desired property.

Thus, let s ≥ 1 and |B| ≥ pβ(r,s). Let U ≤ A with |U | ≤ pr, and a ∈ A \ U .
We may clearly assume that B is finite. Hence A = Zm for some m ≥ 1. Let
d ≥ 0 be minimal such that a ∈ Zd+1U . Then a = zu for some u ∈ U and
z ∈ Zd+1 \ U . Since a 6∈ ZdU , also z 6∈ ZdU . Now zZd/Zd ∈ Z1(A/Zd) and so,
by Lemma 5.8, since (as s ≥ 1) β(r, s) ≥ a1(n), there exists x ∈ B such that
zZd 6∈ (UZd/Zd)〈x〉. Thus z 6∈ U 〈x〉, and consequently a 6∈ U 〈x〉.

If s = 1 we are done. Otherwise, let Y be a complement of 〈x〉 in B. Then
|Y | ≥ pβ(r,s)−1. Now, β(r, s)− 1 = α1(rpps−2)+ (s− 1)− 1 = β(rp, s− 1). Since
|U 〈x〉| ≤ |U |p ≤ prp, there exists, by the inductive assumption, W ≤ Y with
|W | = ps−1 and a 6∈ (U 〈x〉)W . Then H = W 〈x〉 = W × 〈x〉 has order ps and
a 6∈ (U 〈x〉)W = UH . This completes the proof.

We now move to actual group extensions. Given a prime number p, we denote
by Φ the set of all pairs (G,A) where G is a p-group, A a normal elementary
abelian subgroup of G, and G/A is elementary abelian. In this case, by letting
B = G/A we may apply the results proved so far.

We begin with a couple of elementary observations.

Lemma 5.10 Let (G,A) ∈ Φ, n ≥ 1, x1, . . . , xn ∈ G, and X = 〈x1, . . . , xn〉.
Then

(i) AX is nilpotent of class at most n(p− 1) + 2;
(ii) |X| ≤ pγ(n), where γ(1) = 2, and γ(n) = 2n+ pn

(
n
2

)
for n ≥ 2.

Proof. (i) This follows easily from the fact that, for every x ∈ G, [A,p x] = 1,
and elementary commutator calculus.
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(ii) Let S = 〈[xi, xj ] | i, j = 1, . . . , n〉. Then, by Lemma 1.4, X ′ = SX ≤ A.
Now, X has exponent dividing p2, and so |X/X ′| ≤ p2n. Also, |S| ≤ p(

n
2) and

[X : NX(S)] ≤ [X : X ∩A] ≤ pn. Thus

|X| ≤ p2n|X ′| ≤ p2n · |S|p
n

≤ p2n+pn(n
2),

which is what we wanted.

The next fundamental result (Proposition 5.12) is somehow more general
than we actually need in the present contest, but in this form it will be useful
in later applications. For its proof, we need a special variation of the Chevalley–
Warning Theorem (see e.g. [100]).

Lemma 5.11 ([77]) For every m, d, n ∈ N\{0}, there exists a value α(m, d, n),
such that if s ≥ α(m, d, n), and f1, . . . , fm ∈ Z(x1, . . . xs) are homogeneous
polynomials of degree at least 1, with

∑m
i=1 deg fi ≤ d, and p is a prime, then

there exists (a1, . . . as) ∈ Zs with at least one entry aj not a multiple of p, and

fi(a1, . . . , as) ≡ 0 (mod pn)

for all i = 1, . . . ,m.

Proof. See Möhres [77], Lemma 1.5

Proposition 5.12 Let G be a nilpotent p-group of class c ≥ 2, and suppose that
γc(G) has rank 1. Let F be subgroup of G with |F | ≤ pn and γc(F ) = 1. Let H
be a normal subgroup of G such that G/H is elementary abelian of order at least
α((n+ 1)c, (n+ 1)cc, n). Then there exists y ∈ G \H such that γc(〈F, y〉) = 1.

Proof. Let s = α((n + 1)c, (n + 1)cc, n), and let {Hy1 . . . , Hys} be a set of s
independent elements of G/H. Let also {x1, . . . , xn} be a set of generators of F
(which certainly exists since |F | ≤ pn).

Denote by S be the set of all functions σ : {1, . . . , c} → {0, 1, . . . , n}, such
that 0 ∈ Im(σ) 6= {0}. Observe that |S| < (n+ 1)c.

For σ ∈ S, let q = qσ = |σ−1(0)| (then 1 ≤ q ≤ c − 1), and write σ−1(0) =
{σ(1), . . . σ(q)} where σ(1) < . . . < σ(q). We define a map φσ : Gq → γc(G) by
setting, for all g1, . . . , gq ∈ G, φσ(g1, . . . , gq) = [z1, . . . , zc], where zi = xσ(i) if
σ(i) 6= 0, and zi = g` if i ∈ σ−1(0) and i = σ(`). Finally, for all g ∈ G, we set
ωσ(g) = φσ(g, . . . , g).

Since G has class c ≥ 2, γc(G) is locally cyclic and γc(F ) = 1, it follows from
Corollary 1.48 that, for every g ∈ G,

γc(〈F, g〉) = {ωσ(g) | σ ∈ S}. (5.5)

Let z ∈ γc(G) be a generator of the unique subgroup of order pn of γc(G). Now,
in any of the commutators φσ(g1, . . . , gq) (with σ ∈ S and g1, . . . , gq ∈ G) there
appears at least one element of F , and therefore (Lemma 1.44)

φσ(g1, . . . , gq) ∈ 〈z〉. (5.6)
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Given σ ∈ S, let us write q = qσ, and denote by Jσ the set of all q-tuples
j = (j(1), . . . j(q)) of elements in {1, . . . , s}. By (5.6), for every σ ∈ S and every
j ∈ Jσ, there exists a unique element aσ,j ∈ I = {0, 1, . . . , pn − 1} such that

φσ(yj(1), . . . , yj(q)) = zaσ,j . (5.7)

Now, let t1, . . . ts be independent indeterminates over Z, and for every σ ∈ S let

fσ =
∑

j∈Jσ

aσ,jtj(1) · · · tj(q) ∈ Z[t1, . . . , ts]. (5.8)

Then each such fσ is homogeneous of degree q = qσ ≤ c− 1.
By Lemma 1.47, the commutators of weight c in G are homomorphisms in

each component; moreover, since |〈z〉| = pn, commutators that involve elements
from F (like the φσ), behave linearly modulo pnZ in each component. Thus, if
(m1, . . . ,ms) ∈ Z/pnZ, we have, for every σ ∈ S,

ωσ(ym1
1 · · · yms

s ) = φσ(ym1
1 · · · yms

s , . . . , ym1
1 · · · yms

s ) =

=
∏

j∈Jσ

φσ(ymj(1)

j(1) , . . . , y
mj(q)

j(q) ) =

=
∏

j∈Jσ

φσ(yj(1), . . . , yj(q))mj(1)···mj(q) =

=
∏

j∈Jσ

zaσ,jmj(1)···mj(q) = zfσ(m1,...ms). (5.9)

Now, since
∑

σ∈S deg fσ ≤ |S|(c− 1) < (n+ 1)cc, by Lemma 5.11, there exists
a s-tuple (k1, . . . , ks) ∈ Z such that not all the entries ki are multiples of p,
and fσ(k1, . . . , ks) ≡ 0 (mod pn) for every σ ∈ S. Thus, if y = yk1

1 · · · yks
s , then

y 6∈ H, as at least one of the ki’s is not zero (mod p), and γc(〈F, y〉) = 1 by
(5.5) and (5.9).

Remark. We will use Proposition 5.12 in its full force in the next section. At
the moment, for groups in the class Φ, one may well suppose |γc(G)| = p. In
this case, the polynomials in (5.8) induce Fp-multilinear maps, and the standard
Chevalley–Warning Theorem (see e.g. [100] p. 5, or [83] p. 50) may be applied
instead of Proposition 5.12, with the smaller bound s = (n + 1)cc to get the
desired conclusion (we leave the details to the reader). Thus

Lemma 5.13 Let G be a nilpotent p-group of class c ≥ 2, with |γc(G)| = p,
and let F be subgroup of G with |F | ≤ pn and γc(F ) = 1. Let H be a normal
subgroup of G such that G/H is elementary abelian and |G/H ≥ (n+1)cc. Then
there exists y ∈ G \H such that γc(〈F, y〉) = 1.

Repeated applications of this Lemma easily yield the following.

Corollary 5.14 Let (G,A) ∈ Φ, with G nilpotent of class c ≥ 2, let n ≥ 0 and
suppose that |G/A| ≥ pncc+n−1. Then there exists Y ≤ G such that γc(Y ) = 1
and |AY : A| = pn.

We immediately apply this.
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Lemma 5.15 Let n ≥ 1. There exists a function gn : N → N, such that if
(G,A) ∈ Φ and |G/A| ≥ pgn(c), then⋂

{X ≤ G | |AX/A| = pn} ≤ γc+1(G).

Proof. We may clearly put gn(0) = n, and gn(1) = n + 1. Let c ≥ 2 and
suppose we have already found gn(c − 1) with the desired property. We set
gn(c) = gn(c− 1)cc+ n, and show that it sartisfies our requirement.

Let (G,A) ∈ Φ, with |G/A| ≥ pgn(c); let W =
⋂
{X ≤ G | |AX : A| = pn},

and K = γc(G). Since gn(c) > gn(c − 1), we have, by inductive assumption,
W ≤ K. If γc+1(G) = [K,G] = K, there is nothing more to prove. Thus,
let γc+1(G) < K. Take γc+1(G) ≤ T < K with |K : T | = p. Then T E G and
γc(G/T ) = K/T is cyclic of order p. By Corollary 5.14 and the choice of gn(c+1),
there exists a subgroup H/T of G/T with γc(H) ≤ T and |AT/A| = pgn(c−1).
By inductive assumption we have⋂

{X ≤ H | |(A ∩H)X/(A ∩H)| = pn} ≤ γc(H) ≤ T.

But, for X ≤ H, |(A ∩H)X/(A ∩H)| = |X/A ∩X| = |AX/A|, and so W ≤ T .
Now, this holds for every maximal subgroup T/γc+1(G) of K/γc+1(G). Since
K/γc+1(G) is elementary abelian, we conclude that W ≤ γc+1(G).

We now look to a kind of opposite situation, that is when G admits ’long’
non–trivial commutators.

Lemma 5.16 Let (G,A) ∈ Φ, n ≥ 1. Let x1, . . . , xn, y ∈ G and X = 〈x1, .., xn〉.
Suppose that A∩X = 1 and |[A,p−1 x1, . . . ,p−1 xn,p−1 y]| ≥ ppn+1

. Then for every
1 6= a ∈ A there exists c ∈ A such that a 6∈ 〈X, yc〉.

Proof. Let ∆ be the set of all n-tuples t = (t1, . . . , tn) of integers 0 ≤ ti ≤ p−1,
with ti 6= 0 for at least one i ∈ {1, . . . , n}.

For every t = (t1, . . . , tn) ∈ ∆, 0 ≤ j ≤ p − 2, and g ∈ X, we define
ωt,j(g) = [g,t1 x1, . . . ,tn xn,j g] and τt(g) = [gp,t1 x1, . . . ,tn xn]. We show that,
for every g ∈ X,

A ∩ 〈X, g〉 = 〈gp, τt(g), ωt,j(g) | t ∈ ∆, 0 ≤ j ≤ p− 2〉 . (5.10)

Observe that A ∩ X = 1 implies X elementary abelian. It is thus clear that
A ∩ 〈X, g〉 = 〈gp〉〈X, g〉′. So it will suffice to show that

〈X, g〉′ = 〈τt(g), ωt,j(g) | t ∈ ∆, 0 ≤ j ≤ p− 2〉 . (5.11)

By Lemma 5.1, 〈X, g〉′ is generated by all the conjugates of the elements [g, xi]
(i = 1, . . . , n). Since 〈X, g〉′ ≤ A is abelian, we deduce that 〈X, g〉′ is generated
by the set of all the elements [g, xs]x

k1
1 ···xkn

n gj

, and so it is generated by the set
of all commutators

[g, xs,k1 x1, . . . ,kn xn,j g] (5.12)

with s ∈ {1, . . . n}, 0 ≤ ki ≤ p − 1 for i = 1, . . . , n, and 0 ≤ j ≤ p − 1. Now,
since xixj = xjxi and the commutators [g, xi], [g, xj ] also commute, we see
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that [g, xi, xj ] = [g, xj , xi] for sll i, j = 1, . . . , n,; moreover, as xp
i = 1, we have

[g,p xi] = [g, xi][g, xi]xi · · · [g, xi]x
p−1
i = 1, and similirly [g, xi,p−1 g] = [gp, xi],

for all i = 1, . . . , n. These observations allow to freely rearrange the elements
x1, . . . , xn in (5.12), to deduce that ks ≤ p− 2, and eventually to rewrite (5.12)
as a commutator of type ωt,j(g) (if j 6= p − 1), or of type τt(g) (if j = p − 1);
thus proving identity (5.11), and consequently establishing (5.10).

Let x1, . . . , xn, y be as in the statement of the Lemma, and I = {0, . . . , p−2}.
Let S be the set of all functions from ∆× I ∪∆∪ {0} in {0.1, . . . , p− 1}. Then
logp |S| = |∆× I ∪∆ ∪ {0}| = pn+1 − p+ 1.
For every σ ∈ S and every c ∈ A, let

bσ(c) = (yc)pσ(0) ·
∏
t∈∆

τt(yc)σ(t) ·
∏

(t,j)∈∆×I

ωt,j(yc)σ(t,j). (5.13)

Then, by (5.12), for every c ∈ A, we have

A ∩ 〈X, yc〉 = {bσ(c) | σ ∈ S}. (5.14)

Let K be the kernel of the linear map on A,

a 7→ [an−1x1, . . . ,n−1 xn,n−1 y].

Then, by hypothesis, |A/K| ≥ ppn+1
> |S|.

Let now a ∈ A with a ∈ 〈X, yc〉, for every c ∈ A. Then, by (5.14) there exist
c, c′ ∈ A with Kc 6= Kc′, and σ ∈ S, such that

bσ(c) = a = bσ(c′). (5.15)

Now, for every t ∈ ∆, j ∈ I, and every c ∈ A, we have

ωt,j(yc) = ωt,j(y)[c,t1 x1, . . . ,tn
xn,j y]

τt(yc) = τt(y)[c,t1 x1, . . . ,tn
xn,p−1 y]

(yc)p = yp[c,p−1 y].

Thus, setting b = c−1c′, (5.15) and (5.13) entail

1 = [b,p−1 y]
∏
t∈∆

[b,t1 x1, . . . ,tn
xn,p−1 y]σ(t)

∏
(t,j)

[b,t1 x1, . . . ,tn
xn,j y]σ(t,j)

But, as Kc 6= Kc′, b = c−1c′ 6∈ K, whence, by Lemma 5.2, all the commutators
that appear in the above product are linearly independent. It then follows that
σ is the zero–constant, and so a = 1. This proves the Lemma.

We may now complete Lemma 5.15.

Lemma 5.17 There exists a function α3 : N \ {0} → N such that, for every
n ≥ 1, if (G,A) ∈ Φ and |G/A| ≥ pα3(n), then⋂

{X ≤ G | |AX/A| = pn} = 1.



94 CHAPTER 5. PERIODIC N1-GROUPS

Proof. For a given n ≥ 1, let s = max{2γ(n − 1), β(γ(n − 1), 1)} + n, where
γ and β are, respectively, the functions defined in 5.10 and 5.9; then take c =
s(p − 1) + pn + 1, and finally define α3(n) = gn(c), where gn is the function
determined in Lemma 5.15.

Then, let (G,A) ∈ Φ, with |G/A| ≥ pα3(n), and 1 6= a ∈ A. We prove that
thaere exists X ≤ G, with |AX/A| = pn and a 6∈ X.

If γc+1(G) = 1, the claim follows at once by Lemma 5.15. Thus, assume
γc+1(G) 6= 1. Then A 6≤ ζc−1(G) = ζs(p−1)+pn(G), hence, if W = ζpn(G) ∩
A, A/W 6≤ ζs(p−1)(G/W ). Then, by Lemma 5.2, there exist y1, . . . , ys ∈ G
such that [A,p−1 y1, . . . ,p−1 ys] 6≤ W . By 5.2, Ay1, . . . , Ays are independent
in G/A, and we may well suppose G = A〈y1, . . . ys〉. Now, for ` ≤ s, let
{Az1, . . . , Az`} be a set of independent elements in G/A; we may complete
it to a base Az1, . . . , Az`, Az`+1, . . . , Azs of G/A. Then, by Lemma 5.3, we have
[A,p−1 z1, . . . ,p−1 zs] 6≤W , and so [A,p−1 z1, . . . ,p−1 z`] 6≤ ζpn+(s−`)(p−1)(G)∩A,
which in turn yields (as [A,p−1 z1, . . . ,p−1 z`] is nornal in G),

|[A,p−1 z1, . . . ,p−1 z`]| ≥ ppn+(s−`)(p−1). (5.16)

Let x0 = 1; we show that, for every 0 ≤ i ≤ n, there exist x0, x1, . . . , xi ∈ G
such that Ax1, . . . , Axi are independent in G/A and a 6∈ 〈x0, . . . , xi〉. Suppose
that, for some 0 ≤ i ≤ n − 1, we have already found x0, . . . , xi with these
properties, and let U = 〈x0, . . . , xi〉. Then, by 5.10, |A ∩ U | ≤ pγ(i) ≤ pγ(n−1).
Let A ≤ H ≤ G such that G/A = H/A×AU/A. Then H/A has rank s− i and,
by choice of s, s− i ≥ s− (n− 1) ≥ β(γ(n− 1), 1). By Theorem 5.9 there exists
y ∈ H \ A such that a 6∈ (A ∩ U)〈y〉 = D. Now, DU ∩ A = D(U ∩ A) = D, and
so A/D ∩DU/D = 1, and aD 6= 1. Also, Ax1, . . . , Axi, Ay are independent in
G/A. Let K = [A,p−1 x1, . . . ,p−1 xi,p−1 y]; then, by (5.16) and the choice of s,

|K| ≥ ppn+(s−(i+1))(p−1) ≥ ppn+(s−n)(p−1) ≥ ppn+γ(n−1)p ≥ ppn

|D|. (5.17)

Now, D is 〈U, y〉-invariant; passing modulo D, (5.17) yields

[A/D,p−1Dx1, . . . ,p−1Dxi,p−1Dy] ≥ ppn

≥ ppi+1
.

Then, by Lemma 5.16, there exists Db ∈ A/D such that Da 6∈ 〈XD/D, byD〉.
By letting xi+1 = by, we have that Ax1, . . . , Axi, Axi+1 are independent, and
a 6∈ 〈x1, . . . , xi, xi+1. The inductive proof is now complete, hence we eventually
find x1, . . . , xn ∈ G independent modulo A, such that a 6∈ X = 〈x1, . . . , xn〉.

We are now in a position to deduce a major step in the proof.

Theorem 5.18 (Möhres [77], Satz 2.2) There exists a function µ : N → N such
that, for all n ≥ 1, the following holds:
if (G,A) ∈ Φ is such that |G/A| ≥ pµ(n), and U ≤ G has order at most pn, then⋂

x∈G\AU

〈U, x〉 = U.

Proof. Let n ≥ 1 be fixed, and let β and α3 the functions defined, respectively,
in 5.9 and 5.15. We put τn(0) = β(n, α3(1)), and inductively, for d ≥ 1, τn(d) =
β(n, α3(τn(d− 1))).
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1) We first consider the case in which U ∩A = 1.
Then U is elementary abelian. Let |U | = pn, and let (x1, . . . , xn) be an

ordered set of independent generators of U . Let m1 be the smallest positive
integer such that [A,m1 x1] 6= 1, and for every 1 < i ≤ n, let mi; be the smallest
positive integer such that [A,m1 x1, . . . ,mi−1 xi−1,mi xi] 6= 1. Finally, let d =
dU (A) =

∑n
i=1mi (observe that 0 ≤ d ≤ n(p− 1)).

Arguing by induction on d, we show that if |G/A| ≥ pτn(d)+n, then

W =
⋂

x∈G\AU

〈U, x〉 = U. (5.18)

Let first d = 0. Then U centralizes A and (G,AU) ∈ Φ. Let 1 6= a ∈ A. By
definition of τn(0), we have |G/AU | ≥ pβ(n,α3(1)), so, by Proposition 5.9, there
exists a subgroup AU ≤ H ≤ G, |H/AU | = pα3(1) and a 6∈ UH , Thus, by
Lemnma 5.17, the intersection of all subgroups UH〈x〉 with x ∈ H \AU is UH .
In particular, there exists x ∈ H \ AU such that a 6∈ UH〈x〉, and, a fortiori,
a 6∈ 〈U, x〉. This shows that A ∩W = 1. But then

W = W ∩ UH ≤W ∩AU = (W ∩A)U = U,

Assume now d ≥ 1. Then there exists a largest index 1 ≤ t ≤ n such that
mt 6= 0. Let

N = [A,m1 x1, . . . ,mt
xt].

Then N E G, A/N ∩NU/N = 1 and dU (A/N) ≤ d−1. Since τn(d) ≥ τn(d−1),
by inductive assumption we have W ≤ NU .

Let K be the kernel of the surjective homomorphism φ : A → N given by
φ(v) = [v,m1 x1, . . . ,mt

xt]. Let 1 6= a ∈ N and take b ∈ A such that φ(b) = a.
Then, K E G, and for every 1 ≤ i ≤ n and v ∈ A, φ([v, xi]) = 1. Hence

[A,U ] ≤ K. Also A∩KU = K(A∩U) = K, so AU/K is elementary abelian and
(G/K,AU/K) ∈ Φ. By definition of τn(d), |G/AU | ≥ pβ(n,α3(τn(d−1))). Thus,
by Propositon 5.9, there exists a subgroup AU ≤ H ≤ G, with |H/AU | =
pα3(τn(d−1)) and bK 6∈ KUH/K. In turn, by Lemma 5.17 (working in H/KUH),
there exists a subgroup KUH ≤ Y ≤ H, with |AY : AU | = pτn(d−1), and b 6∈ Y .
Now, |Y : A ∩ Y | = |AY : A| = |AY : AU ||AU : A| = pτn(d−1)+n, whence, by
inductive assumption, W ≤ [Y ∩A,m1 x1, . . . ,mt

xt]U = φ(Y ∩A)U . If a = φ(c)
for some c ∈ A ∩ Y , then bc−1 ∈ K, and so b ∈ K〈c〉 ≤ Y , a contradiction.
Thus, a 6∈ φ(Y ∩A) and, consequently, a 6∈W . This holds for every 1 6= a ∈ N .
Hence, W ∩A = W ∩NU ∩A = W ∩N(U ∩A) = W ∩N = 1. This, as above,
yields the desired conclusion (5.18).

Now, as observed before, dU (A) ≤ n(p − 1); so, by letting, for every n ≥ 1,
µ(n) = τn(n(p− 1)) + n, we have the following :

if |G/A| ≥ pµ(n) and U ≤ G, with |U | = pn and A ∩ U = 1, then (5.18)
holds.

2) Now, for the general case, let, for each n ≥ 1,

µ(n) = β(n, µ(n)).

Let |G/A| ≥ pµ(n), and U ≤ G with |U | ≤ pn. Let also a ∈ A \ U .
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Since |A ∩ U | ≤ pn, Proposition 5.9 guarantees the existence of a subgroup
A ≤ H ≤ G, such that |H/A| = pµ(n) and a 6∈ (A ∩ U)H = D. Clearly, we
may let H ≥ AU . Then (U/D,A/D) ∈ Φ, aD 6= 1, and A/D ∩ UD/D = 1 (as
A ∩DU = D(A ∩ U) = D). Therefore, by the case discussed in point 1), there
exists x ∈ H \ AU such that aD 6∈ 〈UD/D, xD〉, and so, a fortiori, a 6∈ 〈U, x〉.
This proves that 1 = A ∩W , where W =

⋂
x∈G\AU 〈U, x〉. But then, as usual

W = W ∩AU = U(W ∩A) = U . The proof is thus complete.

Let us extend this theorem in a rather obvious way, and in a form that we
wiil be able to apply more directly.

Proposition 5.19 For every n,m, k ≥ 1, there exists ψ(n,m, k) ∈ N, such that
the following holds:
let (G,A) ∈ Φ with |G/A| ≥ ψ(n,m, k); if U is a n-generated subgroup of G and
X a subset of A of order k, with X ∩ U = ∅, then there exist y1, . . . , ym ∈ G,
such that ∅ = A ∩ V = 〈U, y1, . . . , ym〉 and |AV : AU | = pm.

Proof. We begin with defining ψ for k = 1 and all n,m. Thus, for n,m ≥ 1, we
set ψ(n,m, 1) = µ(γ(n+m− 1)) (where γ(i) is as in Lemma 5.10, and µ is the
function determined in Theorem 5.18), and show that it satisfies the required
property, arguing by induction on m.

Let x1, . . . , xn ∈ G, U = 〈x1, . . . , xn〉, and let a ∈ A \ U . For m = 1, we
have ψ(n, 1, 1) = µ(γ(n)) and the claim follows from 5.18. Let m ≥ 2. Then, as
ψ(n,m, 1) ≥ ψ(n,m − 1, 1), by inductive assumption there exist y1, . . . , ym−1

such that a 6∈ T = 〈U, y1, . . . , ym−1〉 and |AT : AU | = pm−1. By Lemma
5.10, |T | ≤ pγ(n+m−1), and so Theorem 5.18 again implies the existence of
ym ∈ G with a 6∈ V = 〈T, ym〉 = 〈U, y1, . . . , ym−1, ym〉 and |AV : AT | = p. Thus
|AV : AU | = |AV : AT ||AT : AU | = pm, and we are done.

Thus, we have ψ for all cases in which k = 1. Its extension to all k ≥ 1 is by
induction: for n,m,≥ 1, k ≥ 2, we set ψ(n,m, k) = ψ(n, ψ(n,m, 1), k − 1). To
show that this satisfies the desired property is now an easy induction.

The analisys of the case Φ now comes to an end.

Proposition 5.20 Let (G,A) ∈ Φ. If G ∈ N1 then G is nilpotent.

Proof. Let (G,A) in Φ. We prove that ifG is not nilpotent then it has a subgroup
which is not subnormal.

Thus, let G be not nilpotent. For every 1 ≤ n ∈ N write σ(n) = n(n+ 1)/n.
We prove, iductively on n ≥ 1, the existence of sequence of subgroups Un of G
and of elements an of A, such that, for every n ≥ 1, Un is σ(n)–generated, and
for every 1 ≤ i ≤ j, Ui ≤ Uj and ai ∈ [A,i(p−1) Ui] \ Uj .

Since G is not nilpotente, there exists, by 5.1, an element y ∈ G such that
[A,p−1 y] 6= 1. Let 1 6= a1 ∈ [b,p−1 y] (for some b ∈ A), by possibly replacing y
with bky (for a suitable 0 ≤ k ≤ p− 1) we have a1 6∈ 〈y〉; so let U1 = 〈y〉.

Now, for n ≥ 2, suppose we have already established the existence of a
chain of subgroups U1 ≤ . . . ≤ Un−1 of G, and of elements a1, . . . , an−1 of A
with the prescribed properties. Write U = Un−1 and X = {a1, . . . , an}. Let
G/A = AU/A × K/A. Since U is finite and G is not nilpotent, K/A is not
nilpotent and, in particular, it isinfinite.. Let s = ψ(γ(σ(n−1)), n, n−1), where
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ψ is the function defined in 5.19 and γ that defined in 5.10. Since K is not
nilpotent, by Lemma 5.2 there exist elements y1, . . . , ys ∈ K \A such that

[A,p−1 y1, . . . ,p−1 ys] ≥ pγ(σ(n))+1 (5.19)

(see also the proof of 5.16). Let H = 〈A, y1, . . . , ys〉; then |H/A| = ps, as
Ay1, . . . , Ays are independent by 5.2. In fact, |HU/AU | = ps, and by induc-
tive assumpiton, |U | ≤ pγ(σ(n−1)). Then, bt Lemma 5.19, there exists a sub-
group V ≤ HU such that U ≤ V , X ∩ V = ∅, and |AV : AU | = pn. Now, as
V = V ∩ HU = (V ∩ H)U , we may take elements x1, . . . , xn ∈ H such that,
setting Un = 〈x1, . . . , xn〉, we have Un ≤ V (hence X∩Un = ∅) and AUn = AV .
This defines Un; observe, in fact, that, as U = Un−1 is σ(n− 1)–generated, Un

is generated by σ(n− 1) + n = σ(n) elements.
As Ax1, . . . , Axn are independent in H/A, by Lemma 5.3 and condition 5.19 we
have [A,p−1 x1, . . . ,p−1 xn] > pγ(σ(n)) ≥ p|Un|. Therefore, there exists b ∈ A such
that an = [b,p−1 x1, . . . ,p−1 xn] 6∈ Un. This completes the inductive step.

We then find in this way the desired infinite sequence U1 ≤ U2 . . . of finitely
generated subgroups of G and elements an ∈ A such that ai ∈ [A,i(p−1) Ui] \Uj ,
for all 1 ≤ i ≤ j. Now, let S =

⋃
n≥1 Un. Then S ≤ G and S ∩ {a1, a2, . . .} = ∅.

It follows that S is not subnoprmal in G; for, if it were, there existed a positive
integer d such that [A,d S] ≤ S, whence, as ad ∈ [A,d(p−1) Ud] ≤ [A,d S], the
contradiction ad ∈ S. This completes the proof.

The main result of this section follows by standard arguments. We need the
following variation on P. Hall nilpotency criterion (1.54); the easy proof (using
1.54 and the elementary observations at the end of section 1.1) we leave to the
reader.

Lemma 5.21 Let G be group and N a normal p-subgroup of finite exponent. If
N and G/N ′Np are nilpotent then G is nilpotent

Theorem 5.22 (Möhres [77]) A soluble N1-group of finite exponent is nilpo-
tent.

Proof. Let G be a soluble N1-group of finite exponent. Then G is the direct
product of p-groups for a finite set of primes p. Thus, we may well suppose that
G is a p-group for some prime p. Since G is soluble and has finite exponent, it
admits a finite normal series with p-elementary abelian factors. We let d be the
shortest length of such a series, and argue by induction on d.

If d = 1, G is abelian. Thus, let d ≥ 2 and write N = G′Gp. Then G/N is the
largest elementary abelian quotient of G, whence by inductive assumption N is
nilpotent. Let K = N ′Np; then G/K is an extension of the elementary abelian
p-group N/K by the elementary abelian p-group G/N ; hence, by Proposition
5.20, G/K is nilpotent. By Lemma 5.21, G is nilpotent.

5.2 Extensions by groups of finite exponent

In this section we prove another important Theorem of Möhres, saying that a
periodic N1-group which is the extension of a nilpotent group by a (soluble)
group of finite exponent, is nilpotent.



98 CHAPTER 5. PERIODIC N1-GROUPS

We start with a fundamental result, which finds applications also in other
contexts.

Theorem 5.23 (Möhres [79]) Let G be a nilpotent p-group, and N a normal
subgroup such that G/N is an infinite elementary abelian group. Then, for every
finite subgroup U of G and any a ∈ G \ U , there exists a subgroup V of G with
U ≤ V , a 6∈ V and NV/N infinite.

Proof. We procced by induction on the class c of G. If c = 1 the claim follows
easily from the basic thory of abelian groups. Thus, suppose c ≥ 2, and assume
the statement true for all p-groups of class less or equal to c− 1.

Let U be a finite subgroup of G, and a ∈ G \U . Let K = γc(G). If a 6∈ KU ,
then we are done by inductive assumption (observe tha, since c ≥ 2, N ≥ G′ ≥
K). Hence, we may assume a ∈ KU , that is a = bu for some b ∈ K and u ∈ U :
clearly, we may now replace a by b if necessary, and so suppose a ∈ K. Let M
be a subgroup of K maximal subject to K ∩ U ≤ M and a 6∈ M . Then, since
K is central in G (in particular, it is abelian). M E G and K/M has rank 1.
Then a 6 inMU (for, otherwise, a ∈ MU ∩ K = M(U ∩ K) = M), and so we
may assume M = 1, i.e. K = γc(G) is abelian of rank 1.

In this setting, we have U ∩K = 1, and so γc(〈U, a〉) = 1. Then, by repeated
applications of Proposition 5.12, we conclude that there exists a subgroup H
of G, containing 〈U, a〉, with HN/N infinite and γc(H) = 1. Now, H/(H ∩
N) = NH/N is an infinite elementary abelian group, and so we may apply the
inductive assumption and conclude that there exists V ≤ H such that U ≤ V ,
a 6∈ V and V (H ∩N)/(H ∩N) infinite. Clearly then V N/N is infinite and we
are done.

Let us state an immediate consequence, specialized to our pourposes.

Lemma 5.24 Let G be a nilpotent p-group, N E G with G/N is an infinite
elementary abelian group. Let F be a finitely generated subgroup and c ≥ 1 an
integer such that every H ≤ G with F ≤ H and NH/N infinite is subnormal
of defect at most c in G. Then, every subgroup of G containing F has defect at
most c (whence γβ(c)+1(G) is finite by 4.14)..

Proof. Let F ≤ U ≤ G. In order to show that it has defect at most c, we may
assume that U is finitely generated. Suppose that there exists a ∈ [G,c U ] \ U .
Then. by Theorem 5.23, here exists V ≤ G with NV/N infinite, U ≤ V , and
a 6∈ V . By hypothesis, [GcU ] ≤ [G,c V ] ≤ V ;hence the contradiction a ∈ V .

Now we consider nilpotent–by–(finite exponent) N1-groups. As in the pre-
vious section, the basic case is that of a metabelian p-group. We need a few
preparatory lemmas (see [79]).

Lemma 5.25 Let G ∈ N1 be the extension of an abelian group A by a soluble
group of finite exponent. If G satisfies an Engel condition, then G is nilpotent.

Proof. Let G and A be as in the statement, and suppose that there exists n ≥ 1
such that [x,n y] = 1 for every y, x ∈ G. Hence [A,n x] = 1 for every x ∈ G. Let
e be the exponent of G/A. Then, since A ≤ CG(A), by applying point (i) of 1.16
we get

[
Aen−1

, x
]

for every x ∈ G, that is B = Aen−1 ≤ Z(G). Now, G/B is a
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soluble N1-group of finite exponent, so it is nilpotent by Theorem 5.22. Thus,
G is nilpotent.

Lemma 5.26 Let G ∈ N1 be the extension of an abelian group A by an el-
ematary abelian p-group (p a prime). If G is not nilpotent then there is a non-
nilpotent subgroup K of G, with A ≤ K and such that a subgroup H of K is
nilpotent if and only if HA/A is finite.

Proof. Since G is a Baer group, every element of G is a bounded left Engel
element. In particular, for each x ∈ G, there is a largest positive integer n(x)
such that [A,n x] 6= 1. SInce G is not nilpotent, and [G, x] ≤ A for every x ∈ G,
by Lemma 5.25 we have sup{n(x) | x ∈ G} = ∞. Thus, there is an infinite
sequence (xi)i≥1 of elements of G, such that n(x1) ≥ 1 and

n(xn) ≥ n+
n−1∑
i=1

n(xi) (5.20)

for all n ≥ 2. Let K = A〈xi | i ≥ 1〉.
Let x, y ∈ G and m = n(x) + n(y) + 1. Then,

[A,m xy] ≤
∏

m≤i+j≤2m

[A,i x,j y] = 1.

Thus, n(xy) ≤ m−1 = n(x)+n(y). From this it follows that, for every x, y ∈ G,

n(xy) ≥ n(x)− n(y−1) = n(x)− n(y).

Now, for some n ≥ 1, take x ∈ K \ A〈x1, . . . , xn〉. Then, there exist t > n, and
0 ≤ mj ≤ p − 1 (j = 1, 2, . . . , t), with mt 6= 0, such that xA = xm1

1 . . . xmt
t A.

Hence, recalling (5.20),

n(x) ≥ n(xt)−
t−1∑
j=1

n(xmj

j ) ≥ n(xt)−
t−1∑
j=1

n(xj) ≥ t > n. (5.21)

Let H ≤ K and suppose that H is nilpotent. Then, since H is subnormal, AH
is nilpotent, say of class c. But then n(x) ≤ c for every x ∈ AH, and thus it
follows from (5.21) that AH ≤ A〈x1, . . . , xc〉. In particular, |AH/A| ≤ pc.

Conversely, if H ≤ K is such that AH/A is finite, then AH is nilpotent by
Lemma 1.75.

Lemma 5.27 Let G be a p-group in N1, and let A be a normal abelian subgroup
of G, such that G/A is elementary abelian. Then G is nilpotent.

Proof. By Proposition 1.93, we may suppose that

Aω =
⋂

m≥1

Apm

= 1.

For every m ≥ 1, write Km = Apm

. By Theorem 6.5, G/Km is nilpotent for
every m ≥ 1.
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Suppose, by contradiction, that G is not nilpotent. Then, by 1.75, G/A is
infinite. By Theorem 1.92 and by Lemma 5.26, we may also assume that there
is a finite subgroup F of G and a n ≥ 1 such that all subgroups H of G with
F ≤ H and AH/A infinite, have defect at most n in G.

Now, let m ≥ 1; then, G = G/Km is nilpotent, and (G/Km)/(A/Km) is
an infinite elementary abelian p-group. Also, every subgroup U/Km = U of G
containing F = KmF/Km and such that UK/K is infinite has defect at most n
in G. Thus, by Lemma 5.24, every subgroup of G containing F has defct at most
n in G. This holds for every m ≥ 1. Now, let H be a finitely generated subgroup
of G with F ≤ H. Then, by what we have just observed, G,cH] ≤ HKm for
every m ≥ 1. But H is finite, hence, by Lemma 1.27,

H =
⋂

m≥1

KmH.

This shows thatH has defect at most c inG. Then, every subgroup ofG containg
F has bounded defect, and so G is nilpotent by 4.14.

Theorem 5.28 (Möhres [79]) A N1-group which is the extension of a periodic
nilpotent group by a soluble group of finite exponent is nilpotent.

Proof. Let G be a periodic N1 group, with a nilpotent normal subgroup N such
that G/N is soluble of finite exponent. By Lemma 4.19 we may assume that G
is a p-group for some prime p. As G/N is soluble of finite exponent, it admits
a finite normal series all of whose factors are elementary abelian. Proceeding
by induction on the shortest length d of such a series, we reduce to the case in
which G/N is elementary abelian. Now, by P. Hall criterion 1.54, we may also
assume that N is abelian. So we are in a position to apply Lemma 5.26, and
conclude that G is nilpotent.

As a first application of Theorem 5.28, we prove a result of H. Smith [111]
(see also [17]).

Let H be a subgroup of the group G. We write H ≤b G if there exists an
integer m ≥ 1 such that gm ∈ H for all g ∈ G. This is equivalent to say that
G/HG is a group of finite exponent. Observe that if K ≤b H ≤b G then K ≤b G.

Theorem 5.29 A residually nilpotent periodic group in N1 is nilpotent.

Proof. Let G ∈ N1 be a periodic residually nilpotent group. By Lemma 4.19,
we may assume that G is a p-group for some prime p. Let

Gω =
⋂
n∈N

Gpn

.

By Lemma 1.92, there exist a subgroup H ≤b G, a finitely generated subgroup
F of H, and a positive integer d, such that every F ≤ K ≤b H has defect at
most d in H. If H is nilpotent, then G ∈ N1 is the extension of the normal
nilpotent subgroup HG by a group of finite exponent. By Theorem 5.28, G is
nilpotent. Thus, we may assume that H = G.
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For n ≥ 1, let Gn = Gpn

. Then K ≤b G, for all subgroups Gn ≤ K ≤ G. It
follows that all subgroups of G/Gn that contain the finite subgroup FGn/Gn

have defect at most d in G/Gn. By Theorem 4.14,

γβ(d)+1(G/Gn) =
γβ(d)+1(G)Gn

Gn

is finite. By Proposition 1.51,

Zn/Gn = ζ2β(d)(G/Gn)

has finite index in G/Gn. Let Y =
⋂

n∈N Zn; then G/Y is a periodic residually
finiteN1-group. By Proposition 4.22, G/Y is nilpotent, of nilpotency class c, say.
It follows that, for all n ≥ 1, G/Gn is nilpotent of class at most m ≤ 2β(d) + c.
Hence, G/Gω is nilpotent of class m. Now,

γm+1(G)
γm+3(G)

≤ Gω

γm+3(G)
=

(
G

γm+3(G)

)ω

is contained in the centre of G/γm+3(G) by Lemma 1.18. Then γm+3(G) =
γm+2(G), whence, since G is residually nilpotent, γm+2(G) = 1, thus proving
that G is nilpotent.

This Theorem does not hold in the non-periodic case, as the groups of H.
Smith (section 6.3) show (which indeed are non-nilpotent residually finite N1-
groups). However we shall later prove (Theorem 6.19) that a residually nilpotent
N1-group is hypercentral.

5.3 Periodic hypercentral N1-groups

Heineken–Mohamed groups have trivial centre. We show in this section that
this is not an accident; in fact (Theorem 5.33) every non-nilpotent periodic N1-
group must have a centreless non-nilpotent quotient. Needless to say, this also
is due to W. Möhres.

Lemma 5.30 Let G ∈ N1 be p-group, and G′ be elementary abelian. Then
(1) CG(G′)/Z(G) is an elementary abelian p-group;
(2) a subgroup H of G is nilpotent if and only if HZ(G)/Z(G) has finite

exponent.

Proof. (1) Let a ∈ C = CG(G′), and x ∈ G; then [a, x, a] = 1, whence
[ap, x] = [a, x]p, Thus Cp ≤ Z(G). Let now a, b ∈ C and x ∈ G; then [a, b, x] =
[b, xa]−1[x, a, b]−1 = 1, showing that C ′ ≤ Z(G).

(2) Let Z = Z(G) and let H ≤ G. If HZ/Z has finite exponent, then it is
nilpotent by Theorem 5.22. Thus H is nilpotent. Conversely, let H be nilpotent.
Then G′H is nilpotent, whence, by Lemma 1.14, there exists n ≥ 1 such that
[G′,Hpn

] = 1. Thus, for x ∈ G and y ∈ Hpn

, [x, yp] = [x, y]p = 1, showing that
Hpn+1 ≤ Z.
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Lemma 5.31 Let G be a hypercentral p-group in N1, such that G′ is elementary
abelian. Let C = CG(G′) and, for every i ≥ 1, let Ki = 〈x ∈ G | xpi ∈ C〉.
Suppose that G is not nilpotent; then, for every i ≥ 1, Ki+1/Ki is an infinite
elementary abelian p-group.

Proof. Observe that K1 ≥ G′, hence all factors Ki+1/Ki are elementary abelian
p-groups. Observe also that, by Lemma 5.30 (1) and Theorem 5.22, Ki is nilpo-
tent for every i ≥ 1. Assume that, for some i ≥ 1, Ki+1/Ki is finite. Then the
abelian group G/Ki has finite rank, and so it is the direct product of a finite
group T/Ki by a divisible group (of finite rank) R/Ki. Now, T is a finite exten-
sion of the nilpotent group Ki, and so T is nilpotent. Since R/C is abelian and
Ki/C has finite exponent, a standard fact of abelian groups implies that there
exists a divisible subgroup D/C of R/C such that R = DKi. Write Z = Z(G).
Now, D is hypercentral; let W/Z(G) = ζ2(D/Z) ∩ C/Z. Then [W,D,D] ≤ z.
Since, by 5.30, C/Z is elementary abelian, we have

Z ≥ [W,D]p = [W,Dp] = [W,D].

This shows that C/Z ≤ ζ(D/Z). Hence, D is a normal nilpotent subgroup of
G. Therefore, G = TD is nilpotent. This contradiction shows that Ki+1/Ki is
infinite.

Lemma 5.32 Let G be a hypercentral p-group in N1, such that G′ is elementary
abelian. Then G is nilpotent.

Proof. Suppose that G is not nilpotent. Then by 1.92 we may assume that
there is a finite subgroup F of G, and a n ≥ 1, such that all non-nilpotent
subgroups of G containing F have defect at most n in G. We show that every
subgroup V with F ≤ V has defect at most n. As in Lemma 5.31, let Z = Z(G),
C = CG(G′), and, for every i ≥ 1, Ki = 〈x ∈ G | xpi ∈ C〉.

Let V be a finitely generated subgroup of G containing F , and suppose by
contradiction that V has defect larger than n. Then there exists a ∈ [G,n V ]\V .
Clearly a ∈ G′ and F ≤ V ≤ Km for some m ≥ 1. We construct a series of
subgroups V ≤ Vm ≤ Vm+1 ≤ Vm+2 ≤ . . . such that, for every j ≥ m, Vj ≤ Kj ,
Vj 6≤ Kj−1, and a 6∈ Vj . Now, for every j ≥ m, as observed in the proof of
5.31, Kj is nilpotent, and Kj/Kj−1 is an infinite elementary abelian p-group by
Lemma 5.31. Thus, the existence of the subgroups Vj with the desired properties
is guaranteed by repeated applications of Theorem 5.23. Let

H =
⋃

j≥m

Vj ;

then a 6∈ H ≥ V . On the other hand, H is not contained in any of the Kj ’s,
thus the exponent of HC/C is infinite, and so, by Lemma 5.30 (2), H is not
nilpotent. Since F ≤ H it follows that H has defect at most n in G, and this
yields the contradiction a ∈ [G,n V ] ≤ [G,nH] ≤ H.

This shows that all subgroups V of G, with F ≤ V B are subnormal of defect
at most n in G; since G is locally nilpotent and F finite, Theorem 4.14 implies
that G is nilpotent.
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Theorem 5.33 (Möhres [81]) A periodic hypercentral N1-group is nilpotent.

Proof. Let G be a periodic hypercentral N1-group. By 4.19, we may assume
that G is a p-group for some prime p.

By Lemma 1.11, non-trivial hypercntral groups cannot be perfect, and so,
by Lemma 4.20, G is soluble. By Theorem 1.54 and the remark which follows,
we may then assume that G is metabelian. Let N = G′, and

K = Nω =
⋂
n≥1

Npn

.

Now, G/Np is nilpotent by Lemma 5.32. It then follows from Lemma 5.21 that
G/Npn

is nilpotent for every n ≥ 1. Thus, G/K is residually nilpotent and
therefore it is nilpotent by Theorem 5.29. Since K ≤ Z(G) by Lemma 1.17, we
conclude that G is nilpotent.

In the next chapter we will describe examples of H. Smith which show that
this result too does not extend to arbitrary N1-groups.
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Chapter 6

The structure of N1-groups

6.1 Solubility of N1-groups

In this section we prove what is perhaps the most relevat result on N1-groups;
i.e. that they are soluble; a fact that has been established by W. Möhres and
appears in print in [80]. We follow his approach, that my well have applications
to other problems.

Let x1, x2, . . . be an alphabet. We define the set of all outer commutator
words inductively as follows:

(i) every xi is an outer commutator word;
(ii) let m,n ∈ N; if φ(x1, . . . , xn), ψ(x1, . . . , xm) are outer commutator

words, then [φ(x1, . . . , xn), ψ(x1, . . . , xm)] is an outer commutator word.

Lemma 6.1 ([80]) Let G be a perfect locally finite p-group, such that for every
proper subgroup T of G, T is soluble and TG 6= G. Then there exist a finite
subgroup U and a proper normal subgroup N of G, such that Z(G/N) = 1 and⋂

x∈G\N

〈U, x〉 6= U.

Proof. We assume the Lemma to be false. Then, let T be a proper subgroup of
G, and let Z/TG = Z(G/TG). Since TG < G, and G is perfect, we have G 6= Z,
and Z(G/Z) = 1 (by Grün’s Lemma 1.11). If U be a finite subgroup of G, and
a ∈ G \ U , then by our assumption there exists y ∈ G \ Z with a 6∈ 〈U, y〉.

Arguing by induction on n ≥ 1, we show that given any finite subgroup U
of G, any a ∈ G \ U , any proper subgroup T of G, and any outer commutator
word φ(x1, . . . , xn), there exist elements y1, . . . , yn ∈ G, such that

φ(y1, . . . , yn) 6∈ T and a 6∈ 〈U, y1, . . . , yn〉. (6.1)

For n = 1, (6.1) means that there is an elemnt y ∈ G \ T , such that a 6∈ 〈U, y〉,
and this is what we had above.

Thus, let n ≥ 2, and assume that the claim holds for smaller integers. Let U ,
T , and a as above, and φ(x1, . . . , xn) an outer commutator word. Since n ≥ 2,

105
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we may suppose that there is a 1 ≤ k ≤ n− 1, and there are outer commutator
words φ1(x1, . . . , xk) and φ2(xk+1, . . . , xn) such that

φ(x1, . . . , xn) = [φ1(x1, . . . , xk), φ2(xk+1, . . . , xn)].

Let Z/TG = Z(G/TG); then, as before, Z 6= G and Z(G/Z) = 1. By inductive
assumption, there exist elements y1, . . . , yk ∈ G with

φ1(y1, . . . , yk) 6∈ Z and a 6∈ 〈U, y1, . . . , yk〉,

and there exist elements yk+1, . . . , yn ∈ G such that

φ2(yk+1, . . . , yn) 6∈ CG(φ1(y1, . . . , yk)Z)

and
a 6∈ 〈U, y1, . . . , yk, yk+1 . . . , yn〉, (6.2)

Therefore

φ(y1, . . . , yn) = [φ1(y1, . . . , yk), φ2(yk+1, . . . , yn)] 6∈ Z,

which, since Z ≥ T , together with (6.2) is what we wanted. Thus, the claim
leading to (6.1) is proved.

Now, write φ1(x1) = x1, and, for each j ≥ 1

φj+1(x1, . . . , x2j ) = [φj(x1, . . . , x2j−1), φj(x2j−1+1, . . . , x2j )]. (6.3)

Take 1 6= a ∈ G, and set U0 = 1. Suppose that, for i ≥ 0, we have found finite
subgroups U0 ≤ U1 ≤ . . . ≤ Ui, with a 6∈ Ui. Then, by what we had before,
there exist elements yi,1 . . . , yi,2i ∈ G such that a 6∈ 〈Ui−1, y1,i . . . , yi,2i〉 = Ui

and φi+1(yi,1, . . . , yi,2i) 6= 1.
Let U =

⋃
i∈N Ui. Then a 6∈ U , and so U is a proper subgroup of G. Hence,

by hypothesis, U is soluble, of derived length, say, d ≥ 1. But this contradicts
1 6= φd+1(yd,1, . . . , yd,2d) ∈ U (d).

Lemma 6.2 Let G be a locally finite p-group, such that for every proper sub-
group T of G, T is soluble and TG 6= G. If G is a Fitting group, then G is
soluble.

Proof. Let G be as in the assumptions, and suppose by contradiction that G is
not soluble. Then G is perfect and, by Lemma 6.1, there exist a finite subgroup
U and a proper normal subgroup N of G, such that Z(G/N) = 1 and there
is an element a ∈

⋂
x∈G\N 〈U, x〉 \ U . Now, G is a Fitting group, and N is a

proper normal subgroup; thus there exists an element g ∈ G, with 〈g〉GN/N a
non-trivial elementary abelian p-group. Since, moreover, Z(G/N) = 1, we have
that 〈g〉GN/N ' 〈g〉G/〈g〉G ∩ N is infinite. Now, 〈g〉G is nilpotent, and so we
may apply Theorem 5.23 to conclude that there exists z ∈ 〈g〉G \N , such that
a 6∈ 〈U, z〉. As z 6∈ N , this is a contradiction.

Lemma 6.3 Let G be p-group in N1, and assume that all proper subgroups of
G are soluble. Then G is soluble.
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Proof. By Lemma 6.2 it is enough to show that G is a Fitting group. Thus,
let x ∈ G; then K = 〈x〉G is soluble because it is a proper subgroup of G.
We prove that K is nilpotent arguing by induction on the derived length d of
K. If d = 1, K is abelian. Thus, let d ≥ 2, and A = K(d−1). Then A E G,
and K/A = 〈xA〉G/A; so, by inductive assumption, K/A is nilpotent. Since it is
generated by conjugates of x (hence by elements of bounded order), K/A has
finite. Thus, K is a periodic N1-group which is an extension of an abelian group
by a soluble group of finite exponent, and so, by Theorem 5.28, K = 〈x〉G is
nilpotent. Therefore, G is is a Fitting group, and we are done.

We are now in a position to prove the main Theorem.

Theorem 6.4 (Möhres [80]) Every N1-group is soluble.

Proof. Let G be N1-group. By 2.19 and 4.19, we may assume that G is a
p-group, for some prime p. Suppose that G is not soluble; then, by 1.92, there
exists a non-soluble subgroup H of G, a finitely generated subgroup F of H, and
a positive integer d, such that every non-soluble sugroup K of H with F ≤ K
has defect at most d in H. Let H = H0 ≥ H1 ≥ . . . ≥ Hd = F be the normal
closur series of F in H, and let B = Hi be the smallest non -solble term of it.
Then FB is soluble, and so K = B/FB is not soluble. Furthermore, all non-
soluble subgroups of K have defect at most d. It then follows from Roseblade’s
Theorem that all non-soluble subgroups of K contain the limit D of the derived
series of K. Then, all proper subgroups of D are soluble and so, by Lemma 6.3,
D is soluble. But then, Lemma 4.20, D is soluble, which is a contradiction.

Having proved that every N1-group is soluble makes of course redundant
this assumption in Theorems like 5.22, 5.28 or in proposition 3.1. Specifically,
for further reference, we restate as a Proposition, an arguemnt used in the proof
of Lemma 6.3.

Proposition 6.5 Let G ∈ N1, and suppose that G is generated by elements of
finite bounded order. Then G is nilpotent of finite exponent.

6.2 Fitting Groups

Proposition 6.5 implies that in a N1 group every element of finite order belongs
to the Fitting radical. In this section, we generalize this by showing that every
N1-group is a Fitting group. This answers a question of D. Robinson, and com-
pletes the information about the inclusion relations among some relevant classes
of locally nilpotent groups, as mentioned in the second volume of [96].

In fact, we shall prove something more, i.e. that in aN1-group every nilpotent
subgroup is contained in a normal nilpotent subgroup.

We start with an observation that is certainly well known.

Lemma 6.6 Let G be a nilpotent group such that its torsion subgroup T has
finite exponent. Then there exists a 1 ≤ k ∈ N such that Gk ∩ T = 1.
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Proof. Let q be the exponent of T .
We first assume that G/T is abelian, and proceed by induction on the min-

imal integer m such that T ≤ ζm(G). If m = 1, then G′ ≤ T ≤ ζ(G). Now, for
all x, y ∈ G, Lemma 1.2 yields

(xy)2q = x2qy2q[y, x]q(2q−1) = x2qy2q.

Thus G2q = {x2q | x ∈ G}. Also, if a = x2q ∈ G2q ∩ T , then 1 = aq = x2q2
. So

x ∈ T and, consequently, a = x2q = 1. Hence G2q ∩ T = 1.
Let now m ≥ 2, and set X = ζ(G) ∩ T . Then T/X is the torsion subgroup
of G/X, and is contained in ζm−1(G/X). By inductive hypothesis, there is a
s ≥ 1 such that Gs ∩ T ≤ X. Now, Gs ∩ T is the torsion subgroup of Gs and is
contained in its centre. By the case m = 1, we have that G2sq ∩X = 1 and so
G2sq ∩ T = G2sq ∩ T ∩Gs = G2sq ∩X = 1.

We now prove the general case by proceeding by induction on the nilpotency
class c of G/T . Let Z/T be the centre of G/T . As Z/T is abelian, there exists, by
the case c = 1 discussed above, an s ≥ 1 such that Y = Zs has trivial intersection
with T . Now, G/Z is torsion-free (see Proposition 2.3). Thus, Z/Y is the torsion
subgroup of G/Y , and has finite exponent. Since the nilpotency class of G/Z is
c− 1, by inductive assumption there exists k ≥ 1 such that (G/Y )k = GkY/Y
has trivial intersection with Z/Y . In other words, Gk ∩ Z ≤ GkY ∩ Z = Y ,
which in turn gives Gk ∩ T ≤ Y ∩ T = 1.

Now, we prove a technical but useful Lemma. Recall (see 5.29) that, for
H ≤ G, H ≤b G means that there exists an integer m ≥ 1 such that gm ∈ H
for all g ∈ G.

Lemma 6.7 Let G ∈ N1 be such that the torsion subgroup A of G is nilpotent,
and G/An is nilpotent for every n ≥ 1. Assume that there exists a finitely
generated subgroup F of G, and an integer d ≥ 1, such that every subgroup H,
with F ≤ H ≤b G, has defect at most d in G. Then there exists c ≥ 1, which
depends only on d and the nilpotency class of G/A, such that every subgroup of
G containing F has defect at most c.

Proof. By Proposition 1.93 we may assume Aω = ∩n≥1A
n = 1. As A is the

torsion subgroup of the locally nilpotent group G, G/A is torsion–free and so it
is nilpotent by Theorem 2.23. Let r be the nilpotency class of G/A, let β(d) as
defined by Theorem 4.14, and set m = max{r, β(d)}+ 1.

Let n ≥ 1. Then G/An is nilpotent by assumption, whence, by Lemma 6.6,
there exists a normal subgroup Mn of G such that Mn ∩ A = An, and G/Mn

has finite exponent; in particular, H ≤b G for any H/Mn ≤ G/Mn. Thus, by
assumption, all subgroups of G/Mn containing the finite subgroup FMn/Mn

have defect at most d. By Theorem 4.14, γm(G/Mn) = γm(G)Mn/Mn is finite.
Also, by choice of m, γm(G) ≤ A, so that γm(G) ∩Mn = γm(G) ∩ A ∩Mn =
γm(G) ∩An. It follows that

γm(G)An

An
∼=

γm(G)
An ∩ γm(G)

=
γm(G)

Mn ∩ γm(G)
∼=
γm(G)Mn

Mn

is finite. By Proposition 1.51, ζ2m(G/An) has finite index in G/An.
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Let H be a subgroup of G be such that AnF ≤ H for some n ≥ 1. Then,
setting Z/An = ζ2m(G/An), we have, by what just proved, that HZ has finite
index in G, and so, by assumption, that its defect is at most d in G. Now, clearly,
H/An has defect at most 2m in ZH/An. Hence H has defect at most 2m in
ZH, and so H has defect at most c = d+ 2m in G. (this holds for all n ≥ 1).

Now, to show that every subgroup H ≥ F has defect at most c in G, we may
well assume that H is finitely generated.

By what proved before, for every n ≥ 1, AnH has defect at most c = 2m+d
in G. Also, by the definition of c, we have that [G,cH] ≤ A. Thus,

[G,cH] ≤
⋂
n≥1

(AnH ∩A) =
⋂
n≥1

An(H ∩A).

But H is finitely generated nilpotent group,, and so A ∩H ≤ tor(H) is finite.
Since we are assuming ∩n≥1A

n = 1, we conclude by Lemma 1.27 that

[GcH] ≤ H ∩A ≤ H.

This proves that H has defect at most c in G.

We now generalize Theorem 5.28.

Theorem 6.8 (H. Smith [107]) Let G be a N1-group. If G is the extension of
a nilpotent group by a group of finite exponent, then G is nilpotent.

For the proof, we need the following observation.

Lemma 6.9 Let A be an abelian p-group, and X an elementary abelian p-group
of automorphisms of A. Then, for every n ≥ 1,

[A,nX]p
n

≤ [A,2nX].

Proof. By induction on n. When n = 1, set A = A/[A,X,X]. Then, for every
a ∈ A and every x ∈ X, [a, x, x] = 1, whence, by 1.2, [a, x]p = [a, xp] = 1,
showing that [A,X]p ≤ [A,X,X]. Let now n ≥ 2, then

[A,nX]p
n

= [[A,n−1X]p
n−1

, X]p

and so, by the inductive assumpiton and case n = 1,

[A,nX]p
n

≤ [[A,2(n−1)X], X]p ≤ [A,2n−2X,2X] = [A,2nX],

thus proving the Lemma.

Proof of Theorem 6.8. Suppose that G is a counterexample to the theorem.
Then, by an obvious inductive argument (using the fact that a N1-group of
finite exponent is nilpotent) we may assume that G admits a normal nilpotent
subgroup N such that G/N is an elementary abelian p-group for some prime
p. Also, by P. Hall’s nilpotency criterion, we may reduce to the case in which
N is abelian. Let A be the torsion subgroup of N . Since G is locally nilpotent
and G/CG(A) is a p-group, it follows that the p′-component of A is central in
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G; thus we may assume that A is a p-group. If T is the torsion subgroup of G,
then T ∩ N = A and T is nilpotent by Theorem 5.28; if R is a subgroup of G
such that G/N = TN/N × R/N , then R is not nilpotent and T ∩ R = A. We
may therefore replace G by R, and assume that A is the torsion subgroup of G;
in particular CG(A) ≥ N .

By Lemma 5.26 we may furthermore suppose that a subgroup H of G is
nilpotent if and only if HN/N is finite. Thus, by Brookes’ trick 1.92, we may
finally assume that there are a finitely generated subgroup F of G and a positive
integer d such that every subgroup H of G which contains F and such that
HN/N is infinite has defect at most d in G. Since FN/N ' F/(F ∩ N) is
finite, FN is nilpotent and normal in G; by invoking again P. Hall’s nilpotency
criterion, we may reduce to the case (FN)′ = 1; in particular, FG ≤ FN is
abelian (and it is easy to see that all other assumptions on Amay be mantained).

For n ≥ 1, let An = Apn

. by Proposition 1.93, we may suppose⋂
n≥1

An = 1. (6.4)

Now, since Ap[A,p x] = Ap[A, xp] = Ap, for every x ∈ G (Lemma 1.14), we
deduce that, for every n ≥ 1, G/An is a bounded Engel group, and so it is
nilpotent by Lemma 5.25. By Lemma 6.6 there exists a normal subgroup Mn

of G, with A ∩Mn = An, Mn ≤ N , and G/Mn a p-group of finite exponent.
By Lemma 5.24, applyed to the group G/Mn, its normal subgroup N/Mn and
FMn/Mn, we deduce that every subgroup of G containing FMn has defect at
most d. This holds for any n ≥ 1, and so we may apply Lemma 6.7 and conclude
that there exists c ≥ 1 such that every subgroup of G containing F has defect
at most c.

Let x1, . . . , xc ∈ G, and X = 〈x1, . . . , xc〉. Then

[A, x1, . . . , xc] ≤ [A,cX] ≤ 〈F,X〉. (6.5)

Also, CX(F ) ≥ X ∩ N E X, whence |X/CX(F )| ≤ pc. Since FG is abelian,
the rank of FX is bounded by rk(F )pc. Moreover, all subgroups of 〈F,X〉/FX

have defect at most c, and so 〈F,X〉/FX is nilpotent of class at most ρ(c) by
Roseblade’s Theorem. Since 〈F,X〉/FX is generated by c elements, it follows
from Proposition 1.46 that its rank is bounded by a function of c. Therefore,
for all choices of x1, . . . , xc ∈ G, the rank of 〈F,X〉 is bounded uniformely by a
value ` (depending on c and rk(F )). In particular, from (6.5) we get

rk[A, x1, . . . , xc] ≤ `. (6.6)

Let now D = [A,2cG]p = Φ([A,2cG]), and write A = A/D. By Lemma 6.9, for
any x1, . . . , xc ∈ G we have

[A, x1, . . . , xc]p
c

≤ [A,2cG] = [A,2cG]/D;

hence [A, x1, . . . , xc] has exponent dividing pc+1. From (6.6), we therefore deduce
that

|[A, x1, . . . , xc]| ≤ p(c+1)`
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for every x1, . . . xc ∈ G. Since G/CG(A) is (elemetary) abelian, we may apply
Lemma 4.15 obtaining that [A,2cG] = [A,2cG]/D is finite. Since D = [A,2cG]p

and [A,2cG] is reduced (by (6.4)), we conclude that [A,2cG] is a normal finite
subgroup of G. Thus, [A,2cG] ≤ ζt(G) for some t ≥ 1. As G/A is nilpotent, we
finally obtain that G is nilpotent.

Corollary 6.10 Let G ∈ N1. If G admits a nilpotent subgroup H with H ≤b G,
then G is nilpotent.

Proof. Let G, H be as in the hypotheses. Then G/HG has bounded exponent
(argue by induction on the defect of H in G). Thus, by Theorem 6.8, G is
nilpotent.

We are now ready to prove the main result of this section.

Theorem 6.11 Let G be a group with all subgroups subnormal, and let S be a
nilpotent subgroup of G. Then SG is nilpotent.

Proof. Let G ∈ N1, S a nilpotent subgroup of G, and W = SG. We fix the
notation A for the torsion subgroup of W . Then W/A is a torsion-free N1-group,
and so it is nilpotent by Theorem 2.23. We want to prove that W is nilpotent.
Arguing by induction on the defect of S in G, we may assume that S is normal
in W . We begin by proving

(1) The torsion subgroup A of W is nilpotent.
By Lemma 4.19, it is enough to show that every primary component of A is

nilpotent. By factoring modulo the product of all p′-components, we may assume
that A is a p-group for some prime p. By induction on the derived lenght of A,
we may also assume that A has a characteristic abelian subgroup X such that
A/X is nilpotent. Now, let c be the nilpotency class of S, and let x ∈ S. Then

[X,c+1 x] = [[X,x],c x] ≤ [S,c x] = 1 .

Let q be a power of p greater than c+1. Then, by Lemma 1.14, every G-invariant
elementary abelian section of X is centralized by xq. This holds for every x ∈
S. It follows that K = 〈(xg)q | x ∈ S, g ∈ G〉 centralizes every G-invariant
elementary abelian section of X. Now, X is normal in G and has an ascending
characteristic series with elementary abelian factor groups, and so it follows that
X ∩ K is hypercentral in K. Since A ∩ K/X ∩ K ∼= X(A ∩ K)/X ≤ A/X is
nilpotent, A∩K is a hypercentral periodic N1-group. By Theorem 5.33, A∩K is
nilpotent. Finally, as W is generated by the conjugates of S, W/K is nilpotent
of finite exponent by Proposition 6.5. In particular, A/A ∩ K is nilpotent of
finite exponent. Hence, by Theorem 5.28, A is nilpotent.

(2) A is abelian.
If W/A′ is nilpotent, then, since A is nilpotent, W is nilpotent by a Theorem

1.54. Hence we may assume A to be abelian.
Let N = [G,S]. Then W = NS and, by Fitting’s Theorem, W is nilpotent

if and only if N is such. We then prove that N is nilpotent. Suppose that N
is not nilpotent. By Corollary 6.10 and Theorem 1.92, there exists a subgroup
H ≤b N , a finitely generated subgroup F of H, and a positive integer d such
that all subgroups L of H with F ≤ L ≤b H have defect at most d in H.
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Now, [S,G] is generated by all the commutators [x, g], with x ∈ S, g ∈ G, and
so there exist a finitely generated subgroup S1 of S, and a finitely generated
subgroup G1 of G, such that, writing V = 〈S1, G1〉

F ≤ [S1, G1] ≤ V ′ .

(3) H satisfies the hypotheses of Lemma 6.7.
Let n ≥ 1. Let B = A ∩ N be the torsion subgroup of N , and let n ≥ 1.

Then B/Bn has finite exponent and is invariant for W . Let x ∈ S; then, as in
point (1), [B,c+1 x] = 1 so, by Lemma 1.16, there exists a q ≥ 1 such that xq

centralizes B/Bn. Arguing as in point (1), we have that, if K = CW (B/Bn),
then W/K has finite exponent, and so N/N ∩K has finite exponent. Since N/B
is nilpotent (because it is torsion-free), we have that (K ∩N)/Bn is nilpotent.
Thus, by Theorem 6.8, N/Bn is nilpotent. This holds for every n ≥ 1, and so
N satisfies the hypotheses of Lemma 6.7. Observe now that, since H ≤b N ,
H satisfies these same hypotheses and so, by Lemma 6.7, every subgroup of H
containing F has defect at most c in H, for some c ≥ 1.

Let U = BV , Y = NU = NV , and U = U0 E U1 E . . . E Un = Y be the
normal closure series of U in Y . For each j, let Rj = Uj ∩ N . Notice that Rj

is normal in Uj and contains BF . Given a j, let Qj = FRj∩H . By Roseblade’s
Theorem, (Rj ∩H)/Qj is nilpotent. Since FRj ∩H ≥ Qj , (Rj ∩H)/(FRj ∩H) is
nilpotent. As Rj ∩H has finite index in Rj , it follows that Rj/F

Rj is nilpotent.
Now, by induction on i, we prove that Ui is nilpotent. This is trivial for i = 0,

as U = BV is a Baer group, and an extension of an abelian group by a finitely
generated group. Thus, assume that Ui is nilpotent. Then Ri is nilpotent and
is normalized by Ui+1. Now, F ≤ V ′ ≤ U ′

i E Ui+1, whence FUi+1 ≤ U ′
i ∩ Ri+1.

Thus, a fortiori, FRi+1 ≤ U ′
i ∩ Ri+1, and, by what we have proved above, we

have that
Ri+1

U ′
i ∩Ri+1

∼=
Ri+1U

′
i

U ′
i

is nilpotent. Since Ui+1/Ri+1 = Ui+1/(Ui+1 ∩ N) is isomorphic to a subgroup
of the finitely generated group Y/N , Ui+1/Ri+1 is finitely generated, and so
Ui+1/(Ri+1 ∩ U ′

i) is nilpotent. In particular, Ui+1/U
′
i is nilpotent, and so, by

P. Hall’s criterion, Ui+1 is nilpotent. This completes the induction. Thus we
conclude that Y = Un is nilpotent, which forces N to be nilpotent.

As a particular case of the previous Theorem, we have the following

Corollary 6.12 A N1-group is a Fitting group.

Another immediate corollary of 6.11 answers a question of H. Smith [102].

Corollary 6.13 Let G be group with all subgroups subnormal. If G = 〈H,K〉
where H,K are nilpotent subgroups, then G is nilpotent.

6.3 Hypercentral and Smith’s groups

We have already seen that periodic hypercentral N1-groups are nilpotent (The-
orem 5.33); thus, this section on hypercentral groups will focus on non-periodic
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(indeed, mixed) groups, beginning with H. Smith’s construction of non-nilpotent
hyperabelian N1-groups, which we have already mentioned on several occasions.
The relevance of the hypercentral case in the study of N1-groups (in particular,
for non–periodic groups) may be for instance gathered from Theorem 6.26.

Smith’s method constructs mixed N1-groups which have some common fea-
tures, but may be adapted to produce hypercentral N1-groups with additional
properties (see [101] and [112]). I will restrict to a full presentation of one single
case (the first produced by Smith).

Theorem 6.14 (H. Smith [101]) There exists a non-nilpotent group G with the
following properties:

(1) all subgroups of G are subnormal;

(2) G is hypercentral of length ω + 1;

(3) if G is locally metacyclic and residually finite;

(4) every subgroup H of G has finite index in the second term HG,2 of its
normal closure series.

Proof. Let p1, p2, p3, . . . be an infinite sequence of distict prime numbers. For
every n ≥ 1, let

Hn = 〈xn, yn | x
pn

n
n = 1 = y

pn−1
n

n , xyn
n = xpn+1

n 〉.

Thus, each Hn is the semidirect product of normal a cyclic group Xn = 〈xn〉 by
a cyclic group 〈yn〉, where yn acts by conjugation on Xn as an automorphism
of order pn−1

n . Let F be the cartesian product of the groups Hn:

F = Carn≥1Hn.

Then F is metabelian and residually finite. Also, clearly, Xn ≤ ζn(F ) for each
n ≥ 1, and so F is hypercentral of length ω + 1.
For every pair n,m ≥ 1 with n 6= m let un,m ∈ N be such that

un,mp
m−1
m ≡ 1 (mod pn

n). (6.7)

Let z̄ be the element of F defined by z̄(i) = x−1
i for every i ≥ 1; and, for each

n ≥ 1, let x̄n, ȳn ∈ F such that

x̄n(i) =
{
xn if i = n
1 if i 6= n

ȳn(i) =
{
yn if i = n

x
−ui,n

i if i 6= n
(6.8)

Notice the following commutator relations; for every n,m ≥ 1:

[x̄n, ȳm] = x̄pn
n if m = n

[x̄n, ȳm] = 1 if m 6= n

[ȳn, ȳm] = x̄
pnun,m
n x

−pmum,n
m if m 6= n

[ȳn, z] = x̄pn
n

(6.9)
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Also, from (6.7), for every n ≥ 1 we have

ȳ
pn−1

n
n = x̄nz. (6.10)

We then consider the subgroup G of F :

G = 〈x̄n, ȳn, z | n ≥ 1〉.

LetX = Dirn≥1Xn = 〈x̄n | n ≥ 1〉. ThenX is normal in G, it is periodic, locally
cyclic, and contained in ζω(G). By the relations (6.9) we also have that X ≥ G′,
and that G/X is an abelian group of rank 1 (a subgroup of the additive group of
the rationals). Thus, X is the torsion subgroup of G, and G is locally metacyclic.
Furthermore G is residually finite because such is F . Hence G satisfies property
(3) in the statement.

Then observe that the fourth relation in (6.9) implies that, for every n ≥ 1,
[z,n−1 ȳn] 6= 1. Hence z 6∈ ζω(G), and so G is hypercentral of length ω + 1, i.e.
property (2) in the statement is satisfied by G.

We now prove that every subgroup of G is subnormal and satisfies (4). Let
A = X〈x〉; then A is an abelian normal subgroup of G, and G/A is a direct
product of cyclic pn-groups.

Let S ≤ G. If S ∩A = S ∩X, then

S

S ∩X
=

S

S ∩A
=
SA

A

is periodic, hence S is periodic and so S ≤ X, which implies that S is subnormal
of defect at most 2 in G

Suppose S∩A > S∩X. Then there exist x ∈ X and r > 0 such that xzr ∈ S.
Since x has finite order, we get that there exists s > 0 such that zs ∈ S. Let

X∗ = 〈x̄n | (pn, s) = 1〉.

We prove that X∗ normalizes S. Let g ∈ S; then there exist an element a ∈ A
and integers t ∈ N, β1, . . . βt ≥ 1, such that

g = aȳβ1
i1
· · · ȳβt

it
.

Let n ≥ 1 with (pn, s) = 1. Then [x̄n, g] = [x̄n, ȳ
β1
i1
· · · ȳβt

it
.]. Hence [x̄n, g] = 1 ∈ S

if n 6∈ {i1, . . . , it}; otherwise, n = jj for some j ∈ {1, . . . , t} and, letting β = βj ,

[x̄n, g] = [x̄n, ȳ
β
n]. (6.11)

Now, since G/A is abelian, by (6.10) there is a p′n-number k such that gk = a′ȳβ
n.

Then S 3 [zs, gk] = [z, gk]s = [z, ȳβ
n]s. Now, by (6.9), [z, ȳβ

n] = [x̄−1
n , ȳβ

n]
belongs to 〈x̄n〉, and so has order coprime to s. It then follows that

[x̄n, g] = [x̄n, ȳ
β
n] = [z, ȳβ

n]−1 ∈ 〈[zs, gk]〉 ≤ S.

Thus, we have proved that X∗ normalizes S. Let the X∗ = 〈x̄n | pn s〉. Then
X∗ is a finite normal subgroup of G, and X = X∗X∗. Hence

SG,2 = S[G,2 S] ≤ S[X,S] = S[X∗X∗, S] = S[X∗, S] ≤ SX∗,
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so |SG,2 : S| is finite, and property (4) is satisfied. Finally, X∗ is contained in
some term ζm(G) of the upper central series of G; therefore

[G,m+1 S] ≤ [X,m S] ≤ S[X∗,m S] ≤ S.

This shows that S is subnormal and completes the proof.

H. Smith’s method, in all of its occurencies in papers, gives groups of hyper-
central length ω + 1, and it is not immediate how it could be implemented in
order to obtain hypercentral N1-groups of different type. In particular, we ask

Question 5 For every integer n ≥ 1 construct a hypercentral N1-group of
length ω + n (or prove that there are not any).

The above question is also motivated by the fact that there do not exist
hypercentral N1-groups of length exactly ω; this was proved by H. Smith [113]
(see also [16]).

Theorem 6.15 Let G be a hypercentral group of hypercentral length at most ω.
If all subgroups of G are subnormal, then G is nilpotent.

Proof. Let G ∈ N1 be hypercentral of hypercentral length at most ω. This
means that G =

⋃
n∈N ζn(G).

By Theorem 1.92 and Corollary 6.10, there exist a subgroup H ≤b G, a
finitely generated subgroup F of H, and a positive integer d, such that all
subgroups K of H, with F ≤ K ≤b H have defect at most d in H. Since
H ≤b G and F ≤ ζn(G) for some n ∈ N, we may assume F = 1 and H = G.

Let A be the torsion subgroup of G. By Theorem 5.33, A is nilpotent, hence,
by 1.54, we may also assume that A is abelian. If G/An is nilpotent for all n ≥ 1,
then G is nilpotent by Lemma 6.7 and Roseblade’s Theorem 4.9. So, we are left
with the case in which A is an abelian group of finite exponent. Let C = CG(A).
Then, by Lemma 1.16, G/C is periodic. Now A ≤ C and C/A is torsion-free
and thus nilpotent. Hence, C is nilpotent and, by Lemma 6.6, there exists an
integer k ≥ 1 such that Ck ∩ A = 1. Now, Ck E G, and G/Ck is periodic and
hypercentral. Thus G/Ck is nilpotent. Since G/A is also nilpotent, we conclude
that G = G/(A ∩ Ck) is nilpotent.

Recently, Martinelli ([70]) gave a more complete statement, which further
motivates Question 5.

Theorem 6.16 Let G be a hypercentral non–nilpotent group in N1. Then G
has hypercentral length ω + n for some 1 ≤ n ∈ N.

In the same work, Martinelli provides an extension of Theorem 5.29, by
showing that a residuially nilpotent N1-group is hypercentral. To approach the
proof of this, let us first introduce the class X0 of all locally nilpotent groups G
such that A = tor(G) is nilpotent and G/An is also nilpotent for every n ≥ 1.

Lemma 6.17 Let G ∈ N1 and H ≤b G. If H ∈ X0 then G ∈ X0.
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Proof. Let G ∈ N1, H ≤b G with H ∈ X0, and write N = HG. Then G/N
has finite exponent, and in particular, if B = tor(N), B ≥ (tor(H))m for some
m ≥ 1. From this it easily follows that N ∈ X0.

Let A = tor(G); then B = A ∩ N and A/B ' AN/N has finite exponent.
Since B is nilpotent, we have that A is nilpotent by Theorem 5.28.

Now, let n ≥ 1. Then An ≥ Bn, and so, by assumption, AnN/An is nilpotent.
Thus, G/An is the extension of the nilpotent normal subgroup of AnN/An by a
group of finite exponent. From Theorem 6.8 we conclude that G/An is nilpotent,
thus proving that G belongs to X0.

We also need to strenghten Proposition 1.93.

Lemma 6.18 Let G ∈ N1, and let A be a normal nilpotent and periodic sub-
group of G. Then there exists an integer m ≥ 0 such that

(A/N)ω ≤ ζm(G/N)

for any normal subgroup N of G contained in A.

Proof. We may assume that G/A is countable (this is slightly less immediate
than in the proof of 1.93: if the property fails for some G, then for every pos-
itive integer n there exist a normal subgroup Nn ≤ A and a finitely generated
subgroup Xn of G such that [(A/Nn)ω,nXn] 6= 1; then consider the subgroup
of G generated by A and Xn for every n ≥ 0). Thus, let {Ax1, Ax2, Ax3, . . .} be
an enumeration of the elements of G/A.

Now, as in the proof of 1.93, using the chain of finitely generated nilpotent
groups 〈x1〉 ≤ 〈x1, x2〉 ≤ . . ., one shows that there exists a subgroup U of G,
with A ∩ U = 1, and the property that for each x ∈ G there exists 1 ≤ k ∈ N
such that xk ∈ U (this last property follows from the fact it holds modulo A by
construction of U , A is normal and periodic, and U is subnormal in AU). Let
m be the defect of U in G; and let N be a normal subgroup of G contained in
A. Then A ∩NU = N(A ∩ U) = N , and so, writing A = A/N , U = UN/N ,

[A,d U ] ≤ A ∩ U = 1.

Let x1, . . . , xm ∈ G, and let k1, . . . , km ∈ N with xki
i ∈ U . By Lemma 1.21

[A
ω
, Nx1, . . . , Nxm] ≤ [A, 〈Nxk1

1 〉, . . . , 〈Nxkm
m 〉] ≤ [A,d U ] = 1,

and this proves the Lemma.

Recall from Chapter 1 (section 1.2), that a group G is hypocentral if {1} is
a term of the extended lower central series of G. For a group G we also write

γω(G) =
⋃

1≤n∈N
γn(G);

thus G is residually nilpotent if and only if γω(G) = 1.

Theorem 6.19 Let G ∈ N1. Then the following conditions are equivalent.

(1) G ∈ X0;
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(2) G is hypercentral;

(3) γω(G) ≤ ζm(G) for some m ∈ N;

(4) G is hypocentral.

Proof. Let G be a N1-group with G ∈ X0, and let A = tor(A). We first prove
the following claim:

there exists m ≥ 1 such that
γm(G)An

An
is finite for all n ≥ 1. (6.12)

Clearly, we may assume that G is not nilpotent. However, G/A is nilpotent
by Theorem 2.23; let c be the nilpotency class of G/A. We first assume that
there is a finitely generated subgroup F of G, and a positive integer d, such
that every H ≤b G containing F has defect at most d. Let β(d) as defined in
Theorem 4.14, and let m = max{c, β(d)}+1. Fix n ≥ 1. Then G/An is nilpotent
by hypothesis, and so, by Lemma 6.6, there exists a normal subgroup Mn of
G such that Mn ∩ A = An, and G/Mn has finite exponent. Now, FMn/Mn

is finite, and for each H/Mn ≤ G/Mn, H ≤b G. Thus, by our assumption,
all subgroups of G/Mn containing the finite subgroup FMn/Mn have defect at
most d. By Theorem 4.14, γm(G/Mn) = γm(G)Mn/Mn is finite. Also, by choice
of m, γm(G) ≤ A, so that γm(G) ∩Mn = γm(G) ∩ A ∩Mn = γm(G) ∩ An. It
there follows that

γm(G)An

An
∼=

γm(G)
An ∩ γm(G)

=
γm(G)

Mn ∩ γm(G)

is finite. For the general case, by Theorem 1.92 we know that there existsH ≤b G
which satisfies the condition we have assumed above. Since G/HG has finite
exponent, B = A ∩H ≥ Ak for some k ≥ 1. This implies that for each n ≥ 1,
Bn ≥ Akn and H/Bn, being a section of G/Akn, is nilpotent by hypothesis.
Thus, there is a m ≥ 1 such that γm(H)Bn/Bn is finite for all n ≥ 1. So,

γm(H)An

An
∼=

γm(H)
An ∩ γm(H)

being a factor of γm(H)/(γm(H) ∩ Bn) it is finite. Let H E H1. Then γm(H)
is normal in H1. Since H1/H has finite exponent, Theorem 6.8 yields that
H1/γm(H) is nilpotent, that is γs(H1) ≤ γm(H) for some s ∈ N. Then we
have that γs(H1)An/An is a subgroup of γm(H)An/An and so it is finite. By
repeating this argument along the normal closure series of H in G, we finally
get claim (6.12).

Now we prove implication (1) ⇒ (2). We suppose that G ∈ X0 is a coun-
terexample, and thus that it is not hypercentral. By Lemma 1.87 and Brookes’
trick 1.92, we then have that there exist a (non-hypercentral) subgroup H of
finite index in G, a finitely generated subgroup F of H, and a positive integer
d, such that every finite index subgroup of H containing F has defect at most
d in H. By Lemma 1.87, we may assume H = G. As above, let A be the tor-
sion subgroup of G. By 1.93, we may assume Aω = 1. Let m ≥ 1 as definied
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in claim (6.12); then, arguing as in the second half of the proof of Lemma 6.7
(using claim (6.12) in place of the first half), one shows that every subgroup of
G containing F has defect at most c = 2m+ 1. But then, by Theorem 4.18 we
have that G is hypercentral.

(2) ⇒ (1). Let G be a hypercentral N1-group. Then its torsion subgroup A
is nilpotent by Theorem 5.33. Let n ≥ 1 and Cn = CG(A/An); G/Cn is periodic
by Corollary 1.21, and since ACn/A

n is nilpotent, it follows from Lemma 6.6
that there exists a normal subgroup Mn of ACn such that Mn ∩ A = An and
ACn/Mn has finite exponent. Hence, G/Mn is periodic and therefore nilpotent
by Theorem 5.33. Since G/A is nilpotent (being torsion–free) we get that G/An

is nilpotent for every n ≥ 1, and so G is a Xo-group.

(1) ⇒ (3). Let G ∈ N1 be a Xo-group, and let A = tor(G). Then, by the
definition of X0, and the fact that, as a torsion–free N1-group, G/A is nilpotent,
it follows that

γω(G) =
⋂
n≥0

γn(G) ≤ Aω.

Since A is nilpotent by assumption, 1.93 implies that Aω ≤ ζm(G) for some
m ∈ N.

(3) ⇒ (4). This is clear by the definition of extended lower central series.

(4) ⇒ (1). Let G be a hypocentral N1-group. Then its torsion subgroup A
is nilpotent by Theorem 5.29, and so there exists a positive integer m which
satisfies the conclusion of Lemma 6.18.

Suppose that G does not belong to X0; then, by Lemma 6.17 and Theorem
1.92, we may assume that there exists a finitely generated subgroup F of G and
a positive integer d such that all subgroups H ≤b G that contain F have defect
at most d in G. G/A is nilpotent of class, say, r.

Let t ≥ r (so that γt(G) ≤ A), and write D/γt(G) = (A/γtG))ω. Now,
G/γt(G) is trivially a X0-group, and application of Lemma 6.7 to it yields that
all subgroups of G/D that contain FD have defect at most c, where c depends
only on r and d. As, by Lemma 6.18, [D,mG] ≤ γt(G), we conclude that every
subgroup of G that contains Fγt(G) has defect at most c +m in G. Now, this
holds (with the same c and m) for every t ≥ r; then, if U is a finitely generated
subgroup of G containing F , we have

[G,c+m U ] ≤
⋂
t≥r

(Uγt(G) ∩A) =
⋂
t≥r

γt(G)(U ∩A) = γω(G)(U ∩A)

where the last equality holds because U ∩ A is finite. This implies that every
subgroup of G that contains Fγω(G) has defect at most c + m in G. Thus
G/γω(G) is hypercentral by Theorem 4.18.

Let K = γω+m+1(G); then G/K is also hypercentral and so it is a X0-group
by the already proved implication (2) ⇒ (1). But then, if Y/K = (A/K)ω,
γω(G) ≤ Y (by definition of X0) and Y/K ≤ ζm(G/K) (by Lemma 6.18). Hence
K ≥ γω+m(G). Since G is hypocentral, it follows that

K = γω+m+1(G) = γω+m(G) = 1.

Hence G is hypercentral and a X0-group.



6.4. THE STRUCTURE OF PERIODIC N1-GROUPS 119

6.4 The structure of periodic N1-groups

In this final section, we prove that a N1-group is metanilpotent, and, in particu-
lar, that a periodic N1-group is the extension of a nilpotent group by an abelian
divisible group of finite rank.

In a Heineken–Mohamed group G, G′ is nilpotent and the factor group G/G′

is a Prüfer group Cp∞ . As we have seen in Chapter 3, this has to be the case
if all proper subgroups of G are nilpotent and subnormal. Here, we prove that
a similar conditon is satisfied in general by periodic groups with all subgroups
subnormal.

Let A be an abelian p-group. For i ∈ N we set

Ωi(A) = {a ∈ A | api

= 1}.

Then Ωi(A) ≤ A and, for all i ∈ N, Ωi+1(A)/Ωi(A) is an elementary abelian
p-group. We say that an abelian p-group A is large if Ωi+1(A)/Ωi(A) is infinite
for all i ∈ N; otherwise we say that A is small. It is easy to see that an abelian
p-group is small if and only if it is the direct product of a divisible group of
finite rank by a group of finite exponent.

Lemma 6.20 Let G ∈ N1 be a p-group, and A a normal elementary abelian
subgroup of G, such that G′ ≤ A. Then G/CG(A) is small.

Proof. Let G be a counterexample, and let C = CG(A). Observe that G/C
is abelian. Let Θ be the family of all subgroups X of G such that XC/C is
large. By Lemma 1.92, there exists a Θ-subgroup H of G, a finitely generated
subgroup F of H, and a positive integer d, such that every Θ-subgroup of H
containing F has defect at most d in H. For each i ≥ 0 we set

Hi/(H ∩ C) = Ωi(H/(H ∩ C)) = 〈g ∈ H | gpi

∈ C〉.

Then, as H/H ∩C ∼= HC/C is large, Hi+1/Hi is an infinite elementary abelian
p-group for all i ≥ 0. Also Hi is nilpotent, by Theorem 5.28, since Hi ∈ N1

is the extension of the normal nilpotent subgroup H ∩ C by a group of finite
exponent.

Now, as G is a locally nilpotent p-group, F is finite. If all subgroups of H
containing F have defect at most d in H, then H is nilpotent by Theorem 4.14.
But in that case, by Lemma 5.30, HZ/Z has finite exponent. Since Z ≤ C, it
follows that HC/C has finite exponent, contradicting the choice of H ∈ Θ.

Thus, there exists a subgroup K ≥ F of H, such that d(K,H) ≥ d + 1.
Then [H,dK] 6≤ K. It follows that there exists a finitely generated subgroup
V = V0 of K, such that [H,d V ] 6≤ K. Clearly, we may assume that F ≤ V .
Let a ∈ [H,d V ] \ V , and let m be the smallest integer such that V ≤ Hm. By
induction on i we construct a series

V = V0 ≤ V1 ≤ . . . ≤ Vi ≤ . . .

of finite subgroups of H such that, for all i ∈ N, a 6∈ Vi, Vi ≤ Hm+i, and∣∣∣∣ Vi+1

Vi+1 ∩Hm+i

∣∣∣∣ = pi+1.
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Suppose we have already found V0, . . . , Vi. Then, by Theorem 5.23, applied to
the nilpotent groupHm+i+1 moduloHm+i, there exists a subgroupX ofHm+i+1

such that Vi ≤ X, a 6∈ X, andX/(X∩Hm+i) ∼= XHm+i/Hm+i is infinite. Hence,
we may choose elements x0, x1, . . . , xi in X such that

〈x0, . . . , xi〉Hm+i

Hm+i

has order pi+1. We put Vi+1 = 〈Vi, x0, . . . xi〉 ≤ X ≤ Hm+i+1. Then a 6∈ Vi+1,
and Vi+1/(Vi+1 ∩Hm+i) ∼= Vi+1Hm+i/Hm+i has order pi+1.

We now consider the subgroup

Y =
⋃
i∈N

Vi.

Then, by construction, F ≤ Y ≤ H, and a 6∈ Y . We show that Y ∈ Θ. Suppose,
by contradiction, that Y = Y C/C is small. Then there exist positive integers
n, k such that |Ωn+1(Y )/Ωn(Y )| ≤ pk. By elementary facts on abelian p-groups,
it follows that |Ωj+1(Y )/Ωj(Y )| ≤ pk for all j ≥ n. For all i ∈ N, let Yi/(Y ∩C) =
Ωi(Y/(Y ∩C)). Then Yi/(Y ∩C) ∼= Ωi(Y ), and Yi = Hi∩Y . Let t ≥ max{n, k}.
Then, we have

pk ≥
∣∣∣∣Ωt+m+1(Y )

Ωt+m(Y )

∣∣∣∣ =
∣∣∣∣Yt+m+1

Yt+m

∣∣∣∣ .
But, by construction of Y ,

Yt+m+1

Yt+m
=
Ht+m+1 ∩ Y
Ht+m ∩ Y

∼=
(Ht+m+1 ∩ Y )Ht+m

Ht+m
≥ Vt+1Ht+m

Ht+m

has order at least pk+1, and this gives a contradiction.
Hence Y ∈ Θ, and so, by the choice of H, Y has defect at most d in H. But

then,
a ∈ [H,d V ] ≤ [H,d Y ] ≤ Y

which is the final contradiction.

Lemma 6.21 Let G be a p-group, and D a divisible subgroup of G of finite rank
such that G′ ≤ D ≤ Z(G).

(1) If G/D is small, then G is the extension of a group of finite exponent by
an abelian divisible group of finite rank.

(2) If G/D is large, then there exists a large abelian subgroup X of G such that
D ∩X = 1.

Proof. (1) Suppose that G/D is small. Then G/D is the direct product of a
divisible group D1/D of finite rank by a group of finite exponent. Since D1 is
then a divisible subgroup of the nilpotent p-group G, D1 ≤ Z(G) by Lemma
1.18. Thus, we may assume that G/D has finite exponent pn. Let g, x ∈ G.
Then gpn

and [x, g] belong to D ≤ Z(G), whence

[x, g]p
n

= [x, gpn

] = 1.
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Hence G′ is a subgroup of finite exponent of D. Now, D/G′ is a divisible sub-
group of the abelian group G/G′, so there exists a direct summand H/G′ of
D/G′ in G/G′. Then, H E G has finite exponent, and G/H ∼= D/G′ is divisible
of finite rank.

(2) Suppose that G/D is large. Since D has finite rank, A = Ω1(D) is
finite. Now, the same argument used to construct Y in the proof of the previous
Lemma, can be employed to find a subgroup H of G such that H/H ∩D is large
and H ∩A = 1. But, trivially, this forces H ∩D = 1, whence H is abelian, large,
and has trivial intersection with D.

Lemma 6.22 Let G ∈ N1 be a p-group, such that G′ is nilpotent. Then there
exists a normal nilpotent subgroup N of G such that G/N is an abelian divisible
p-group of finite rank.

Proof. Let H = G′, and C the centralizer in G of H/H ′Hp. Then H ≤ C
and C/H ′Hp is nilpotent. By Lemma 1.1, it follows that C/H ′Hpn

is nilpotent,
for all i ∈ N. Thus, if K/H ′ = (H/H ′)ω, C/K is residually nilpotent. By
Theorem 5.29, C/K is nilpotent. We then have, by Lemma 1.93, that C/H ′ is
nilpotent. Since H is nilpotent by assumption, Theorem 1.54 allows to conclude
that C is nilpotent. Now, by Lemma 6.20 applied to G/H ′Hp, G/C is a small
abelian p-group. By what we have observed earlier, G/C is the direct product
(D/C) × (N/C) where D/C is a divisible p-group of finite rank, and N/C is
a group of finite exponent. By Theorem 5.28, N is nilpotent. Since G/N is
isomorphic to D/C, the proof is done.

Theorem 6.23 Let G be a periodic group with all subgroups subnormal. Then
G has a normal nilpotent subgroup N such that G/N is an abelian divisible
group of finite rank.

Proof. Let G be a periodic N1-group. By Lemma 4.19, we may assume that G is
a p-group, for some prime p. G is soluble by Möhres Theorem 6.4. We proceed by
induction on the derived length of G. Then, by inductive assumption, H = G′ is
the extension of a normal nilpotent subgroup by a divisible abelian subgroup of
finite rank. Among such normal nilpotent subgroups of H, choose K such that
the rank r of the divisible group H/K is as small as possible (possibly r = 0).
By Theorem 6.11, KG is nilpotent. Also, H/KG is divisible of rank at most r,
so we may take K to be normal in G.

Now, G/K is nilpotent by Lemma 1.93, and H/K is central in G/K by
Lemma 1.18. Thus, we are in a position to apply Lemma 6.21 to the group
G/K. Assume first that G/H is small. Then G/K is the extension of a normal
subgroup N/K of finite exponent, by an abelian divisible group of finite rank.
By Theorem 5.28, N is nilpotent, and we are done.

Thus, assume that G/H is large. Let W/K be a normal subgroup of G/K
maximal such that W ∩H = K. We claim that G/HW is small. Suppose not,
then by Lemma 6.21 there exists a large abelian subgroup X/W of G/W such
that X ∩ HW = W . Then X ∩ H = K and X/K ∼= XH/H is abelian. By
Lemma 6.22, X admits a normal nilpotent subgroup U ≥ K such that X/U is
divisible of finite rank. ByTheorem 6.11, UG is nilpotent, UG ≤ HU and, by
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the choice of K, as H/(H ∩ UG) is divisible, the rank of H/(H ∩ UG) is r. It
follows that (H ∩ UG)/K ∼= UG/U is finite. Now, XUG/UG ∼= X/(UG ∩X) is
a divisible subgroup of the nilpotent p-group G/UG. By Lemma 1.18, XUG is
normal in G, i.e. XUG = XG. Moreover,

XG/X = XUG/X ∼= UG/(UG ∩X) = UG/U ∼= (H ∩ UG)/K

is finite. Then, there exists an integer n ≥ 0 such that, if M = (XG)pn

, then
M ≤ X. Now, X ≥ WM E G, and WM ∩ H = K. By the choice of W , we
get M ≤ W , which implies in particular Xpn ≤ W , contradicting the fact that
X/W is large.

Thus G/HW is small. Again by Lemma 6.22, W has a normal nilpotent
subgroup U ≥ K (which we may assume to be normal in G by [13]) such that
W/U is divisible of finite rank. Since HW/W ∼= H/K is divisible of finite rank
and G/HW is small, we have that G/U is the extension of a divisible abelian
subgroup of finite rank by an abelian group of finite exponent. By applying the
same argument used in the case G/H small, we get the desired conclusion.

Remark. It follows from examples constructed by W. Möhres (Proposition
3.19), that the rank of G/N in the above statement cannot be bounded further.
In fact, let n ≥ 1, llet G be a p-group as in the statement of 3.19, and suppose
that N is a nilpotent subgroup containing G′. It is then a standard argument,
since Z(G) = 1 and G′ is elementary abelian, to show that N/G′ does not
contain any copy of Cp∞ , and so that the rank of G/N cannot be less that n.

Let us also mention a curious corollary of 6.23, that maybe confirms the
impression that periodic N1-groups do not differ much from Heineken-Mohamed
groups. These latter have no proper non-nilpotent subgroups; for the general
case we have:

Corollary 6.24 Let G be a periodic group in N1. Then there exists d ≥ 1 such
that every non-nilpotent subgroup of G has defect at most d.

(Smith’s residually finite N1-groups show that this is not the case for non-
periodc groups).

Theorem 6.23 comprises all other results on periodic N1-groups that we have
included in these notes; as such, together with the nilpotency of the torsion-free
case (Theorem 2.23), it represents a reaching point in the effort of describing
N1-groups. What is not yet very well understood is the mixed case; by applying
together Theorems 6.23 and 2.23, we have the following fact.

Theorem 6.25 Let G be a group with all subgroups subnormal. Then there
exists a normal nilpotent periodic subgroup N of G such that G/N is nilpotent.

Proof. Let G ∈ N1, and let T be the torsion subgroup of G. Then, by Theorem
2.23, G/T is nilpotent. Also, by Theorem 6.23, there exists a normal nilpo-
tent subgroup K of T such that T/K is a periodic divisible abelian group. By
Theorem 6.11, N = KG is nilpotent. Now, T/N is a normal periodic divisible
abelian subgroup of G/N . Since G/T is nilpotent, by Lemma 1.93 we conclude
that G/N is nilpotent, thus proving the Theorem.
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Question 6 Is it true that a N1-group is the extension of a nilpotent group by
a periodic (abelian) group of finite rank?

In this direction, using 6.23 and some of the techniques developed in sections
6.2, 6.3, the following result can be proved.

Theorem 6.26 Every N1-group is the extension of a hypercentral group by an
abelian periodic divisible group of finite rank.

I will not include here a proof of this: it will (possibly) appear elsewhere.
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Chapter 7

Beyond N1

7.1 Generalizing subnormality

Having reached a reasonably good knowledge of the classN1, what is perhaps the
most immediate question is to ask for groups in which every subgroup satisfies
one of the natural generalizations of subnormality; like seriality, ascendancy or
descendacy.

Serial subgroups. Imposing seriality to all subgroups is not a very restrictive
conditions. By Corollary 1.63, all locally nilpotent groups satisfy it, and we
mentioned J. Wilson’s construction in [121] of infinite finitely generated p-groups
in which every subgroup is subnormal (we notice that, following Wilson’s line,
one may also construct finitely generated non-nilpotent torsion-free groups in
which every subgroup is serial). The groups constructed by Wilson, being of
Golod-type, are also residually finite, and therefore belong to the class of locally
graded groups. On the other hand it is clear that groups in the class W and all
subgroups serial are locally nilpotent1.

Descendant subgroups. A subgroup H of the group G is descendant if it is a
term of a descending series of G. Like seriality, for finite groups descendancy is
equivalent to subnormality. Thus, the class D of groups all of whose subgroups
are descendant is a class of generalized nilpotent groups. The following is an
easy observation.

Lemma 7.1 A group G belongs to the class D if and only if HK < K for all
H < K ≤ G.

However, it is not even clear if groups in D are locally nilpotent. Consideration of
the infinite dihedral group D∞ shows that (contrary to ascendancy) to assume
that all cyclic subgroups of a group G are descendant is not enough to ensure
local nilpotency of G. More generally, we make the following remark.

Proposition 7.2 Let G be a countable residually nilpotent group. Then every
finite and every nilpotent subgroup of G is descendant.

1Recall from Cahpter 1 that a group G belongs to the class W if every finitely generated
subgroup of G either is nilpotent or has a non-nilpotent finite image.

125
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Proof. Let F be a finite subgroup of the residually nilpotent group G. Then all
subgroups γn(G)F (n ∈ N) are subnormal in G, so their chain can be refined
to get a descending series of G. Now,

⋂
n∈N γn(G) = 1, so by Lemma 1.27,

F =
⋂

n∈N γn(G)F , showing that F is descendant.
Suppose now that the subgroup H of G is nilpotent; we show by induc-

tion on its nilpotency class c that H is descendant. If c = 1 H is abelian;
by Lemma 1.29 CG(H) =

⋂
n∈N γn(G)CG(H), so CG(H) is descendant and

thus H is descendant. Let c > 1 and let Y = CG(ζ(H)). By the same ar-
guemnt used before Y =

⋂
n∈N γn(G)Y is descendant. Now, Y is residually

nilpotent and Z = ζ(Y ) =
⋂

n∈N γn(Y )Z, so Y/Z is residually nilpotent. Now
HZ/Z ' H/(H ∩ Z) = H/ζ(H) is a nilpotent subgroup of Y/Z of class c − 1,
and by inductive assumption HZ is descendant in Y , but H E HZ so H is
descendant in Y . Since Y is descendant in G, we conclude that H is descendant
in G.

Remembering that a free group is residually nilpotent, we have,

Corollary 7.3 In a countable free group every cyclic subgroup is descendant.

Apparently, it is not known whether there exits a finitely generated infinite p-
group which is residually finite and such that every subgroup of it is either finite
or has finite index. If such a group exists, then, by what observed above, it will
have all subgroups descendant.

Question 7 Does there exists a non-trivial perfect (locally nilpotent) group in
which all subgroups are descendant?

Ascendant subgroups. The class of groups in which every subgroup is ascen-
dant is of course the class N of all groups satisfying the normalizer condition.
Apart from the basic facts that we recalled in Chapter 1 (it is a class of Gru-
enberg groups that contain every hypercentral group), little more I know in
general about this class. The following old question is still open.

Question 8 Is every group N -group hyperabelian?

Now, this seems very difficult, but nevertheless I think that some of the tech-
niques developed for studiyng N1-groups, in addition to other conditions (like
solubility) may prove fruitful also for the broader class N . For insatnce, Möhres,
using the methods we reported in chapter 5, has proved the following.

Proposition 7.4 Let G be an N -group which is the extension of a nilpotent
p-group of finite exponent by an elementary abelian p-group. Then G is hyper-
central.

The following question is now natural.

Question 9 Is a soluble N -group of finite exponent hypercentral?

and its corrispective in the torsion-free case.

Question 10 Does there exist a (soluble) torsion-free N -group with trivial cen-
tre?
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Local subnormality. A class which is intermediate between N1 and N is the
class (which we denote by N2) of groups in which every subgroup is locally
subnormal; where a subgroup H of a group G is called locally subnormal if
H / / 〈H,X〉 for all finite X ⊆ G.

Trivially, in a locally nilpotent group every finitely generated subgroup is
locally subnormal. Thus, the existence of locally nilpotent groups with trivial
Gruenberg radical shows that a locally subnormal subgroup need not be ascen-
dant. On the other hand, it is clear that a group in which every subgroup is
locally subnormal satisfies the normalizer condition, and so it is locally nilpo-
tent.

Example 3.9 Let G = Cp∞ o X, where X = 〈x〉 is cyclic of order p2. G is
hypercentral by Lemma 6.5. Let C ' Cp∞ be one of the coordinate subgroups
in the base group of G, and H = 〈C, xp〉. Then H ' Cp∞ o Cp and, clearly,
〈H,x〉 = 〈C, x〉 = G. On the other hand, H is ascendant but not subnormal in
G, so H is not locally subnormal.

This example shows that the class N2 does not contain all hypercentral groups,
and so it is a proper subclass of N (and clearly contains N1, in particular the
Heineken-Mohamed groups which are not hypercentral). Every direct product
of nilpotent groups and, more generally, every hypercentral group of length ω
is a N2-group, while the infinite dihedral 2-group is a N2-group which is not a
Fitting group. I do not know much more about this class of locally nilpotent
groups.

Question 11 Is every group in N2 hyperabelian?

Of course, this will follow from a positive answer to question 8; in general, the
questions we suggested for the class N make sense for the smaller class N2 too.

Other generalizations of subnormality. A subgroup H of a group G is
almost subnormal if H has finite index in a subnormal subgroup of G, and
virtually subnormal if H is subnormal in a subgroup that has finite index in
G. Both these definitions are included in that of f -subnormality, introduced by
Phillips [91]: a subgroup H of G is f -subnormal if there exists a finite series
H0 = H ≤ H1 ≤ . . . ≤ Hn = G such that |Hi : Hi−1| < ∞ or Hi−1 E Hi for
every i ∈ {1, . . . , n}.

When applied to a single subgroup, these conditions are all different, but
things change if we consider all subgroups.

Proposition 7.5 (see [19]) For any group G the following are equivalent:

(1) every subgroup of G is almost subnormal;

(2) every subgroup of G is virtually subnormal;

(3) every subgroup of G is f-subnormal.

We denote by SF the class of groups in which every subgroup is f -subnormal.
For finitely generated groups there is a neat characterization of such groups.
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Theorem 7.6 ([64], Theorem 6.3.3) A finitely generated group is finite by nilpo-
tent if and only if every subgroup is f-subnormal.

For the general case, we have the following

Theorem 7.7 (Casolo, Mainardis [19], [20]) Let G be an SF -group, and let
D(G) be the subgroup generated by the nilpotent residuals of the finitely generated
subgroups of G. Then

(1) D(G) is finite by nilpotent and contained in the torsion part of the FC-
centre of G;

(2) G/D(G) ∈ N1;

(3) G is finite by solvable;

(4) if G is torsion-free then G is nilpotent;

(5) if G is periodic then G is finite-by-N1.

Stronger conditions than those assumed in Theorem 7.7 have been considered. In
these cases, the results should be viewed as generalizations both of Roseblade’s
Theorem and of a Theorem of B. Neumann saying that: The derived subgroup of
a group in which every subgroup has finite index in its normal closure is finite.
We mention only a couple of these results.

Theorem 7.8 (Lennox [63]) Let G be a group and suppose that there exists
positive integers m, n such that |HG,n : H| ≤ m, for all H ≤ G. Then

|γµ(m+n)(G)| ≤ m!

for some integer µ(n+m).

In the same paper, Lennox obtains similar results for those groups G in which
every subgroup is subnormal of bounded defect in a subgroup of finite bounded
index in G, and for SF-groups with suitable bounds imposed on the finte–by–
subnormal series (see also [64] for a fuller account of this particular topic).

More recently, Detomi [25] was able to partly extend Lennox’ result.

Theorem 7.9 Let G be a group, and suppose that there exists n ≥ 1 such that
|HG,n : H| < ∞ for all H ≤ G. If G is either periodic or torsion–free, then
γδ(n)(G) is finite for some δ(n) ∈ N.

It shold be noted that this last Theorem does not carry over to arbitrary groups:
H. Smith’s hypercentral N1-groups that we will describe in Section 6.3, satisfy
|HG,2 : H| < ∞ for every H ≤ G but they are not finite by nilpotent; similar
examples, in which γ3(G) = G′ is infinite, are constructed in [19].

Groups in which every subgroup is approached from below by a subnormal
subgroup are much less tractable, even in the special case in which H/HG is
finite for every subgroup of G (Ol’shanski infinite groups in which every proper
subgroup has order p are examples of groups of this kind). The many problems
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connected with this class of groups (even when suitably restricted) have stim-
ulated several people, and a number of articles have appeared on this topic,
starting perhaps with a paper by Buckley, Lennox, B. H. Neumann, H. Smith
and J. Wiegold [11] (this subject involves also some non-trivial questions about
finite p-groups, and we mention paper [22], where more complete references may
be found). Regarding the class of groups in which every subgroup contains a
subgroup of finite index which is subnormal in the whole group, I only am aware
of a paper by H. Heineken [45], from which I quote the following Proposition:
In a locally finite group G in which every subgroup H contains a subgroup S
with |H : S| <∞ and S //G, the Hirsch–Plotkin radical has finite index. There
might well be some room left for more research on this subject: for instance

Question 12 Is a locally nilpotent (or soluble by finite) group with all subgroups
subnormal by finite, a finite extension of a N1-group ?

(A nilpotent torsion-free group with all subgroups subnormal by finite is cer-
tainly nilpotent, while any non-nilpotent Černikov p-group is an example of a
locally nilpoytent group with this property which is not in N1.)

7.2 Groups with many subnormal subgroups

Under this label are denoted in the literature groups in which the set of non-
subnormal subgroups satisfies cenrtain (usually of finitary type) restrictions;
given a specific restriction to the set of non-subnormal subgroups, the usual
target is to describe (if any) those groups that satisiy such a restriction and
do not belong to N1 or to the class of groups in which the set of all subgroups
satisfies that restriction.

This kind of investigations goes back to Černikov, who studied groups in
which many subgroups have a prescribed property P (structural or of embed-
ding); in particular, close to what we are going to consder here, the case when
P is the property of being ascendant (see [21] for a survey on Černikov’s work).
Perhaps even closer in methods is a 1978 paper [92] by Phillips and Wilson
(in which the class W was introduced), where W-groups with ”many” serial
or locally nilpotent subgroups are studied; although not explicitely referring to
subnormality, we report part of the main result of [92].

Theorem 7.10 Let G be a W-group. The following are equivalent:

(1) the set of all non-serial non-locally nilpotent subgroups of G satisfies the
minimal condition;

(2) either G is a Černikov group, or every subgroup of G is serial or locally
nilpotent;

and in this case, if G is not a Černikov group, then G is locally nilpotent by
finite cyclic.

This is a topic that has recently seen a lot of activity, its only bound being the
imagination of the scholars. Therefore, I am probably not completely aware of
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all the developments, and in my report I will describe only a few cases, and
provide a couple of proofs. just in order to try giving a flavour of this line of
investigation and an idea of the arguments involved.

As in Phillips–Wilson, we begin with the minimal condition.

Theorem 7.11 (Franciosi, de Giovanni [27]) Let the group G satisfy the mini-
mal condition on non–subnormal subgroups.

(1) If G is a Baer group, then G ∈ N1.

(2) If G is not periodic, then G ∈ N1.

(3) If G ∈ W, then G is either a Černikov group or G ∈ N1.

Proof. (1) Let G be a Baer group satisfynig the minimal condition on non–
subnormal subgroup, and suppose by contradiction that G 6∈ N1. Thus, let H
be a minimal non-subnormal subgroup of G. Then all proper subgroups of H are
subnormal; in particular, by Möhres Theorem, K = H ′ < H. Since H cannot
be the product of two proper subgroups, H/K is either cyclic or isomorphic
to Cp∞ for some prime p. Now, G is a Baer group, so if H/K were cyclic,
then H = K〈x〉 would be the product of two subnormal subgroups. Hence
H/K ' Cp∞ . Let G = K0 > K1 > . . . > kd = K be the normal closure series of
K in G (since H normalizes K, all Kj are normalized by H), and let i ≥ 1 be
minimal such that HKi is not subnormal in HKi−1. Then Ki E HKi−1 and

HKi

Ki
' H

H ∩Ki

is a proper quotient ofH/K ' Cp∞ . HenceHKi/Ki ' Cp∞ , and we may replace
G by HKi−1/Ki, and H by HKi/Ki, and thus assume that H ' Cp∞ for some
prime number p. Clearly we may then also suppose that G is a p-group.

Let X = NG(H). Then NG(X) = X (by 1.32 and 1.33), and H ≤ Z(X).
Also, X/H satisfies Min and so X is a Černikov p-group. Now, G is a Baer
group, hence all proper subgroups of H are subnormal in G; clearly, there exists
a proper (cyclic) subgroup Y of H such that Y G 6≤ X. Let M be the smallest
term of the normal closure series of Y in G such that M 6≤ X. Since Y ≤ Z(X),
M is normalized by X. Also, Y M ≤ X and so, since Y has finite exponent, Y M

is a finite p-group. Since M is generated by normal conjugates of Y M , it follows
that M is nilpotent of finite exponent. Let N = NM (M ∩X); then N > M ∩X
and N is normalized by X . Let A/M ∩ X be the subgroup of all elements of
order p in Z(N/M ∩ X). Then A/M ∩ X 6= 1, because M is nilpotent, and
A is normalized by X. If A/M ∩ X is finite, then 1 < |AX : X| is finite and
therefore X//AX, which contradicts X = NG(X). Thus, A/M∩X is an infinite
elementary abelian p-group normalized by X (and by H). Let B = H(X ∩M);
then B/X ∩M ' Cp∞ and NG(B) = X, whence NA(B) = A ∩ B. This, in
particular, says that B is not maximal in any subgroup S with B < S ≤ AB.
So there exists an infinite chain of subgroups AB > S1 > S2 > . . ., with
B[A,B] > Si > B for all i ≥ 1. By our assumpion on G there exists t > 1 such
that St is subnormal in G. But St = B(St ∩ A) and so St/St ∩ A ' Cp∞ . It
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then follows from 1.32 and 1.33 that St/St ∩A is normal in BA/St ∩A and so
St E AB. Therefore [A,B] ≤ [A,Sj ] ≤ Sj , which is a contradiction.

(2) Suppose that G is not periodic, and let g ∈ G be an element of infinite
order. Then there exists integers m,n ≥ 1 such that U = 〈g2n〉 and V = 〈g3n〉
are subnormal in G, whence 〈g〉 = UV is subnormal in G. Thus, the Baer
radical B of G contains all elements of infinite order. Our claim will be proved
if we show that G is generated by elements of infinite order. This is equivalent
to prove that for every pair a, b of elements of finite order of G, the product
y = ab has finite order. Suppose, to the contrary that |y| = ∞. Then y belongs
to the Baer radical of 〈a, b〉, and so H = 〈a, b〉 = 〈a, y〉 is the extension of the
finitely generated nilpotent group Y = 〈y〉〈a〉 by the finite group 〈a〉. Thus H
is policyclic and nilpotent by cyclic. As the torsion subgroup of Y is finite, we
may well assume that Y is torsion free. Then, if p is a prime which does not
dividse the order of a, by Theorem 1.41 there exists an infinite descending chain
Y > N1 > N2 > of notmal subgroups Ni with Y/Ni a finite p-group. As a
has finite order, we may find a chain of this kind with all Ni are normal in H.
Thus, by our assumption on G, there exists t ≥ 1 such that 〈Nj , a〉 is subnormal
in H for all j ≥ t. Then, for all i ≥ 1, H/Ni/Ni is a nilpotent group, and the
direct product of its p-component Y/Ni and the cyclic p′-group 〈Nj , a〉/Ni. Thus
[Y, a] ≤ Ni for all i ≥ 1. This yields 〈a〉 E H, and so H = 〈a, b〉 is finite. This
proves that B = G and so, by point (1), that G ∈ N1.

(3) Let G ∈ W be a group in which the set of non-subnormal subgroups
satisfies the minimal condition. By (2) we may assume that G is periodic. Now,
it is easy to see that a finitely generated periodic group in W with the minimal
condition on non-subnormal subgroups is finite; therefore G is locally finite.

Suppose that G is not Černikov; then, by the Šunkov, Kegel–Wehrfritz The-
orem 1.37, G admits non-Černikov abelian subgroups, and by our assumption
on G there exist subnormal such subgroups. Hence, the Baer radical B of G
does not satisfy the minimal condition on subgroups. Bu point (1) we are done
if we prove that B = G. Clearly, it is enough to prove that any element of prime
power order of G belongs to B.

Thus, let g ∈ G be an element of order a power of a prime p., and let A
be the p-component of B. Suppose first that A is not Černikov. By Möhres
Theorem 6.4, A is soluble. Let M = A(m), be the smallest term of the derived
series of A which is not a Černikov group (it exists because the class of groups
with Min is closed by extensions), and let K = A(m=1) = M ′. Observe that K
is a Černikov Baer group and so it is contained in some finite term of the upper
central series of M ; therefore M is nilpotent. If we prove that K〈g〉 is subnormal
in G, then in particular M〈g〉/K is nilpotent by 1.59 and so M〈g〉 is nilpotent
bt Hall’s criterion 1.54; consequntly 〈g〉 / /K〈g〉 / /G. Thus, we assume K = 1
and G = M〈g〉. Since M is a non-Černikov abelian group it has an infinite
characteristic elementary abelian subgroup X. Since g has fnite order, there is
an infinite descending chain of g-invariant subgrops Xi of X, with Xi ≥ X∩〈g〉,
and then Xm, 〈g〉//G for some m ≥ 1. But, Xm〈g〉 is a soluble p-group of finite
exponent ans so, by Proposition 1.76, 〈g〉 / /Xm〈g〉 / /G and we are done.

Suppose then that the p-component A of B is Černikov. Then, since B does
not satisfy Min, it follows that the p′-component U of B is not Černikov. Again,
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U is soluble. Arguing exactly as in the previous case, we find a characteristic
section M/K of U such that it is enough to show that K〈g〉 is contained in some
subnormal subgroup of G contained in M〈g〉. As before, we may assume K = 1.
Let X be the subgroup generated by all elements of prime order of M . Since M
is not Černikov, X is infinite. Let D = [X, 〈g〉]. By a standard fact for coprime
actions on abelian groups, [D, g] = D. Now, if D is infinite, as before we find a
proper 〈g〉-invariant subgroup D0 of D such that D0〈g〉 / /G, which yields the
contradictionn [D, g] ≤ D0 < D. Thus, D is finite. This means that CX(g) is
infinite. But then we find a subgroup R of CX(g) such that R〈g〉 / /G. Since
〈g〉 E R〈g〉 we again conclude that 〈g〉 / /G. This completes the proof that G is
a Baer subgroup and therfore (3) is established.

In the same paper, Franciosi and de Giovanni consider groups with only a
finite number of conjugacy classes of non-subnormal subgroups, proving that
locally graded such groups are either finite or N1.

Moving to the maximal condition, the following has been proved.

Theorem 7.12 (Kurdachenko, Smith [57]) Let the group G satisfy the maximal
condition on non–subnormal subgroups.

(1) If G is locally nilpotent, or infinite locally finite, then G ∈ N1.

(2) G is locally (soluble–by–finite) if and only if G satisfies one of the following
conditions:

(i) G is polycyclic by finite;

(ii) G ∈ N1;

(iii) G 6= B(G), B(G) is nilpotent, G/B(G) is polycyclic–by–finite torsion–
free, and for every g ∈ G \B(G), and every N E G, with N ≤ B(G), the
group 〈N, g〉 is finitely generated.

We isolate in a Lemma one of the technical arguments involved in the proof.

Lemma 7.13 Let A be a normal abelian subgroup of the soluble group G, and
let g ∈ G \ A, with gA ∈ Z(G/A). Suppose that G/A is not finitely generated
while A is finitely generated as Z〈g〉-module. Then the centralizer of g in G
contains a subgroup that is not finitely generated

Proof. Since A is abelian, [A, 〈g〉] = [A, g] = {[a, g] | a ∈ A}. Also, [A, g] E G be-
cause gA is central in G/A. Now, by assumption, B = A〈g〉 is finitely generated,
and so B/[A, g] is a finitely generated abelian group. Let C = CG(B/[A, g]); then
C ≥ B and G/C is finitely generated (indeed, it is polycyclic, see for instance
[96], 3.2.7). As G/A is not finitely generated, we get that C/A is not finitely
generated. Now, let x ∈ C; then x ∈ C, [x, g] ∈ [B,C] ≤ [A, g], and so there
exists a ∈ A such that [x, g] = [a, g]. We have

[xa−1, g] = [x, g]a
−1

[a−1, g] = [x, g][a, g]−1 = 1

which means that xa−1 ∈ CG(g). This shows that C ≤ ACG(g). Since C/A
is not finitely generated, we conclude that CC(g) = C ∩ CG(g) is not finitely
generated.
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Proof of Theorem 7.12. Let us denote by S the class of groups satisfying the max-
imal condition on non–subnormal subgroups. We begin with a rather immediate
observation.

(A) Let G belong to S, and let F < H ≤ G with F finitely generated and H
not finitely generated; then there exists a finitely generated T with F ≤ T < H
and T / /G.

From this, one immediately deduces,
(B) A locally nilpotent group in S is a Baer group.

Now, for the proof of point (1) of the statement, we may just deal with Baer
groups.

(C) Let G be a Baer group in S, and 1 6= H ≤ G; then H ′ 6= H and H ′ //G.

Proof. Let U ≤ H be a maximal non-subnormal subgroup of H, or U = 1 if there
are not any. If U = 1 let N = 1; otherwise, there exists a proper and subnormal
subgroup V of H containing U , then set N = V H . In any case N is a proper
normal subgroup of H, and H/N belongs to N1. It then it follows H ′ < H by
Theorem 6.4. Now, if H / /G, then H ′ is also subnormal. Thus, assume H is
not subnormal in G. If H/H ′ is not finitely generated, then it does not satisfies
Max, and so there exists H ′ ≤ L ≤ H with L//G; as H ′ E L, H ′ //G. If H/H ′

is finitely generated, then H = H ′X for some finitely generated subgroup X of
H. Then, H ′XH = H, and since H is a Baer group, X = H. Thus, H is finitely
generated and so subnormal in G.

(D) Let G = AH be a Baer group in S, with A, H abelian and A E G. Then
H cannot be a maximal non-subnormal subgroup of G.

Proof. Observe that A∩H E G, whence we may suppose A∩H = 1. Assume that
H is a maximal non-subnormal subgroup of G, and let X be a cyclic subgroup
of H such that [A,X] 6= 1. Now, X //G, and so CA(X) 6= 1. Since H is abelian
CA(X) is normalized by H, and H < CA(X)H. Thus, CA(X)H is subnormal
in G, and therefore [A,mH] ≤ CA(X)H ∩ A = CA(X) for some m ∈ N, which
we take the smallest such. Since [A,X] 6= 1, we have m ≥ 1. But then, since A
and H are abelian

[A,m−1H,X,H] = [A,m−1H,H,X] ≤ [CA(X), X] = 1.

Thus, [A,m−1H,X] ≤ CA(H) = 1, which means [A,m−1H] ≤ CA(X), against
the choice of m.

(E) Let G be a Baer group in S. Then 〈x〉G is soluble for every x ∈ G.

Proof. Let x ∈ G, and K = 〈x〉G. Arguing by induction on the defect of 〈x〉 in
G, we may assume that 〈x〉K is soluble, and so that K is generated by normal
soluble subgroups. Another obvious inductive argument reduces us to prove that
a S-groupK which is generated by normal abelian subgroups is soluble. Suppose
that K is not in N1, let H be a maximal non-subnormal subgroup of K, and let
N be a normal abelian subgroup of K such that N 6≤ H. Then H < NH / /G.
Now, H ∩ N E NH; let D = H ′(N ∩H). Then D < H and D / /G by point
(C). In particular, D / /ND (and D < ND). Let A be the last but one term
of the normal closure series of D in AD; then A is normalized by H, and the
group AH/D violates point (D). Thus, K ∈ N1, and so K is soluble.
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Proof of point (1). We first suppose that G ∈ S is locally nilpotent, and so,
by point (B), a Baer group. Assume that G is not in N1; then there exists a
maximal non-subnormal subgroup H of G. Now, H ′ / /G by point (C); let K
be the samllest term of the normal closure series of H ′ in G such that K 6≤ H
(possibly, K = G). Then K is normalized by H and H < KH, whence KH//G;
so, we may replaceG byKH if necessary. ThenH ′ ≤ HK < H,HK E HK = G,
and we may also assume HK = 1, in particular, that H is abelian. Let X be a
cyclic subgroup of H such that K = XG 6≤ H. Then K is soluble by point (E);
since H ∩K E KH. there is a subgroup A of K such that H ∩K < A E HK,
and A/(H ∩K) is abelian. But this again contradicts point (D). thus, G ∈ N1,
and we are done.

Now, assume that G is an infinite locally finite group in S. Let x ∈ G, with
|x| = pn for some prime p. If there is an infinite p-subgroup containing x, then
〈x〉 is subnormal in G by point (A). Thus, let P be a maximal p-subgroup of
G containing 〈x〉 and assume that P is finite. Then P is a Sylow p-subgroup
of every finitely generated subgroup that contains it. By point (A) there is a
finite subnormal subgroup T of G with P ≤ T ; let N = PT . Then N / /G and
therefore N = PS for every finitely generated subgroup S of G, with T ≤ S
(remember that in a finite group the smallest subnormal subgroup containing a
Sylow subgroup is its normal closure). Thus, N E G. Hence G/CG(N) is finite.
In particular CG(x) has finite index in G, and so it is not finitely generated.
Point (A) then ensures that there is a subnormal subgroup U of G with x ∈
U ≤ CG(x), and so 〈x〉 / /G. Thus, we have proved that every element of G of
prime–power order is contained in the Baer radical of G. It clearly follows that
G is a Baer group, and we are done.

Proof of point (2). Let G be a locally (soluble by finite) group in S, and let
B = B(G) be the Baer radical of G. By point (1), B ∈ N1, and in particular B
is soluble.

If B is finitely generated, then it is polyciclic and so G/CG(B) is polycyclic–
by–finite (because it is a locally (soluble by finite) subgroup of Aut(B); see, for
instance, [99], Ch. 8). If CG(B)B/B is not finite, it contains (by point (A)) a
subnormal finitely generated subgroup, hence a non-trivial subnormal abelian
subgroup A/B; and this implies that A is contained in the Baer radical of G, a
contradiction. Thus, CG(B)B/B is finite, and consequently, G/B is polycyclic
by finite. We conclude that G itself is polycyclic by finite. Conversely, a poly-
cyclic by finite group certainly belongs to S as it satisfies Max.

We are left with the case in which the Baer radical B = B(G) is not finitely
generated, and B 6= G.

Let g ∈ G \ B, and let N be a normal subgroup of G contained in B.
Suppose, by contradiction, that 〈N, g〉 = N〈g〉 is not finitely generated. Then,
by (A), there exists a finitely genarated X with 〈g〉 ≤ X ≤ N〈g〉 and X / /G;
in particular, N〈g〉 is subnormal in G, and there exists a smallest n ∈ N, such
that [N,n 〈g〉]〈g〉 (the n-th term of the normal closure series of 〈g〉 in N〈g〉) is
finitely generated. Since we are assuming that N〈g〉 is not finitely generated,
we must have n ≥ 1. We write U = [N,n 〈g〉], and consider, D = [N,n−1 〈g〉]〈g〉.
Then, D/U is soluble and, by choice of n, it is not finitely generated; also, gU ∈
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Z(D/U). Now, U/U ′ is a normal abelian subgroup of the soluble group D/U ′,
and is finitely generated as a Z〈g〉-module. We may then apply Lemma 7.13:
sinceD/U is not finitely generated, we obtain that the centralizer of gU ′ inD/U ′

contains a non-finitely generated subgroup. By observation (A), this implies
that 〈gU ′〉 / /D/U ′. In particular, U〈g〉/U ′ is nilpotent; since it is also finitely
generated, it follows that U/U ′ is finitely generated. But U is a Baer group,
and so U is a finitely generated nilpotent group. As U〈g〉/U ′ is also nilpotent,
P. Hall’s nilpotency criterion (Theorem 1.54) yield that U〈g〉 is nilpotent. This
means that 〈g〉//U〈g〉 = [N,n 〈g〉]〈g〉, and so in 〈g〉 is subnormal in N〈g〉, which
in turn is subnormal in G. Therefore 〈g〉//G, and the contradiction g ∈ B. The
last assertion in the statement of the Theorem is thus extablished.

Now, let g ∈ G and suppose that gn ∈ B for some n ≥ 1. If g 6∈ B, then, by
what we have just proved B〈g〉 is finitely generated, hence B, which has finite
index in it, is finitely generated, which is against our assumptions. This proves
that G/B is torsion free.

We now prove that B is nilpotent. Fix an element g ∈ G\B, and let T denote
the torsion subgroup of B. Then T 〈g〉 is finitely generated by what we proved;
and since T is soluble, it easily follows that T has finite exponent. Therefore,
T is nilpotent by Theorem 5.22, and B/CB(T ) is periodic by Lemma 1.16.
Moreover W = TCB(T ) is nilpotent and so, by Lemma 6.6, there is a k ≥ 1
such that, writing N = W k, N ∩ T = 1. Since N is a characteristic subgroup
of B, N E G. Now, B/N is peridodic and B〈g〉/N is finitely generated (being
a quotient of B〈g〉), and so the same argument used for T shows that B/N is
nilpotent. Since B/T is nilpotent by Theorem 2.23 and T ∩N = 1, we conclude
that B is nilpotent.

Let now C/B be the Baer radical of G/B. If C/B is finitely generated,
then by what we observed at the beginning of the proof of point (2), G/B
is polycyclic by finite, and we are done. Thus suppose, by contradiction, that
C/B is not finitely genertaed. Then, by Theorem 1.90, C/B admits an abelian
subgroup A/B which is not finitely generated. Let g ∈ A \ B; then application
of Lemma 7.13 to the group A/B′ implies that the centralizer of gB′ in A/B′

contains a non-finitely generated subgroup. It turns out that 〈gB′〉 is subnormal
in A/B′, and so that 〈B, g〉/B′ is nilpotent. Since B is nilpotent, it follows from
P. Hall’s criterion that 〈B, g〉 is nilpotent, and in particular that 〈g〉 is subnormal
in 〈B, g〉. Since 〈B, g〉 / /G, we end up with the contradiction g ∈ B.

It remains to show that groups satisfying the conditions in point (2) of the
statement do belong to S. This is trivial for polycyclic by finite groups (which
satisfy Max) and N1-groups. We then suppose that the group G satisfies the
conditions in (iii). Then, if B is the Baer radical of G, G/B satisfies Max.
Suppose, by contradictionn, that G does not belong to S, and let Z = γc(B)
be the smallest term of the lower central series of the nilpotent group B such
that G/Z ∈ S; then, we may clearly assumeγc+1(B) = 1 (i.e. Z central in
B). Let H = H1 ≤ H2 ≤ H3 ≤ . . . be an ascending chain of non-subnormal
subgroups of G; then H 6≤ B, and since G/Z belongs to S, we may suppose
that ZHi / /G for every i ≥ 1. Let x ∈ H \ B; then, since 〈B, x〉 is finitely
generated, and x ∈ ZH / /BH, we have that B/Z is finitely generated, and
therefore G/Z is polycyclic by finite and satisfies Max. Thus there exists k ≥ 1
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such that ZHi = ZHk for every i ≥ k. Now, 〈Z, x〉 is finitely generated, which
means that Z is finitely generated as a Z〈x〉-module. Since Z〈x〉 is noetherian,
Z is also noetherian, i.e. it satisfies the maximal condition on Z〈x〉–submodules.
This implies that there exists an index ` such that Z∩Hi = Z∩H` for all i ≥ `.
Now let t = max{k, `}; then for every i ≥ t,

Hi = Hi ∩ ZHt = Ht(Hi ∩ Z) = Ht(Ht ∩ Z) = Ht,

and the proof is now complete. (It should be noted that, in this situation,
Kurdachenko and Smith actually show that G/B must be abelian by finite;
but the proof of this requires one more page, and we thus omit it).

Of course, consideration of Tarski monsters shows that the conclusions of
Theorems 7.11 and 7.12 (as well as that of most of the results we will mention
in this section) do not hold without some restrictions on the class of groups
considered; on the other hand, the questions as to whether 7.11 and 7.12 may
be extended to larger classes (locally graded and W groups, respectively) remain
open, and seem very difficult.

Weak forms of maximal and minimal conditions on non-subnormal subgroups
are considered in [58], [59]. In [30], de Giovanni and Russo show that infinite
groups with dense subnormal subgroups are N1 (a family S of subgroups of the
group G is dense if for every H < K ≤ G, and H not maximal in K, there
exists a S ∈ S such that H < S < K; see also Mann [69]).

Groups in which non-subnormal subgroups satisfy certain embedding restric-
tions have also been considered. For instance, combined results of Franciosi, de
Giovanni [26], and Kurdachenko, Smith [60], yield the following.

Theorem 7.14 Let G be a group in which every non-subnormal subgroup is
self-normalizing.

(1) If G is not periodic, then G ∈ N1;

(2) if G is locally nilpotent, then G ∈ N1;

(3) if G is locally graded and is not locally nilpotent, then G = 〈g〉oQ, where
g is an element of order a power of a prime p and Q a nilpotent periodic
p′-group.

The subclass of groups with all subgroups either subnormal or abnormal is
described by De Falco, Kurdachenko and Subbotin [23], while in [28], Franciosi,
de Giovanni and Kurdachenko characterize those groups in which every (infinite)
non-subnormal subgroup has a finite number of conjugates.

Along another line of research (but strictly related to the previous one, as
it is already evident in [92]), one imposes inner properties to non-subnormal
subgroups. We mention only a couple of relevant results. The proofs are in
these cases too long to be included.

Theorem 7.15 (Smith [109] [110]) Let G be a W–group in which every sub-
group is either subnormal or nilpotent. Then
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(1) G is soluble;

(2) if G is torsion-free then G is nilpotent;

(3) if G is locally finite, then G admits a normal subgroup of finite index which
belongs to N1.

Together with Theorem 6.23 a corollary of this is an extension of 3.20;

Corollary 7.16 A locally finite group in which all non-nilpotent subgroups are
subnormal is nilpotent by Černikov.

We observe that locally nilpotent groups with all subgroups subnormal or nilpo-
tent need not belong to N1; for instance, let p be a prime, and let G = Ao〈α〉,
where A ' Cp∞ and α the automorphism a 7→ ap+1 (for all a ∈ A); then G
is locally nilpotent and all non-nilpotent subgroups of it contain A (and so are
normal); however, G is not even a Baer group (indeed, Smith proves that Baer
groups with all subgroups nilpotent or subnormal are N1-groups).

We mention one more result, dealing with a class of groups which may be
seen as sort of opposite to that of Baer groups.

Theorem 7.17 (Heineken, Kurdachenko [46]) Let G be group in which every
subgroup is either subnormal or finitely generated.

(1) If G is locally finite, then either G is Černikov or G ∈ N1;

(2) if G is locally nilpotent, then either G has finite rank or G ∈ N1;

(3) if G is generalized radical not nilpotent, and B(G) is its Baer radical, then
G/B(G) is finitely generated and abelian–by–finite.

We recall that a group is ”generalized radical” if it admits a normal ascending
series whose factors are either locally nilpotent or locally finite, and that locally
nilpotent groups with finite rank have been fully described by Mal’cev. Groups
with all subgroups either subnormal or of finite rank are studied in [61].

Needless to say, many of these and similar questions may be varied by im-
posing conditions on the family of all subgroups that are not subnormal with
defect not exceeding a prescribed bound d ≥ 1; aiming in this case at obtaining
results that resemble Roseblade’s Theorem. This aspect is often considered in
the same articles that treat the unbounded case, and we will not say more about
it, leaving the interested reader to check the original papers.

7.3 The subnormal intersection property.

A group G is said to satisfy the subnormal intersection property (abbreviated
s.i.p.) if the intersection of any family os subnormal subgroups ofG is subnormal.
The class of all groups satisfying s.i.p. is usually denote by S∞.

Since the s.i.p. condition does not necessarily mean the occurrence of many
subnormal subgroups (for instance, every simple group has the s.i.p.), but rather
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it becomes effective when there are already many subnormal subgroups, presence
of the class S∞ in this chapter may be not fully justified; however, I decided
to include a few comments on it, in view of the fact that, at least in certain
specific cases, some of the methods developed to study N1-groups apply with
some success to S∞. Before coming to this, let me remind one of the few general
results on S∞ available, namely a rather old theorem of D. Robinson [93] which
states that a finitely generated soluble group G belongs to S∞ if and only if G
is finite-by-nilpotent.

Here, we are mainly interested in S∞-groups that are also Baer groups
(clearly, every N1-group is of this kind). First, one proves a version of Brookes
trick 1.92 for S∞-groups. The not difficult adaptation is left to the reader.

Lemma 7.18 Let G be a group in S∞, and let Θ be a family of subnormal
subgroups of G such that G ∈ Θ. Then there exist a H ∈ Θ, a finitely generated
subgroup F of H, and a positive integer d, such that every F ≤ K ≤ H, with
K ∈ Θ, has defect at most d in H.

With this and Roseblade’s Theorem, we may prove the following extension of
4.21.

Theorem 7.19 A residually soluble Baer group with the subnormal intersection
property is soluble.

Proof. Let G be a residually soluble Baer group in S∞, and suppose by con-
tradiction that G is not soluble. By Lemma 7.18 applied to the family Θ of all
subnormal non-soluble subgroups of G, there exist H ∈ Θ, a finitely generated
subgroup F of H, and a positive integer d, such that all non-soluble subnor-
mal subgroups of H containing F have defect at most d in H. Clearly, we may
raplace G by H, and assume that d is minimal for a counterexample.

Since H is not soluble, H(m) is not soluble for every n ≥ 1; so, if V be a
finitely generated subgroup containing F , V H(m) is not soluble. On the other
hand, V H(m) is subnormal in H, as H is a Baer group and V is finitely gener-
ated. Therefore the defect of V H(m) in H is at most d.

We have d 6= 1. In fact, if d = 1, then, by what we have just observed, for all
m ≥ 1, all subgroups of H/H(m) containing FH(m)/H(m) are normal. Therefore

H(2) ≤
⋂

m∈N
FH(m),

Hence, if F has derived length t,

H(2+t) ≤
⋂

m∈N
H(m) = 1 ,

thus contradicting the choice of H.
Let now d ≥ 1. Then, by minimality of d, the normal closure FH of F

is soluble, and, for any m ≥ 1, all subgroups of H/FHH(m) are subnormal
of defect at most d. By Roseblade’s Theorem, there is an integer k such that
H(k) ≤ FGH(m), for all m ≥ 1. But then, if t is the derived length of FG,

H(k+t) ≤
⋂

m∈N
H(m) = 1 ,
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a contradiction that concludes the proof.

One cannot remove from this theorem the hypothesis that G is a Baer group.
In fact (see [14]) for every prime p, there exist residually soluble, non-soluble,
locally finite p-groups in which every subnormal subgroup has defect at most four
(whence they belong to S∞). The main result that may then be proved, using
methods directly derived from Möhres’ arguments, is an extension of Theorem
5.29 (for a proof, we refer to [18]).

Theorem 7.20 A periodic residually nilpotent group with the subnormal inter-
section property is nilpotent.

(It is an easy exercise to show that residually nilpotent groups with the s.i.p. are
in fact Baer groups). Indeed, as for the N1 case, the crucial step is to prove the
statement for groups of finite exponent. However, even in this case one cannot
remove the assumption of residual nilpotence: in fact, contrary to the case of N1,
in [18] examples are given of metabelian p-groups of exponent p2 that belong to
S∞ but are not nilpotent. To get one more example showing that the class of
Baer S∞-groups is much larger that N1, one may consider P. Hall generalized
wreath power Wr CN

p (where Cp is a cyclic group of order p) which is not difficult
to check being a non-soluble Baer p-group satifying s.i.p. (for the details, see
[18] or Volume II of [96]).

However, I believe that there is still some room left for research on Baer
groups in S∞. For instance, the following question should not be terribly difficult
to answer.

Question 13 Is every residually nilpotent group in S∞ a N1-group?

Some more questions (which I have not really meditated on, and thus might
well be either trivial or very diffcult).

Question 14 Do there exist non-soluble torsion–free Bear groups in S∞?

Question 15 Do there exist non-soluble Baer p-groups of finite exponent in
S∞?

Perhaps, more could be proved for the class S∞ of groups in which every sub-
group satisfies s.i.p. (this class still contains N1). Of course, Tarski monsters
belong to S∞, thus some extra conditions are required also in this case.

Question 16 Are locally graded p-groups in S∞ locally finite? (the same ques-
tion is also open for S∞).

7.4 Other classes of locally nilpotent groups

Strongly Baer groups. We say that G is a strongly Baer group if every nilpo-
tent subgroup of G is subnormal. Clearly, strongly Baer groups are Baer groups.
For every n ≥ 1, letDn be the dihedral group of order 2n; then the direct product
Dirn≥1Dn is a hypercentral Fitting group with all subgroups locally subnormal,
but it is not a strongly Baer group.
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One of the difficulties in studying strongly Baer groups might well be the
fact that this class, which is obviously closed by subgroups, it is not closed by
quotients, as the following example shows. It also proves that strongly Baer
groups need not satisfy the normalizer condition (nor in fact belong to N2).

Example 3.10 Let H be one of the p-groups constructed by Heineken and
Mohamed. Then A = H ′ is an infinite elementary abelian p-group, H/A ' Cp∞

and no proper subgroup of H supplements A. Let K be the wreath product
Cp o Cp∞ , and write K = BCp∞ , where B is the base group. In the direct
product H ×K, let W = A×B. Then (H ×K)/W = HW/W ×KW/W is the
direct product of two copies of Cp∞ ; we take G ≤ H×K to be such that G/W is
a diagonal subgroup of (H ×K)/W . Let S be a nilpotent subgroup of G. Then,
since G/B ' H, SB/B is a proper subgroup of G/B and so SW < G. Hence
SW/W is finite because G/W ' Cp∞ . Since W is elementary abelian it follows
from Lemma 1.14 that WS is nilpotent. Also, SW E G, so SG is nilpotent and
thus certainly S is subnormal in G. Therefore, G is a strongly Baer group. But
G/A ' K = Cp o Cp∞ is not a strongly Baer group, and does not satisfy N2.

Question 17 Does there exist a strongly Baer group which is not hyperabelian?
Does there exists a (soluble) strongly Baer group that is not a Fitting group?

It may be worth mentioning that many of the classical non-elementary construc-
tions of Baer groups (like McLain groups, P. Hall’s generalized wreath powers
or Dark’s examples of Bear groups with trivial Fitting radical) do not provide,
except in trivial cases, any strongly Baer group.

Strong normalizer condition. Let us conclude with mentioning a class of
groups which lies strictly between N1 and the class N of all nilpotent groups.

Given a subgroup H of a group G we define the series of the metanormalizers
of H by setting N1

G(H) = NG(H) and, for n ≥ 1, Nn+1
G (H) = NG(Nn

G(H)). We
say that H is metanormal in G if Nn

G(H) = G for some 1 ≤ n ∈ N. It is then
clear that every metanormal subgroup is subnormal, and that in a nilpotent
group every subgroup is metanormal. On the other hand, it is easy to see that
subnormality does not in general imply metanormality: in the symmetric group
S4 the subgroup H = 〈(12)(34)〉 is subnormal but not metanormal (in fact
NG(H) is a Sylow 2-subgroup of S4 and is selfnormalizing). A group satisfies
the Strong Normalizer Condition (SNC) if all of its subgroups are metanormal.
A group satisfying SNC is clearly a N1-group, but need not be nilpotent, as
groups constructed by H. Smith in [101] show. On the other hand the groups
constructed by Heineken and Mohamed, as observed by J. Lennox, do not satisfy
SNC; so SNC is a proper subclass of N1. Since Smith’s group are not periodic
it seems reasonable to ask the following:

Question 18 Is every periodic group satisfying SNC nilpotent?

Question 19 Is every SNC-group hypercentral?

Question 20 Is it true that a group G is a SNC-group if and only if for each
H ≤ G there exists a positive integer n such that γn(G) ≤ NG(H)?

An affermative answer to any of these three questions will imply affermative
answers of the previous ones.
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[79] W. Möhres, Torsionsgruppen, deren Untergruppen alle subnormal sind,
Geom. Dedicata 31, 237-244 (1989).
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(1988).

[91] Phillips, R. E. Some generalizations of normal series in infinite groups,
J. Austral. Math. Soc. 14, 496-502 (1972).

[92] R. E. Phillips and J. S. Wilson, On certain minimal conditions for
infinite groups, J. Algebra 51, 41–68 (1978).

[93] D.J.S. Robinson, On Finitely Generated Soluble Groups, Proc. London
Math. Soc. (3) 15, 508-516 (1965).

[94] D. J. S. Robinson, A property of the lower central series of a group, Math.
Z. 107, 225–231 (1968).

[95] D. J. S. Robinson, A theorem on finitely generated hyperabelian group,
Invent. Math. 10, 38–43 (1970).

[96] D. J. S. Robinson, Finiteness Conditions and generalized Soluble Groups.
Springer-Verlag 1972.

[97] D. J. S. Robinson, A Course in the Theory of Groups. Springer–Verlag,
1980.

[98] J.E. Roseblade, On groups in which every subgroup is subnormal, J.
Algebra 2, 402–412 (1965).



BIBLIOGRAPHY 147

[99] D. Segal, Polycyclic Groups. Cambridge University Press, 1983.

[100] J. P. Serre, A Course in Arithmetic. Springer–Verlag, 1973.

[101] H. Smith, Hypercentral groups with all subgroups subnormal, Bull. Lon-
don Math. Soc. 15, 229-234 (1983).

[102] H. Smith, Groups with the subnormal join property, Canadian J. Math.
37, 1-16 (1985).

[103] H. Smith, Hypercentral groups with all subgroups subnormal II, Bull.
London Math.Soc. 18, 343-348 (1986).

[104] H. Smith, On torsion-free hypercentral groups with all subgroups sub-
normal, Glasgow Math. J. 31, 193-194 (1989).

[105] H. Smith, Groups with few non-nilpotent groups, Glasgow Math. J. 39,
141–151 (1997).

[106] H. Smith, Residually finite groups with all subgroups subnormal, Bull.
London Math. Soc. 31, 679-680 (1999).

[107] H. Smith, Nilpotent-by-(finite exponent) groups with all subgroups sub-
normal, J. Group Theory 3, 47-56 (2000).

[108] H. Smith, Torsion-free groups with all subgroups subnormal, Arch. Math.
(Basel) 76, 1–6 (2001).

[109] H. Smith, Torsion-free groups with all non-nilpotent subgroups subnor-
mal, Quaderni di Matematica (Caserta) 8, 297–308 (2001).

[110] H. Smith, Groups with all non-nilpotent subgroups subnormal, Quaderni
di Matematica (Caserta) 8, 309–326 (2001).

[111] H. Smith, Residually nilpotent groups with all subgroups subnormal. J.
Algebra 244, 845–850 (2001).

[112] H. Smith, On non-nilpotent groups with all subgroups subnormal.
Ricerche Mat. 50, 217–221 (2001).

[113] H. Smith, Hypercentral groups with all subgroups subnormal III, Bull.
London Math.Soc. 33, 591–598 (2001).

[114] H. Smith and G. Traustason, Torsion-free groups with all subgroups
4-subnormal, Comm. Algebra 33, 4567–4585 (2005).

[115] M. Stadelmann, Gruppen, deren Untergruppen subnormal vom Defekt
zwei sind. Arch. Math. (Basel) 30, 364–371 (1978).

[116] V. P. Šunkov, The problem of minimality for locally finite groups. (Rus-
sian) Algebra i Logika 9, 220–248 (1970). [english transl. Algebra and Logic
9, 137–151 (1970)]



148 BIBLIOGRAPHY

[117] G. Traustason, On groups in which every subgroup is subnormal of
defect at most three, J. Austral. Math. Soc. 64, 397–420 (1998).

[118] G. Traustason, On 3-Baer groups, J. Group Theory 3, 285–292 (2000).

[119] G. Traustason, A note on the local nilpotence of 4-Engel groups, Int.
J. Algebra and Comp. 15, 757–764 (2005).

[120] M. R. Vaughan-Lee, The restricted Burnside problem, 2nd ed. Claren-
don Press. Oxford 1993.

[121] J. S. Wilson, On periodic generalized nilpotent groups, Bull. London
Math. Soc. 9, 81–85 (1977).

[122] J. S. Wilson, Two-generator conditions for residually finite groups, Bull.
London Math. Soc. 23, 239–248 (1991).

[123] E. I. Zel’manov, On Engel Lie algebras Sib. Math. J. 29, 112–117 (1988).

[124] E. I. Zel’manov, The solution of the restricted Burnside problem for
groups of odd exponent, Math. USSR Izvestia 36, 41–60 (1991).

[125] E. I. Zel’manov, The solution of the restricted Burnside problem for
2-groups, Math. Sbornik 182, 568–592 (1991).


