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ABSTRACT: Since the Pontryagin Maximum Principle was discovered in the 1950’s, two com-
peting approaches have been developed for proving extensions of the original result to theorems
yielding stronger conclusions (for example, high-order conditions), or valid under weaker hy-
potheses (for example, right-hand sides that are Lipschitz rather than of class C!) or both. The
first, ”primal,” method, consists of working systematically with families of vector fields, making
"needle variations,” differentiating the corresponding endpoint map, and applying open mapping
conditions based on some version of the Brouwer fixed point theorem. The second, ”dual” ap-
proach, takes as its starting point the classical calculus of variations, and reduces the optimal
control problems for vector fields and differential inclusions to problems of the more classical
kind, by means of penalization methods in which violations of the constraints are prevented by
addinga large penalty term in the cost functional. In the 1970’s and 1980’s, a lot of the progress
in the non-smooth direction was made by means ofdual methods, while the primal approach
yielded better results (with extra conclusions) for smooth systems but appeared not to lend it-
self to the study of non-smooth problems. This situation changed in the early 1990’s, with the
pioneering work of S. Lojasiewicz Jr., who showed how to get strong nonsmooth results with a
primal technique. In the course, we will present a general primal methodology that has evolved
out of Lojasiewicz’s idea, and has led to a unified approach that applies to much larger classes of
smooth and very non-smooth problems, including those that involve differential inclusions. This
methodology is based on

(a) using vector fiels that are not necessarily continuous (following ideas of Alberto Bressan)
in order to overcome the fact that the set-valued maps that occur in differential inclusion systems
typically do not admit continuous selections, and to make sure that there are sufficiently many
nice selections to make it possible to reduce all differential inclusion systems to systems of vector
fields,

(b) relying systematically on regularity properties of flows rather than on properties of the
vector fields that generate them, so as to exploit the fact that usually flows are more regular than
their infinitesimal generators,

(c) considering abstract variations (of the kind studied by Krener, Knobloch, Bianchini, Ste-
fani, Kawski, and others) rather than just the classical needle variations,

and, most importantly,

(d) using notions of derivative other than the classical one to differentiate the endpoint maps.

In particular, the course will give an axiomatic description of the notion of a ”generalized
differentiation theory” as a multifunctor between some appropriate categories, and provide a
detailed presentation of one such theory—the ”generalized differential quotients”—that is both
fairly simple and of very broad applicability.
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