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1. INTRODUCTION

The term “partial information” could mean one of two things: either
“incomplete information” or “advance information.” The study of in-
complete information is an application of filtering theory. The study
of advance information, which may be considered a study of “insider
trading,” is an application of the theory of enlargement of filtrations.
In one sense, these two topics are the opposite of each other: in the
study of incomplete information one starts with the filtration on which
all processes are adapted and assumes investors have access to only a
subfiltration, and in the study of advance information one starts with a
process on which the return processes of assets are adapted and assumes
some investor or investors have access to a larger filtration. However,
in another sense, the two topics are the same: in both cases, the change
of filtration simply changes the drifts of economic processes, e.g., the
expected returns of assets.

The second part of the title, “asymmetric information,” means that
some investors have information in advance of others. The study of
asymmetric information, which emphasizes differences in information,
means that we will be concerned with equilibrium theory and how
the less informed agents learn in equilibrium from the more informed
agents. The study of incomplete information is also most interesting
in the context of economic equilibrium. In these lectures, I will fo-
cus primarily on incomplete information and asymmetric information,
treating the topic of advance information within the context of asym-
metric information (see Section 4.1).

Problems of control under incomplete information are characterized
by the separation principle: one first estimates the unobserved process
and then chooses the optimal control. Portfolio choice problems under
incomplete information satisfy this principle. Problems of asymmetric
information are necessarily also problems of incomplete information,
since “asymmetry” means that some agents do not possess the infor-
mation of others. Hence, what is unobserved by one agent may be
observed by another. Financial equilibrium occurs when the control
problems solved by agents have consistent solutions, in the sense that
the optimal controls satisfy market-clearing conditions. Because the
controls of one agent (or one class of agents) may affect what is ob-
served by other agents, the filtering and control problems of various
agents may be intertwined. This means that, though each individual
control problem satisfies the separation principle, equilibrium can be
computed only by solving the various filtering and control problems
simultaneously.



Excellent surveys of incomplete information models in finance and of
asymmetric information models have recently been published. Ziegler
(2003) surveys incomplete information models, and Brunnermeir (2001)
surveys asymmetric information models. In these lectures, I will not
attempt to repeat these comprehensive surveys but instead will give a
more selective review.

2. FILTERING THEORY

Let us start with a brief review of filtering theory, developed in the
1970’s, and exposited, for example, in Rogers and Williams (2000).
Note first that engineers and economists use the term “signal” differ-
ently. Engineers take the viewpoint of the transmitter, who sends the
“signal,” which is then to be estimated (or “filtered”) from a noisy
observation.. Economists generally take the viewpoint of the receiver,
who observes a “signal” about some other variable and then uses the
signal to estimate the latter variable. To avoid confusion, I will try to
avoid the term, but when I slip and use it, it will be in the sense that
economists use it.

All processes are adapted to some filtered probability space (9, F,
{F:},P). The problem is to estimate a process X from the observations
of another process Y. Specifically, we consider estimating the condi-
tional expectation E[f(X;)|F,], where {F} } is the usual augmentation
of the filtration generated by Y, and f is a real-valued function satis-
fying some minimal regularity conditions but otherwise arbitrary. By
estimating E[f(X;)|FY] for arbitrary f, one can obtain the distribution
of X, conditional on F;.

Assume

(2.1) dY; = hedt +dWy; Yy =0

where W is a Brownian motion on R™ and h is an R"—valued process.
Define f; = f(X;) and assume

(22) dft = g dt + th,

for some process g, where M is a martingale. We follow the convention
of denoting the {F} }-optional projection of a process with the “hat”
symbol. So we want to compute f;.
The “innovation process” is defined as
dZ, = dY; — hy dt
(2.3) = (hy — hy) dt + dW,

with Zy = 0. The differential dZ is interpreted as the innovation or
“surprise” in the variable Y, which consists of two parts, one being the
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error in the estimation of the drift h; and the other being the random
change dW'.

The main results of filtering theory, due to Fujisaki, Kallianpur and
Kunita (1972), are the following:

1) The innovation process Z is an {FY }-Brownian Motion on R™.

2) For any L*-bounded {F} }-martingale H, there exist {F} }-
previsible processes ¢’ such that F fOT(¢i)2 dt < oo for i =
1,...,n, and

dH, =Y " ¢;dZ;.
=1

3) There exist processes o' such that d[M, W], = aldt, for i =
L., N.
4) f evolves as

N
dft = gy dt + Z (ﬁt - ftilt + dt) dZ;,
i=1

where ]/”?Lt denotes the optional projection of the process fh.

Part (1) means in particular that Z is a martingale; thus the innova-
tions dZ are indeed “unpredictable.” Given that it is a martingale, the
fact that it is a Brownian motion follows from Levy’s theorem and the
fact, which follows immediately from (2.3), that the covariations are
d(Z', 77y = dt if i = j and 0 otherwise. Part (2) means that the pro-
cess Z “spans” the {F) }-martingales (which would follow from {FY}
= {F7}, though that need not be true in general). Part (3) means
that the covariation processes are absolutely continuous, though in our
applications we will assume M and the W* are independent, implying
o' =0 for all 1. R

Part (4) is the filtering formula. The estimate f is updated because
f is expected to change (which is obviously captured by the term g, dt)
and because new information from dZ is available to estimate f. The
observation process Y (or equivalently the innovation process Z) is
useful for estimating f due to two factors. One is the possibility of
correlation between the martingales W and M. This reflected in the
term &; dZ;. The other factor is the correlation between f and the

drift h; of Y. This is reflected in the term (ﬁzt — fihy) dZ,. Note
that fh, — fih; is the covariance of f; and h;, conditional on F). The
formula (4) generalizes the linear prediction formula

by
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which yields & = F[z|y] when = and y are joint normal.
We consider two applications.

2.1. Kalman-Bucy Filter. Assume X is distributed normally with
variance o? and

dX; = aX,dt + dB;,

dY; = c Xy dt + dWy,
where B and W are independent real-valued Brownian motions that

are independent of Xy. In this case, the distribution of X; conditional
on F,” is normal with deterministic variance v;. Moreover,

(24) dXt = (lXt dt + CUt dZt,
where the innovation process Z is given by
(2.5) dZ; = dY; — eX, dt.
Furthermore,
At
yoet — 3
2.6 - "
( ) Ut /ye)\t n 1 )

where o and — [ are the two roots of the quadratic equation 1+ 2ax —
c2x? = 0, with both « and 8 positive, A = *(a + 3) and vy = (0% +
B)/(a — ¢%). Onme can consult Rogers and Williams (2000) for the
derivation of these results from the general filtering results cited above.

2.2. Two-State Markov Chain. A simple tractable model that lies
outside the Gaussian family is a two-state Markov chain. It is con-

venient to label the states zero and one, so assume X takes values in
{0,1}. Assume

dX; = (1—-X,_)dN} — X,_dN},

where X;_ = lim,; X and the NV ¢ are independent Poisson processes
with parameters A\’ that are independent of X,. This means that X
stays in each state an exponentially distributed amount of time, with
the exponential distribution determining the transition from state i to
state j having parameter \'. Assume

d}/t = Q(Xt_) dt + th,

where W is a Brownian motion on R” independent of the N* and X.
Thus, the drift vector of Y is 6(0) or 6(1) depending on the state X;_.
In terms of our earlier notation, h; = #(X;_), and obviously we have

he = (1 — X,2)0(0) + X,_0(1).
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Write 7; for Xt. This is the conditional probability that X; = 1. The
general filtering formula implies
2.7)  dm=[(1— 71N = A dt + m (1 — m) [0(1) — 0(0)] dZ,
where the innovation process Z is given by
(2.8) dZy = dY; — [(1 — m)0(0) + m6(1)] dt.

This is a special case of the results in Liptser and Shiryayev (1977,
Chapter 9).

Note the similarity of (2.7) with the Kalman-Bucy filter (2.4): 6(1)—
6(0) is the vector ¢ in the equation

dY; = 0(X;_) dt + dW,
= [(1 = X;2)0(0) + X,-6(1)] dt + dW,
= 0(0) dt + cX,_ dt + dW;,

and (1 — m;) is the variance of X; conditional on F} .

3. INCOMPLETE INFORMATION

3.1. Seminal Work. Early work in portfolio choice and market equi-
librium under incomplete information includes Detemple (1986), Do-
than and Feldman (1986), and Gennotte (1986). They analyze models
of the following sort. The instantaneous rate of return on an asset is
given by

% = dt +odW,

where

duy = k(0 — ) dt + ¢ dB

and W and B are Brownian motions with a constant correlation coef-
ficient p, and where p is normally distributed and independent of W
and B. It is assumed that investors observe S but not pu; i.e., their fil-
tration is the (augmented) filtration generated by S. As before, letting
i1 denote the optional projection of i, the innovation process is

dz =B gy 4 aw,
o
which is an {F;”}-Brownian motion. Moreover, we can write
ds

Because fi is observable (adapted to {F7}), this is equivalent to a
standard complete information model, and the portfolio choice theory
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of Merton applies to (3.1). This is a particular application of the sepa-
ration principle for optimal control under incomplete information, and
in fact the primary contribution of these early papers was to highlight
the role of the separation principle. It is worthwhile to point out that
in these models, it is ji rather than p that should be interpreted as
the expected return on the asset, because the term “expected return”
should represent an agent’s beliefs, conditional on his information, and
the beliefs of an agent are by definition observable to him.

These early models were interpreted as equilibrium models by as-
suming the returns are the returns of physical investment technolo-
gies having constant returns to scale, as in Cox, Ingersoll and Ross
(1985). In other words, the assets are in infinitely elastic supply. In
this case, there are no market clearing conditions to be satisfied. Equi-
librium is determined by the optimal investments and consumption of
the agents. Given an equilibrium, prices of other zero net supply as-
sets can be determined—for example, term structure models can be
developed. However, the set of such models that can be generated by
assuming incomplete information is the same as the set that can be
generated with complete information, given the equivalence of (3.1)
and complete information models. In particular, the Kalman-Bucy fil-
tering equations imply particular dynamics for ji, but one could equally
well assume the same dynamics for ;1 and assume g is observable.

3.2. Markov Chain Models. In Gaussian models (with Gaussian
priors) the conditional covariance matrix of the unobserved variables is
deterministic. This means that there is no real linkage between Gauss-
ian incomplete information models and the well-documented phenom-
enon of stochastic volatility. Detemple (1991) observes that within a
model that is otherwise Gaussian, stochastic volatility can be generated
by assuming non-Gaussian priors. However, more recent work, moti-
vated by issues regarding stochastic volatility, has focused on Markov
chain models.
David (1993, 1997) studies a Cox-Ingersoll-Ross economy, assuming
a two-state Markov chain, with an exponential distribution for the
transition time from each state, as in Section 2.2.' In his model, there
are two assets (i = 0, 1), with
ds!

o = p (X )dt + o' dW,

ISee also Honda (1997), though much of Honda’s work seems to have been an-
ticipated by David (1993).
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where W% and W' are independent Brownian motions, X; € {0, 1},
and p%(z) = p'(1—=2). Set ug = p°(0) and pp = p°(1). Then when
X;— =0, the growth rates of the assets are y, for asset 0 and p; for asset
1, and the growth rates of the assets are reversed when X;_ = 1. With
complete information in this economy, the investment opportunity set
is independent of X;_. However, with incomplete information, investors
do not know for certain which asset is most productive. Suppose, for
example, that p, > pp. Then asset 0 is most productive in state 0 and
asset 1 is most productive in state 1. The filtering equation for the
model is (2.7), with observation process Y = (Y° Y1), where

- dlog S} (X ‘ <
dY;Z:& = (Lf)_a_) dt + dW?.
o’ o’ 2

In terms of the innovation processes (the following equations actually
define the innovation processes), we have

o = (= M) pa+ myu] di + 0° dZ°,
ds"
= = [Tepta + (1 — 7)) dt + ot dZ*.

As in the work of Detemple (1986), Dothan—Feldman (1986), and Gen-
notte (1986), this is equivalent to a complete information model in
which the expected rates of return of the assets are stochastic with
particular dynamics given by the filtering equations, but the volatili-
ties of assets are constant.

David focuses on the volatility of the market portfolio, assuming a
representative investor with power utility. The weights of the two assets
in the market portfolio will depend on m; (e.g., asset 0 will be weighted
more highly when 7; is small, because this means a greater belief that
the expected return of asset 0 is p, > pp). Due to diversification, the
instantaneous volatility of the market portfolio will be smallest when
the assets are equally weighted, which will be the case when m = 1/2,
and the volatility will be higher when m; is near 0 or 1. Therefore,
the market portfolio will have a stochastic volatility. Using simulation
evidence, David shows that the return on the market portfolio in the
model is consistent with the following stylized facts regarding asset
returns.

1) Excess kurtosis: the tails of asset return distributions are “too
fat” to be consistent with normality.

2) Skewness: large negative returns occur more frequently than
large positive returns.



3) Covariation between returns and changes in conditional vari-
ances: large negative returns are associated with a greater in-
crease in the conditional variance than are large positive returns.

Arguably, a more interesting context in which to study incomplete
information is an economy of the type studied by Lucas (1978), in which
the assets are in fixed supply. In this case, the prices and returns of the
assets are determined in equilibrium by the market-clearing conditions
and hence will be affected fundamentally by the nature of information.

Veronesi (1999, 2000) and David and Veronesi (2002) study models

of this type and discuss various issues regarding the volatility and ex-
pected return of the market portfolio. Their models are variations on
the following basic model. Assume there is a single asset, with supply
normalized to one, which pays dividends at rate D. Assume
dD,
Dy
where X is a two-state Markov chain with switching between states
occurring at exponentially distributed times, as in Section 2.2. Here
W1 is a real-valued Brownian motion independent of X,. Investors
observe the dividend rate D but do not observe the state X;_, which
determines the growth rate of dividends. We may also assume investors
observe a process

(3.3) dH, = ag (X, ) dt + o dW?,

where W? is a real-valued Brownian motion independent of W' and
Xo. The process H summarizes any other information investors may
have about the state of the economy.

The filtering equations for this model are the same as those described
earlier, where we set

Y:(IOgD,E) and u:(L_O%/Q O‘—H).

0p OH 0p ’O'H

(3.2) = ap(X,_)dt +opdW?,

In terms of the innovation process Z = (Z', Z?), we have

(3.4) % = [map(1) + (1 — )ap(0)] dt + op dZ",
(3.5) dH = [mog(1) + (1 — m)ay (0)] dt + oy dZ?,

and the conditional probability 7; evolves as
(36) dﬂ't = [(1 — Wt))\o - 7Tt)\1:| dt

) &D(l)o__ OéD(O) le_i_OdH(l)o-— OéH(O) dZ2

+ 7Tt(]_ — T
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Note that (3.4) and (3.6) form a Markovian system in which the
growth rate of dividends is stochastic. From here, the analysis is en-
tirely standard. It is assumed that there is a representative investor
who is infinitely-lived and who maximizes the expected discounted util-
ity of consumption u(c;), with discount rate 6. The representative in-
vestor must consume the aggregate dividend in equilibrium, and the
price of the asset is determined by his marginal rate of substitution.
Specifically, the asset price at time ¢ must be

0o e—é(sft)u/(D )
=F ————%D.d
& |:/t W' (Dy) o

¢, Dt:| .

In the case of logarithmic utility, we obtain S; = D,/d, so the asset
return is given by
? = [WtOéD(l) -+ (1 — Wt)OéD(O)] dt +op dz".
t

This is essentially the same as the early models on incomplete infor-
mation, because we have simply specified the expected return

map(l) 4+ (1 — m)ap(0)

as a particular stochastic process.
The case of power utility u(c) = ¢?/7 is more interesting. In this
case, we have

S, =D, E { / e 9D DY ds

t
=D} {(1 —m)E {/ e 9D ds
t
+ mF { / e DT ds| X, = 1,Dt]}
t

_ Dt {(1 B 7Tt>E |:/<>o efgtewfg {[aD(Xt,)—U?i/Q] ds+op dZi} dt' XO _ O:|
0

¢, Dt:|

Xt— - O7 Dt:|

e[ [t et alx, 1)),
0

which we can write as
Dt{(]- - 7Tt)00 + 7Tt01},

for constants C° and C.
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We obtain
as _ aD n (C' - C% dr (C' —C%d(D, )
S D (1-mC'+xC* D[(1—-7)C"+7nC]
= something dt + op dZ!
N {(C1 — C%7(1 — )
(1 =m)C%4 nC?
[t =m0y 25) —es)

0p 0s

(3.7)

The factor
(C' - CH7(1 —7)
(1—=m)C%4 nC?

introduces stochastic volatility. Thus, stochastic volatility can arise in
a model in which the volatility of dividends is constant.

There are obviously other ways than incomplete information to in-
troduce a stochastic growth rate of dividends in a Markovian model
similar to (3.4) and (3.6). However, this approach leads to a very sen-
sible connection between investors’ uncertainty about the state of the
economy and the volatility of assets. Note that the factor m (1 —m;) in
the numerator of (3.8) is the conditional variance of X;—it is largest
when 7, is near 1/2, when investors are most uncertain about the state
of the economy, and smallest when 7; is near zero or one, which is when
investors are most confident about the state of the economy. Thus, the
volatility of the asset is linked to investors’ confidence about future
economic growth. However, it should kept in mind that the model
only characterizes the market portfolio. Yan (2003) argues that the
qualitative aspects of the model do not apply to individual assets.

Veronesi (1999) actually assumes that the level of dividends (rather
than the logarithm of dividends) follows an Ornstein-Uhlenbeck process
as in (3.2) and he assumes the representative investor has negative ex-
ponential utility (i.e., he assumes constant absolute risk aversion rather
than constant relative risk aversion). David and Veronesi (2002) study
the model described here but assume the representative investor also
has an endowment stream. They show that the model can generate a
time-varying correlation between the return and volatility of the mar-
ket portfolio (for example, sometimes the correlation may be positive
and sometimes it may be negative) and use the model to generate an
option pricing formula for options on the market portfolio.

Veronesi (2000) studies the above model but assuming there are n
states of the world rather than just two. One way to express his model

(3.8)
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is to let the state variable X; take values in {1,...,n} with dynamics

n

dX; =Y (i — X, ) dNj,

i=1
where the N? are independent Poisson processes with parameters \’.
Then N = 3" | N' is a Poisson process with parameter A = Y7 | A"
Conditional on AN; = 1, there is probability f* = A'/\ that X; = i.
This is independent of the prior state X;_. Define X; = 1{x,—;;. Then
the {F, }-optional projection of X}, which we will denote by =, is
the probability that X; = i conditional on F. The process X; is a
two-state Markov chain with dynamics

dX;=(1— X} )dN;* = X} dN},

where N7 = Db N/ is a Poisson process with parameter A\~# =
Zj 4i M. Thus, the dynamics of 7 are given by the filtering equation
(2.7) for two-state Markov chains. The resulting formula for the dy-
namics of the asset price S is a straightforward generalization of (3.7).

3.3. Heterogeneous Priors. Economists often assume that all agents
have the same prior beliefs. A rationale for this assumption is given by
Harsanyi (1967). To some, this rationale seems less than compelling,
motivating the analysis of heterogeneous prior beliefs. A good example
is Detemple-Murthy (1997). They study a single-asset Lucas economy
similar to the one described in the previous section (but with the un-
observable dividend growth rate being driven by a Brownian motion
instead of following a two-state Markov chain). Instead of assuming a
representative investor, they assume there are two classes of investors
with different beliefs about the initial value of the dividend growth
rate. Finally, they assume each type of investor has logarithmic utility
and the investors all have the same discount rate. The focus of their
paper is the impact of margin requirements, which limit short sales of
the asset and limit borrowing to buy the asset. This is an example of
an issue that cannot be addressed in a representative investor model,
because margin requirements are never binding in equilibrium on a
representative investor, given that he simply holds the market portfo-
lio in equilibrium. In a frictionless complete-markets economy one can
always construct a representative investor, but that is not necessarily
true in an economy with margin requirements or other frictions or in-
completeness of markets. In the absence of a representative investor, it
can be difficult to compute or characterize an equilibrium, but this task
is considerably simplified by assuming logarithmic utility, because that
implies investors are “myopic”—they hold the tangency portfolio and



12

do not have hedging demands. However, if all investors have logarith-
mic utility, then heterogeneity must be introduced through some other
mechanism than the utility function. The assumption of incomplete
information and heterogeneous priors is a simple device for generating
this heterogeneity among agents. Basak and Croitoru (2003) study
the effect of introducing “arbitrageurs” (for example, financial inter-
mediaries) in the model of Detemple and Murthy. Jorion and Napp
(2003) discuss the existence of representative investors in markets with
incomplete information and heterogeneous beliefs.

4. ASYMMETRIC INFORMATION

4.1. Non-Equilibrium Models. Recently, a literature has developed
using the theory of enlargement of filtrations to study the topic of
“Insider trading.” See, for example, Karatzas-Pikovsky (1996), Grorud-
Pontier (1998, 2001), and Baudoin (2003). One starts with asset prices
of the usual form?

ds;

Si
on the horizon [0,7] where the W* are correlated Brownian motions
on the filtered probability space (Q, F,{F;},P). Then one supposes
there is an Fr—measurable random variable Y (with values in R* or
some more general space) and an “insider” has access to the filtration
{G.}, which is the right-continuous completed version of the filtration
{Fivo—(Y)}. By “access to the filtration,” I mean that the insider is
allowed to choose trading strategies that are {G;}-adapted.

Some interesting questions are (1) does the model make mathemat-
ical sense—i.e., are the price processes {G;}-semimartingales? (2) is
there an arbitrage opportunity for the insider? (3) is the market com-
plete for the insider? (4) how much additional utility can the insider
earn from his advance knowledge of Y7 (5) how would the insider value
derivatives? .... For the answer to the first question, the essential ref-
erence is Jacod (1985). Baudoin (2003) describes the setup I have
outlined here as the case of “strong information” and also introduces
a concept of “weak information.”

While this literature is quite interesting in some respects, an essential
limitation is that there is no feedback from the inside information of
the investor to the dynamics of market prices. Suppose for example
that there is a constant riskless rate r and the advance information Y

=y dt + o) AW},

2Assume either that there are no dividends or that the S; represent the prices
of the portfolios in which dividends are reinvested in new shares.
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is the vector of asset prices Sp. Then there is an arbitrage opportunity
for the insider unless

St=e""05;

for all = and ¢, which of course cannot be the case if the volatilities
o' are nonzero. One might simply say that this is not an acceptable
model and adopt hypotheses that exclude it. However, the rationale
for excluding it must be that we do not believe in the presence of
arbitrage opportunities, and the rationale for that belief must be that
exploitation of arbitrage opportunities tends to eliminate them. In
other words, buying and selling by the insider would be expected to
change market prices. This is true in general and not just in this specific
example. The idea that market prices reflect in some way and to some
extent the information of economic agents is a cornerstone of finance
and of economics in general, dating back at least to Hayek (1940s?).
In the following sections, we will examine equilibrium models, which
incorporate this feedback from information to prices.

4.2. Rational Expectations Models. The term “rational expecta-
tions” was originally used in the context of asymmetric information
models to mean that agents understand the mapping from the informa-
tion of various agents to the equilibrium price; thus they make correct
inferences from prices (see Grossman (1981)). These models were “com-
petitive” models in the sense that agents were assumed to be “price
takers,” meaning that they assume their own actions have no effect on
prices. Now the term is generally reserved for competitive models, and
I will use it in that sense. We will examine strategic models, in which
agents understand the impact of their actions on prices, in the next
section.

An important rational expectations model is that of Wang (1993).
Wang studies a Lucas economy in which the dividend rate D; of the
asset has dynamics

where W is an R3-valued Brownian motion. Moreover, it is assumed
that

(4.2) dll; = ap (I — TL;) dt + by dW

for a constant II. It is also assumed that there is a Cox-Ingersoll-Ross-
type asset (i.e., one in infinitely elastic supply) that pays the constant
rate of return . There are two classes of investors, each having constant
absolute risk aversion.
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One class of investors (the “informed traders”) observes D and II.
The other class (the “uninformed traders”) observes only D. As de-
scribed thus far, the model should admit a “fully revealing equilib-
rium,” in which the uninformed traders could infer the value of II;
from the equilibrium price of the asset. This equilibrium suffers from
the “Grossman-Stiglitz paradox” —in reality it presumably costs some
effort or money to become informed, but if prices are fully revealing,
then no one would pay the cost of becoming informed; however, if no
one is informed, prices cannot be fully revealing (and it would presum-
ably be worthwhile in that case for someone to pay the cost of becom-
ing informed). Wang avoids this outcome by the device introduced by
Grossman and Stiglitz (1980): he assumes the asset is subject to supply
shocks that are unobserved by all traders. The noise introduced by the
supply shocks prevents uninformed traders from inverting the price to
compute the information II; of informed traders.® Specifically, Wang
assumes the supply of the asset is 1 + ©,, where

(4.3) d0; = —ae® dt + b dW.

The general method used to solve rational expectations models is
still that described by Grossman (1981), even though Grossman did
not assume there were supply shocks and obtained a fully revealing
equilibrium. The trick is to consider an “artificial economy” in which
traders are endowed with certain additional information. One com-
putes an equilibrium of the artificial economy and then shows that
prices in this artificial economy reveal exactly the additional informa-
tion traders were assumed to possess. Thus, the equilibrium of the
artificial economy is an equilibrium of the actual economy in which
traders make correct inferences from prices.

In Wang’s artificial economy, the informed traders observe © as well
as D and II. The uninformed traders observe a linear combination of
O and IT as well as D. In the equilibrium of the artificial economy, the
price reveals the linear combination of © and II, given knowledge of D.
This implies that it reveals © to the informed traders, given that they
are endowed with knowledge of Il and D. Therefore, the equilibrium
of the artificial economy is an equilibrium of the actual economy.

Specifically, Wang conjectures that the equilibrium price S; is a lin-
ear combination of Dy, II;, ©; and f[, where II denotes the optional
projection of II on the filtration of the uninformed traders. For this to

3In fact, this type of mechanism was first introduced by Lucas (1972), who as-
sumes the money supply is unobservable in the short run, and hence real economic
shocks cannot be intertwined from monetary shocks, leading to real effects of mon-
etary policy in the short run.
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make sense, one has to specify the filtration of the uninformed traders,
and in the artificial economy it is specified as the filtration generated
by D and a particular linear combination of II and ©. Let this linear
combination be

(44) Ht = OéHt + ﬁ@t

Then the observation process of the uninformed traders in the arti-
ficial economy is Y; = (D, H) and the unobserved process they wish
to estimate is II. For the equilibrium of the artificial economy to be
an equilibrium of the actual economy, we will need S; to be a linear
combination of D;, H; and f[t; ie.,

(45) St =4 + /}/Dt + /th + )\ﬂt

Conditional on FY, II; is normally distributed with mean ﬁt and a
deterministic variance. Wang derives an equilbrium in which S; is a
linear combination of Dy, II;, ©; and ﬂt with time-invariant coefficients
by focusing on the steady-state solution of the model. Specifically, he
assumes the variance of Il is the limit of the conditional variance of
II; as t — oo.

Given the specification of the price process (4.4)-(4.5) and the fil-
tering formula, it is straightforward to calculate the demands of the
two classes of traders. The market clearing equation is that the sum
of the demands equals ©,. This is a linear equation that must hold
for all values of D,, II;, ©, and I1,. Imposing this condition gives the
equilibrium values of «, 3, §, v, k and A.

In addition to the usual issues regarding the expected return and
volatility of the market portfolio, Wang is able to describe the portfo-
lio behavior of the two classes of investors; in particular, uninformed
traders tend to act as “trend chasers,” buying the asset when its price
increases, and informed traders act as “contrarians,” selling the asset
when its price increases.

4.3. Strategic Models. The price-taking assumption in rational ex-
pectatons models is often problematic. In the extreme case, prices are
fully revealing, and traders can form their demands as functions of the
fully revealing prices, ignoring the information they possessed prior to
observing prices. But, if traders all act independently of their own in-
formation, how can prices reveal information? (reference Beja (19807)).
Moreover, as mentioned earlier, full revelation of information by prices
would eliminate the incentive to collect information in the first place.
The price-taking assumption is particularly problematic when infor-
mation is possessed by only one or a few traders. Consider the case of
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a piece of information that is held by only a single trader. In general,
the equilbirium price in a rational expectatons model will reflect this
information to some extent. Moreover, traders are assumed to make
correct inferences from prices, so the trader is assumed to be aware that
his information enters prices. But how can he anticipate that the price
will reflect his private information, when he assumes that his actions do
not affect the price? Hellwig (1980) describes this as “schizophrenia”
on the part of traders.

These issues do not arise in strategic models, in which agents are as-
sumed to recognize that their actions affect prices and it is only through
their actions that private information becomes incorporated into prices.
The most prominent model of strategic trading with asymmetric infor-
mation is due to Kyle (1985). Kyle’s model has been applied on many
occasions, beginning with Admati—Pfleiderer (1988), to study various
issues in market microstructure. The continuous-time version of the
model was formalized and generalized by Back (1992). Subsequent
generalizations appear in Back (1993), Back-Pedersen (1998), Baruch
(2002), Cho (2003), and Lasserre (forthcoming). Here we will discuss
the model with multiple informed traders due to Back, Cao and Willard
(2000). Their work builds on the analysis by Foster and Viswanathan
(1996) of a discrete-time model with multiple traders. We will also dis-
cuss the connection derived by Back and Baruch (2003) between the
Kyle model and the Glosten-Milgrom (1985) model .

The Kyle model focuses on a single risky asset traded over the time
period [0, 7. It is assumed that there is also a riskless asset, with the
risk-free rate normalized to zero. Unlike models described previously in
which the single risky asset is interpreted as the market portfolio, with
the dividend of the asset equaling aggregate consumption, the Kyle
model is not a model of the market portfolio. In fact, the risk of the
asset is best interpreted as idiosyncratic, because investors are assumed
to be risk neutral. As in Grossman-Stiglitz (1980) or Wang (1993) it
is assumed that the supply of the asset is subject to random shocks,
which we interpret as resulting from the trade of “noise traders.” The
noise traders trade for reasons that are unmodeled. For example, they
may experience liquidity shocks (endowments of cash to be invested or
desires for cash for consumption) and for that reason are often called
“liquidity traders.” In addition to N strategic traders and the noise
traders, it is assumed that there are competitive risk-neutral “mar-
ket makers,” who are somewhat analogous to the uninformed traders
in Wang (1993). The market makers observe the net demands of the
strategic traders and noise traders and compete to fill their demands.
As a result of their competition (and their risk neutrality and the fact
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that the risk-free rate is zero), the transaction price is always the expec-
tation of the asset value, conditional on the information of the market
makers, i.e., conditional on the information in the history of orders.

In the original model of Kyle (1985), there is only a single strategic
trader. He possesses at date zero some information about the value
of the asset at date T that other traders do not have. Given some
specification for how his trades (and hence how the net trades of the
informed and noise traders) depend on his information, the market
makers filter the order flow to estimate it. In the multiple strategic
trader model of Back, Cao and Willard (2000), each strategic trader
must also filter the order flow to estimate the information of other
strategic traders.

It is assumed that the information asymmetry is erased by a public
announcement at date 7. Since this eliminates the “lemons problem,”
all positions can be liquidated at this announced value. Denote this
value by v.

Before beginning the discussion of the model with multiple strategic
traders, it will be useful to first explicate the single-trader model of
Kyle. In fact, as in Kyle (1985), we will begin with a single-period
model. In this model, there is trading only at date 0, and consumption
occurs at date T'. The asset value v is normally distributed with mean v
and variance o2. The informed trader observes v and submits an order
x(v). Noise traders submit an order z that is independent of v and
normally distributed with mean zero and variance o2. Market makers
observe y = = + z and set the price equal to p = Efv|z(v) + z|. We
search for a linear equilibrium in which the price is set as p = v + \y
and the insider’s trade is * = n(v — v), for constants A and 7. An
equilibrium is defined by (1) v + Ay = Efv|y] and (2) n(v — v) =
argmax, E[z(v — 0 — A« + 2))]. Condition (1) implies

cov(v,y) no,
A p— pu— B
var(y) n?c? + o2
and condition (2) implies
1
n= N
The solution of these two equations is
n="22 and A= 2%
Oy 20,

Kyle defines the reciprocal of A as the “depth” of the market. It mea-
sures the number of shares that can be traded causing only a unit
change in the price. Of interest is the fact that the depth of the market
is proportional to the amount of noise trading as measured by o, and
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inversely proportional to the amount of private information as mea-
sured by o,.
To be continued . ..
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