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Introduction

Random sets are mathematical models to describe complex spatial data as
they arise in modern applications in numerous form, as pictures, maps, digi-
tal images, etc. Whenever the geometric structure of an image is essential, a
description by a set-valued random variable seems to be appropriate. Mathe-
matically, a random set can simply be defined to be a measurable mapping Z
from some abstract probability space (Ω,A,P) into a class F of sets, where
the latter is supplied with a σ-algebra F. Here, on the one hand, F and F have
to be reasonably large to represent structures occurring in practice at least
approximately and to allow the basic geometric operations like intersection
and union to be measurable operations within the class. On the other hand,
F has to be reasonably small in order to have enough nontrivial examples of
distributions on (F ,F). A pair (F ,F) which fulfills both requirements is given
by the class F of all closed subsets of a topological space T and by the Borel
σ-algebra F = B(F) with respect to the topology of closed convergence on F .
Throughout the following, we will concentrate on this case. Random open sets
can be defined and discussed in a similar manner, but random closed sets cover
more cases which are of interest in applications, since they include random
compact sets and, in particular, random finite or locally finite sets (simple
point processes). Furthermore, we only work with random subsets Z ⊂ Rd,
other topological spaces T will only be mentioned occasionally. Some aspects
of the theory remain unchanged in more general spaces, others make use of
the vector space structure of Rd (or even the finite dimension).

Having clarified now the basic setting for our considerations, the challenge
still remains to find a reasonably large class of distributions on F (we fre-
quently suppress the σ-algebra, in the following), for example to allow some
statistical analysis for random sets. In the classical situation of real random
variables, various distributions can be constructed using the distribution func-
tion as a tool, but there is also the family of normal distributions which plays
a central role and from which further distributions can be obtained by vari-
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ation. In stochastic geometry, there is an analog of the distribution function
(the capacity functional of a random closed set), but it cannot be used for
the explicit construction of distributions, in general. However, there is a basic
random set model, the Boolean model, which allows to calculate various ge-
ometric parameters and therefore can be used to fit a specific random set to
given spatial data. Actually, Boolean models build a whole family of random
sets which is still very rich in structure. Their definition is based on Poisson
processes, which play a role in stochastic geometry comparable to the role of
the normal distribution in classical statistics.

Boolean models can be classified according to their invariance properties.
Those which are stationary and isotropic (thus invariant in distribution with
respect to rigid motions) are the best studied ones and there is a large variety
of formulas for them. Boolean models which are only stationary (invariant in
distribution with respect to translations) have been the object of research for
the last years. Boolean models without any invariance properties (or with only
partial invariances) are the most complex ones and were studied only recently.
In the following, we concentrate on Boolean models, as the basic random sets
in stochastic geometry and as ingredients for more general classes of random
sets. We present the results for Boolean models with increasing generality,
first for stationary and isotropic models, then without the isotropy condition
and finally without any invariance assumptions. The section headings are:

1. Random sets, particle processes and Boolean models
2. Mean values of additive functionals
3. Directional data, local densities, nonstationary Boolean models
4. Contact distributions

Since Boolean models arise as union sets of (Poisson) particle processes, geo-
metric functionals compatible with unions are of particular interest (additive
functionals) and expectation formulas for such functionals immediately lead
to formulas of integral geometric type. For stationary and isotropic models, we
will thus make use of kinematic formulas, the general case requires formulas
from translative integral geometry. This part will therefore frequently refer
to results explained in the contribution

S
[S] by Rolf Schneider but will also be

based on results for point processes (see the chapter
B
[B] by Adrian Baddeley).

The use of integral geometric results has also some influence on the choice
of the set class to start with. We will therefore often work with Boolean models
having convex grains, but more general results will be mentioned, too.

1 Random sets, particle processes and Boolean models

In this section, we define Boolean models and explain their role in stochastic
geometry. We begin however with introducing the two basic notions in stochas-
tic geometry, random closed sets (RACS) and point processes of compact sets
(particle processes).
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1.1 Random closed sets

Since we already described the ideas behind the notion of a random closed set,
we will be quite brief in this subsection and mainly collect the technical setup
which we use in the following. From now on, F denotes the class of closed
subsets of Rn (including the empty set ∅). Subclasses which we frequently use
are the compact sets C and the convex bodies K (again both including ∅). We
supply F with the σ-algebra F generated by the sets

FC , C ∈ C.

Here and in the following we use the notation

FA := {F ∈ F : F ∩A 6= ∅}

for any subset A ⊂ Rn; and we similarly define

FA := {F ∈ F : F ∩A = ∅}.

There are various other classes which generate the same σ-algebra F, for ex-
ample

{FC : C ∈ C}, {FG : G ⊂ Rd open}, {FG : G ⊂ Rd open}.

Consequently, also {FC : C ∈ C} ∪ {FG : G ⊂ Rd open} generates F. This
set class is of interest since it can serve as a sub-basis of a topology on F , the
topology of closed convergence. For a sequence Fj → F , convergence in
this topology means that each x ∈ F is limit of a sequence xj → x, xj ∈ Fj

(for almost all j) and that each limit point x = limxjk
of a (converging)

subsequence xjk
∈ Fjk

lies in F . As it turns out, F is the Borel σ-algebra with
respect to this topology.

The subclasses C and K, and others which arise later, are supplied with
the induced σ-algebras. On C (and similarly on K), the induced σ-algebra
coincides with the Borel σ-algebra generated by the Hausdorff metric. Note
however that the topology of closed convergence on C is weaker than the
Hausdorff metric topology. For example, the sequence Bn +kx, k ∈ N, of balls
does not converge in the Hausdorff metric, but it converges in F (namely to
∅). Thus, C and K are neither closed nor open in F , but they are Borel subsets.
The latter is also true for all the subsets of F which come up later, without
that we will mention it in all cases.

The choice of the σ-algebra (respectively the topology) on F was motivated
by the desire to make the standard set transformations, which map closed
sets into closed sets, continuous and therefore measurable. As it turns out, all
geometric transformations which will occur are measurable, but only a few
are continuous, the others have a semi-continuity property. We mention only
(F, F ′) → F ∪ F ′ (which is continuous), (F, F ′) → F ∩ F ′ (which is upper
semi-continuous) and F → ∂F (which is lower semi-continuous). The real- and
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measure-valued functionals on convex bodies which arise in integral geometry
are mostly continuous and therefore measurable. This refers in particular to
the continuous valuations like the intrinsic volumes, the curvature measures,
the mixed measures and the mixed functionals. Their additive extensions to
the convex ring R are no longer continuous but measurable (this is a deeper
result using the existence of measurable selections). We will also use the set
class

S := {F ∈ F : F ∩K ∈ R, for all K ∈ K},

in the following. S consists of all locally finite unions of convex bodies (ex-
tended polyconvex sets). As it was already mentioned in

S
[S], the curvature

measures as well as the mixed measures are locally defined and therefore have
a (unique additive) extension to S. The extended measures are measurable
(as functions on S).

To finish this list of technical pre-requisites, we consider rigid motions
(rotations, translations) of closed sets. The action of the group Gn on F is
continuous and thus (g, F ) 7→ gF is measurable, as is (ϑ, F ) 7→ ϑF, ϑ ∈ SOn,
and (x, F ) 7→ xF := F + x, x ∈ Rn.

We now come to our basic definitions. A random closed set (RACS)
Z (in Rn) is a measurable mapping

Z : (Ω,A,P) → (F ,B(F)).

As usual, the image measure

PZ := Z(P)

is the distribution of Z. We write Z ∼ Z ′, if PZ = PZ′ (equality in distri-
bution).

Further probabilistic notions will be used without detailed explanation,
as long as they are standard. For example, RACS Z1, ..., Zk or Z1, Z2, ... are
(stochastically) independent if

P(Z1,...,Zk) = PZ1 ⊗ · · · ⊗ PZk
,

respectively

P(Z1,Zk,...) =
∞⊗

i=1

PZi
.

The measurable transforms mentioned above produce random sets. Thus if
Z,Z ′ are RACS, the following are also RACS: Z ∪Z ′, Z ∩Z ′, gZ (for g ∈ Gn).

A RACS Z is stationary if Z ∼ xZ, for all x ∈ Rn, and isotropic if
Z ∼ ϑZ, for all ϑ ∈ SOn. At the beginning, we will concentrate on RACS
which are stationary or even stationary and isotropic. Here is a first result on
stationary RACS.

1.1.1 Theorem 1. A stationary RACS Z is almost surely either empty or un-
bounded.
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If we replace Z by its closed convex hull Z ′ (which is a stationary convex
RACS), the theorem follows from the fact, that Z ′ (almost surely) only takes
values in {∅,Rn}. The reader is invited to think about a proof of this simple
result.

Although we will not use it in full detail, we want to mention a fundamental
result of Choquet. It concerns the capacity functional TZ of a RACS Z,

TZ : C → [0, 1], TZ(C) := P(Z ∩ C 6= ∅).

Generally, a real functional T on C is called a Choquet capacity, if it fulfills
0 ≤ T ≤ 1, T (∅) = 0 and T (Ci) → T (C), for every decreasing sequence
Ci ↘ C. The mapping T is alternating of infinite order, if

Sk(C0;C1, ..., Ck) ≥ 0, for all C0, C1, ..., Ck ∈ C, k ∈ N0.

Here, S0(C0) := 1− T (C0) and

Sk(C0;C1, ..., Ck) := Sk−1(C0;C1, ..., Ck−1)− Sk−1(C0 ∪ Ck;C1, ..., Ck−1),

for k ∈ N.

Theorem 2 (Choquet). (a) The capacity functional TZ of a RACS Z is anchoquet
alternating Choquet capacity of infinite order.

(b) If T is an alternating Choquet capacity of infinite order, then there is a
RACS Z with T = TZ .

(c) If TZ = TZ′ , then Z ∼ Z ′.

(a) follows directly from the definition of TZ . The uniqueness result (c) will
be useful for us. It is a consequence of the fact that the class of complements
FC , C ∈ C, is ∩-stable and generates B(F). (b) is the genuine result of Cho-
quet and has a lengthy and complicated proof, but following the usual lines
of extension theorems in measure theory.

The capacity functional TZ of a RACS Z can be viewed as the analog of
the distribution function of a real random variable. Theorem

choquet
2 thus parallels

the continuity and monotonicity properties of distribution functions as well
as the corresponding characterization and uniqueness results.

For a stationary RACS Z, the value p := TZ({x}) is independent of x ∈ Rn,
since

TZ({x}) = P(x ∈ Z) = P(0 ∈ Z − x) = P(0 ∈ Z) = TZ({0}).

Moreover,

Eλn(Z ∩A) = E
∫

Rn

1A(x)1Z(x)λn(dx)

=
∫

Rn

1A(x)E1Z−x(0)λn(dx)

= E1Z(0)
∫

Rn

1A(x)λn(dx)

= p λn(A),
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for A ∈ B(Rn), due to the stationarity and Fubini’s theorem. p is therefore
called the volume fraction of Z.

Hints to the literature. The theory of random closed sets was developed
independently by Kendall

Ke74
[Ke74] and Matheron

Ma72
[Ma72]. A first detailed ex-

position appeared in
Ma75
[Ma75]; for a more recent presentation, see

SW00
[SW00].

1.2 Particle processes

The space F ′ := F \ {∅} of nonempty closed sets is a locally compact space
with countable base. Therefore, one can define and consider point processes X
on F ′ (see

B
[B]). Formally, a (simple) point process X is a measurable mapping

X : (Ω,A,P) → (N,N ), where N denotes the collection of all locally finite
subsets of F ′ and N is the σ-algebra generated by the counting functions

N 7→ card (N ∩ A),

for N ∈ N and A ∈ B(F ′). Alternatively, N can be described as the collection
of simple counting measures on F ′, the counting functions then have the form
N 7→ N(A). Here, a Borel measure N on F ′ is a counting measure if it is
integer-valued and locally finite, that is finite on all compact subsets of F ′.
For the latter it is sufficient that

N(FC) <∞, for all C ∈ C. (1) LF

The counting measure N is simple, if N({F}) ≤ 1, for all F ∈ F ′, that
means there are no multiple points occurring in N . For the following, it is
convenient to use both interpretations of (simple) point processes X on F ′
simultaneously. Thus, we will interpret X as a random countable collection
of closed sets, but will also view it as a random measure on F ′, such that
expressions like X(A), A ∈ B(F ′), make sense (and describe the number of
‘points’ in X which lie in A).

For a point process X on F ′, let Θ be the intensity measure. For a Borel
set A ∈ B(F ′), Θ(A) gives the mean number of points in X which lie in A.
In the language of counting measures,

Θ(A) = EX(A).

WhereasX is, by definition, locally finite (at least almost surely), the intensity
measure Θ need not be. However, we will make the corresponding assumption
throughout the following, that is, we generally assume

Θ(FC) <∞, for all C ∈ C. (2) LF2

We also assume that Θ is not the zero measure since then the point process
X would be empty (with probability 1), a case which is not very interesting,
but also has to be excluded in some of the later results.
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Although there are a number of interesting results for point processes on
F ′, we now restrict our attention to point processes on C′ := C\{∅}, that is, to
point processes X on F ′ which are concentrated on C′. The latter is the case,
if and only if Θ is concentrated on C′. We call such point processes particle
processes. Why did we make this detour via point processes on F ′? Since
C′ with the Hausdorff metric is also a locally compact space with countable
base, we could have defined a particle process directly as a point process on
the metric space C′. One reason is that the sets FC , C ∈ C, are compact
in F ′, but the corresponding sets CC := FC ∩ C′, C ∈ C, are not compact
in the Hausdorff metric. Thus the condition of local finiteness for measures
on C′ would be weaker than (

LF
1) and not sufficient for our later purposes. A

second aspect is that there is another important family of point processes
in stochastic geometry which should be at least mentioned here, the q-flat
processes. These are point processes of closed sets which are concentrated on
the space En

q of q-flats (q-dimensional affine subspaces). En
q is also a measurable

subset of F ′. Processes of flats are very interesting objects and show also close
connections to convex geometry. Some results of this kind are discussed in

S
[S].

Due to lack of time, we will not consider them further. Another very interesting
class, which will not be treated here in detail, are the random mosaics. A
random mosaic can be defined as a particle process X where the particles are
convex polytopes which tile the space. Alternatively, but mathematically less
informative, one can consider the union of the boundaries of the tiles and call
the RACS Z made up by these boundaries a random mosaic. Because there is
a strong dependence between the cells of a random mosaic, random mosaics
and Boolean models are far from each other, but there are some connections
which we will mention later on.

The definition of invariance properties of a particle process X is now
straight-forward. Rigid motions g act in a natural way on collections of sets
and on (random) measures η (on C′). Namely,

gA := {gK : K ∈ A} and gη(A) := η(g−1A), A ∈ B(C′).

Therefore, X is called stationary (respectively isotropic) if X ∼ xX, for
all translations x, (respectively X ∼ ϑX, for all rotations ϑ). Here, we use
distributions of particle processes and equality in distribution in the obvious
way, without copying the definitions which we have described in more detail
for RACS.

Particle processes can also be interpreted as marked point processes in Rn

with mark space C′, if we associate with each particle K a pair (x,K ′) such
that K = x +K ′. The idea is that x represents the ‘location’ of K, whereas
K ′ represents the ‘form’. Such a representation is especially helpful in the sta-
tionary case and we will use it directly or indirectly throughout the following.
Apparently, there is no natural decomposition of this kind, any suitable center
map c : C′ → Rn will produce a corresponding pair (c(K),K − c(K)). In the
following we work with one specific center map, which is compatible with rigid
motions, namely we choose c(K) to be the midpoint of the circumsphere
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of K. The marks are then concentrated on C0 := {K ∈ C′ : c(K) = 0}. For
some applications, different center maps have been used (for example lower
tangent points of the particles). In the case of convex particles, the Steiner
point is also a natural choice.

For stationary particle processes, the representation as marked point pro-
cess leads to a decomposition of the intensity measure (we remind the reader
that we always assume Θ 6≡ 0).

decomposition Theorem 3. For a stationary particle process X, the intensity measure Θ is
translation invariant and has a decomposition

Θ(A) = γ

∫
C0

∫
Rn

1A(x+K)λn(dx)Q(dK), A ∈ B(C′), (3) decomp

with a constant γ > 0 and a probability measure Q on C0.
If X is isotropic, then Q is rotation invariant.

We call γ the intensity of X and Q the grain distribution. The marked
point process Ψ := {(c(K),K − c(K)) : K ∈ X} is sometimes called a germ-
grain process since we can think of the particles K as grains grown around
a germ.

We shortly indicate the proof of Theorem
decomposition
3. The translation invariance of

Θ is obvious. The image measure Θ′ of Θ under K 7→ (c(K),K − c(K)) is a
measure on Rn×C0. The translation invariance of Θ implies that Θ′ = λn⊗ρ
with some measure ρ. The local finiteness of Θ yields that ρ is finite. (

decomp
3) thus

follows with γ := ρ(C0) and Q := 1
γ ρ. If X is isotropic, Θ is rotation invariant,

and therefore Θ′ is rotation invariant in the second component. Thus, Q is
rotation invariant.

The representation (
decomp
3) is unique with respect to the center map c which

we used. A different center map c′ can produce a different representation of
X as a marked point process, and therefore a different decomposition of Θ.
As we shall show below, this does not affect the intensity γ which will be
the same for each representation, but it will affect the grain distribution Q′

which will then live on a different space C1 := {C ∈ C′ : c′(C) = 0}. However,
on can express Q and Q′ as image measures of each other under a certain
transformation which is connected with the center maps c, c′. The fact that γ
depends only on X and not on c follows from the representation

γ = lim
r→∞

1
λn(rBn)

Θ(FrBn). (4) asymp

(
asymp
4) is a consequence of (

decomp
3), since
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1
λn(rBn)

Θ(FrBn) =
γ

κnrn

∫
C0

∫
Rn

1FrBn (x+K)λn(dx) Q(dK)

=
γ

κnrn

∫
C0

λn(K + rBn) Q(dK)

=
γ

κn

∫
C0

λn(
1
r
K +Bn) Q(dK).

For r →∞, we have λn( 1
rK+Bn) → λn(Bn) = κn und thus the result follows

from Lebesgue’s dominated convergence theorem.
In view of (

asymp
4) we may interpret γ as the mean number of particles in X

per unit volume of Rn; we also speak of the particle density.
So far, we have worked with particle processes in general, now we want to

mention a special class of them, the Poisson processes. A particle process X
(with intensity measure Θ) is a Poisson (particle) process, if

P(X(A) = k) = e−Θ(A)Θ(A)k

k!
, for k ∈ N0, A ∈ B(C′), (5) Poisson1

and, for mutually disjoint A1,A2, ... ∈ B(C′),

X(A1), X(A2), ... are independent. (6) Poisson2

Conditions (
Poisson1
5) and (

Poisson2
6) are not independent. In fact, if we only consider inten-

sity measures Θ without atoms, (
Poisson1
5) and (

Poisson2
6) are equivalent (see

SW00
[SW00], for

more details).
Poisson processes actually can be defined on quite arbitrary (measurable)

spaces and each measure Θ (which fulfills a suitable finiteness condition) gives
rise to a Poisson process which is uniquely determined in distribution and
which has Θ as intensity measure. Hence, knowing the intensity measure Θ
already determines the whole (Poisson) process. This uniqueness property
makes the class of Poisson processes so important for results in stochastic
geometry, but also for the statistical analysis of random point fields. In par-
ticular, the uniqueness implies that a Poisson process is stationary (isotropic),
if and only if Θ is translation invariant (rotation invariant). We refer to

B
[B],

for further properties of Poisson processes (in Rn).
If we use the representation of a Poisson particle process X as a marked

point process Ψ (based on the center map c), the underlying point process
Φ := {c(K) : K ∈ X} will be a Poisson process. Vice versa, we can start with
a Poisson process Φ in Rn (with intensity measure Ξ) and can add to each
point ξi ∈ Φ a random set Zi independently (from each other and from X)
with a given distribution Q on C0, say. Then, X := {ξ1 + Z1, ξ2 + Z2, ...} is a
Poisson particle process and the intensity measure Θ ofX is the image of Ξ⊗Q
under (x,K) 7→ x+K. In general, however, not every Poisson particle process
X is obtained from a Poisson process Φ on Rn by independent marking, since
for the intensity measure Θ the image under K 7→ (c(K),K − c(K)) need not
be a product measure (we discuss this phenomenon further in Section 4).
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For a stationary Poisson particle process X the situation is simpler, since
then we can apply Theorem

decomposition
3.

decomposition2 Theorem 4. For a stationary Poisson process X on C, let γ be the intensity
and Q the grain distribution. If Φ denotes the stationary Poisson process on
Rn with intensity measure γ λn, then X is obtained from Φ by independent
marking and Q is the corresponding mark distribution.

X is isotropic, if and only if Q is rotation invariant.

Hints to the literature. There are numerous books on point processes
and many of them work in general spaces (e.g.

DV88
[DV88]). Point processes of

geometric objects are treated in
Ma75
[Ma75],

KS92
[KS92] and

SW00
[SW00].

1.3 Boolean models

Having now defined the two basic notions in stochastic geometry, the RACS
and the particle processes, we can start looking for examples. What are inter-
esting random sets which can serve as models for random structures as they
appear in practical applications? At this stage we notice that Theorem

choquet
2 is

not as helpful as its real-valued counterpart. Whereas distribution functions
on the real line are easy to construct and lead to a large variety of explicit
(families of) distributions, the conditions for an alternating Choquet capacity
of infinite order are more complex and the procedure to define a corresponding
distribution on F is far from being constructive. However, particle processes
are easier to construct and then we can use the following simple fact.

PP-RS Theorem 5. If X is a particle process, then

Z :=
⋃

K∈X

K

is a RACS. Moreover, if X is stationary (isotropic), then Z is stationary
(isotropic).

The proof is simple and left to the reader. A bit more challenging (but still
simple) is a reverse statement: Each RACS Z is the union set of a particle
process X, and if Z is stationary (isotropic), X can be chosen to be stationary
(isotropic).

If the particle process X is concentrated on K (we speak of convex particles
then), the union set Z takes its values in S. We call Z a random S-set. For
random S-sets Z there is also a reverse statement, which is not as obvious
anymore.

RS-PP Theorem 6. Each random S-set Z is the union set of a process X of convex
particles, and if Z is stationary (isotropic), X can be chosen to be stationary
(isotropic).
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It is now easy to construct some examples of random S-sets. For instance,
let ξ be a nonnegative real random variable and K a fixed convex body, then
Z0 := ξK is a random convex body. The collection X := {z+ ξK : z ∈ Zn} is
then a particle process and its union set Z a random S-set. In order to make
X and Z stationary, we can add a uniform random translation τ ∈ [0, 1]n

(independently of ξ), the distribution of τ thus being the Lebesgue measure on
the unit cube [0, 1]n. In addition, we can makeX and Z isotropic by applying a
subsequent random rotation ϑ ∈ SOn (again independently), the distribution
of which is given by the Haar probability measure on SOn. Although the
resulting random set Z is now stationary and isotropic, it looks pretty regular.
There are some obvious modifications which would add some more randomness
to this construction. Using an enumeration z1, z2, ... of Zn, we could replace
zi + ξK by zi + ξiK, where ξ1, ξ2, ... are independent copies of ξ, or even by
zi + ξiKi, where we use a sequence K1,K2, ... of convex bodies. Of course,
we could even start with X := {zi + Zi : i = 1, 2, ...}, where Z1, Z2, ... is a
sequence of (independent or dependent) random sets with values in K,R or
C (in the latter case, the union set Z will be a RACS, but in general not a
random S-set).

Even with these modifications, the outcomes will be too regular to be
useful for practical applications. But we can use the principle just described
also to produce more interesting examples. Namely, we can start with a point
process Φ in Rn, choose a (measurable) enumeration Φ = {ξ1, ξ2, ...}, and then
‘attach’ random (compact or convex) sets Z1, Z2, ... to the points and consider

Z :=
∞⋃

i=1

(ξi + Zi). (7) germgrain

We will only consider the case where the Zi are i.i.d. random compact sets, Z is
then called a germ-grain model, the Zi are called the grains of Z and their
common distribution Q is called the distribution of the typical grain (or
grain distribution). If Q(K) = 1, the germ-grain model Z has convex grains.
If Φ is stationary, then Z is stationary, and if Φ is in addition isotropic and PZ1

is rotation invariant, then Z is isotropic. Since there are many well-studied
classes of point processes in Rn, we can thus produce a large variety of random
sets Z. However, since the particles of the process X := {ξ1 +Z1, ξ2 +Z2, ...}
may overlap, it is in general difficult to calculate geometric functionals of
Z, even for well-established point processes Φ. The exception is the class of
Poisson processes, for which a rich variety of formulas for the union sets Z
are known. This is the reason why we will concentrate on Poisson processes
in the following.

A RACS Z is a Boolean model if it is the union set of a Poisson particle
process X. In particular, if we start with a Poisson process Φ in Rn, the cor-
responding germ-grain model with grain distribution Q is a Boolean model.
Not every Boolean model arises in this way since not every Poisson particle
process X is obtained from a Poisson process in Rn by independent mark-
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ing (as we mentioned already). Vice versa, for a stationary Boolean model,
the center map c produces a representation as germ-grain model, but of a
special kind, namely with grain distribution Q concentrated on C0. The cor-
respondence between Boolean models Z and Poisson particle processes X is
one-to-one, as we will show now. Our argument is based on the fact that the
capacity functional TZ of a Boolean model Z can be expressed in terms of the
intensity measure Θ of X. Namely

TZ(C) = P(Z ∩ C 6= ∅) = P(X(FC) > 0)
= 1− P(X(FC) = 0)

= 1− e−Θ(FC), (8) cf

for C ∈ C. Hence, if Z is the union set of another Poisson particle process X ′

as well (with intensity measure Θ′), we obtain

Θ(FC) = Θ′(FC), C ∈ C,

and therefore Θ = Θ′ (this implication is not immediate, but needs a bit of
work; see

SW00
[SW00], for details). From Θ = Θ′, we get X ∼ X ′ and hence the

following result.

uniqueness Theorem 7. Let X,X ′ be Poisson particle processes with the same union set,⋃
K∈X

K ∼
⋃

K′∈X′

K ′.

Then,
X ∼ X ′.

The fact that Θ = Θ′ implies X ∼ X ′ can be deduced from general results in
point process theory. It follows however also from Theorem

choquet
2 (in its general

version, for RACS in a topological space T ), since Θ = Θ′ implies P(X(A) =
0) = P(X ′(A) = 0) (from (

Poisson1
5)). Therefore the (locally finite) RACS X and X ′

in T := C′ have the same capacity functional.
For the remainder of this section, we concentrate on stationary Boolean

models Z and their representation (
germgrain
7), yielding the intensity γ and the grain

distribution Q. Such stationary Boolean models can easily be simulated and
produce interesting RACS even for simple distributions Q (for example, in
the plane, for circles with random radii). In order to fit such a model to given
(spatial) data, it is important to express geometric quantities of Z in terms
of γ and Q. For the capacity functional TZ , such a result follows now from
Theorem

decomposition
3 in conjunction with Theorem

uniqueness
7. For a set A ⊂ Rn, we use A∗ to

denote the reflection of A in the origin.

BMdecomp Theorem 8. Let Z be a stationary Boolean model with intensity γ and grain
distribution Q. Then, the capacity functional TZ of Z has the form
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TZ(C) = 1− exp
(
−γ
∫
C0

λn(K + C∗)Q(dK)
)
, C ∈ C, (9) decomp2

and the volume fraction p of Z fulfills

p = 1− exp
(
−γ
∫
C0

λn(K)Q(dK)
)
. (10) volumefraction

Equation (
decomp2
9) follows from (

decomp
3) since (K+x)∩C 6= ∅ is equivalent to x ∈ K∗+C,

and thus ∫
Rn

1FC
(K + x)λn(dx) =

∫
Rn

1K∗+C(x)λn(dx)

= λn(K + C∗).

Putting C = {0} in (
decomp2
9) yields (

volumefraction
10).

The capacity functional is of interest for statistical purposes, since it is eas-
ily estimated, using modern image analysing equipment. To be more precise,
consider

TZ(C) = P(Z ∩ C 6= ∅)

for a random set Z and a given ‘test set’ C. Since P(Z ∩ C 6= ∅) equals the
volume fraction of Z + C∗, a simple estimator of TZ(C) arises from counting
pixels of a digitized image of (Z + C∗) ∩ [0, 1]n.

Which information on γ and Q is contained in TZ(C)? We can get a more
precise answer if we choose C to be convex and assume that the Boolean model
has convex grains. Then Q is concentrated on K0 := {K ∈ K : c(K) = 0} and
we can use the mixed volume expansion for convex bodies. For example, if C
is a ball rBn, r > 0, the Steiner formula (see

S
[S]) gives us

TZ(rBn) = 1− exp
(
−γ
∫
K0

λn(K + rBn)Q(dK)
)

= 1− exp

(
−γ

n∑
i=0

rn−iκn−i

∫
K0

Vi(K)Q(dK)

)

= 1− exp

(
−

n∑
i=0

rn−iκn−iV i(X)

)
,

where the quermass densities V i(X) of X are defined by

V i(X) := γ

∫
K0

Vi(K)Q(dK), i = 0, ..., n.

Here V 0(X) = γ. Hence, if we estimate TZ(rBn) from realizations of Z, for
different values of r, we obtain an empirical function f̂ : r 7→ T̂Z(rBn). Fitting
a polynomial (of order n) to
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− ln(1− f̂)

gives us estimators for V 0(X), ..., V n(X) and thus for γ and the mean values∫
K0

Vi(K)Q(dK), i = 1, ..., n.

Hints to the literature. In addition to the books
Ma75
[Ma75] and

SW00
[SW00], which

we already mentioned, we refer to
Mo97
[Mo97] and

SKM95
[SKM95] for results on Boolean

models.

2 Mean values of additive functionals

The formula for the capacity functional, which we just gave in the case of con-
vex grains, connects certain geometrical mean values of the Boolean model,
the volume density of Z + rBn, with mean values of the underlying Poisson
process X, the quermass densities. Formulas of this kind can be used for the
statistical estimation of particle quantities and in particular, for the estima-
tion of the intensity γ. In this section, we discuss related formulas for other
geometric quantities, like the surface area. Since Z is defined as the union
set of the particles in X, functionals which are adapted to unions and in-
tersections are of particular interest. Therefore, we concentrate on additive
functionals and their mean values. We start with a general result for Boolean
models. Then we consider general RACS and particle processes and discuss
and compare different possible approaches for mean values of additive func-
tionals. Results from integral geometry will be especially helpful here. In the
last subsection, we come back to Boolean models and give explicit results for
the quermass densities in the stationary and isotropic case.

2.1 A general formula for Boolean models

We consider a Boolean model Z in Rn with convex grains and an additive
(and measurable) functional ϕ on R. Additivity in the sequel always includes
the convention ϕ(∅) = 0. How can we define a mean value of ϕ for Z? Since
Z may be unbounded (for example in the stationary case), it does not make
much sense to work with ϕ(Z), namely because Z is then not in the convex
ring anymore and extensions of ϕ to S, if they exist, usually yield ϕ(Z) =
∞. It seems more promising to consider ϕ(Z ∩ K0) instead, where K0 ∈
K is a suitably chosen bounded set. We can think of K0 as a sampling
window in which we observe the realizations of Z. This corresponds to many
practical situations, where natural sampling windows arise in the form of boxes
(rectangles) or balls (circles), for example as boundaries in photographic or
microscopic images. Hence the question arises how to express Eϕ(Z ∩K0) in
terms of the intensity measure Θ.
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We first describe a corresponding result in rather loose form before we give
a rigorous formulation and proof. By definition of Z and the additivity of ϕ
(used in form of the inclusion-exclusion formula),

ϕ(Z ∩K0) = ϕ

( ⋃
K∈X

(K ∩K0)

)

=
N∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤N

ϕ
(
K0 ∩Ki1 ∩ · · · ∩Kik

)
.

Here N is the (random) number of grains K ∈ X hitting K0 and K1, ....,KN is
a (measurable) enumeration of these grains. Since ϕ(∅) = 0, we may replace
N by ∞ (with a corresponding enumeration K1,K2, ... of X). In addition,
we can simplify this formula by using the product particle process Xk

6= :=
{(K1, ...,Kk) ∈ Xk : Ki pairwise different}, and get

ϕ(Z ∩K0) =
∞∑

k=1

(−1)k+1

k!

∑
(K1,...,Kk)∈Xk

6=

ϕ
(
K0 ∩K1 ∩ · · · ∩Kk

)
.

Turning now to the expectation, the independence properties of the Poisson
process yield

Eϕ(Z ∩K0)

=
∞∑

k=1

(−1)k+1

k!
E

∑
(K1,...,Kk)∈Xk

6=

ϕ
(
K0 ∩K1 ∩ · · · ∩Kk

)
=

∞∑
k=1

(−1)k+1

k!

∫
K′
· · ·
∫
K′
ϕ
(
K0 ∩K1 ∩ · · · ∩Kk

)
Θ(dK1) · · ·Θ(dKk),

which is our desired result.
Our derivation was not totally correct, since we did not pay attention to

integrability requirements when we exchanged expectation and summation.
In view of the alternating sign (−1)k+1 in the sum, this may be problematic
and requires us to impose a further restriction on ϕ. We call a functional
ϕ : R → R conditionally bounded, if ϕ is bounded on each set {K ∈
K : K ⊂ K ′},K ′ ∈ K. The intrinsic volumes Vj , j = 0, ..., n, are examples
of additive (and measurable) functionals on R, which are monotonic (and
continuous) on K and therefore conditionally bounded.

Now we can formulate a precise result. We remark that a corresponding
theorem holds for Boolean models with grains in R and K0 ∈ R, but this
requires additional integrability conditions which we want to avoid here.

expectation Theorem 9. Let Z be a Boolean model with convex grains and let Θ be the
intensity measure of the underlying Poisson particle process X on K′. Let
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ϕ : R → R be additive, measurable and conditionally bounded. Then, for each
K0 ∈ K, the random variable ϕ(Z ∩K0) is integrable and

Eϕ(Z ∩K0)

=
∞∑

k=1

(−1)k+1

k!

∫
K′
· · ·
∫
K′
ϕ
(
K0 ∩K1 ∩ · · · ∩Kk

)
Θ(dK1) · · ·Θ(dKk). (11) basicdecomp

Proof. Let c = cK0 be an upper bound for |ϕ| on {M ∈ K : M ⊂ K0}. Then

|ϕ(Z ∩K0)| ≤
N∑

k=1

∑
(K1,...,Kk)∈Xk

6=

|ϕ
(
K0 ∩K1 ∩ · · · ∩Kk

)
|

≤
N∑

k=1

(
N

k

)
c ≤ c 2N = c 2X(FK0 ).

Here, N is again the (random) number of particles in X which intersect K0.
The right-hand side is integrable since

E 2X(FK0 ) =
∞∑

k=0

2kP(X(FK0) = k)

= e−Θ(FK0 )
∞∑

k=0

2kΘ(FK0)
k

k!

= e−Θ(FK0 )e2Θ(FK0 ) = eΘ(FK0 ) <∞.

This yields the integrability of ϕ(Z ∩ K0), but also justifies the interchange
of expectation and summation, which we performed in the derivation above.

The equation

E
∑

(K1,...,Kk)∈Xk
6=

ψ
(
K1, . . . ,Kk

)
=
∫
K′
· · ·
∫
K′
ψ(K1, . . . ,Kk

)
Θ(dK1) · · ·Θ(dKk),

which we used for ψ
(
K1, . . . ,Kk

)
:= ϕ(K0 ∩ K1 ∩ · · · ∩ Kk

)
and which we

explained with the independence properties of X actually holds for integrable
ψ and is formally a consequence of Campbell’s theorem (applied to Xk

6=) to-
gether with the fact that the intensity measure of Xk

6= is the product measure
Θk. ut

If Z is stationary, (
decomp
3) yields

Eϕ(Z ∩K0)

=
∞∑

k=1

(−1)k+1

k!
γk

∫
K0

· · ·
∫
K0

Φ(K0,K1, . . . ,Kk)Q(dK1) · · ·Q(dKk) (12) stat
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with

Φ(K0,K1, . . . ,Kk)

:=
∫

Rn

· · ·
∫

Rn

ϕ
(
K0 ∩ x1K1 ∩ · · · ∩ xkKk

)
λn(dx1) · · ·λn(dxk).

(We remind the reader of the operational notation xK := K + x, which we
shall frequently use, in the following.)

For example, we can put ϕ = Vn (the volume or Lebesgue measure), where

Φ(K0,K1, . . . ,Kk) = Vn(K0)Vn(K1) · · ·Vn(Kk),

hence we obtain

EVn(Z ∩K0) = Vn(K0)
∞∑

k=1

(−1)k+1

k!

(
γ

∫
K0

Vn(K)Q(dK)
)k

= Vn(K0)
(

1− exp
(
−γ
∫
K0

Vn(K)Q(dK)
))

= Vn(K0)
(
1− e−V n(X)

)
.

For Vn(K0) > 0, we have EVn(Z ∩ K0)/Vn(K0) = p and thus we get the
formula which we derived already in a more direct way (and in a slightly
more general situation, namely for compact grains) in Theorem

BMdecomp
8.

As another example, we choose ϕ = Vn−1 (which is half the surface area).
Then we get from the translative integral formula for Vn−1, which is explained
in

S
[S],

Φ(K0,K1, . . . ,Kk)

=
∫

Rn

· · ·
∫

Rn

Vn−1

(
K0 ∩ x1K1 ∩ · · · ∩ xkKk

)
λn(dx1) · · ·λn(dxk)

=
k∑

i=0

Vn(K0) · · ·Vn(Ki−1)Vn−1(Ki)Vn(Ki+1) · · ·Vn(Kn),

and so

EVn−1(Z ∩K0) =
∞∑

k=1

(−1)k+1

k!
(
Vn−1(K0)V n(X)k

+ kVn(K0)V n−1(X)V n(X)k−1
)

= Vn(K0)V n−1(X)e−V n(X) + Vn−1(K0)
(
1− e−V n(X)

)
.

If we consider here the normalized value EVn−1(Z∩K0)/Vn(K0) (for Vn(K0) >
0), this is no longer independent of K0 (as it was the case with volume), but
is influenced by the shape of the boundary ∂K0. In order to eliminate these
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boundary effects, we may replace our sampling window K0 (with inner points)
by rK0, r > 0, and let r →∞. Then Vn−1(rK0)/Vn(rK0) = c/r → 0, and we
see that EVn−1(Z ∩ rK0)/Vn(rK0) has a limit which we denote by V n−1(Z),

V n−1(Z) := lim
r→∞

EVn−1(Z ∩ rK0)
Vn(rK0)

,

and which satisfies
V n−1(Z) = V n−1(X)e−V n(X). (13) surfacedensity

We call V n−1(Z) the surface area density of Z.
For the other intrinsic volumes Vj , 0 ≤ j ≤ n − 2, the situation is not

as simple anymore since for them a translative integral formula looks more
complicated and the iterated version is even more technical. We will come
back to this problem later.

Now we assume that Z is stationary and isotropic. Since then Q is rota-
tion invariant, we may replace the translation integrals by integrals over rigid
motions and obtain (

stat
12) with

Φ(K0,K1, . . . ,Kk)

=
∫

Gn

· · ·
∫

Gn

ϕ
(
K0 ∩ g1K1 ∩ · · · ∩ gkKk

)
µn(dg1) · · ·µn(dgk).

Thus, we can apply Hadwiger’s (iterated) kinematic formula (Theorem 1.5 in
[S]),∫

Gn

· · ·
∫

Gn

ϕ
(
K0 ∩ g1K1 ∩ · · · ∩ gkKk

)
µn(dg1) · · ·µn(dgk)

=
n∑

m0,...,mk=0
m0+···+mk=kn

cn,m1,...,mk
n−m0,n,...,nϕm0(K0)Vm1(K1) · · ·Vmk

(Kk),

with

cn,m1,...,mk
n−m0,n,...,n =

n!κn

(n−m0)!κn−m0

m1!κm1

n!κn
· · · mk!κmk

n!κn
= cnn−m0

cm1
n · · · cmk

n

and with the Crofton integrals ϕm0(K0),m0 = 0, ..., n. We obtain
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Eϕ(Z ∩K0)

=
∞∑

k=1

(−1)k+1

k!

n∑
m0,...,mk=0

m0+···+mk=kn

cn,m1,...,mk
n−m0,n,...,nϕm0(K0)V m1(X) · · ·V mk

(X)

=
∞∑

k=1

(−1)k+1

k!

n∑
m=0

cnn−mϕm(K0)
n∑

m1,...,mk=0
m1+···+mk=kn−m

k∏
i=1

cmi
n V mi

(X)

= ϕ(K0)
(
1− e−V n(X)

)
+

n∑
m=1

cnn−mϕm(K0)
∞∑

k=1

(−1)k+1

k!

n∑
m1,...,mk=0

m1+···+mk=kn−m

k∏
i=1

cmi
n V mi(X).

We notice that, in the last sum, the number s of the indices mi which are
smaller than n ranges between 1 and m. Therefore, we can re-arrange the last
two sums and get

∞∑
k=1

(−1)k+1

k!

n∑
m1,...,mk=0

m1+···+mk=kn−m

k∏
i=1

cmi
n V mi(X)

=
m∑

s=1

∞∑
r=0

(
r + s

r

)
(−1)r+s+1

(r + s)!
V n(X)r

n−1∑
m1,...,ms=0

m1+···+ms=sn−m

s∏
i=1

cmi
n V mi

(X)

= −e−V n(X)
m∑

s=1

(−1)s

s!

n−1∑
m1,...,ms=0

m1+···+ms=sn−m

s∏
i=1

cmi
n V mi

(X) .

Altogether we obtain the following result.

statisobm Theorem 10. Let Z be a stationary and isotropic Boolean model with convex
grains, K0 ∈ K, and let ϕ : R → R be additive, measurable and conditionally
bounded. Then,

Eϕ(Z ∩K0) = ϕ(K0)
(
1− e−V n(X)

)
− e−V n(X)

n∑
m=1

cnn−mϕm(K0)

×
m∑

s=1

(−1)s

s!

n−1∑
m1,...,ms=0

m1+···+ms=sn−m

s∏
i=1

cmi
n V mi

(X) . (14) valBM

In general, the expectation Eϕ(Z∩K0) will depend on the shape and even the
location of the sampling windowK0. To delete the dependence on the location,
we may concentrate on translation invariant ϕ. But still the dependence on
the shape of K0 remains and is expressed explicitly by (

valBM
14). In order to obtain
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a mean value of ϕ for Z which does not depend on a specific sampling window,
it is tempting to proceed as in the case of the surface area density V n−1(Z)
and consider

lim
r→∞

Eϕ(Z ∩ rK0)
Vn(rK0)

,

provided this limit exists. As we shall show next, for a translation invariant
additive functional ϕ, this is indeed the case. In fact, a corresponding limit
result holds more generally for stationary RACS, which need not be isotropic.
We will discuss this and similar results for particle processes in the next two
subsections. In 2.4, we come back to Boolean models and apply the above
result to ϕ = Vj , j = 0, ..., n− 1.

Hints to the literature. The basic formula (
basicdecomp
11) appears in

SW00
[SW00].

2.2 Mean values for RACS

The following considerations on mean values of additive functionals for sta-
tionary RACS are based on a result for valuations which we explain first. We
denote by Cn := [0, 1]n the unit cube and by ∂+Cn := {x = (x1, ..., xn) ∈
Cn : max1≤i≤n xi = 1} the ‘upper right boundary’ of Cn. Note that
∂+Cn ∈ R.

val Lemma 1. Let ϕ : R → R be additive, translation invariant and conditionally
bounded. Then,

lim
r→∞

ϕ(rK)
Vn(rK)

= ϕ(Cn)− ϕ(∂+Cn), (15) limit

for each K ∈ K with Vn(K) > 0.

Proof. . The additivity can be used to show

ϕ(M) =
∑
z∈Zn

(
ϕ(M ∩ zCn)− ϕ(M ∩ z∂+Cn)

)
,

for all M ∈ R (we omit the details of this slightly lengthy derivation). In
particular,

ϕ(rK) =
∑
z∈Zn

(
ϕ(rK ∩ zCn)− ϕ(rK ∩ z∂+Cn)

)
,

for r > 0 and our given K, were we may assume 0 ∈ int K.
We define two sets of lattice points,

Z1
r := {z ∈ Zn : rK ∩ zCn 6= ∅, zCn 6⊂ rK}

and
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Z2
r := {z ∈ Zn : zCn ⊂ rK}.

Then,

lim
r→∞

|Z1
r |

Vn(rK)
= 0, lim

r→∞

|Z2
r |

Vn(rK)
= 1.

Consequently,

1
Vn(rK)

∣∣∣∣∣∣
∑

z∈Z1
r

(
ϕ(rK ∩ zCn)− ϕ(rK ∩ z∂+Cn)

)∣∣∣∣∣∣
≤ (|ϕ(Cn)|+ |ϕ(∂+Cn)|) |Z1

r |
Vn(rK)

→ 0 (r →∞)

and therefore

lim
r→∞

ϕ(rK)
Vn(rK)

= lim
r→∞

1
Vn(rK)

∑
z∈Z2

r

(
ϕ(rK ∩ zCn)− ϕ(rK ∩ z∂+Cn)

)
= (ϕ(Cn)− ϕ(∂+Cn)) lim

r→∞

|Z2
r |

Vn(rK)
= ϕ(Cn)− ϕ(∂+Cn). ut

Now we turn to a stationary RACS Z with values in S. In contrast to the case
of Boolean models, we need an additional integrability condition here, and we
choose

E 2N(Z∩Cn) <∞, (16) intcond

which, although not optimal, is simple enough and works for all valuations ϕ.
Here, for K ∈ R, N(K) is the minimal number m of convex bodies K1, ...,Km

with K =
⋃m

i=1Ki. Condition (
intcond
16) guarantees that the realizations of Z do

not become too complex in structure.

existence Theorem 11. Let Z be a stationary random S-set fulfilling (
intcond
16) and let

ϕ : R → R be additive, translation invariant, measurable and conditionally
bounded. Then, for every K ∈ K with Vn(K) > 0, the limit

ϕ(Z) := lim
r→∞

Eϕ(Z ∩ rK)
Vn(rK)

exists and satisfies

ϕ(Z) = E
(
ϕ(Z ∩ Cn)− ϕ(Z ∩ ∂+Cn)

)
.

Hence, ϕ(Z) is independent of K.

Proof. Consider M ∈ K with M ⊂ Cn. For each realization Z(ω) of Z, we
use a representation
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Z(ω) ∩M =
NM (ω)⋃

i=1

Ki(ω)

withKi(ω) ∈ K and NM (ω) := N(Z(ω)∩M). The inclusion-exclusion formula
yields

ϕ(Z(ω) ∩M) =
NM (ω)∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤NM (ω)

ϕ
(
Ki1(ω) ∩ · · · ∩Kik

(ω)
)
.

Therefore,

E|ϕ(Z ∩M)| ≤ c E
NM∑
k=1

(
NM

k

)
≤ c E 2NM <∞, (17) upperest

by (
intcond
16). Here, c is an upper bound for |ϕ| on {M ′ ∈ K : M ′ ⊂ Cn} (which

exists, since ϕ is conditionally bounded).
Hence, ϕ(Z ∩ M) is integrable for every M ∈ K, M ⊂ Cn, but then,

by the inclusion-exclusion formula, also for all M ∈ R. Consequently, all
expectations, which appear in the theorem, exist. We use this to define a
functional

φ : R → R, φ(M) := Eϕ(Z ∩M).

φ is additive, translation invariant (here we use the stationarity), and condi-
tionally bounded (this follows from (

upperest
17)). Lemma

val
1 now yields the asserted

result. ut

Theorem
existence
11 shows that ϕ(Z ∩ Cn) − ϕ(Z ∩ ∂+Cn) is an unbiased estimator

for ϕ(Z).
The results, obtained so far, hold in particular for the case ϕ = Vj ,

j ∈ {0, ..., n}. Here we write V j(Z) for the corresponding density (for j = n
we get the volume density p = V n(Z) again). The following result gives a
formula of kinematic type. We recall from [S] that ν is the invariant probability
measure on SOn and we denote by Eν the expectation with respect to ν.

kinematic Theorem 12. Let Z be a stationary random S-set fulfilling (
intcond
16). Let K ∈ K

and let ϑ be a random rotation with distribution ν and independent of Z. Then

Eν EVj(Z ∩ ϑK) =
n∑

k=j

ck,n+j−k
j,n Vk(K)V n+j−k(Z),

for j = 0, ..., n.

Proof. As in the proof of Theorem
existence
11, one shows that

(x, ϑ, ω) 7→ Vj(Z(ω) ∩ ϑK ∩ xBn)
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is λ⊗ ν ⊗P-integrable. The invariance properties of Vj and Z then show that

Eν EVj(Z ∩ ϑK ∩ xrBn) = Eν EVj(Z ∩ (−x)ϑK ∩ rBn),

for all x ∈ Rn. Integration over x and Fubini’s theorem yield

Eν E
∫

Rn

Vj(Z ∩ ϑK ∩ xrBn)λ(dx) = E
∫

Gn

Vj(Z ∩ gK ∩ rBn)µ(dg).

Since Bn is rotation invariant, we can replace the integral over Rn on the left-
hand side by an integration over Gn. The principal kinematic formula thus
gives

n∑
k=j

ck,n+j−k
j,n Eν EVk(Z ∩ ϑK)Vn+j−k(rBn)

=
n∑

k=j

ck,n+j−k
j,n Vk(K)EVn+j−k(Z ∩ rBn).

We divide both sides by Vn(rBn) and let r → ∞. The left-hand side then
converges to

Eν EVj(Z ∩ ϑK),

and the right-hand side converges to
n∑

k=j

ck,n+j−k
j,n Vk(K)V n+j−k(Z). ut

The expectation Eν can be omitted if j = n or j = n− 1 or K = Bn or if Z
is isotropic.

Theorem
kinematic
12 is useful for two reasons. First, it describes the bias, if the

value Vj(Z ∩ ϑK), for a randomly rotated sampling window K, is used as an
estimator for V j(Z). Second, it provides us with a further unbiased estimator,
if we solve the corresponding (triangular) system of linear equations with
unknowns V j(Z), j = 0, ..., n. For example, if K = Bn, we get

V j(Z) =
n∑

i=j

aijEVi(Z ∩Bn), j = 0, ...n,

with given constants aij . Hence,

n∑
i=j

aijVi(Z ∩Bn)

is an unbiased estimator for V j(Z).

Hints to the literature. Also for this section,
SW00
[SW00] is the main reference.

The slightly more general version of Theorem
kinematic
12 was taken from

We97c
[We97c].
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2.3 Mean values for particle processes

For a stationary particle process X, Theorem
decomposition
3 immediately allows us to

define a mean value ϕ(X), for any translation invariant, measurable function
ϕ : C′ → R (which is either nonnegative or Q-integrable), namely by

ϕ(X) := γ

∫
C0

ϕ(K)Q(dK).

The following alternative representations of ϕ(X) follow with standard tech-
niques (Campbell’s Theorem, majorized convergence).

densities Theorem 13. Let X be a stationary particle process and ϕ : C′ → R transla-
tion invariant, measurable and Q-integrable (or nonnegative). Then,
(a) for all Borel sets A ⊂ Rn with 0 < λn(A) <∞,

ϕ(X) =
1

λn(A)
E

∑
K∈X,c(K)∈A

ϕ(K),

(b) for all K0 ∈ K with Vn(K0) > 0,

ϕ(X) = lim
r→∞

1
Vn(rK0)

E
∑

K∈X,K⊂rK0

ϕ(K),

(c) for all K0 ∈ K with Vn(K0) > 0,

ϕ(X) = lim
r→∞

1
Vn(rK0)

E
∑

K∈X,K∩rK0 6=∅

ϕ(K)

(if we assume, in addition that
∫
C0
|ϕ(K)|Vn(K +Bn)Q(dK) <∞).

As in the case of RACS, we get further results for additive and conditionally
bounded functionals ϕ on R and processes X with particles in R′, satisfying
a certain integrability condition. We assume∫

R0

2N(K)Vn(K +Bn)Q(dK) <∞. (18) intcond2

The following result is proved similarly to Lemma
val
1 and Theorem

existence
11.

val2 Theorem 14. Let X be a stationary process of particles in R′ satisfying (
intcond2
18).

Let ϕ : R′ → R be translation invariant, additive, measurable and condition-
ally bounded. Then ϕ is Q-integrable and

ϕ(X) = lim
r→∞

1
Vn(rK0)

E
∑

K∈X

ϕ(K ∩ rK0),

for all K0 ∈ K with Vn(K0) > 0. Moreover,

ϕ(X) = E
∑

K∈X

(
ϕ(K ∩ Cn)− ϕ(K ∩ ∂+Cn)

)
.
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The choice ϕ = Vj provides us therefore with a number of alternative represen-
tations of the quermass densities V j(X). We also get an analogue of Theorem
kinematic
12. The proof is even simpler here and only requires Campbell’s Theorem
and the principal kinematic formula. If we consider processes X with convex
particles, we can even skip condition (

intcond2
18).

kinematic2 Theorem 15. Let X be a stationary process of particles in K′ and K ∈ K.
Let ϑ be a random rotation with distribution ν and independent of Z. Then

Eν E
∑

M∈X

Vj(M ∩ ϑK) =
n∑

k=j

ck,n+j−k
j,n Vk(K)V n+j−k(X),

for j = 0, ..., n.

Again, the expectation Eν can be omitted in any of the cases j = n, j = n−1,
K = Bn or if X is isotropic.

As in the case of RACS, these results produce various (unbiased) estima-
tors for V j(X).

Hints to the literature. Again,
SW00
[SW00] is the main reference and Theorem

kinematic2
15 was taken from

We97c
[We97c].

2.4 Quermass densities of Boolean models

We return now to Boolean models Z and assume first that Z is stationary and
isotropic. We apply Theorem

statisobm
10 to ϕ = Vj . Since (Vj)m = 0, for m > n − j,

and (Vj)m = cn−m,m+j
j,n Vm+j , for m = 0, ..., n− j, by the Crofton formula (see

S
[S], we obtain the following result.

statisobm2 Theorem 16. Let Z be a stationary and isotropic Boolean model with convex
grains. Then,

V n(Z) = 1− e−V n(X)

and

V j(Z)

= e−V n(X)

V j(X)−
n−j∑
s=2

(−1)s

s!
cnj

n−1∑
m1,...,ms=j+1

m1+···+ms=(s−1)n+j

s∏
i=1

cmi
n V mi

(X)

 ,

for j = 0, . . . , n− 1.

Although these formulas still look very technical, they are quite useful for
practical applications. Of course, these applications mostly appear in the pla-
nar or spatial situation. Therefore, we discuss these cases shortly. We use A
and U , for the area and the boundary length in the plane, V, S and M , for
the volume, the surface area and the (additively extended) mean width in
three-dimensional space, and χ for the Euler characteristic.
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planarbm Corollary 1. For a stationary and isotropic Boolean model Z in R2 with
convex grains, we have

A(Z) = 1− e−A(X),

U(Z) = e−A(X)U(X),

χ(Z) = e−A(X)

(
γ − 1

4π
U(X)2

)
.

spatialbm Corollary 2. For a stationary and isotropic Boolean model Z in R3 with
convex grains, we have

V (Z) = 1− e−V (X),

S(Z) = e−V (X)S(X),

M(Z) = e−V (X)

(
M(X)− π2

32
S(X)2

)
,

χ(Z) = e−A(X)

(
γ − 1

4π
M(X)S(X) +

π

384
S(X)3

)
.

Since we now have several possibilities to estimate the densities of Z on the
left-hand side, these equations allow the estimation of the particle means and
therefore of the intensity γ. An important aspect is that the formulas hold for
Boolean models Z with grains in R as well (under an additional integrability
assumption). If the grains K obey χ(K) = 1, Q-almost surely (in the plane
this follows, for example, if the grains are all simply connected), then the
results hold true without any change. Otherwise, γ has to be replaced by
χ(X) (and then we do not get an estimation of the intensity itself).

What changes if we skip the isotropy assumption? For a stationary Boolean
model Z (again we assume convex grains, for simplicity) and ϕ = Vj , we
can use (

stat
12) as a starting point and apply the iterated translative formula

(Theorem 3.1 in [S]). We obtain

EVj(Z ∩K0)

=
∞∑

k=1

(−1)k+1

k!
γk

n∑
m0,...,mk=j

m0+···+mk=kn+j

∫
K0

· · ·
∫
K0

V (j)
m0,...,mk

(K0, ...,Kk)

×Q(dK1) · · ·Q(dKk).

Again, we replace K by rK, normalize by Vn(rK0) and let r →∞. Then, due
to the homogeneity properties of mixed functionals (see [S]), all summands
on the right-hand side with m0 < n disappear asymptotically. For m0 = n,
we can use the decomposition property of mixed functionals and get, with
essentially the same arguments as in the isotropic case,
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V j(Z) = lim
r→∞

EVj(Z ∩ rK0)
Vn(rK0)

=
∞∑

k=1

(−1)k+1

k!
γk

n∑
m1,...,mk=j

m1+···+mk=(k−1)n+j

∫
K0

· · ·
∫
K0

V (j)
m1,...,mk

(K1, ...,Kk)

×Q(dK1) · · ·Q(dKk)

=
n−j∑
s=1

∞∑
r=0

(
r + s

r

)
(−1)r+s+1

(r + s)!
V n(X)rγs

×
n−1∑

m1,...,ms=j

m1+···+ms=(s−1)n+j

∫
K0

· · ·
∫
K0

V (j)
m1,...,ms

(K1, ...,Ks)Q(dK1) · · ·Q(dKs)

= −e−V n(X)

n−j∑
s=1

(−1)s

s!

n−1∑
m1,...,ms=j

m1+···+ms=(s−1)n+j

V
(j)

m1,...,ms
(X, ...,X)

= e−V n(X)

V j(X)−
n−j∑
s=2

(−1)s

s!

n−1∑
m1,...,ms=j+1

m1+···+ms=(s−1)n+j

V
(j)

m1,...,ms
(X, ...,X)

 .

Here the mixed densities of X are defined as

V
(j)

m1,...,ms
(X, ...,X) := γs

∫
K0

· · ·
∫
K0

V (j)
m1,...,ms

(K1, ...,Ks)Q(dK1) · · ·Q(dKs).

Hence, we arrive at the following result.

statbm Theorem 17. Let Z be a stationary Boolean model with convex grains. Then,

V n(Z) = 1− e−V n(X),

V n−1(Z) = e−V n(X)V n−1(X),

and

V j(Z)

= e−V n(X)

V j(X)−
n−j∑
s=2

(−1)s

s!

n−1∑
m1,...,ms=j+1

m1+···+ms=(s−1)n+j

V
(j)

m1,...,ms
(X, ...,X)

 ,

for j = 0, . . . , n− 2.

For n = 2, only the formula for the Euler characteristic changes and we have

A(Z) = 1− e−A(X),

U(Z) = e−A(X)U(X),

χ(Z) = e−A(X)
(
γ −A(X,X∗)

)
,
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where
A(X,X∗) := γ2

∫
K0

∫
K0

A(K,M∗)Q(dK)Q(dM).

Here, we made use of the fact that the mixed functional V (0)
1,1 (K,M) in the

plane equals the mixed area of K and the reflection M∗ of M . It is obvious
that the formulas can no longer be used directly for the estimation of γ. Hence,
we need more (local) information for the statistical analysis of nonisotropic
Boolean models and this will be discussed in Section 3.

We emphasize again, that the formulas for the quermass densities hold also
for grains in R. For convex grains, there are further methods to estimate γ.
One possibility is to use the capacity functional, as we have mentioned already.
A further one is to use associated points (the so-called tangent count). We
describe the basis of this method shortly. We associate a boundary point
z(K) with each particle K ∈ X, in a suitable way, and then count the number
χ+(Z ∩ K0) of associated points which are visible in Z ∩ K0 (these are the
associated points which lie in K0 and are not covered by other particles).
The associated points z(K),K ∈ X, build a stationary Poisson process Φ̃
with the same intensity as the process Φ of center points, namely γ. The
associated points which are not covered by other particles, build a stationary
point process Φ′ which is obtained from Φ̃ by a thinning and has intensity
γe−V n(X). This follows from Slivnyak’s theorem. The probability that a given
associated point x ∈ Φ̃ is not covered by other particles equals the probability
that an arbitrary point x ∈ Rd is not covered by any particle, hence that
x /∈ Z. Since P(x /∈ Z) = 1−p, the thinning probability is e−V n(X). Therefore,

Eχ+(Z ∩K0) = Vn(K0)γe−V n(X). (19) tangentcount

In the plane, one can choose the ”lower left tangent point” as associated point
(the left most boundary point in the lower part of a particle with a horizontal
tangent) and then has to count these points in Z ∩ K0. Together with the
formula for the area density, this yields a simple estimator for γ.

Hints to the literature. The formulas for the quermass densities of sta-
tionary and isotropic Boolean models have a long history, beginning with
results by Miles and Davy and including contributions by Kellerer, Weil and
Wieacker, and Zähle. More details and references can be found in

SW00
[SW00].

Theorem
statbm
17 was proved in

We90
[We90]. The formula (

tangentcount
19) on the ‘tangent count’ is

classical (see
SKM95
[SKM95]). Molchanov and Stoyan

MS94
[MS94] (see also

Mo97
[Mo97]) have

shown that, in the case of convex grains with interior points, the point pro-
cess of visible tangent points (together with another quantity, the covariance
function of Z) determines the grain distribution Q (and γ) uniquely.
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2.5 Ergodicity

3 Directional data, local densities, nonstationary
Boolean models

In this section, we extend the results on mean values of RACS, particle pro-
cesses and Boolean models in various directions. First, we consider functionals
which reflect the directional behavior of a random structure. Then, we give
local interpretations of the quermass densities and other mean values by us-
ing curvature measures and their generalizations. Finally, we extend the basic
formulas for Boolean models to the nonstationary case.

3.1 Directional data and associated bodies

Motion invariant functionals like the intrinsic volumes may give some infor-
mation on the shape of a convex body K (e.g. if we consider the isoperimetric
quotient of K) but they do not give any information about the orientation.
It is therefore reasonable that, for stationary nonisotropic Boolean models Z,
the densities V j(Z), j = 0, ..., n, are not sufficient to estimate the intensity
γ. Therefore, we consider additive functionals ϕ now, which better reflect the
orientation. Two different but related approaches exist here.

First, we observe that the intrinsic volumes are mixed volumes (with the
unit ball Bn),

Vj(K) =
(
n

j

)
1

κn−j
V (K [j], Bn [n− j]), j = 0, ..., n.

Therefore, an obvious generalization is to consider functionals

V (K [j],M [n− j]),

for j ∈ {0, ..., n} and M ∈ K. For example, if M is a segment s, the mixed vol-
ume V (K [n−1], s [1]) is (proportional to) the (n−1)-volume of the projection
of K orthogonal to s.

We note that we can also work with mixed translative functionals here
since (

n

j

)
V (K [j],M [n− j]) = V

(0)
j,n−j(K,M

∗).

For fixed M , the functional K 7→ V
(0)
j,n−j(K,M) is additive, translation invari-

ant and continuous on K and therefore has a unique additive extension to R
which is measurable and conditionally bounded. By Theorem

existence
11, the density

V
(0)

j,n−j(Z,M) := lim
r→∞

EV (0)
j,n−j(Z ∩ rK0,M)

Vn(rK0)
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exists. Also, densities of general mixed functionals exist for X, either obtained
as a limit or simply as integrals with respect to Q,

V
(0)
m1,...,ms,n−j(X, ...,X,M)

= γs

∫
K0

· · ·
∫
K0

V
(0)
m1,...,ms,n−j(K1, ...,Ks,M)Q(dK1) · · ·Q(dKk),

for s = 1, ..., n−1, and mi ∈ {j, ..., n} with m1 + · · ·+ms = (s−1)n+j. Since
K 7→ V

(0)
j,n−j(K,M) satisfies an iterated translative integral formula, similarly

to the one for K 7→ Vj(K), we obtain the following result, similarly to the
proof of Theorem

statbm
17.

mixvolbm Theorem 18. Let Z be a stationary Boolean model with convex grains. Then,

V
(0)

j,n−j(Z,M) = e−V n(X)

(
V

(0)

j,n−j(X,M)

−
n−j∑
s=2

(−1)s

s!

n−1∑
m1,...,ms=j+1

m1+···+ms=(s−1)n+j

V
(0)

m1,...,ms,n−j(X, ...,X,M)

)
,

for j = 0, . . . , n− 1 and M ∈ K.

For n = 2, the resulting formulas read (after simple modifications)

A(Z) = 1− e−A(X),

A(Z,M) = e−A(X)A(X,M), M ∈ K,

χ(Z) = e−A(X)
(
γ −A(X,X∗)

)
. (20) bm2

For M = Bn, the second formula reduces to the equation for U(Z) given
earlier.

Before we discuss (
bm2
20) further, we mention a second approach to direc-

tional data. This is based on measure- or function-valued functionals which
describe convex bodies K uniquely (up to translation). One such functional
is the area measure Sn−1(K, ·), a Borel measure on the unit sphere Sn−1

which described the surface area of K in boundary points with prescribed
outer normals (for a more detailed description of area measures, curvature
measures and support measures, we refer to Section 2 of [S]). The reason that
we consider only the (n−1)st area measure and not the other lower order ones
lies in the fact that Sn−1(K, ·) satisfies a (simple) translative formula (which
is not the case for the other area measures),∫

Rn

Sn−1(K ∩ xM, ·)λn(dx) = Vn(M)Sn−1(K, ·) + Vn(K, ·)Sn−1(M, ·). (21) surftrans

The iteration of (
surftrans
21) is obvious.
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For each Borel set B ⊂ Sn−1, the real functional K 7→ Sn−1(K,B) satisfies
the conditions of Theorem

existence
11, it is additive, translation invariant, measurable

and conditionally bounded (in general, for given B, it is not continuous on
K, but the measure-valued map K 7→ Sn−1(K, ·) is continuous in the weak
topology). Thus, the densities Sn−1(Z,B) and Sn−1(X,B) exist and define
finite Borel measures Sn−1(Z, ·) and Sn−1(X, ·) on Sn−1. For Sn−1(Z, ·) the
nonnegativity may not be obvious, in fact one has to show first that the
additive extension of the area measure to sets K ∈ R is nonnegative, since it
is the image of the Hausdorff measure on ∂K under the spherical image map
(for the latter, see

Sch93
[Sch93, p. 78]). The following generalization of (

surfacedensity
13) is now

easy to obtain,
Sn−1(Z, ·) = e−V n(X)Sn−1(X, ·). (22) areamdensity

In fact, (
areamdensity
22) is equivalent to the case j = n− 1 of Theorem

mixvolbm
18, which reads

V
(0)

n−1,1(Z,M) = e−V n(X)V
(0)

n−1,1(X,M),

for M ∈ K. The connection follows from the equation

V
(0)
n−1,1(K,M) =

∫
Sn−1

h(M,−u)Sn−1(K,du),

which is a classical formula for mixed volumes of convex bodies K,M . Here,
h(M, ·) is the support function of M . Since area measures have centroid 0, we
may replace h(M, ·) by the centred support function h∗(M, ·) (see

S
[S], for

details) and obtain

V
(0)
n−1,1(K,M) =

∫
Sn−1

h∗(M,−u)Sn−1(K,du). (23) supportint

A classical result from convex analysis tells us that the differences of centred
support functions are dense in the Banach space of continuous functions f on
Sn−1, which are centred in the sense that∫

Sn−1
uf(u)σn−1(du) = 0.

Therefore, the collection

{V (0)
n−1,1(K,M) : M ∈ K}

uniquely determines the measure Sn−1(K, ·) and vice versa.
The (centred) support function h∗(K, ·) is another directional functional of

K, it determinesK up to a translation and fulfills the assumptions of Theorem
existence
11, namely it is translation invariant, additive, measurable and conditionally
bounded (it is even continuous on K). We therefore also have a density h(Z, ·)
(we suppress the ∗ here). Since h∗(K, ·) also satisfies an iterated translative
formula (see Theorem 3.2 in [S]), we obtain a further formula for Z, either by
copying the proof of the previous results (Theorem

statbm
17 or Theorem

mixvolbm
18) or by

using (
supportint
23) in Theorem

mixvolbm
18.
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supportbm Theorem 19. Let Z be a stationary Boolean model with convex grains. Then,

h(Z, ·) = e−V n(X)

(
h(X, ·)

−
n−1∑
s=2

(−1)s

s!

n−1∑
m1,...,ms=2

m1+···+ms=(s−1)n+1

hm1,...,ms(X, ...,X, ·)

)
. (24) supportdens

Here,

hm1,...,ms
(X, ...,X, ·)

:= γs

∫
K0

· · ·
∫
K0

h∗m1,...,ms
(K1, ...,Ks, ·)Q(dK1) · · ·Q(dKk), (25) suppdens

where h∗m1,...,ms
(K1, ...,Ks, ·) is the mixed (centred) support function occuring

in
S
[S], Theorem 3.2.
For n = 2, the formula reduces to

h(Z, ·) = e−A(X)h(X, ·), (26) suppdim2

which does not give us further information since it is essentially equivalent
to (

areamdensity
22). In fact, both Sn−1(K, ·) and h∗(K; ·) determine K uniquely, up to

translation, and therefore they also determine each other. In the plane, this
connection can be made even more precise since

S1(K, ·) = h∗(K, ·) + (h∗(K, ·))′′, (27) deriv

in the sense of Schwartz distributions. If we look at (
bm2
20) again, we can write

it now as

A(Z) = 1− e−A(X),

h(Z, ·) = e−A(X)h(X, ·),

χ(Z) = e−A(X)
(
γ −A(X,X∗)

)
. (28) bm2’

These three formulas actually suffice to obtain an estimator for γ, if the left-
hand densities are estimated. Namely, the first formula determines e−A(X), so
the second gives us h(X, ·). From (

deriv
27), we deduce

S1(X, ·) = h(X, ·) + (h(X, ·))′′

and get S1(X, ·). Equation (
supportint
23) transfers to X as

V
(0)

n−1,1(X,X) =
∫

Sn−1
h(X,−u)Sn−1(X,du), (29) supportintX

hence
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A(X,X∗) =
1
2

∫
S1
h(X,−u)S1(X,du)

is determined and so we get γ. Again, we emphasize that these results hold true
for Boolean models Z with grains in R (under suitable additional integrability
conditions).

Let us shortly discuss the case n = 3. From Theorem
mixvolbm
18, we get four

formulas for the mean values of mixed volumes. The first one is

V (Z) = 1− e−V (X),

which determines e−V (X). The second one can be replaced by its measure
version (

areamdensity
22)

S2(Z, ·) = e−V (X)S2(X, ·),

and this gives us S2(X, ·). By (
supportint
23) and another denseness argument, the third

equation for V
(0)

1,2(Z,M),M ∈ K, is equivalent to (and therefore can be re-
placed by)

h(Z, ·) = e−V (X)
(
h(X, ·)− h2,2(X,X, ·)

)
.

From explicit formulas for h2,2(P,Q, ·), in the case of polytopes P,Q (see
Theorem 3.2 in [S]), we obtain from (

suppdens
25) (and approximation of convex bodies

by polytopes),

h2,2(X,X, ·) =
∫

S2

∫
S2
f(u, v, ·)S2(X,du)S2(X,dv)

with a given geometric function f on (S2)3. Thus, h2,2(X,X, ·) is determined
by S2(X, ·) and so the third equation gives us h(X, ·). The fourth equation
reads

χ(Z) = e−V n(X)
(
γ − V

(0)

1,2(X,X) + V
(0)

2,2,2(X,X,X)
)
.

We already know that

V
(0)

1,2(X,X) =
∫

S2
h(X,−u)S2(X,du)

and similarly we get

V
(0)

2,2,2(X,X,X) =
∫

S2
h2,2(X,X, u)S2(X,du).

Hence, both densities are determined by the quantities, which we already have.
Therefore, we obtain γ.

For higher dimensions, the corresponding formulas become more and more
complex and the question is open, whether the densities of mixed volumes of
Z determine the intensity γ.
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The above considerations show that, for n = 2 and n = 3, the densities for
mixed volumes of Z, respectively their measure- and function-valued counter-
parts determine γ uniquely. Of course, the mean value formulas can be used to
construct corresponding estimators for mean values of X and thus for γ. How-
ever, the question still remains whether these lead to applicable procedures in
practice. For n = 2, this is the case as we shall show in a moment. First, we
mention a third method to describe the directional behavior of random sets
and particle processes, the method of associated bodies.

It has been a quite successful idea to associate convex bodies with the
directional data of a random structure. In particular, this often allows to ap-
ply classical geometric inequalities (like the isoperimetric inequality) to these
associated bodies and use this to formulate and solve extremal problems for
the random structures. Such associated convex bodies even exist for random
structures like processes of curves (fibre processes) or line processes. We only
discuss here the case of Boolean models but hope that the general principle
will be apparent.

The principle of associated bodies is based on the fact that certain mean
measures of random structures are area measures of a convex body, uniquely
determined up to translation, and similarly certain mean functions of random
structures are (centred) support functions of a convex body, again determined
up to translation. More precisely, any finite Borel measure ρ on Sn−1 which
has centroid 0 (and is not supported by a great sphere) is the area measure
of a unique convex body K, ρ = Sn−1(K, ·). This is Minkowski’s existence
theorem. Also, a continuous function h on Sn−1 is the support function of
a convex body K, h = h(K, ·), if the positive homogeneous extension of h
is convex on Rn. The first principle can be used in nearly all situations in
Stochastic Geometry, where measures on Sn−1 occur. The second principle is
only helpful in certain cases since the required convexity often fails. Using the
first principle, we can define a convex body B(Z) (the Blaschke body of Z)
by

Sn−1(B(Z), ·) = Sn−1(Z, ·)

and in the same way a Blaschke body B(X) of X. Then, (
areamdensity
22) becomes a

formula between convex bodies,

B(Z) = e−V n(X)B(X).

For a Boolean model with convex grains, the functions hm1,...,ms
(X, ...,X, ·) in

Theorem
supportbm
19 are in fact support functions of a mixed bodyMm1,...,ms(X, ...,X),

but due to the alternating sign in (
supportdens
24) the function h(Z, ·) on the left-hand

side is in general not a support function.
An exception is the case n = 2, where the convexity follows from (

suppdim2
26). Here,

h(Z, ·) = h(B(Z), ·) (and h(X, ·) = h(B(X), ·)). The main statistical problem
in the analysis of stationary, nonisotropic Boolean models Z in R2 thus con-
sists in the estimation of the Blaschke body B(Z). The latter and the volume
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fraction p immediately yield B(X). Since A(X,X∗) = A(B(X), B(X)∗), sim-
ple formulas for the mixed area can then be used together with an empirical
value for χ(Z) to obtain γ. Several approaches for the estimation of B(Z) (re-
spectively S1(Z, ·) = S1(B(Z), ·) have been described in the literature. One
uses the idea of convexification of a nonconvex set, another one is based on
contact distributions (these will be discussed in Section 4), a third one counts
intersections with directed lines.

Hints to the literature. Densities of mixed volumes were studied in
We01
[We01].

Densities for area measures and support functions appear in
We94
[We94],

We97c
[We97c].

The intensity analysis for n = 2 was given in
We95
[We95], the case n = 3 was

discussed in
We99
[We99]. In

We01
[We01], a corresponding result was claimed also for

n = 4. The given proof is however incomplete, since there is a term V
(0)

2,2(X,X)
missing in the formula for χ(Z) (there are also some constants missing in the
formulas for χ(Z), for n = 2, 3, 4). Mean and Blaschke bodies for RACS and
particle processes have been studied in

We97a
[We97a],

We97b
[We97b]. The use of associated

convex bodies in stochastic geometry is demonstrated in Section 4.5 of
SW00
[SW00].

3.2 Local densities

The mean values ϕ(Z) of additive, translation invariant functionals ϕ for a
stationary RACS Z have been introduced as limits

ϕ(Z) = lim
r→∞

Eϕ(Z ∩ rK0)
Vn(rK0)

over increasing sampling windows rK0, r → ∞. For a prospective extension
to nonstationary RACS Z it would be helpful to have a local interpretation of
these mean values. This is possible in the cases we treated so far, namely for
the quermass densities V j(Z) and the densities Sn−1(Z, ·) and h(Z, ·). The
following considerations will also make clear why we speak of densities here.
The basic idea is to replace the intrinsic volume Vj by its local counterpart,
the curvature measure Φj(K, ·). These measures are defined for K ∈ K, but
have an additive extension to sets in the convex ring (which may be a finite
signed measure). Since curvature measures are locally defined, they even ex-
tend to sets in S as signed Radon measures (set functions which are defined
on bounded Borel sets). Hence, for a random S-set Z, we are allowed to write
Φj(Z, ·) and this is a random signed Radon measure (as always in these lec-
tures, we skip some technical details like the measurability and integrability
of Φ(Z, ·)). If Z is stationary, Φj(Z, ·) is stationary, hence the (signed Radon)
measure EΦj(Z, ·) is translation invariant. Consequently, this measure is a
multiple of λn, EΦj(Z, ·) = dj λn. As it turns out, dj equals the quermass
density V j(Z).

density Theorem 20. Let Z be a stationary random S-set fulfilling (
intcond
16) and j ∈

{0, ..., n}. Then,
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EΦj(Z, ·) = V j(Z)λn.

Proof. We copy the proof of Theorem
kinematic
12 and modify it appropriately, but

leave out some of the more technical details.
Let A ⊂ Rd be a bounded Borel set and K a convex body containing A

in its interior. The stationarity of Z and the fact that the curvature measures
are locally defined and translation covariant implies

E
∫

Rn

Φj(Z ∩K ∩ xrBn, A)λn(dx) = E
∫

Rn

Φj(Z ∩ yK ∩ rBn, yA)λ(dy).

On the left-hand side, we can replace the integration over Rn by the invariant
integral over Gn and apply the principal kinematic formula for curvature
measures. We get

n∑
k=j

ck,n+j−k
j,n EΦk(Z,A)Vn+j−k(rBn)

(here we have used that Φk(Z∩K,A) = Φk(Z,A)). On the right-hand side, we
apply the principal translative formula for curvature measures (see Section 3.1
of [S]) and use the fact that the mixed measures Φ(j)

k,n+j−k(Z∩rBn,K; Rn×A)
vanish, for k > j, since A ⊂ int K. The remaining summand, with k = j, is
Φj(Z ∩ rBn,Rn)λn(A). Hence we obtain

n∑
k=j

ck,n+j−k
j,n EΦk(Z,A)Vn+j−k(rBn) = EΦj(Z ∩ rBn,Rn)λn(A).

Dividing both sides by Vn(rBn) and letting r →∞, we obtain

EΦj(Z,A) = V j(Z)λn(A). ut

For the directional densities Sn−1(Z, ·) and h(Z, ·), we obtain similar results.
In the first case, we use the support measure Ξn−1(K, ·), K ∈ K, (see

S
[S]) and

show that

EΞn−1(Z, · ×A) =
1
2
Sn−1(Z,A)λn, (30) suppmeas

for each Borel set A ⊂ Sn−1 (the factor 1/2 here comes from the different
normalizations: Ξn−1(K,Rn × Sn−1) = Vn−1(K), which is half the surface
area Sn−1(K,Sn−1)). (

suppmeas
30) can be deduced as in the proof above and is based

on the translative formula∫
Rn

Ξn−1(K ∩ xM, (B ∩ xC)×A)λn(dx)

= Ξn−1(K,B ×A)λn(M ∩ C) +Ξn−1(M,C ×A)λn(K ∩B),
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for K,M ∈ K and Borel sets B,C ⊂ Rn, A ⊂ Sn−1, which follows from
Theorem 1.2.7 in

SW92
[SW92].

For h(Z, ·), we use the support kernel ρ(K;u, ·), K ∈ K, u ∈ Sn−1,

ρ(K;u, ·) := Φ
(0)
1,n−1(K,u

+; · × β(u)),

here u+ := {x ∈ Rn : 〈x, u〉 ≥ 0} and β(u) is a ball in ∂u+ of (n− 1)-volume
1. The extension properties and the translative integral formula for mixed
measures then show that

E ρ(Z;u, ·) = h(Z, u)λn,

again with a similar proof as above.
These results show also that the densities can be considered as Radon-

Nikodym derivatives, in particular we have

V j(Z) = lim
r→0

EΦj(Z, rBn)
Vn(rBn)

, j = 0, ..., n− 1,

(note, however, that the relation V j(Z) = limr→0 EVj(Z ∩ rBn)/Vn(rBn) is
wrong).

For particle processes, we only formulate the corresponding results (and
concentrate on convex particles). The proofs are similar but simpler because
of Campbell’s theorem.

density2 Theorem 21. Let X be a stationary process of convex particles. Then,

E
∑

K∈X

Φj(K, ·) = V j(X)λn, j = 0, ..., n,

E
∑

K∈X

Ξn−1(K, · ×A) =
1
2
Sn−1(X,A)λn, A ⊂ Sn−1,

E
∑

K∈X

ρ(K;u, ·) = h(X,u)λn, u ∈ Sn−1.

Hints to the literature. The interpretation of quermass densities as Radon-
Nikodym derivatives goes back to Weil and Wieacker

WW84
[WW84], Weil

We84
[We84]

and, for sets of positive reach, to Zähle
Za86
[Za86]. The derivative interpretation

of Sn−1(Z, ·) and h(Z, ·), and the corresponding results in Theorem
density2
21 can be

found at different places in the literature, in particular see
GW02
[GW02].

3.3 Nonstationary Boolean models

In this subsection, we discuss extensions of the previous results to nonsta-
tionary Boolean models Z. It is rather obvious that we have to require some
regularity of Z, because with arbitrary intensity measures Θ of the underlying
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Poisson particle process X rather pathological union sets Z can arise. Starting
with a Boolean model with compact grains, our basic assumption is that Θ
allows a decomposition

Θ(A) =
∫
C0

∫
Rn

1A(x+K)f(K,x)λn(dx)Q(dK), A ∈ B(C′), (31) Thetadecomp

with a nonnegative and measurable function f on C0 × Rn and a probability
measure Q on C0. Theorem

decomposition
3 shows that (

Thetadecomp
31) means that Θ is absolutely

continuous to a translation invariant measure Ω on C′. Such a measure Ω is
not uniquely determined and consequently the representation (

Thetadecomp
31) for Θ is

not unique, in general. There is however an important case, where uniqueness
holds, and we will concentrate on this case, although most of the results in
this subsection hold true in the more general situation (

Thetadecomp
31).

Thetadecomp2 Theorem 22. Let Θ be a locally finite measure on C′ and suppose that

Θ(A) =
∫
C0

∫
Rn

1A(x+K)f(x)λn(dx)Q(dK), A ∈ B(C′), (32) Thetadecomp3

with a nonnegative and measurable function f on Rn and a probability measure
Q on C0. Then Q is uniquely determined and f is determined up to a set of
λn-measure 0.

If we consider the image measure Θ̃ of Θ under K 7→ (c(K),K − c(K)),
the theorem presents the obvious fact that a decomposition of the form Θ̃ =
(
∫
fdλn)⊗Q is unique.
If Θ is now the intensity measure of a Poisson particle process X and

Z the corresponding Boolean model, we call f the intensity function of
Z and Q the distribution of the typical grain. We still have a simple
interpretation of Z which can also be used for simulations. If we distribute
points x1, x2, ... according to a Poisson process with intensity function f and
then add independent (convex) particles Z1, Z2, ... with common distribution
Q, the resulting union set is equivalent (in distribution) to Z. The Boolean
model Z is stationary (with intensity γ), if and only if f ≡ γ.

How strong are conditions like (
Thetadecomp
31) or (

Thetadecomp3
32)? Since C and Rn are both Polish

spaces and since Θ is assumed to be locally finite, a general decomposition
principle in measure theory shows that a representation

Θ(A) =
∫
C0

∫
Rn

1A(x+K)ρ(K,dx)Q(dK), A ∈ B(C′),

always exists, where ρ is a kernel (i.e, for each K ∈ C0, ρ(K, ·) is a measure on
Rn and, for each C ∈ B(Rn), ρ(·, B) is a (nonnegative) measurable function on
C0) and Q is a probability measure. Condition (

Thetadecomp
31) thus requires, in addition,

that the kernel ρ is absolutely continuous, that means, there are versions of
ρ and Q (remember that ρ and Q are not uniquely determined), such that
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ρ(K, ·) has a density f(K, ·) with respect to λn, for each K ∈ C0. In contrast
to this, (

Thetadecomp3
32) is a much stronger condition since it requires that ρ(K, ·) is in

addition independent of K ∈ C0.
Now we concentrate on Boolean models with convex grains again. Our

next goal is to define densities of additive functionals like Vj , Sn−1, h
∗ and the

mixed functionals V (j)
m1,...,mk for the Poisson process X and the Boolean model

Z. SinceX and Z are not assumed to be stationary anymore, we cannot expect
a constant density but a quantity depending on the location z in space. The
results of Section 3.2 motivate us to introduce densities as Radon-Nikodym
derivatives of appropriate random measures with respect to λn. The main task
is therefore to show that the random measures are absolutely continuous. Here,
condition (

Thetadecomp3
32) is of basic importance. For the mixed functionals V (j)

m1,...,mk ,
the corresponding random measures are measures on (Rn)k and consequently
the Radon-Nikodym derivatives will be taken with respect to λk

n and will be
functions of k variables z1, ..., zk.

nonstat1 Theorem 23. Let X be a Poisson process of convex particles with intensity
measure satisfying (

Thetadecomp3
32). Then, for j = 0, ..., n, k ∈ N, and m1, ...,mk ∈

{j, ..., n} with m1 + · · ·+mk = (k − 1)n+ j, the signed measure

E
∑

(K1,...,Kk)∈Xk
6=

Φ(j)
m1,...,mk

(K1, ...,Kk; ·)

is locally finite and absolutely continuous with respect to λk
n.

Its Radon-Nikodym derivative V
(j)

m1,...,mk
(X, ...,X; ·) fulfils λk

n-almost ev-
erywhere

V
(j)

m1,...,mk
(X, ...,X; z1, ..., zk)

=
∫
K0

· · ·
∫
K0

∫
(Rn)k

f(z1 − x1) · · · f(zk − xk)

× Φ(j)
m1,...,mk

(K1, ...,Kk; d(x1, ..., xk))Q(dK1) · · ·Q(dKk)

= lim
r→0

1
(Vn(rK))k

× E
∑

(K1,...,Kk)∈Xk
6=

Φ(j)
m1,...,mk

(K1, ...,Kk; (z1 + rK)× · · · × (zk + rK)) ,

for each K ∈ K with inner points.

For k = 1, we thus obtain the local quermass density V j(X; ·) with

V j(X; z) =
∫
K0

∫
Rn

f(z − x)Φj(M,dx)Q(dM)

= lim
r→0

1
(Vn(rK))k

E
∑

M∈X

Φj(M, (z + rK)), z ∈ Rn.
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For j = n, we get the volume density (or volume fraction)

Vn(X; z) =
∫
K0

∫
M

f(z − x)λ(dx)Q(dM).

This equation (with the proof given below) holds true for Poisson processes
X on C′ as well.

Apart from integrability considerations which are of a more technical na-
ture, the basic tool in the proof of Theorem

nonstat1
23 is Campbell’s theorem again

which gives us

E
∑

(K1,...,Kk)∈Xk
6=

Φ(j)
m1,...,mk

(K1, ...,Kk;B)

=
∫
K0

· · ·
∫
K0

∫
(Rn)k

Φ(j)
m1,...,mk

(K1 + x1, ...,Kk + xk;B)f(x1) · · · f(xk)

× λn(dx1) · · · λn(dxk)Q(dK1) · · ·Q(dKk),

since Θk is the intensity measure of Xk
6=. The main step is then to show that∫

(Rn)k

Φ(j)
m1,...,mk

(K1 + x1, ...,Kk + xk;B)f(x1) · · · f(xk)λn(dx1) · · · λn(dxk)

=
∫

B

∫
(Rn)k

f(z1 − x1) · · · f(zk − xk)Φ(j)
m1,...,mk

(K1, ...,Kk; d(x1, ..., xk))

× λn(dz1) · · · λn(dzk),

which follows from the translation covariance of the mixed measures and a
simple change of variables.

Densities for other (mixed) functionals which occurred in previous sections,
in the stationary case for X, can be treated in a similar way.

Now we consider the union set Z.

nonstatbm Theorem 24. Let Z be a Boolean model with convex grains, where the in-
tensity measure of the underlying Poisson process X satisfies (

Thetadecomp3
32), and let

j ∈ {0, ..., n}. Then, the signed Radon measure

EΦj(Z, ·)

is locally finite and absolutely continuous with respect to λn. Its Radon-
Nikodym derivative V j(Z; ·) fulfills

V j(Z; z) = lim
r→0

1
Vn(rK)

EΦj(Z, z + rK)

for λn-almost all z ∈ Rn and each K ∈ K with inner points.
Moreover, we have, for λn-almost all z ∈ Rn,
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V n(Z; z) = 1− e−V n(X;z)

and

V j(Z, z) = e−V n(X;z)

(
V j(X; z)

+
n−j∑
k=2

(−1)k+1

k!

n−1∑
m1,...,mk=j

m1+...+mk=(k−1)n+j

V
(j)

m1,...,mk
(X, ...,X; z, ..., z)

)
,

for j = 0, ..., n− 1.

Proof. The assertions on the volume density hold in greater generality. In fact,
for a RACS Z, we have

Eλn(Z ∩A) =
∫

A

P(z ∈ Z)λn(dz), A ∈ B(Rn).

Hence, the measure Eλn(Z ∩ ·) is absolutely continuous and has density
V n(Z, z) := P(z ∈ Z). For a Boolean model Z with compact grains,

P(z ∈ Z) = 1− P({z} ∩ Z = ∅) = 1− e−Θ(F{z})

= 1− exp
(
−
∫
C0

∫
Rn

1x+K(z)f(x)λn(dx)Q(dK)
)

= 1− exp
(
−
∫
C0

∫
K

f(z − y)λn(dy)Q(dK)
)

= 1− e−V n(X;z). (33) voldens

Now we consider convex grains and j ∈ {0, ..., n− 1}. Again, we leave out
the technical parts concerning the local finiteness etc. We apply Theorem

expectation
9

with ϕ(K) := Φj(K,B), B a fixed bounded Borel set, and choose a convex
body K0 with B in its interior. Because of (

Thetadecomp3
32), we obtain

EΦj(Z,B) = EΦj(Z ∩K0, B)

=
∞∑

k=1

(−1)k+1

k!

∫
K0

· · ·
∫
K0

∫
Rn

· · ·
∫

Rn

Φj(K0 ∩ x1K1 ∩ · · · ∩ xkKk, B)

× f(x1) · · · f(xk)λn(dx1) · · · λn(dxk)Q(dK1) · · ·Q(dKk).

The iterated translative formula for curvature measures, in its version (49)
from [S], shows that
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Rn

· · ·
∫

Rn

Φj(K0 ∩ x1K1 ∩ · · · ∩ xkKk, B)f(x1) · · · f(xk)λn(dx1) · · ·λn(dxk)

=
∫

Rn

· · ·
∫

Rn

∫
Rn

1B(z)f(x1) · · · f(xk)Φj(K0 ∩ x1K1 ∩ · · · ∩ xkKk,dz)

× λn(dx1) · · · λn(dxk)

=
n∑

m1,...,mk=j

m1+···+mk=(k−1)n+j

∫
B

∫
(Rn)k

f(z − x1) · · · f(z − xk)

× Φ(j)
m1,...,mk

(K1, ...,Kk; d(x1, ..., xk))λn(dz).

Therefore, we obtain from Theorem
nonstat1
23

EΦj(Z,B)

=
∫

B

( ∞∑
k=1

(−1)k+1

k!

n∑
m1,...,mk=j

m1+···+mk=(k−1)n+j

V
(j)

m1,...,mk
(X, ...,X; z, ..., z)

)
λn(dz).

The remaining part of the proof follows now the standard procedure, since
the decomposition properties for mixed measures carry over to the local den-
sities. ut

Hints to the literature. Nonstationary Boolean models were first studied in
detail by Fallert

Fa92
[Fa92],

Fa96
[Fa96], who also defined quermass densities and proved

the basic Theorems
nonstat1
23 and

nonstatbm
24. Corresponding results for mixed volumes are

given in
We01
[We01].

3.4 Sections of Boolean models

If Z is a Boolean model in Rn and L any affine subspace (with dimension in
{1, ..., n−1}), then the intersection Z∩L is a Boolean model. This follows from
the fact that the intersections K ∩ L, K ∈ X, build a Poisson process again,
as can be easily checked. It is therefore natural to ask, how the characteristic
quantities of Z and Z ∩ L are connected. Formulas of this kind are helpful
since they can be used to estimate quantities of Z from lower dimensional
sections. Such estimation problems are typical for the field of stereology (see
???).

It is, in general, quite difficult to get information about the grain distribu-
tion Q from sections. An exception is a Boolean model Z with balls as grains.
Here, an integral equation connecting the radii distributions of Z and Z ∩ L
can be given and used for an inversion (which is however unstable and leads to
an ill-posed problem). For the quermass densities, the Crofton formulas from
integral geometry can be used. These lead to formulas which hold for RACS
Z and particle processes X and therefore can be used for Boolean models as
well. We only state some results here, the proofs are quite similar to the ones
given previously for intersections of Z (or X) with sampling windows K0.
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crofton1 Theorem 25. Let Z be a stationary random S-set fulfilling (
intcond
16) and let X be

a stationary process of particles in K′. Let L ∈ Ln
k be a k-dimensional linear

subspace, k ∈ {0, ..., n}, and let ϑ be a random rotation with distribution ν
and independent of Z and X. Then

Eν V j(Z ∩ ϑL) = ck,n+j−k
j,n V n+j−k(Z)

and
Eν V j(X ∩ ϑL) = ck,n+j−k

j,n V n+j−k(X),

for j = 0, ..., k.

The cases k = n and k = 0 are trivial and not of interest. If j = k or if Z is
isotropic, the expectation Eν can be omitted.

Hints to the literature. Crofton formulas are classical in stochastic geom-
etry (see

SKM95
[SKM95] or

SW00
[SW00]).

4 Contact distributions

In the previous sections, we mostly discussed properties of Boolean models Z
which are based on intrinsic geometric quantities of the set Z. A correspond-
ing statistical analysis of Z would require observations of Z from inside, for
example by counting pixel points of Z in a bounded sampling window K0,
by considering curvatures in boundary points of Z, etc. In this last section,
we shall consider quantities which are based on observations outside Z, for
example by measuring the distance d(x, Z) from a given point x /∈ Z to Z.
The distribution of d(x,Z) is a particular case of a contact distribution. Such
contact distributions are often easier to estimate in practice and will also give
us interesting information about Z.

Contact distributions and their generalizations will be treated in the first
three subsections. The last subsection contains additional material on Boolean
models. Various aspects which are important but could not be mentioned so
far are addressed here, although in a quite short, summarizing form. We also
shall mention some open problems on Boolean models.

4.1 Contact distribution with structuring element

Contact distributions can be introduced for arbitrary RACS Z. In their gen-
eral form, they are based on a given convex body B ∈ K′ with 0 ∈ B, the
structuring element, and describe the distribution of the ‘B-distance’ from
a point x /∈ Z to the set Z.

To give a more precise definition, we start with

dB(x,A) := inf{r ≥ 0 : (x+ rB) ∩A 6= ∅},
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for x ∈ Rn and A ∈ F . In this situation, we also call B a gauge body. The
set on the right-hand side may be empty (for example, if 0 ∈ ∂B or if B is
lower dimensional), then dB(x, Z) = ∞. We also put dB(A, x) := dB∗(x,A)
and dB(x, y) := dB(x, {y}), y ∈ Rn. If the gauge body has inner points and
is symmetric with respect to 0, then (x, y) 7→ dB(x, y) is a metric on Rn and
hence (Rn, dB) is a Minkowski space. Of course, for B = Bn we obtain the
Euclidean metric, we then write d(x,A) instead of dBn(x,A), etc.

Now we consider a RACS Z and x ∈ Rn and define the contact distri-
bution HB at x by

HB(x, r) := P(x+ rB ∩ Z 6= ∅ |x /∈ Z)
= P(dB(x,Z) ≤ r |x /∈ Z), r ≥ 0.

Thus, HB(x, ·) is the distribution function of the B-distance dB(x,Z) of x
to Z, conditional to the event that x /∈ Z (it is of course also possible to
consider the unconditional distribution function, but the above definition is
the widely used one). Actually, HB(x, ·) is the contact distribution function
and the contact distribution would be the corresponding probability measure
on [0,∞], but it is now common use in the literature not to distinguish between
these two notions. If P(x /∈ Z) > 0, then one can express HB(x, ·) in terms of
the (local) volume density, namely

HB(x, r) = P(x+ rB ∩ Z 6= ∅ |x /∈ Z)

= 1− P(x /∈ Z + rB∗)
P(x /∈ Z)

=
P(x ∈ Z + rB∗)− P(x ∈ Z)

1− P(x ∈ Z)

=
V n(Z + rB∗, x)− V n(Z, x)

1− V n(Z, x)
.

The condition P(x /∈ Z) > 0 is always satisfied if Z is stationary and non-
trivial, i.e. Z 6= Rn with positive probability.

Now we assume that Z is a Boolean model (with compact grains). Then,
(
voldens
33) implies

HB(x, r) = 1− V n(Z + rB∗, x)
V n(Z, x)

=
e−V n(X;x) − e−V n(X+rB∗;x)

e−V n(X;x)

= 1− exp

(
−
∫
C0

∫
(K+rB∗)\K

f(x− y)λn(dy)Q(dK)

)
. (34) voldens2

We first discuss the stationary situation and assume convex grains. Hence,
f ≡ γ and HB(x, r) is independent of x. We put HB(r) := HB(0, r). Then,
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HB(r) = 1− exp
(
−γ
∫
K0

Vn((K + rB∗) \K)Q(dK)
)

= 1− exp

−γ n−1∑
i=0

(
n

i

)
rn−i

∫
K0

V (K, ...,K︸ ︷︷ ︸
i

, B∗, ..., B∗︸ ︷︷ ︸
n−i

)Q(dK)


= 1− exp

(
−

n−1∑
i=0

rn−iV
(0)

i,n−i(X,B)

)
,

where we used the expansion of Vn(K+rB∗) into mixed volumes (resp. mixed
functionals). We thus get the following result.

contdis Theorem 26. Let Z be a stationary Boolean model with convex grains and B
a gauge body. Then

HB(r) = 1− exp

(
−

n−1∑
i=0

rn−iV
(0)

i,n−i(X,B)

)
, for r ≥ 0.

Interesting special cases are B = Bn (the spherical contact distribution)
and B = [0, u], u ∈ Sn−1, (the linear contact distribution). For the spher-
ical contact distribution, we get

HBn(r) = 1− exp

(
−

n−1∑
i=0

rn−iκn−iV i(X)

)
,

the result we already obtained at the end of Section 1 (for the capacity func-
tional). For H[0,u], we observe that

V (K, ...,K︸ ︷︷ ︸
i

, [0, u], ..., [0, u]︸ ︷︷ ︸
n−i

) = 0, for i = 0, ..., n− 2,

whereas V (K, ...,K, [0, u]) is proportional to the (n−1)-volume of the orthog-
onal projection of K onto the hyperplane orthogonal to u,

V (K, ...,K, [0, u]) =
2
n
Vn−1(K |u⊥).

Therefore,

H[0,u](r) = 1− exp
(
−2γr

n

∫
K0

Vn−1(K |u⊥)Q(dK)
)
.

From the formula

Vn−1(K |u⊥) =
1
2

∫
Sn−1

|〈x, u〉|Sn−1(K,dx),

we obtain
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H[0,u](r) = 1− exp
(
− r
n

∫
Sn−1

|〈x, u〉|Sn−1(B(X),dx)
)

= 1− exp (−rh(ΠB(X), u)) ,

with the projection body ΠB(X) of the Blaschke body B(X) of X. The
linear contact distribution H[0,u] therefore determines the support value
h(ΠB(X), u). If we know H[0,u] in all directions u ∈ Sn−1, the convex body
ΠB(X) is determined. The corresponding integral transform

h(ΠB(X), u) =
1
n

∫
Sn−1

|〈x, u〉|Sn−1(B(X),dx)

is called the cosine transform. It is injective on even measures, which means
that B(X) and therefore the mean area measure Sn−1(X, ·) = Sn−1(B(X), ·)
are determined, provided they are symmetric. A sufficient condition for the
latter is of course that all particles K ∈ X are centrally symmetric. As we
mentioned in Section 3.1, for the estimation of Sn−1(X, ·) in the nonsymmetric
case modifications of the linear contact distribution are necessary.

Now we consider the nonstationary case (but still with convex grains).
Then, (

voldens2
34) shows that we need a general Steiner-type formula for∫

(K+rB∗)\K
f(x− y)λn(dy).

This can be given using relative support measures Θj;n−j(K;B∗; ·) and results
in∫

(K+rB∗)\K
f(x− y)λn(dy)

=
n−1∑
j=0

(
n− 1
j

)∫ r

0

∫
Rn×Rn

tn−1−jf(x− tu− y)Θj;n−j(K;B∗; d(y, u))dt.

The definition of relative support measures requires that K and B∗ are in
general relative position, which means that for all support sets K(u), B∗(u)
and (K +B∗)(u), u ∈ Sn−1, of K,B∗ and K +B∗ we have

dim(K +B∗)(u) = dimK(u) + dimB∗(u).

The condition of general relative position is satisfied, for example, if one of
the bodies K,B∗ is strictly convex.

contdis2 Theorem 27. Let Z be a Boolean model with convex grains satisfying (
Thetadecomp3
32)

and let B be a gauge body. Assume that K and B∗ are in general relative
position, for Q-almost all K. Then

HB(x, r) = 1− exp
(
−
∫ r

0

λB(x, t)dt
)
, for r ≥ 0,
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with

λB(x, t) :=
n−1∑
j=0

(
n− 1
j

)
tn−1−j

∫
K0

∫
Rn×Rn

f(x− tu− y)

×Θj;n−j(K;B∗; d(y, u))Q(dK).

If B = Bn, the measure Θj;n−j(K;B∗; ·) is the (ordinary) support measure
Θj(K, ·).

Hints to the literature. For stationary (or stationary and isotropic) Boolean
models, the results of this section are classical and can be found in

SKM95
[SKM95]

and
SW00
[SW00]. For the nonstationary case,

Hu00
[Hu00] and

HL00
[HL00] are the main

references. A survey on contact distributions is given in
HLW02b
[HLW02b].

4.2 Generalized contact distributions

The results of the last section can be generalized in various directions.
First we can replace the point x by a convex body L and thus measure

the B-distance from L to Z, provided that L ∩ Z = ∅. Hence, we define

dB(L,A) := inf{r ≥ 0 : (L+ rB) ∩A 6= ∅},

for A ∈ F , and

HB(L, r) := P(L+ rB ∩ Z 6= ∅ |L ∩ Z = ∅)
= P(dB(L,Z) ≤ r |L ∩ Z = ∅).

Then we have to work with a corresponding more general notion of general
relative position, use mixed relative support measures Θi,j;n−i−j(L,K∗;B; ·),
and get the following result.

contdis3 Theorem 28. Let Z be a Boolean model with convex grains satisfying (
Thetadecomp3
32)

and let B be a gauge body. Let L ∈ K′ be such that L,K and B∗ are in general
relative position, for Q-almost all K. Then

HB(L, r) = 1− exp
(
−
∫ r

0

λB(L, t)dt
)
, for r ≥ 0,

with

λB(L, t) :=
n−1∑

i,j,k=0

(
n− 1
i, j, k

)
tk
∫
K0

∫
Rn×Rn×Rn

f(x+ tu+ y)

×Θi,j;k+1(L,K∗;B; d(x, y, u))Q(dK).
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Here we used the multinomial coefficient(
n− 1
i, j, k

)
:=

(n− 1)!
i!j!k!

,

for i, j, k ∈ N0 with i+ j + k = n− 1 (and 0 else).
If Z is stationary, we can use

Θi,j;k+1(L,K∗;B; Rn × Rn × Rn) = nV (L [i],K∗ [j], B [k + 1])

and get

HB(L, r) = 1− exp

 n−1∑
i,j,k=0

(
n

i, j, k + 1

)
rk+1V (L [i], X∗ [j], B [k + 1])

 .

As a further generalization, we may include directions. As one can show,
if L∩Z = ∅ (and under the condition of general relative position), with prob-
ability one the pair of points (pB(L,Z), pB(Z,L)) ∈ ∂L × ∂Z which realizes
the B-distance,

dB(L,Z) = dB(pB(L,Z), pB(Z,L)),

is uniquely determined. Let uB(L,Z) ∈ Sn−1 be the direction from pB(L,Z)
to pB(Z,L), thus

pB(Z,L) = pB(L,Z) + dB(L,Z)uB(L,Z).

We now may even add some geometric information lB(L,Z) = ρZ(pB(Z,L))
in the boundary point pB(Z,L), which is translation covariant and ‘local’ in
the sense that it depends only on Z in an arbitrarily small neighborhood of
pB(Z,L). For example, in the plane and for a Boolean model with smooth
convex grains, ρZ(pB(Z,L)) could be the curvature of Z in pB(Z,L). A quite
general version of Theorem

contdis3
28 then yields the formula

E (1{dB(L,Z) <∞}g(dB(L,Z), uB(L,Z), pB(L,Z), lB(L,Z)) |Z ∩ L = ∅)

=
n−1∑

i,j,k=0

(
n− 1
i, j, k

)∫ ∞

0

tk(1−HB(L, t))
∫
K0

∫
Rn×Rn×Rn

g(t, u, x, ρy+K∗(0))

× f(x+ tu+ y)Θi,j;k+1(L,K∗;B; d(x, y, u))Q(dK)dt,

for any measurable nonnegative function g.

Hints to the literature. The results of this section were taken from
HLW02a
[HLW02a] (see also

HLW02b
[HLW02b]).

4.3 Characterization of convex grains

Hints to the literature. The results in this section can be found in
HLW04
[HLW04].
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4.4 Miscellaneous results, open problems

Hints to the literature.
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