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Introduction

Integral geometry deals with measures on sets of geometric objects, and in
particular with the determination of the total measure of various such sets
having geometric significance. For example, given two convex bodies in Eu-
clidean space, what is the total invariant measure of the set of all rigid motions
which bring the first set into a position where it has nonempty intersection
with the second one? Or, what is the total invariant measure of the set of
all planes of a fixed dimension having nonempty intersection with a given
convex body? Both questions have classical answers, known as the kinematic
formula and the Crofton formula, respectively. Results of this type are useful
in stochastic geometry. Basic random closed sets, the stationary and isotropic
Boolean models with convex grains, are obtained by taking union sets of cer-
tain stochastic processes of convex bodies. Simple numerical parameters for
the description of such Boolean models are functional densities related to the
specific volume, surface area, or Euler characteristic. Kinematic formulae are
indispensable tools for the investigation and estimation of such parameters.
Weakening the hypotheses on Boolean models, requiring less invariance prop-
erties and admitting more general set classes, necessitates the generalization
of integral geometric formulae in various directions. An introduction to the
needed basic formulae and a discussion of their extensions, analogues and
ramifications is the main purpose of the following. The section headings are:

1. From Hitting Probabilities to Kinematic Formulae
2. Localizations and Extensions
3. Translative Integral Geometry
4. Intersection Formulae Without Invariance

A simplifying aspect of our selection from the realm of integral geometry is, on
the side of geometric operations, the restriction to intersections of fixed and
variable sets and, on the side of measures, the restriction to Haar measures on
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groups of rigid motions or translations; only on spaces of flats do we consider
non-invariant measures as well.

The following is meant as an introduction to the integral geometry that is
relevant for stochastic geometry, with a few glimpses to more recent develop-
ments of independent interest. The character of the presentation varies from
introductory to survey parts, and corresponding to this, proofs of the stated
results are sometimes given in full, occasionally sketched, and often omitted.

1 From Hitting Probabilities to Kinematic Formulae

This chapter gives an introduction to the classical kinematic and Crofton
formulae for convex bodies. We start with a deliberately vague question on
certain hitting probabilities. This leads us in a natural way to the necessity
of calculating certain kinematic measures, as well as to the embryonic idea of
a Boolean model.

1.1 A Heuristic Question on Hitting Probabilities

The following question was posed and treated in [4]. Let K and L be two given
convex bodies (nonempty compact convex sets) in Euclidean space Rn. We use
K to generate a random field of congruent copies of K. That means, countably
many congruent copies ofK are laid out randomly and independently in space.
The bodies may overlap. It is assumed that the random system has a well
defined number density, that is, an expected mean number of particles per
unit volume. The body L is used as a fixed test body. For a given number
j ∈ N0, we ask for the probability, pj , of the event that the test body L is hit
by (that is, has nonempty intersection with) exactly j bodies of the random
field.

So far, of course, this is only an imprecise heuristic question. It will require
several steps to make the question precise. In a first step, we choose a large
ball Br, of radius r and origin 0, that contains L, and we consider only one
randomly moving congruent copy of K, under the condition that it hits Br.
What is the probability that it hits also L? To make this a meaningful ques-
tion, we have to specify the probability distribution of the randomly moving
body. The geometrically most natural assumption is that this distribution be
induced from the motion invariant measure µ on the group Gn of rigid mo-
tions of Rn. This means that we represent the congruent copies of K in the
form gK, where g ∈ Gn is a rigid motion. We define a probability distribution
P on the space K of convex bodies (equipped with the Hausdorff metric) in
Rn by

P(gK ∈ A) =
µ({g ∈ Gn : gK ∩Br 6= ∅, gK ∈ A})

µ({g ∈ Gn : gK ∩Br 6= ∅})
for Borel sets A ⊂ K.
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Now it makes sense to ask for the probability, p, of the event that gK
meets the body L ⊂ Br, and this probability is given by

p =
µ(K,L)
µ(K,Br)

, (1)

where we have put

µ(K,M) := µ({g ∈ Gn : gK ∩M 6= ∅})

for convex bodies K and M .
How can we compute µ(K,M)? Let us first suppose that K is a ball

of radius ρ. Then the measure of all motions g that bring K in a hitting
position with M is (under suitable normalization) equal to the measure of all
translations which bring the centre of K into the parallel body

M +Bρ := {m+ b : m ∈M, b ∈ Bρ},

and hence to the volume of this body. By a fundamental result of convex
geometry, this volume is a polynomial of degree at most n in the parameter
ρ, usually written as

λn(M +Bρ) =
n∑

i=0

ρn−iκn−iVi(M) (2)

(λn = Lebesgue measure in Rn, κj = volume of the j-dimensional unit ball).
This result, known as the Steiner formula, defines important functionals,
the intrinsic volumes V0, . . . , Vn.

We see already from this special case, K = Bρ, that in the computation of
the measure µ(K,M) the intrinsic volumes must play an essential role. It is
a remarkable fact that no further functionals are needed for the general case.
The principal kinematic formula of integral geometry, in its specialization
to convex bodies, says that

µ(K,M) =
n∑

i=0

αniVi(K)Vn−i(M), (3)

with certain explicit constants αni. For the moment, we take this formula for
granted. A proof will be given in Subsection 1.4.

Recalling that the probability p, of the event that a randomly moving
congruent copy of K hitting Br also hits L, is given by (1), we have now
found that

p =
∑n

i=0 αniVi(K)Vn−i(L)∑n
i=0 αniVi(K)rn−iκn

, (4)

which depends (for fixed r) only on the intrinsic volumes of K and L.
In the second step, we consider m randomly chosen congruent copies of K,

given in the form g1K, . . . , gmK with random motions g1, . . . , gm. We assume
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that these random copies are stochastically independent and that they all
have the same distribution, as described above. For j ∈ {0, 1, . . . ,m}, let pj

denote the probability of the event that the test body L is hit by exactly j
of the random congruent copies of K. The assumed independence leads to a
binomial distribution, thus

pj =
(
m

j

)
p j(1− p)m−j ,

with p given by (4).
In the third step, we let the radius r of the ball Br and the number m of

particles tend to ∞, but in such a way that

lim
m→∞
r→∞

m

λn(Br)
= γ

with a positive constant γ. From

mp =
m

λn(Br)
λn(Br)
µ(K,Br)

µ(K,L) and lim
r→∞

µ(K,Br)
λn(Br)

= 1

we get mp→ γµ(K,L) =: θ and hence

lim
r→∞

pj =
θj

j!
e−θ

with

θ = γµ(K,L) = γ
n∑

i=0

αniVi(K)Vn−i(L).

We have found, not surprisingly, a Poisson distribution. Its parameter, θ,
is expressed explicitly in terms of the constant γ, which can be interpreted as
the number density of our random system of convex bodies, and the intrinsic
volumes of K and L.

This is the answer given in [4]. The answer is explicit and elegant, but
still not quite satisfactory. What the authors have computed is a limit of
probabilities, and this turned out to be a Poisson distribution. However, this
Poisson distribution is not yet interpreted as the distribution of a well-defined
random variable. What we would prefer, and what is needed for applications,
is a model that allows us to consider from the beginning countably infinite
systems of randomly placed convex bodies, with suitable independence prop-
erties. This requirement leads us, inevitably and in a natural way, to the
notion of a Poisson process of convex particles. More general versions of such
particle processes and their union sets, the Boolean models, are one of the
topics of Wolfgang Weil’s lectures. Our task is now to provide the integral
geometry that is needed for a quantitative treatment of Boolean models. We
begin with the Steiner and kinematic formulae.
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1.2 Steiner Formula and Intrinsic Volumes

Our first aim is to prove the Steiner formula (2) and to use it for introducing
the intrinsic volumes, which are basic functionals of convex bodies. First we
collect some notation.

On Rn, we use the standard scalar product 〈·, ·〉 and the Euclidean norm
‖ · ‖. The unit ball of Rn is Bn := {x ∈ Rn : ‖x‖ ≤ 1}, and its boundary is
the unit sphere Sn−1. By λk we denote the k-dimensional Lebesgue measure
in k-dimensional flats (affine subspaces) of Rn. For convex bodies K we write
λn(K) =: Vn(K). The constant κn = πn/2/Γ(1+n/2) gives the volume of the
unit ball Bn. Spherical Lebesgue measure on Sk is denoted by σk.

The space K of convex bodies in Rn is equipped with the Hausdorff metric.
The sum of convex bodies K,L ∈ K is defined by

K + L := {x+ y : x ∈ K, y ∈ L}.

A special case gives the parallel body of K at distance ρ ≥ 0,

Kρ := K + ρBn = {x ∈ Rn : d(K,x) ≤ ρ},

where
d(K,x) := min{‖x− y‖ : y ∈ K}

is the distance of x from K. Let K ∈ K be a convex body. For x ∈ Rn, there
is a unique point p(K,x) in K nearest to x, thus

‖p(K,x)− x‖ = min{‖y − x‖ : y ∈ K} = d(K,x).

This defines a Lipschitz map p(K, ·) : Rn → K, which is called the nearest-
point map of K, or the metric projection onto K.

For the case of a planar convex polygon P , the reader will easily convince
herself, after drawing a picture of the parallel body Pρ, that the area of this
parallel body is a quadratic polynomial in ρ. The simple idea showing this
extends to higher dimensions, as follows.

A polyhedral set in Rn is a set which can be represented as the in-
tersection of finitely many closed halfspaces. A bounded non-empty poly-
hedral set is called a convex polytope or briefly a polytope. Let P be
a polytope. If H is a supporting hyperplane of P , then P ∩ H is again a
polytope. The set F := P ∩ H is called a face of P , and an m-face if
dim F = m, m ∈ {0, . . . , n − 1}. If dim P = n, we consider P as an n-
face of itself. By Fm(P ) we denote the set of all m-faces of P , and we put
F(P ) :=

⋃n
m=0 Fm(P ). For m ∈ {0, . . . , n − 1}, F ∈ Fm(P ), and a point

x ∈ relintF (the relative interior of F ), let N(P, F ) be the normal cone of
P at F ; this is the closed convex cone of outer normal vectors of supporting
hyperplanes to P at x, together with the zero vector. It does not depend upon
the choice of x. The number
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γ(F, P ) :=
λn−m(N(P, F ) ∩Bn)

κn−m
=
σn−m−1(N(P, F ) ∩ Sn−1)

(n−m)κn−m
(5)

is called the external angle of P at its face F . We also put γ(P, P ) = 1 and
γ(F, P ) = 0 if either F = ∅ or F is not a face of P .

Now let a polytope P and a number ρ > 0 be given. For x ∈ Rn, the nearest
point p(P, x) lies in the relative interior of a unique face of P . Therefore,

Pρ =
⋃

F∈F(P )

[
Pρ ∩ p(P, ·)−1(relintF )

]
(6)

is a disjoint decomposition of the parallel body Pρ. For m ∈ {0, . . . , n − 1}
and F ∈ Fm it follows from the properties of the nearest point map that

Pρ ∩ p(P, ·)−1(relintF ) = relintF ⊕ (N(P, F ) ∩ ρBn), (7)

where ⊕ denotes a direct orthogonal sum. An application of Fubini’s theorem
gives

λn(Pρ ∩ p(P, ·)−1(relintF )) = λm(F )λn−m(N(P, F ) ∩ ρBn)

= λm(F )ρn−mκn−mγ(F, P ).

Hence, if we define

Vm(P ) :=
∑

F∈Fm(P )

λm(F )γ(F, P ), (8)

it follows from (6) that

Vm(Pρ) :=
n∑

m=0

ρn−mκn−mVm(P ). (9)

This can be extended to general convex bodies:

Theorem 1.1 (Steiner formula). There are functionals Vm : K → R, m =
0, . . . , n, such that, for K ∈ K and ρ ≥ 0,

Vn(Kρ) =
n∑

m=0

ρn−mκn−mVm(K). (10)

For the proof, we use (9) for ρ = 1, . . . , n + 1 and solve a system of linear
equations with a Vandermonde determinant, to obtain expressions

Vm(P ) =
n+1∑
ν=1

amνVn(Pν), m = 0, . . . , n,
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with coefficients amν independent of the polytope P . With these coefficients,
we define

Vm(K) :=
n+1∑
ν=1

amνVn(Kν),

for arbitrary convex bodies K ∈ K. Since, for each fixed ρ ≥ 0, the mapping
K 7→ Vn(K + ρBn) is continuous with respect to the Hausdorff metric, the
functional Vm is continuous. Using this and approximating K by a sequence
of polytopes, we obtain the asserted result from (9). ut

The polynomial expansion (10) is known as the Steiner formula. The
functionals V0, . . . , Vn, uniquely determined by (10), are called the intrin-
sic volumes (also, with different normalizations, the quermassintegrals
or Minkowski functionals). About their geometric meaning, the following
can be said. For polytopes, there are the explicit representations (8). They
are particularly simple in the cases m = n, n − 1, 0, and the results carry
over to general convex bodies: Vn is the volume, 2Vn−1 is the surface area
(the (n − 1)-dimensional Hausdorff measure of the boundary, for bodies of
dimension n), and V0 is the constant 1. The functional V0, although trivial on
convex bodies, has its own name and symbol: the Euler characteristic χ;
the reason will become clear when we consider an extension of V0 to more gen-
eral sets. Also the other intrinsic volumes have simple interpretations, either
differential geometric, under smoothness assumptions (see Subsection 2.1), or
integral geometric (see Subsection 1.4, formula (16)).

It is easily seen from the Steiner formula that the map Vm : K → R,
m ∈ {0, . . . , n}, has the following properties:

• Vm is invariant under rigid motions,
• Vm is continuous with respect to the Hausdorff metric,
• Vm is homogeneous of degree m,

that is, it satisfies

Vm(αK) = αmVm(K) for α ≥ 0.

Using (8) (and approximation), one shows without difficulty that

• Vm does not depend on the dimension of the surrounding space,

that is, if K lies in a Euclidean subspace of Rn, then computation of Vm(K)
in that subspace leads to the same result as computation of Vm(K) in Rn.
From the integral geometric representation (16) to be proved later it is seen
that

• Vm is increasing under set inclusion,

which means that K ⊂ L for convex bodies K,L implies Vm(K) ≤ Vm(L). A
very important property is the additivity. A functional ϕ : K → A with values
in an abelian group A is called additive or a valuation if
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ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

wheneverK,L are convex bodies such thatK∪L is convex (which implies that
K ∩ L is not empty). If ϕ is an additive functional, one extends its definition
by putting ϕ(∅) := 0. As announced, we have:

• Vm is additive.

For a proof, one shows that, for fixed ρ ≥ 0, the function 1ρ defined by

1ρ(K,x) :=

{
1 if x ∈ Kρ,

0 if x ∈ Rn \Kρ

for K ∈ K and x ∈ Rn satisfies

1ρ(K ∪ L, x) + 1ρ(K ∩ L, x) = 1ρ(K,x) + 1ρ(L, x).

Integration over x with respect to the Lebesgue measure yields

Vn((K ∪ L)ρ) + Vn((K ∩ L)ρ) = Vn(Kρ) + Vn(Lρ)

for ρ ≥ 0. Now an application of the Steiner formula and comparison of the
coefficients shows that each Vm is additive.

Hints to the literature. For the fundamental facts about convex bodies,
we refer to [39], where details of the foregoing can be found.

1.3 Hadwiger’s Characterization Theorem for Intrinsic Volumes

Of the properties established above for the intrinsic volumes, already a suitable
selection is sufficient for an axiomatic characterization. This is the content of
Hadwiger’s celebrated characterization theorem:

Theorem 1.2 (Hadwiger’s characterization theorem). Suppose that ψ :
K → R is an additive, continuous, motion invariant function. Then there are
constants c0, . . . , cn so that

ψ(K) =
n∑

i=0

ciVi(K)

for all K ∈ K.

This result not only throws light on the importance of the intrinsic volumes,
showing that they are essentially the only functionals on convex bodies sharing
some very natural geometric properties with the volume, it is also useful.
Following Hadwiger, we employ it to prove some integral geometric formulae
in an elegant way. Whereas Hadwiger’s original proof of his characterization
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theorem was quite long, a shorter proof was published in 1995 by Daniel Klain.
It will be presented here, except that a certain extension theorem for additive
functionals is postponed to Subsection 2.2 and a certain analytical result will
be taken for granted.

The crucial step for a proof of Hadwiger’s characterization theorem is the
following result.

Proposition 1.1. Suppose that ψ : K → R is an additive, continuous, motion
invariant function satisfying ψ(K) = 0 whenever either dimK < n or K is a
unit cube. Then ψ = 0.

Proof. The proof proceeds by induction with respect to the dimension. For
n = 0, there is nothing to prove. If n = 1, ψ vanishes on (closed) segments
of unit length, hence on segments of length 1/k for k ∈ N and therefore on
segments of rational length. By continuity, ψ vanishes on all segments and
thus on K.

Now let n > 1 and suppose that the assertion has been proved in dimen-
sions less than n. Let H ⊂ Rn be a hyperplane and I a closed line segment of
length 1, orthogonal toH. For convex bodiesK ⊂ H define ϕ(K) := ψ(K+I).
Clearly ϕ has, relative to H, the properties of ψ in the assertion, hence the in-
duction hypothesis yields ϕ = 0. For fixed K ⊂ H, we thus have ψ(K+I) = 0,
and a similar argument as used above for n = 1 shows that ψ(K + S) = 0
for any closed segment S orthogonal to H. Thus ψ vanishes on right convex
cylinders.

Let K ⊂ H be a convex body again, and let S = conv {0, s} be a segment
not parallel to H. If m ∈ N is sufficiently large, the cylinder Z := K +
mS can be cut by a hyperplane H ′ orthogonal to S so that the two closed
halfspaces H−,H+ bounded by H ′ satisfy K ⊂ H− and K + ms ⊂ H+.
Then Z := [(Z ∩ H−) + ms] ∪ (Z ∩ H+) is a right cylinder, and we deduce
that mµ(K + S) = µ(Z) = µ(Z) = 0. Thus ψ vanishes on arbitrary convex
cylinders.

It can be shown that the continuous additive function ψ on K satisfies the
more general additivity property

ψ

(
k⋃

i=1

Ki

)
=

k∑
i=1

ψ(Ki)

whenever K1, . . . ,Kk are convex bodies such that dim (Ki∩Kj) < n for i 6= j

and that
⋃k

i=1Ki is convex. This follows from Theorem 2.2 and (35) below
and the fact that ψ has been assumed to vanish on convex bodies of dimension
less than n.

Let P be a polytope and S a segment. The sum P +S has a decomposition

P + S =
k⋃

i=1

Pi,
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where P1 = P , the polytope Pi is a convex cylinder for i > 1, and dim (Pi ∩
Pj) < n for i 6= j. It follows that ψ(P + S) = ψ(P ). By induction, we
obtain ψ(P + Z) = ψ(P ) if Z is a finite sum of segments. Such a body Z
is called a zonotope, and a convex body which can be approximated by
zonotopes is called a zonoid. Since the function ψ is continuous, it follows
that ψ(K + Z) = ψ(K) for arbitrary convex bodies K and zonoids Z.

We have to use an analytic result for which we do not give a proof. Let
K be a centrally symmetric convex body which is sufficiently smooth (say,
its support function is of class C∞). Then there exist zonoids Z1, Z2 so that
K + Z1 = Z2 (this can be seen from Section 3.5 in the book [39], especially
Theorem 3.5.3). We conclude that ψ(K) = ψ(K + Z1) = ψ(Z2) = 0. Since
every centrally symmetric convex body K can be approximated by bodies
which are centrally symmetric and sufficiently smooth, it follows from the
continuity of ψ that ψ(K) = 0 for all centrally symmetric convex bodies.

Now let ∆ be a simplex, say ∆ = conv {0, v1, . . . , vn}, without loss of
generality. Let v := v1 + · · ·+ vn and ∆′ := conv {v, v − v1, . . . , v − vn}, then
∆′ = −∆ + v. The vectors v1, . . . , vn span a parallelotope P . It is the union
of ∆,∆′ and the part of P , denoted by Q, that lies between the hyperplanes
spanned by v1, . . . , vn and v−v1, . . . , v−vn, respectively. Now Q is a centrally
symmetric polytope, and ∆∩Q, ∆′∩Q are of dimension n−1. We deduce that
0 = ψ(P ) = ψ(∆) + ψ(Q) + ψ(∆′), thus ψ(−∆) = −ψ(∆). If the dimension
n is even, then −∆ is obtained from ∆ by a proper rigid motion, and the
motion invariance of ψ yields ψ(∆) = 0. If the dimension n > 1 is odd, we
decompose ∆ as follows. Let z be the centre of the inscribed ball of ∆, and
let pi be the point where this ball touches the facet Fi of ∆ (i = 1, . . . , n+1).
For i 6= j, let Qij be the convex hull of the face Fi∩Fj and the points z, pi, pj .
The polytope Qij is invariant under reflection in the hyperplane spanned by
Fi ∩ Fj and z. If Q1, . . . , Qm are the polytopes Qij for 1 ≤ i < j ≤ n + 1 in
any order, then P =

⋃m
r=1Qr and dim (Qr ∩Qs) < n for r 6= s. Since −Qr is

the image of Qr under a proper rigid motion, we have ψ(−∆) =
∑
ψ(−Qr) =∑

ψ(Qr) = ψ(∆). Thus ψ(∆) = 0 for every simplex ∆.
Decomposing a polytope P into simplices, we obtain ψ(P ) = 0. The con-

tinuity of ψ now implies ψ(K) = 0 for all convex bodies K. This finishes the
induction and hence the proof of the proposition. ut

Proof of Theorem 1.2. We use induction on the dimension. For n = 0, the
assertion is trivial. Suppose that n > 0 and the assertion has been proved in
dimensions less than n. Let H ⊂ Rn be a hyperplane. The restriction of ψ
to the convex bodies lying in H is additive, continuous and invariant under
motions of H into itself. By the induction hypothesis, there are constants
c0, . . . , cn−1 so that ψ(K) =

∑n−1
i=0 ciVi(K) holds for convex bodies K ⊂

H (here we use the fact that the intrinsic volumes do not depend on the
dimension of the surrounding space). By the motion invariance of ψ and Vi,
this holds for all K ∈ K of dimension less than n. It follows that the function
ψ′ defined by
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ψ′(K) := ψ(K)−
n∑

i=0

ciVi(K)

for K ∈ K, where cn is chosen so that ψ′ vanishes at a fixed unit cube, satisfies
the assumptions of Theorem 1.1. Hence ψ′ = 0, which completes the proof of
Theorem 2. ut

Hints to the literature. Hadwiger’s characterization theorem was first
proved for dimension three in [13] and for general dimension in [14]; the proof
is reproduced in [16]. The simpler proof as presented here appears in [24]; see
also [25].

1.4 Integral Geometric Formulae

We use Hadwiger’s characterization theorem to prove some basic integral geo-
metric results for convex bodies. They involve invariant measures on groups
of motions or on spaces of flats, where these groups and homogeneous spaces
are equipped with their usual topologies. In the following, a measure on a
topological space X is always defined on B(X), its σ-algebra of Borel sets. Let
SOn be the group of proper (i.e., orientation preserving) rotations of Rn. It is
a compact group and carries a unique rotation invariant probability measure,
which we denote by ν. Let Gn be the group of rigid motions of Rn and µ its
invariant (or Haar) measure, normalized so that µ({g ∈ Gn : gx ∈ Bn}) = κn

for x ∈ Rn. More explicitly, the mapping γ : Rn × SOn → Gn defined by
γ(x, ϑ)y := ϑy + x for y ∈ Rn is a homeomorphism, and µ is the image
measure of the product measure λn ⊗ ν under γ.

By Ln
q we denote the Grassmannian of q-dimensional linear subspaces of

Rn, for q ∈ {0, . . . , n}, and by νq its rotation invariant probability measure.
Similarly, En

q is the space of q-flats in Rn, and µq is its motion invariant
measure, normalized so that µq({E ∈ En

q : E ∩ Bn 6= ∅}) = κn−q. This, too,
we make more explicit. We choose a fixed subspace L ∈ Ln

q and denote by
L⊥ its orthogonal complement. The mappings βq : SOn → Ln

q , ϑ 7→ ϑL, and
γq : L⊥ × SOn → En

q , (x, ϑ) 7→ ϑ(L+ x), are continuous and surjective. Now
νq is the image measure of the invariant measure ν under βq, and µq is the
image measure of the product measure λL⊥

n−q⊗ν under γq, where λL⊥

n−q denotes
Lebesgue measure on L⊥.

Once the invariant measures µ and µk are available, it is of interest to
determine, for convex bodies K,M ∈ K, the total measures µ({g ∈ Gn :
K ∩gM 6= ∅}) and µk({E ∈ En

k : K ∩E 6= ∅}). We write these as the integrals∫
Gn

χ(K ∩ gM)µ(dg) and
∫
En

k

χ(K ∩ E)µk(dE),

recalling that χ(K) = 1 for a convex body K and χ(∅) = 0. Since χ = V0, a
more general task is to determine the integrals
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Gn

Vj(K ∩ gM)µ(dg) and
∫
En

k

Vj(K ∩ E)µk(dE),

for j = 0, . . . , n. For that, we use Hadwiger’s characterization theorem. We
begin with the latter integral. By

ψ(K) :=
∫
En

k

Vj(K ∩ E)µk(dE) for K ∈ K

we define a functional ψ : K → R. It is not difficult to show that this functional
is additive, motion invariant and continuous (for the continuity, compare the
argument used in the proof of Theorem 1.4). Hadwiger’s characterization the-
orem yields a representation

ψ(K) =
n∑

r=0

crVr(K).

Here only one coefficient is different from zero. In fact, from

ψ(K) =
∫
Ln

k

∫
L⊥

Vj(K ∩ (L+ y))λn−k(dy) νk(dL)

one sees that ψ has the homogeneity property

ψ(αK) = αn−k+jψ(K)

for α > 0. Since Vk is homogeneous of degree k, we deduce that cr = 0 for
r 6= n− k + j. Thus, we have obtained∫

En
k

Vj(K ∩ E)µk(dE) = cVn−k+j(K)

with some constant c. In order to determine this constant, we choose for K
the unit ball Bn. For ε ≥ 0, the Steiner formula gives

n∑
j=0

εn−jκn−jVj(Bn) = Vn(Bn + εBn) = (1 + ε)nκn =
n∑

j=0

εn−j

(
n

j

)
κn,

hence

Vj(Bn) =

(
n
j

)
κn

κn−j
for j = 0, . . . , n. (11)

Choosing L ∈ Ln
k , we obtain

cVn−k+j(Bn) =
∫
En

k

Vj(Bn ∩ E)µk(dE)
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=
∫

SOn

∫
L⊥

Vj(Bn ∩ ϑ(L+ x))λn−k(dx) ν(dϑ)

=
∫

L⊥∩Bn

(1− ‖x‖2)j/2Vj(Bn ∩ L)λn−k(dx)

=

(
k
j

)
κk

κk−j

∫
L⊥∩Bn

(1− ‖x‖2)j/2 λn−k(dx).

Introducing polar coordinates, we transform the latter integral into a Beta
integral and finally obtain

c =

(
k
j

)
κkκn−k+j

Vn−k+j(Bn)κk−jκj
= ck,n−k+j

j,n ,

where we denote by

ci,jk,l :=
i!κij!κj

k!κkl!κl
(12)

a frequently occurring constant. By using the identity

m!κm = 2mπ
m−1

2 Γ
(
m+ 1

2

)
,

this can also be put in the form

ci,jk,l =
Γ( i+1

2 )Γ( j+1
2 )

Γ(k+1
2 )Γ( l+1

2 )
. (13)

More generally, we define

cr1,...,rk
s1,...,sk

:=
k∏

i=1

ri!κri

si!κsi

. (14)

This notation is only defined with the same number of upper and lower indices;
hence, when cr1,...,rk

s,n,...,n appears, it is clear that the index n is repeated k − 1
times.

We have obtained the following result.

Theorem 1.3. Let K ∈ K be a convex body. For k ∈ {1, . . . , n−1} and j ≤ k
the Crofton formula∫

En
k

Vj(K ∩ E)µk(dE) = ck,n−k+j
j,n Vn−k+j(K) (15)

holds.
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The special case j = 0 of (15) gives

Vm(K) = c0,n
m,n−m

∫
En

n−m

χ(K ∩ E)µn−m(dE) (16)

and thus provides an integral geometric interpretation of the intrinsic volumes:
Vm(K) is, up to a normalizing factor, the invariant measure of the set of
(n−m)-flats intersecting K.

Using the explicit representation of the measure µn−m, we can transform
the representation (16) into

Vm(K) = c0,n
m,n−m

∫
Ln

m

λm(K|L) νm(dL), (17)

where K|L denotes the image of K under orthogonal projection to the sub-
space L. The special case m = 1 shows that V1, up to a factor, is the mean
width.

From Hadwiger’s characterization theorem, we now deduce a general kine-
matic formula, involving a functional on convex bodies that need not have
any invariance property.

Theorem 1.4 (Hadwiger’s general integral geometric theorem). If ϕ :
K → R is an additive continuous function, then

∫
Gn

ϕ(K ∩ gM)µ(dg) =
n∑

k=0

ϕn−k(K)Vk(M) (18)

for K,M ∈ K, where the coefficients ϕn−k(K) are given by

ϕn−k(K) =
∫
En

k

ϕ(K ∩ E)µk(dE). (19)

Proof. The µ-integrability of the integrand in (18) can be shown without
difficulty. Now we fix a convex body K ∈ K and define

ψ(M) :=
∫

Gn

ϕ(K ∩ gM)µ(dg) for M ∈ K.

Then ψ : K → R is obviously additive and motion invariant. To show the
continuity of ψ, let M ∈ K be given. Let Gn(K,M) be the set of all motions
g ∈ Gn for which K ∩ gM 6= ∅ and K and gM can be separated weakly
by a hyperplane. Let (Mj)j∈N be a sequence in K converging to M , and let
g ∈ Gn \ Gn(K,M). Then gMj → gM and hence K ∩ gMj → K ∩ gM
(see [51, Hilfssatz 2.1.3]), thus ϕ(K ∩ gMj) → ϕ(K ∩ gM), for j → ∞.
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Since µ(Gn(K,M)) = 0 ([51, Hilfssatz 2.1.4]), it follows from the bounded
convergence theorem that ψ(Mj) → ψ(M). Thus, ψ is continuous.

Now Theorem 1.2 yields the existence of constants ϕ0(K), . . . , ϕn(K) so
that

ψ(M) =
n∑

i=0

ϕn−i(K)Vi(M)

for all M ∈ K. The constants depend, of course, on the given body K, and
we now have to determine them.

Let k ∈ {0, . . . , n}, and choose Lk ∈ Ln
k . LetBn

k := Bn∩Lk andMr := rBn
k

for r > 0. Then

ψ(Mr) =
n∑

i=0

ϕn−i(K)Vi(Mr) =
k∑

i=0

ϕn−i(K)riVi(Bn
k ).

On the other hand,

ψ(Mr) =
∫

Gn

ϕ(K ∩ grBn
k )µ(dg)

=
∫

SOn

∫
Rn

ϕ(K ∩ (ϑrBn
k + x))λn(dx) ν(dϑ)

=
∫

SOn

∫
L⊥k

∫
Lk

ϕ(K ∩ (ϑrBn
k + ϑx1 + ϑx2))λk(dx1)λn−k(dx2) ν(dϑ)

=
∫

SOn

∫
L⊥k

∫
Lk

ϕ(K ∩ [ϑr(Bn
k + x1) + ϑx2])rk λk(dx1)λn−k(dx2) ν(dϑ)

Comparison gives

κkϕn−k(K)

= lim
r→∞

∫
SOn

∫
L⊥k

∫
Lk

ϕ(K ∩ [ϑr(Bn
k + x1) + ϑx2])λk(dx1)λn−k(dx2) ν(dϑ).

For r →∞, we have

ϕ(K ∩ [ϑr(Bn
k +x1)+ϑx2]) →

{
ϕ(K ∩ ϑ(Lk + x2)) if 0 ∈ relintϑ(Bn

k + x1)

0 if 0 /∈ ϑ(Bn
k + x1)

.

Hence, the bounded convergence theorem gives

κkϕn−k(K) =
∫

SOn

∫
L⊥k

ϕ(K ∩ ϑ(Lk + x2))λk(ϑBn
k )λn−k(dx2) ν(dϑ)

= κk

∫
En

k

ϕ(K ∩ E)µk(dE),
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as asserted. ut

Hadwiger’s general formula can be iterated, that is, extended to a finite num-
ber of moving convex bodies. For this, we need the following lemma.

Lemma 1.1. Let r, s ∈ {1, . . . , n− 1}, r + s ≥ n, and let f : En
r+s−n → R be

a nonnegative measurable function. Then∫
En

r

∫
En

s

f(E1 ∩ E2)µr(dE1)µs(dE2) = cr,s
r+s−n,n

∫
En

r+s−n

f(E)µr+s−n(dE).

Proof. It follows from the uniqueness, up to a constant, of the invariant mea-
sure µr+s−n that such a result must be true with some constant, independent
of f , in front of the second integral. The value of the constant is then deter-
mined by choosing f(E) := V0(K ∩ E) for some n-dimensional convex body
K and applying formula (15) three times. ut

Theorem 1.5. Let ϕ : K → R be an additive continuous function, and let
K1, . . . ,Kk ∈ K, k ≥ 2, be convex bodies. Then∫

Gn

· · ·
∫

Gn

ϕ(K1 ∩ g2K2 ∩ · · · ∩ gkKk)µ(dg2) · · ·µ(dgk)

=
n∑

r1,...,rk=0
r1+···+rk=(k−1)n

cr2,...,rk
n−r1,n,...,n ϕr1(K1)Vr2(K2) · · ·Vrk

(Kk),

where the coefficients are given by (14).

Proof. The proof proceeds by induction with respect to k. Theorem 1.4 is
the case k = 2; the induction step uses Theorem 1.4 and Lemma 1.1 with
f(E) = ϕ(K1 ∩ E), as well as Fubini’s theorem. ut

In Theorems 1.4 and 1.5, we can choose for ϕ, in particular, the intrinsic
volume Vj . In this case, the Crofton formula (15) tells us that

(Vj)r(K) =
∫
En

n−r

Vj(K ∩ E)µn−r(dE) = cn−r,r+j
j,n Vr+j(K).

Hence, we obtain the following results, which for greater clarity we formulate
separately.

Theorem 1.6. Let K,M ∈ K be convex bodies, and let j ∈ {0, . . . , n}. Then
the principal kinematic formula∫

Gn

Vj(K ∩ gM)µ(dg) =
n∑

k=j

ck,n−k+j
j,n Vk(K)Vn−k+j(M) (20)

holds.
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We note that the special case j = 0, or∫
Gn

χ(K ∩ gM)µ(dg) =
n∑

k=0

ck,n−k
0,n Vk(K)Vn−k(M), (21)

gives the formula (3) stated in the introduction.

Theorem 1.7 (Iterated Kinematic Formula). Let K1, . . . ,Kk ∈ K, k ≥
2, be convex bodies, and let j ∈ {0, . . . , n}. Then∫

Gn

· · ·
∫

Gn

Vj(K1 ∩ g2K2 ∩ · · · ∩ gkKk)µ(dg2) · · ·µ(dgk)

=
n∑

m1,...,mk=j

m1+···+mk=(k−1)n+j

cm1,...,mk

j,n,...,n Vm1(K1) · · ·Vmk
(Kk).

Hints to the literature. The idea of deducing integral geometric formulae
for convex bodies from a characterization of the intrinsic volumes essentially
goes back to W. Blaschke. It was put on a solid basis by Hadwiger [12].
Hadwiger’s general integral geometric theorem and its deduction from the
characterization theorem appear in [15] and [16].

The standard source for integral geometry is [37]. An introduction to inte-
gral geometry in the spirit of these lectures, with a special view to applications
in stochastic geometry, is given in [51].

2 Localizations and extensions

The envisaged applications of the kinematic formula (20) to stochastic geom-
etry require its extension in several directions. In this section, we first treat
a local version. It involves local versions of the intrinsic volumes, in the form
of curvature measures and their generalizations. The rest of the section deals
with extensions to non-convex sets.

2.1 The kinematic formula for curvature measures

The notion of the parallel body of a convex body K can be generalized, by
taking only those points x into account for which the nearest point p(K,x)
in K belongs to some specified set of points, and/or the normalized vector
from p(K,x) to x belongs to some specified set of directions. Again there is
a Steiner formula, and the coefficients define the curvature measures. In this
section we show how the kinematic and Crofton formulae can be extended to
these curvature measures. First we introduce a general version of curvature
measures.
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By a support element of the convex body K ∈ K we understand a pair
(x, u) where x is a boundary point of K and u is an outer unit normal vector
of K at x. The set of all support elements of K is called the generalized
normal bundle of K and is denoted by NorK. It is a subset of the product
space Σ := Rn × Sn−1.

Recall that p(K,x) is the point in the convex body K nearest to x ∈ Rn

and that d(K,x) := ‖x − p(K,x)‖ is the distance of x from K. For x /∈ K
we have d(K,x) > 0, and we put u(K,x) := (x − p(K,x))/d(K,x); then
(p(K,x), u(K,x)) ∈ NorK. For ρ > 0 and each Borel set S ⊂ Σ, a local
parallel set is now defined by

Mρ(K,S) := {x ∈ Kρ \K : (p(K,x), u(K,x)) ∈ S}.

The Steiner formula extends as follows:

Theorem 2.1 (Local Steiner formula). For K ∈ K, there are finite mea-
sures Ξ0(K, ·), . . . , Ξn−1(K, ·) on Σ such that, for ρ ≥ 0 and every S ∈ B(Σ),

λn(Mρ(K,S)) =
n−1∑
m=0

ρn−mκn−mΞm(K,S). (22)

The measures Ξ0(K, ·), . . . , Ξn−1(K, ·) are called the support measures or
generalized curvature measures of K.

The principle of the proof is clear from the proof of Theorem 1.1, the
Steiner formula; only the details are slightly more technical. We sketch here
the main ideas. We write µρ(K,S) := λn(Mρ(K,S)) for S ∈ B(Σ). First, for
a polytope P one obtains

µρ(K,S) =
n−1∑
m=0

ρn−mκn−mΞm(P, S)

if one puts

Ξm(P, S) :=
∑

F∈Fm(P )

∫
F

σn−1−m(N(P, F ) ∩ {u ∈ Sn−1 : (y, u) ∈ S})
(n−m)κn−m

λm(dy).

Next, one shows that µρ(K, ·) is a measure on Σ and that limj→∞Kj = K
for convex bodies Kj ,K implies that the sequence (µρ(Kj , ·))j∈N converges
weakly to µρ(K, ·). Thus, the map K 7→ µρ(K, ·) is weakly continuous. More-
over, this map is additive. For each fixed S ∈ B(Σ), the function µρ(·, S) is
measurable. One can now follow the arguments of Section 1.2 and establish the
existence of the measures Ξ0(K, ·), . . . , Ξn−1(K, ·) for general K ∈ K so that
(22) holds. Proceeding essentially as for the intrinsic volumes (which corre-
spond to the case S = Σ), one then shows that the maps Ξm : K×B(Σ) → R
have the following properties:
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• Motion covariance: Ξm(gK, g.S) = Ξm(K,S) for g ∈ Gn, where g.S :=
{(gx, g0u) : (x, u) ∈ S}, g0 denoting the rotation part of g,

• Homogeneity: Ξm(αK,α · S) = Ξm(K,S) for α ≥ 0, where α · S :=
{(αx, u) : (x, u) ∈ S},

• Weak continuity: Kj → K implies Ξm(Kj , ·) → Ξm(K, ·) weakly,
• Ξm(·, S) is additive, for each fixed S ∈ B(Σ),
• Ξm(·, S) is measurable, for each fixed S ∈ B(Σ).

In the following, we will mainly use the first of two natural specializations of
the support measures, which are defined by

Φm(K,A) := Ξm(K,A× Sn−1) for A ∈ B(Rn),

Ψm(K,B) := Ξm(K,Rn ×B) for B ∈ B(Sn−1).

Thus, Φm(K, ·) is the image measure of Ξm(K, ·) under the projection
(x, u) 7→ x, and Ψm(K, ·) is the image measure of Ξm(K, ·) under the pro-
jection (x, u) 7→ u. The measure Φm(K, ·) is called the mth curvature mea-
sure of K, and Ψm(K, ·) is called the mth area measure of K, but the
reader should be warned that often the same terminology is used for differ-
ently normalized measures. In particular, the measure Sn−1(K, ·) = 2Ψ(K, ·)
is commonly known as the area measure of K.

The defining Steiner formula for the curvature measures can be written in
the form

λn({x ∈ Kρ : p(K,x) ∈ A}) =
n∑

m=0

ρn−mκn−mΦm(K,A) (23)

for A ∈ B(Rn). Here we have admitted all x ∈ Kρ with p(K,x) ∈ A on the
left side; therefore, the right side contains the term

Φn(K,A) := λn(K ∩A).

The reason for the name ‘curvature measure’ becomes clear if one consid-
ers a convex body K whose boundary ∂K is a regular hypersurface of class
C2 with positive positive Gauss-Kronecker curvature. In that case, the local
parallel volume can be computed by differential-geometric means, and one
obtains for m = 0, . . . , n− 1 the representation

Φm(K,A) =

(
n
m

)
nκn−m

∫
A∩∂K

Hn−1−m dS. (24)

Here, Hk denotes the kth normalized elementary symmetric function of the
principal curvatures of ∂K, and dS is the volume form on ∂K. Thus the
curvature measures are (up to normalizing factors) indefinite integrals of cur-
vature functions, and they replace the latter in the non-smooth case. The
corresponding representation for the area measures is
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Ψm(K,B) =

(
n
m

)
nκn−m

∫
B

sm dσn−1 (25)

for B ∈ B(Sn−1). Here, sm is the mth normalized elementary symmetric
function of the principal radii of curvature of ∂K, as a function of the outer
unit normal vector.

For a polytope P , the explicit representation given above for the support
measure Ξm(P, ·) specializes to

Φm(P,A) =
∑

F∈Fm(P )

γ(F, P )λm(F ∩A) (26)

for A ∈ B(Rn) and

Ψm(P,B) =
∑

F∈Fm(P )

σn−1−m(N(P, F ) ∩B)λm(F )
(n−m)κn−m

(27)

for B ∈ B(Sn−1).
For arbitrary K ∈ K, it is clear from (23) that the curvature measures

Φ0(K, ·), . . . , Φn−1(K, ·) are concentrated on the boundary of K. We mention
without proof that the measures Φ0(K, ·) and Φn−1(K, ·) have simple intuitive
interpretations. Let Hn−1 denote (n − 1)-dimensional Hausdorff measure. If
dimK 6= n− 1, then

Φn−1(K,A) =
1
2
Hn−1(A ∩ ∂K).

For dimK = n − 1, one trivially has Φn−1(K,A) = Hn−1(A ∩ ∂K). The
measure Φ0 is the normalized area of the spherical image. Let σ(K,A) ⊂ Sn−1

denote the set of all outer unit normal vectors of K at points of A∩∂K, then

Φ0(K,A) =
1
nκn

Hn−1(σ(K,A)).

Now we state the local version of Theorem 1.6.

Theorem 2.2. Let K,M ∈ K be convex bodies, let j ∈ {0, . . . , n}, and let
A,B ∈ B(Rn) be Borel sets. Then the local principal kinematic formula∫

Gn

Φj(K ∩ gM,A ∩ gB)µ(dg) =
n∑

k=j

ck,n−k+j
j,n Φk(K,A)Φn−k+j(M,B)

(28)
holds. For k ∈ {1, . . . , n− 1} and j ≤ k the local Crofton formula∫

En
k

Φj(K ∩ E,A ∩ E)µk(dE) = ck,n−k+j
j,n Φn−k+j(K,A) (29)

holds. The coefficients ck,n−k+j
j,n are those given by (12).
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We will describe the main ideas of a proof for the case of polytopes. The
result for general convex bodies is then obtained by approximation, using
the weak continuity of the curvature measures. We omit the details of this
approximation, as well as all arguments concerning measurability, null sets,
and integration techniques. Due to the explicit representation of the Haar
measure µ, the integral over Gn in (28) can be split in the form∫

Gn

f(gM, gB)µ(dg) =
∫

SOn

∫
Rn

f(ϑM + x, ϑB + x)λn(dx) ν(dϑ).

First we treat only the inner integral. This gives us the opportunity to intro-
duce some notions and results of translative integral geometry, which will be
elaborated upon in Section 3.

Let K,M ∈ K be n-dimensional polytopes, and let A,B ∈ B(Rn) be Borel
sets. We have to investigate the integral

I :=
∫

Rn

Φj(K ∩ (M + x), A ∩ (B + x))λn(dx).

By (26), the jth curvature measure of a polytope P is given by

Φj(P, ·) =
∑

F∈Fj(P )

γ(F, P )λF ,

where we have introduced the abbreviation

λF (·) := λdim F (F ∩ ·). (30)

It follows that

I =
∫

Rn

∑
F ′∈Fj(K∩(M+x))

γ(F ′,K ∩ (M + x))λF ′(A ∩ (B + x))λn(dx). (31)

The faces F ′ ∈ Fj(K ∩ (M + x)) are precisely the j-dimensional sets of the
form F ′ = F ∩ (G+ x) with a face F ∈ Fk(K) and a face G ∈ Fi(M), where
k, i ∈ {j, . . . , n}. We may assume that k + i = n + j, since only such pairs
F,G contribute to the integral. Therefore, we obtain

I =
n∑

k=j

∑
F∈Fk(K)

∑
G∈Fn−k+j(M)∫

Rn

γ(F ∩ (G+ x),K ∩ (M + x))λF∩(G+x)(A ∩ (B + x))λn(dx).

In the integrand, we may assume that relintF ∩ relint (G+x) 6= ∅, since other
vectors x do not contribute to the integral, and in this case the common
exterior angle
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γ(F,G;K,M) := γ(F ∩ (G+ x),K ∩ (M + x)) (32)

does not depend on x. Putting

J(F,G) :=
∫

Rn

λF∩(G+x)(A ∩ (B + x))λn(dx),

we thus have

I =
n∑

k=j

∑
F∈Fk(K)

∑
G∈Fn−k+j(M)

γ(F,G;K,M)J(F,G).

To compute the integral J(F,G) for given faces F ∈ Fk(K) and G ∈
Fn−k+j(M), we decompose the space Rn in a way adapted to these faces
and apply Fubini’s theorem. The result is

J(F,G) = [F,G]λF (A)λG(B),

where the ‘generalized sine function’ [F,G] is defined as follows.
Let L,L′ ⊂ Rn be two linear subspaces. We choose an orthonormal basis of

L∩L′ and extend it to an orthonormal basis of L and also to an orthonormal
basis of L′. Let P denote the parallelepiped that is spanned by the vectors
obtained in this way. We define [L,L′] := λn(P ). Then [L,L′] depends only
on the subspaces L and L′. If L + L′ 6= Rn, then [L,L′] = 0. We extend this
definition to faces F,G of polytopes by putting [F,G] := [L,L′], where L and
L′ are the linear subspaces which are translates of the affine hulls of F and
G, respectively.

Inserting the expression for J(F,G) in the integral I, we end up with the
following principal translative formula for polytopes.

Theorem 2.3. If K,M ∈ K are polytopes and A,B ∈ B(Rn), then for j ∈
{0, . . . , n},∫

Rn

Φj(K ∩ (M + x), A ∩ (B + x))λn(dx)

=
n∑

k=j

∑
F∈Fk(K)

∑
G∈Fn−k+j(M)

γ(F,G;K,M)[F,G]λF (A)λG(B).

The kinematic formula at which we are aiming requires, for polytopes, the
computation of∫

Gn

Φj(K ∩ gM,A ∩ gB)µ(dg)

=
∫

SOn

∫
Rn

Φj(K ∩ (ϑM + x), A ∩ (ϑB + x))λn(dx) ν(dϑ)



Integral Geometric Tools for Stochastic Geometry 23

=
n∑

k=j

∑
F∈Fk(K)

∑
G∈Fn−k+j(M)

λF (A)λG(B)

∫
SOn

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ).

Here we have used the fact that λϑG(ϑB) = λG(B). The summands with
k = j or k = n are easily determined; we get Φj(K,A)Φn(M,B) for k = j
and Φn(K,A)Φj(M,B) for k = n. The remaining integrals over the rotation
group are determined in the following theorem.

Theorem 2.4. Let K,M ∈ K be polytopes, let j ∈ {0, . . . , n − 2}, k ∈ {j +
1, . . . , n− 1}, F ∈ Fk(K) and G ∈ Fn−k+j(M). Then∫

SOn

γ(F, ϑG;K,ϑM)[F, ϑG] ν(dϑ) = ck,n−k+j
j,n γ(F,K)γ(G,M),

where ck,n−k+j
j,n is as in (12).

For this formula, a proof can be given which uses the fact that the spherical
Lebesgue measure is, up to a constant factor, the only rotation invariant finite
Borel measure on the sphere. In this way, one obtains (28), but with unknown
coefficients instead of ck,n−k+j

j,n . The values of these coefficients then follow
from the fact that in the case A = B = Rn the result must coincide with (20).
In this way, (28) is obtained. The local Crofton formula (29) can be deduced
from (28) by an argument similar to that used in the proof of Theorem 1.4. ut

There is also a version of the local kinematic and Crofton formulae for support
measures. Such a variant, which we mention only briefly, is possible if the
intersection of Borel sets in Rn is replaced by a suitable law of composition for
subsets ofΣ, which is adapted to intersections of convex bodies. For S, S′ ⊂ Σ,
let

S ∧ S′ := {(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with

(x, u1) ∈ S, (x, u2) ∈ S′, u ∈ pos {u1, u2}},

where pos {u1, u2} := {λ1u1+λ2u2 : λ1, λ2 ≥ 0} is the positive hull of {u1, u2}.
For a q-flat E ∈ En

q , q ∈ {1, . . . , n− 1}, one defines

S ∧ E := {(x, u) ∈ Σ : there are u1, u2 ∈ Sn−1 with

(x, u1) ∈ S, x ∈ E, u2 ∈ E⊥, u ∈ pos {u1, u2}},

where E⊥ is the linear subspace totally orthogonal to E. Now for given convex
bodies K,K ′ ∈ K, Borel sets S ⊂ NorK and S′ ⊂ NorK ′, and for j ∈
{0, . . . , n− 2}, the formula
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∫
Gn

Ξj(K ∩ gK ′, S ∧ gS′)µ(dg) =
n−1∑

k=j+1

ck,n−k+j
j,n Ξk(K,S)Ξn−k+j(K ′, S′)

(33)
holds (for j = n− 1, both sides would give 0). The local Crofton formula has
the following extension. Let K ∈ K be a convex body, k ∈ {1, . . . , n − 1},
j ∈ {0, . . . , k − 1}, and let S ⊂ NorK be a Borel set. Then∫

En
k

Ξj(K ∩ E,S ∧ E)µk(dE) = ck,n−k+j
j,n Ξn−k+j(K,S). (34)

Hints to the literature. For a more thorough introduction to support and
curvature measures we refer to [39]. Detailed proofs of the kinematic and
Crofton formulae for curvature measures of convex bodies are found in [39]
and [51]. Formulae (33) and (34) are due to Glasauer [6], under an additional
assumption. This assumption was removed by Schneider [42]. An analogue of
Hadwiger’s general integral geometric theorem for measure valued valuations
on convex bodies was proved in [40]. A simpler proof was given in [5], and a
generalization in [7].

2.2 Additive extension to polyconvex sets

So far, our integral geometric investigations were confined to convex bodies.
In view of applications, this is a too narrow class of sets. The additivity of the
intrinsic volumes and curvature measures permits us to extend these and the
pertinent integral geometric intersection formulae to finite unions of convex
bodies. This additive extension will be achieved in the present section.

By R we denote the system of all finite unions of convex bodies in Rn

(including the empty set). The system R, which is closed under finite unions
and intersections, is called the convex ring (a questionable translation of the
German ‘Konvexring’). The elements of R will be called polyconvex sets.

Let ϕ be a function on R with values in some abelian group. The function
ϕ is called additive or a valuation if

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

for K,L ∈ R and ϕ(∅) = 0. Every such valuation satisfies the inclusion-
exclusion principle

ϕ(K1 ∪ · · · ∪Km) =
m∑

r=1

(−1)r−1
∑

i1<···<ir

ϕ(Ki1 ∩ · · · ∩Kir
) (35)

for K1, . . . ,Km ∈ R, as follows by induction.
If ϕ is a valuation on K, one may ask whether it has an extension to a

valuation on R. If such an extension exists and is also denoted by ϕ, then
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its values on R are given by (35), thus the extension is unique. Conversely,
however, one cannot just employ (35) for the definition of such an extension,
since the representation of an element of R in the form K1 ∪ · · · ∪Km with
Ki ∈ K is in general not unique. Hence, the existence of an additive extension,
if there is one, must be proved in a different way.

A simple example of a valuation on R is given by the indicator function.
For K ∈ R, let

1K(x) :=

{
1 for x ∈ K,

0 for x ∈ Rn \K.

For K,L ∈ R we trivially have 1K∪L(x) + 1K∩L(x) = 1K(x) + 1L(x) for
x ∈ Rn. Hence, the mapping ϕ : R → V , K 7→ 1K , is an additive function on
R with values in the vector space V of finite linear combinations of indicator
functions of polyconvex sets. By (35), V consists of all linear combinations of
indicator functions of convex bodies.

We will now prove a general extension theorem for valuations on K.

Theorem 2.5. Let X be a topological vector space, and let ϕ : K → X be a
continuous valuation. Then ϕ has an additive extension to the convex ring R.

Proof. Let ϕ : K → X be additive and continuous. An essential part of the
proof is the following

Proposition 2.1. The equality

m∑
i=1

αi1Ki = 0

with m ∈ N, αi ∈ R, Ki ∈ K implies

m∑
i=1

αiϕ(Ki) = 0.

Assume this proposition were false. Then there is a smallest number m ∈ N,
necessarily m ≥ 2, for which there exist numbers α1, . . . , αm ∈ R and convex
bodies K1, . . . ,Km ∈ K such that

m∑
i=1

αi1Ki
= 0, (36)

but
m∑

i=1

αiϕ(Ki) =: a 6= 0. (37)
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Let H ⊂ Rn be a hyperplane with K1 ⊂ intH+, where H+,H− are the two
closed halfspaces bounded by H. By (36) we have

m∑
i=1

αi1Ki∩H− = 0,
m∑

i=1

αi1Ki∩H = 0.

Since K1∩H− = ∅ and K1∩H = ∅, each of these two sums has at most m−1
non-zero summands. From the minimality of m (and from ϕ(∅) = 0) we get

m∑
i=1

αiϕ(Ki ∩H−) = 0,
m∑

i=1

αiϕ(Ki ∩H) = 0.

The additivity of ϕ on K yields

m∑
i=1

αiϕ(Ki ∩H+) = a, (38)

whereas (36) gives
m∑

i=1

αi1Ki∩H+ = 0. (39)

A standard separation theorem for convex bodies implies the existence of a
sequence (Hj)j∈N of hyperplanes with K1 ⊂ intH+

j for j ∈ N and

K1 =
∞⋂

j=1

H+
j .

If the argument that has led us from (36), (37) to (39), (38) is applied k-times,
we obtain

m∑
i=1

αiϕ

Ki ∩
k⋂

j=1

H+
j

 = a.

For k →∞ this yields
m∑

i=1

αiϕ(Ki ∩K1) = a, (40)

since

lim
k→∞

Ki ∩
k⋂

j=1

H+
j = Ki ∩K1

in the sense of the Hausdorff metric (if Ki ∩K1 6= ∅, otherwise use ϕ(∅) = 0)
and ϕ is continuous. Equality (36) implies

m∑
i=1

αi1Ki∩K1 = 0. (41)
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The procedure leading from (36) and (37) to (41) and (40) can be repeated,
replacing the bodies Ki and K1 by Ki ∩K1 and K2, then by Ki ∩K1 ∩K2

and K3, and so on. Finally one obtains

m∑
i=1

αi1K1∩···∩Km = 0

and
m∑

i=1

αiϕ(K1 ∩ · · · ∩Km) = a

(because ofKi∩K1∩· · ·∩Km = K1∩· · ·∩Km). Now a 6= 0 implies
∑m

i=1 αi 6= 0
and hence 1K1∩···∩Km = 0 by the first relation, but this yields ϕ(K1 ∩ · · · ∩
Km) = 0, contradicting the second relation. This completes the proof of the
proposition.

Now we consider the real vector space V of all finite linear combinations
of indicator functions of elements of K. For K ∈ R we have 1K ∈ V , as noted
earlier. For fixed f ∈ V we choose a representation

f =
m∑

i=1

αi1Ki

with m ∈ N, αi ∈ R, Ki ∈ Kn and define

ϕ̃(f) :=
m∑

i=1

αiϕ(Ki).

The proposition proved above shows that this definition is possible, since the
right-hand side does not depend on the special representation chosen for f .
Evidently, ϕ̃ : V → X is a linear map satisfying ϕ̃(1K) = ϕ(K) for K ∈ K.
We can now extend ϕ from Kn to R by defining

ϕ(K) := ϕ̃(1K) for K ∈ R.

By the linearity of ϕ̃ and the additivity of the map K 7→ 1K we obtain, for
K,M ∈ R,

ϕ(K ∪M) + ϕ(K ∩M) = ϕ̃(1K∪M ) + ϕ̃(1K∩M ) = ϕ̃(1K∪M + 1K∩M )

= ϕ̃(1K + 1M ) = ϕ̃(1K) + ϕ̃(1M )

= ϕ(K) + ϕ(M).

Thus ϕ is additive on R. ut

The extension theorem can be applied to the map K 7→ Φm(K, ·) from K into
the vector space of finite signed measures on B(Rn) with the weak topology,
since this map is additive and continuous. Hence, the curvature measures
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have unique additive extensions, as finite signed measures, to the convex ring
R. The values of the extension can be obtained from the inclusion-exclusion
principle (35), which we now write in a more concise form.

For m ∈ N, let S(m) denote the set of all non-empty subsets of {1, . . . ,m}.
For v ∈ S(m), let |v| := card v. If K1, . . . ,Km are given, we write

Kv := Ki1 ∩ · · · ∩Kim for v = {i1, . . . , ir} ∈ S(m).

With these conventions, the inclusion-exclusion principle (35) for an additive
function ϕ can be written in the form

ϕ(K1 ∪ · · · ∪Km) =
∑

v∈S(m)

(−1)|v|−1ϕ(Kv). (42)

We can now easily extend our integral geometric formulae for curvature
measures (which includes the case of intrinsic volumes) to polyconvex sets.
Let K ∈ R. We choose a representation

K =
m⋃

i=1

Ki

with convex bodies K1, . . . ,Km. Since Φk is additive on R, the inclusion-
exclusion principle gives

Φk(K, ·) =
∑

v∈S(m)

(−1)|v|−1Φk(Kv, ·).

Now let M ∈ K be a convex body, and let A,B ∈ B(Rn). Since the principal
kinematic formula holds for convex bodies, we obtain∫

Gn

Φj(K ∩ gM,A ∩ gB)µ(dg)

=
∫

Gn

Φj

(
m⋃

i=1

(Ki ∩ gM), A ∩ gB

)
µ(dg)

=
∫

Gn

∑
v∈S(m)

(−1)|v|−1Φj(Kv ∩ gM,A ∩ gB)µ(dg)

=
∑

v∈S(m)

(−1)|v|−1
n∑

k=j

ck,n−k+j
j,n Φk(Kv, A)Φn−k+j(M,B)

=
n∑

k=j

ck,n−k+j
j,n Φk(K,A)Φn−k+j(M,B).

Hence, the kinematic formula holds for K ∈ R and M ∈ K. In a similar way,
it can now be extended to K ∈ R and M ∈ R. An analogous extension is
possible for the Crofton formulae.
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Hints to the literature. In adopting the name ‘polyconvex’ for the elements
of the convex ring, we followed Klain and Rota [25], who in turn followed E.
de Giorgi. The extension theorem 2.5 and its proof reproduced here are due
to Groemer [10]. For the support measures, and thus for the curvature mea-
sures, a more explicit construction of an additive extension to polyconvex sets
is found in Section 4.4 of [39]. It is based on an extension of the Steiner for-
mula for polyconvex sets, with the Lebesgue measure replaced by the integral
of the multiplicity function that arises from additive extension of the indica-
tor function of a parallel set. An application of this extension in stochastic
geometry appears in [38].

2.3 Curvature Measures for More General Sets

The class of sets for which the curvature measures Φj have been defined, and
the local principal kinematic formula (28) has been proved is, up to now,
the convex ring, which consists of the finite unions of convex bodies. These
polyconvex sets may seem sufficiently general for the simpler purposes of ap-
plied stochastic geometry, since sets consisting of very many very small convex
bodies can be considered as sufficiently good models for real materials. Nev-
ertheless, from theoretical as well as practical viewpoints, it seems desirable
to extend the definition of curvature measures and the validity of kinematic
formulae beyond the domain of the convex ring. In this subsection we briefly
describe such extensions.

Our approach to the curvature measures involved two steps: the definition
via the local Steiner formula (23) (or (22), more generally) and additive ex-
tension. The local Steiner formula expresses the Lebesgue measure of a local
parallel set, and the definition of the latter makes essential use of the nearest
point map p(K, ·) of a convex body K, and thus of the fact that to each point
x ∈ Rn there is a unique nearest point in K. It can be proved that a closed
set A ⊂ Rn with the property that to each point of Rn there is a unique
nearest point in A, must necessarily be convex ([39], Theorem 1.2.4). At first
glance, this seems to indicate that the Steiner formula approach is restricted
to convex sets. However, this is not the case. In fact, it is sufficient to have
the Steiner formula (23) for small positive values of the distance ρ. This leads
us to the sets with positive reach.

Let K ⊂ Rn be a nonempty closed set. The reach of K, denoted by
reach(K), is the largest number ρ (or ∞) such that to each x ∈ Rn with
distance d(K,x) from x to K smaller than ρ, there is a unique point in K
nearest to x; this point is then denoted by p(K,x). If reach(K) > 0, then K
is called a set with positive reach.

Let K ⊂ Rn be a compact set with positive reach. For every Borel set
A ⊂ Rn and for 0 ≤ ρ < reach(K) one has a polynomial expansion

λn({x ∈ Rn : d(K,x) ≤ ρ and p(K,x) ∈ A}) =
n∑

m=0

ρn−mκn−mΦm(K,A),
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and this defines the curvature measures Φ0(K, ·), . . . , Φn(K, ·) of K. If K
is convex, these are the known positive measures; in the general case, they are
finite signed measures on B(Rn). Several of the properties of the curvature
measures of convex bodies carry over to the curvature measures of compact
sets with positive reach. We mention here only the extension of the principal
kinematic formula: If K,M ⊂ Rn are compact sets with positive reach, then
K ∩ gM is a set with positive reach for µ-almost all rigid motions g ∈ Gn,
and the kinematic formula (28) holds for Borel sets A,B.

A Steiner type formula for arbitrary closed sets, involving a generalized version
of the support measures, is treated in [19]. Since it is applicable in stochastic
geometry, we will describe it here, without proofs. To explain the principal
ideas, we start with a convex body K which has a regular boundary of class
C2 with positive Gauss-Kronecker curvature. First we state a more general
version of the local Steiner formula. Instead of the volume of a local parallel
set, we consider the integral

∫
Rn\K f dλn of a bounded measurable function f

with compact support. It is intuitively clear, and can be proved, that∫
Rn\K

f dλn =
∫ ∞

0

∫
∂Kt

f dSt dt, (43)

where dSt denotes the volume form of the boundary of the parallel body Kt.
We transform the inner integral into an integral over the sphere Sn−1. For
u ∈ Sn−1, let xu be the (unique) boundary point of K with outer unit normal
vector u. Then∫

∂Kt

f dSt =
∫

Sn−1
f(xu + tu)

n−1∏
i=1

r
(t)
i (u)σn−1(du),

where r(t)i (u), i = 1, . . . , n − 1, are the principal radii of curvature of ∂Kt at
xu + tu. They are given by r(t)i (u) = r

(0)
i (u) + t, hence

n−1∏
i=1

r
(t)
i (u) =

n−1∑
i=0

(
n− 1
i

)
tn−i−1si(u),

with si as in (25). The result∫
Rn\K

f dλn =
n−1∑
i=0

(
n− 1
i

)∫ ∞

0

∫
Sn−1

tn−i−1f(xu + tu)si(u)σn−1(du) dt

can be written as an integral over the generalized normal bundle NorK with
respect to the support measures, using (25). Setting ωm := mκm, we get∫

Rn\K
f dλn =

n−1∑
i=0

ωn−i

∫ ∞

0

∫
Nor K

tn−i−1f(x+ tu)Ξi(K,d(x, u)) dt. (44)
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There is nothing in this formula which refers to the smoothness assumptions
made for K. In fact, (44) can be extended to general convex bodies. The
special choice

f(x) := 1S(p(K,x), u(K,x))1Kρ\K(x)

then gives the local Steiner formula (22).
Heuristically, one would expect that (44) remains true for a non-convex

closed set A, provided that the function f has its support in a region where the
nearest point in A is uniquely determined. Fortunately, the points where the
latter does not hold can be neglected. So we assume now only that A ⊂ Rn is a
nonempty closed set. As for convex bodies, we define d(A, x) := min{‖a−x‖ :
a ∈ A}, and we let p(A, x) := a whenever a is a uniquely determined point
in A nearest to x. If d(A, x) > 0 and p(A, x) exists, we define u(A, x) :=
(x − p(A, x))/d(A, x). The exoskeleton exo(A) of A is defined as the set
of all points x of Rn \ A for which p(A, x) does not exist (because there is
more than one point in A nearest to x). One can prove that exo(A) has n-
dimensional Lebesgue measure zero. The generalized normal bundle of A
is defined by

NorA := {(p(A, x), u(A, x)) : x /∈ A ∪ exo(A)},

and the reach function δ(A, ·) : Rn × Sn−1 → [0,∞] of A by

δ(A, x, u) := inf{t ≥ 0 : x+ tu ∈ exo(A)} if (x, u) ∈ NorA,

(with inf ∅ = ∞) and δ(A, x, u) := 0 if (x, u) /∈ NorA.
In [19], the support measures Ξ0(A, ·), . . . , Ξn−1(A, ·) of A are intro-

duced as real-valued, σ-additive set functions on the system of all Borel sets
in Σ which are contained in

(Σ \NorA) ∪ {(x, u) : x ∈ B, δ(A, x, u) ≥ s}

for some s > 0 and some compact B ⊂ Rn. These signed measures vanish on
every Borel subset of Σ \NorA. Denoting by |Ξi| the total variation measure
of Ξi and putting a ∧ b := min{a, b} for a, b ∈ R, we formulate the following
result from [19], which is a far-reaching generalization of the Steiner formula.

Theorem 2.6. The support measures Ξ0(A, ·), . . . , Ξn−1(A, ·) of a nonempty
closed set A ⊂ Rn satisfy∫

Nor A

1B(x)(δ(A, x, u) ∧ r)n−j |Ξj |(A,d(x, u)) <∞

for all compact sets B ⊂ Rn and all r > 0 (j = 0, . . . , n− 1), and∫
Rn\A

f dλn =
n−1∑
i=0

ωn−i

∫ ∞

0

∫
Nor A

tn−i−11{t < δ(A, x, u)}

× f(x+ tu)Ξi(A,d(x, u)) dt

for every measurable bounded function f : Rn → R with compact support.
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The proof, for which we must refer to [19], makes essential use of the fact that
for a given compact set A there exists a sequence (Ak)k∈N of sets of positive
reach such that

NorA ⊂
⋃
k∈N

NorAk

and, for (x, u) ∈ NorA,

δ(A, x, u) ≤ sup{reach(Ak) : (x, u) ∈ NorAk, k ∈ N}.

In particular, NorA is countably (n − 1)-rectifiable, so that generalized cur-
vatures, as in [60], can be defined.

Hints to the literature. Sets with positive reach and their curvature mea-
sures were introduced by Federer [3], who also obtained kinematic and Crofton
formulae for these measures. His theory has been further developed in the work
of Martina Zähle and co-authors. This work treats current representations of
Federer’s curvature measures in [60], a short proof of the principal kinematic
formula for sets with positive reach in [36], and extensions to certain finite
unions of sets with positive reach in [61], [34].

There have been a number of successful attempts to define curvature mea-
sures, and to obtain kinematic formulae, for very general and quite abstract
classes of sets. We refer to the brief survey in [22] (Subsection 2.1) and the
references given there.

3 Translative Integral Geometry

The simple and elegant form of the kinematic formulae (20) and (28), in par-
ticular the separation of the two involved convex bodies on the right-hand
sides, is due to the fact that the integrals are with respect to the invariant
measure on the motion group. The stochastic geometry of stationary but not
necessarily isotropic random sets requires analogous investigations with re-
spect to the translation group, for example, the determination of the integrals∫

Rn

Vj(K ∩ (M + t))λn(dt). (45)

In order to achieve a more concise form of translative formulae, we use in
the following an operator notation for translations, namely

xM := M + x for M ⊂ Rn and x ∈ Rn.

Recall that the indicator function of a set A ⊂ Rn is denoted by 1A. We
write M∗ := {y ∈ Rn : −y ∈M} for the reflection of a set M in 0.

The cases j = n and j = n − 1 of the integral (45) are still simple. We
have 1tM (x) = 1xM∗(t) and hence, by Fubini’s theorem,
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Rn

Vn(K ∩ tM)λn(dt) =
∫

Rn

∫
Rn

1K∩tM (x)λn(dx)λn(dt)

=
∫

Rn

∫
Rn

1K(x)1xM∗(t)λn(dt)λn(dx) =
∫

Rn

1K(x)Vn(xM∗)λn(dx)

= Vn(M∗)
∫

Rn

1K(x)λn(dx),

thus ∫
Rn

Vn(K ∩ tM)λn(dt) = Vn(K)Vn(M). (46)

With only slightly more effort one can show that∫
Rn

Vn−1(K ∩ tM)λn(dt) = Vn−1(K)Vn(M) + Vn(K)Vn−1(M).

However, for the functional V0 = χ, a separation of K and M on the right-
hand side does not take place. Since χ(K ∩ tM) = 1K+M∗(t), we have∫

Rn

χ(K ∩ tM)λn(dt) = Vn(K +M∗). (47)

Convex geometry tells us that

Vn(K +M∗) =
n∑

i=0

(
n

i

)
Vi(K,M∗)

with
Vi(K,M∗) := V (K, . . . ,K︸ ︷︷ ︸

i

,M∗, . . . ,M∗︸ ︷︷ ︸
n−i

),

where the function V : Kn → R is the so-called mixed volume. The essential
observation for us is that the obtained expression cannot be simplified further.
Thus, in translative integral geometry we must live with more complicated
functionals, depending on several convex bodies simultaneously. A translative
formula for curvature measures, which we will now study, necessarily involves
new measures depending on several convex bodies.

3.1 The Principal Translative Formula for Curvature Measures

We have already obtained a translative formula for the curvature measures
of polytopes, namely Theorem 2.3. We rewrite this result in a form that is
convenient for the following. Let K,M ∈ K be polytopes, let A,B ⊂ Rn be
Borel sets, and let j ∈ {0, . . . , n}; then∫

Rn

Φj(K ∩ xM,A ∩ xB)λn(dx) =
n∑

m=j

Φ
(j)
m,n+j−m(K,M ;A×B),
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where for m, k ∈ {j, . . . , n} with m+ k = n+ j we have introduced measures
Φ

(j)
m,k(K,M ; ·) on (Rn)2 by

Φ
(j)
m,k(K,M ; ·) :=

∑
F∈Fm(K)

∑
G∈Fk(M)

γ(F,G;K,M)[F,G]λF ⊗ λG.

To extend this to more than two polytopes, we first extend the notation.
For a polyhedral set P (a nonempty intersection of finitely many closed half-
spaces) in Rn and for a face F of P , let γ(F, P ) be the (normalized) exterior
angle of P at F , defined by (5). If K1, . . . ,Kk are polyhedral sets and Fi is a
face of Ki for i = 1, . . . , k, we choose points xi ∈ relintFi for i = 1, . . . , k and
define the common exterior angle γ(F1, . . . , Fk;K1, . . . ,Kk) by

γ(F1, . . . , Fk;K1, . . . ,Kk) := γ

(
k⋂

i=1

(Fi − xi),
k⋂

i=1

(Ki − xi)

)
.

This definition does not depend on the choice of the points xi.
Further, we need the notion of the determinant of subspaces, extend-

ing the definition of the generalized sine function [·, ·] given in Subsection
2.1. Let L1, . . . , Lk be linear subspaces of Rn with

∑k
i=1 dimLi =: m ≤ n.

Choose an orthonormal basis in each Li (the empty set if dimLi = 0) and let
det (L1, . . . , Lk) be the m-dimensional volume of the parallelepiped spanned
by the union of these bases (1, by definition, if dimLi = 0 for i = 1, . . . , k).
Then one defines

[L1, . . . , Lk] := det
(
L⊥1 , . . . , L

⊥
k

)
if

k∑
i=1

dimLi ≥ (k − 1)n

and [L1, . . . , Lk] := 0 if
∑k

i=1 dimLi < (k−1)n. Obviously, any n-dimensional
argument of [L1, . . . , Lk] can be deleted without changing the value. We also
note that [L] = 1 and that [L1, . . . , Lk] = 0 if L1, . . . , Lk are not in general
relative position (the subspaces L1, . . . , Lk are in general relative position if
L1 ∩ · · · ∩ Lk has dimension max{0,dimL1 + · · ·+ dimLk − (k − 1)n}).

For nonempty subsets F1, . . . , Fk ⊂ Rn we set

[F1, . . . , Fk] := [L(F1), . . . , L(Fk)],

where L(Fi) is the linear subspace parallel to the affine hull of Fi (i = 1, . . . , k).
Now let polytopes K1, . . . ,Kk ∈ K (k ∈ N) be given. For indices

m1, . . . ,mk ∈ {1, . . . , n} satisfying j :=
∑k

i=1mi − (k − 1)n ≥ 0 we intro-
duce measures on (Rn)k, the mixed measures Φ(j)

m1,...,mk(K1, . . . ,Kk; ·), by

Φ(j)
m1,...,mk

(K1, . . . ,Kk; ·)

:=
∑

F1∈Fm1 (K1)

· · ·
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)[F1, . . . , Fk]

×λF1 ⊗ · · · ⊗ λFk
.
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Note that for k = 1 we have j = m1 and hence Φ(j)
m (K; ·) = Φm(K; ·).

We can use essentially the same integration technique as sketched for the
proof of Theorem 2.3, or that theorem combined with induction, to obtain the
following iterated translative formulae for polytopes K1, . . . ,Kk ∈ K (k ≥ 2)
and Borel sets A1, . . . , Ak ∈ B(Rn):∫

Rn

. . .

∫
Rn

Φj(K1 ∩ x2K2 ∩ · · · ∩ xkKk, A1 ∩ x2A2 ∩ · · · ∩ xkAk)

×λn(dx2) · · ·λn(dxk)

=
n∑

m1,...,mk=j

m1+···+mk=(k−1)n+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak). (48)

This formula is equivalent to the validity of the equation∫
(Rn)k−1

∫
Rn

g(y, y − x2, . . . , y − xk)Φj(K1 ∩ x2K2 ∩ · · · ∩ xkKk,dy)

×λk−1
n (d(x2, . . . , xk))

=
n∑

m1,...,mk=j

m1+···+mk=(k−1)n+j

∫
(Rn)k

g(x1, x2, . . . , xk)

Φ(j)
m1,...,mk

(K1, . . . ,Kk; d(x1, . . . , xk)) (49)

for all nonnegative measurable functions g on (Rn)k. In fact, if the first for-
mula holds, then the second holds for g = 1A1×···×Ak

and thus for elementary
functions, hence, by the standard extension, it holds for nonnegative measur-
able functions. Conversely, if the second formula holds, then the first is true
for compact sets A1, . . . , Ak, since 1A1×···×Ak

is then the limit of a decreas-
ing sequence of continuous functions. Since both sides of the equation are
measures in A1, . . . , Ak, the equation holds for Borel sets.

Formula (48) can be extended to general convex bodies, that is, for
K1, . . . ,Kk ∈ K and numbers k,m1, . . . ,mk, j as above, there exist finite
measures Φ(j)

m1,...,mk(K1, . . . ,Kk; ·), on (Rn)k, the mixed measures, so that
(48) holds. The proof uses approximation of general convex bodies by poly-
topes, formula (48) for polytopes, and the weak continuity of the curvature
measures.

Theorem 3.1 (Iterated translative formula). Let K1, . . . ,Kk ∈ K, where
k ≥ 2, be convex bodies. For m1, . . . ,mk ∈ {1, . . . , n} with j :=

∑k
i=1mi −

(k−1)n ≥ 0, there are finite measures Φ(j)
m1,...,mk(K1, . . . ,Kk; ·) on (Rn)k such

that
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Rn

. . .

∫
Rn

Φj(K1 ∩ x2K2 ∩ · · · ∩ xkKk, A1 ∩ x2A2 ∩ · · · ∩ xkAk)

×λn(dx2) · · ·λn(dxk)

=
n∑

m1,...,mk=j

m1+···+mk=(k−1)n+j

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak) (50)

for Borel sets A1, . . . , Ak ∈ B(Rn).

We collect some properties of the mixed measures. Most of them can be de-
duced without difficulty from the corresponding properties of the mixed mea-
sures of polytopes, which are obvious.

• Symmetry:

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak)

= Φ(j)
mπ(1),...,mπ(k)

(Kπ(1), . . . ,Kπ(k);Aπ(1) × · · · ×Aπ(k))

for each permutation π of {1, . . . , k}.
• Support property: the support of Φ(j)

m1,...,mk(K1, . . . ,Kk; ·) is contained
in S1 × · · · × Sk, where Si = Ki if mi = n and Si = ∂Ki if mi < n.

• Translation covariance: for t1, . . . , tk ∈ Rn,

Φ(j)
m1,...,mk

(t1K1, . . . , tkKk; t1A1 × · · · × tkAk)

= Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak).

• Homogeneity: for α1, . . . , αk ≥ 0,

Φ(j)
m1,...,mk

(α1K1, . . . , αkKk;α1A1 × · · · × αkAk)

= αm1
1 · · ·αmk

k Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak).

• Weak continuity: the map (K1, . . . ,Kk) 7→ Φ
(j)
m1,...,mk(K1, . . . ,Kk; ·)

from Kk into the space of finite measures on (Rn)k with the weak topology
is continuous.

• Additivity: Φ(j)
m1,...,mk(K1, . . . ,Kk;A1 × · · · × Ak) is additive in each of

its first k arguments.
• Decomposition property:

Φ(j)
m1,...,mk−1,n(K1, . . . ,Kk;A1 × · · · ×Ak)

= Φ(j)
m1,...,mk−1

(K1, . . . ,Kk−1;A1 × · · · ×Ak−1)λn(Kk ∩Ak)

(and similarly for the other arguments, by symmetry).
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• Reduction property:

Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak)

=
(

2
κn−1

)j 1
j!κj

Φ
(0)
m1,...,mk,n−1,...,n−1(K1, . . . ,Kk, B

n, . . . , Bn︸ ︷︷ ︸
j

;

A1 × · · · ×Ak × (Rn)j).

• Local determination: If K ′
1, . . . ,K

′
k ∈ K and Ai ⊂ intK ′

i for i =
1, . . . , k, then

Φ(j)
m1,...,mk

(K1 ∩K ′
1, . . . ,Kk ∩K ′

k;A1 × · · · ×Ak)

= Φ(j)
m1,...,mk

(K1, . . . ,Kk;A1 × · · · ×Ak).

The decomposition property has a useful consequence. The condition m1+
· · ·+mk = (k − 1)n+ j implies that at most n− j of the indices m1, . . . ,mk

can be smaller than n. Hence, all mixed measures with upper index (j) can be
expressed in terms of Lebesgue measure and the finitely many mixed measures
Φ

(j)
m1,...,mr , where r ∈ {1, . . . , n − j}. By the reduction property, all mixed

measures can further be reduced to the measures Φ(0)
m1,...,mk with k ∈ {1, . . . , n}

and m1, . . . ,mk ∈ {1, . . . , n − 1} satisfying m1 + · · · + mk = (k − 1)n. The
mixed measures with upper index (0) will therefore be considered as basic.

The last of the listed properties, local determination, can be used to extend
the definition of the mixed measures, in an obvious way, to closed convex
sets that are not necessarily bounded. The iterated translative formula (50)
remains valid if the Borel sets Ai corresponding to unbounded convex sets Ki

are bounded.
The total measures

Φ(j)
m1,...,mk

(K1, . . . ,Kk; (Rn)k) =: V (j)
m1,...,mk

(K1, . . . ,Kk),

are called the mixed functionals, and those with upper index (0) the basic
mixed functionals. In the case of polytopes K1, . . . ,Kn, the mixed func-
tionals are explicitly given by

V (j)
m1,...,mk

(K1, . . . ,Kk)

=
∑

F1∈Fm1 (K1)

· · ·
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)[F1, . . . , Fk]

×Vm1(F1) · · ·Vmk
(Fk).

The mixed measures, and therefore also the mixed functionals, satisfy var-
ious integral geometric relations, among them translative formulae, rotation
formulae, and Crofton type formulae.
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Hints to the literature. The technical details omitted in this subsection can
be found in [50] and [57]. A thorough investigation of the mixed measures,
including integral geometric relations and special representations, appears in
[59]. In [8], representations of mixed measures in terms of support measures
are applied to Boolean models.

Using methods of geometric measure theory, Rataj and Zähle [33] have ob-
tained a general translative formula for support measures of sets with positive
reach. An iterated version is proved in [28]. Various extensions and supple-
ments appear in [29], [17], [62], [34], [35]. Translative Crofton formulae for
support measures are treated in [30].

3.2 Basic mixed functionals and support functions

In this subsection, we will study some special cases of the mixed measures in
greater detail and under particular aspects. First, we consider the basic mixed
functionals V (0)

m1,...,mk . They are uniquely determined as the coefficients in the
polynomial expansion∫

Rn

. . .

∫
Rn

χ(α1K1 ∩ x2α2K2 ∩ · · · ∩ xkαkKk)λn(dx2) · · ·λn(dxk)

=
n∑

m1,...,mk=0
m1+···+mk=(k−1)n

αm1
1 · · ·αmk

k V (0)
m1,...,mk

(K1, . . . ,Kk) (51)

for K1, . . . ,Kk ∈ K, α1 . . . , αk ≥ 0, k ≥ 2 (a special case of (50)). Our first
aim is to show that the notion of basic mixed functionals can, in a certain
sense, be viewed as dual to the notion of mixed volumes, which constitute an
important set of functionals in the classical theory of convex bodies. It suffices
to consider polytopes (the extension to general convex bodies is achieved by
approximation). For these, we will obtain a class of representations of the basic
mixed measures of greater generality than their original definition, which is
the representation

V (0)
m1,...,mk

(K1, . . . ,Kk)

=
∑

F1∈Fm1 (K1)

· · ·
∑

Fk∈Fmk
(Kk)

γ(F1, . . . , Fk;K1, . . . ,Kk)[F1, . . . , Fk]

×Vm1(F1) · · ·Vmk
(Fk). (52)

We describe a general construction leading to different types of mixed
functionals. For k ≥ 2, we consider the Euclidean vector space X := (Rn)k

(with the scalar product induced from that of Rn), together with a surjective
linear map f : X → Rq onto a Euclidean space Rq, where q < kn. For
L := (ker f)⊥, the orthogonal complement of the kernel of f , let πL : X → L
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denote the orthogonal projection. If f̃ := f |L, then f = f̃ ◦πL, and f̃ : L→ Rq

is an isomorphism.
For a given polytope P ⊂ X, let Gv(P ) be a set of q-dimensional faces of

P with the property that, for the induced Lebesgue measure ΛL in L,

ΛL(πLP ) =
∑

F∈Gv(P )

ΛL(πLF ) (53)

and hence
Vq(fP ) =

∑
F∈Gv(P )

Vq(fF ). (54)

Such sets Gv(P ), depending on a parameter v, can be obtained as follows. We
choose a vector v ∈ L⊥ \ {0} satisfying

dimF (P, u) ≤ q for all u ∈ L+
v := L+ {αv : α > 0} (55)

(F (P, u) denotes the face of P with exterior normal vector u). The condition
(55) excludes only vectors from finitely many proper linear subspaces of L⊥.
With this choice, the set

Gv(P ) := {F ∈ Fq(P ) : N(P, F ) ∩ L+
v 6= ∅}

will satisfy (53). This is seen if one decomposes the projection πL into the
orthogonal projection πL,v on to lin(L ∪ {v}), followed by the orthogonal
projection from this space to L. In fact, let Sq be the set of q-faces of πL,vP
having a normal vector in L+

v . The images of these q-faces under projection
to L cover πP without overlappings. On the other hand, under πL,v, the set
Gv(P ) is in one-to-one correspondence with the set Sq. This proves (53).

Now let P1, . . . , Pk ⊂ Rn be polytopes, and let P := P1 × · · · × Pk. Every
q-face F of P is of the form F = F1 × · · · × Fk with faces Fi ∈ Fmi

(Pi)
(i = 1, . . . , k) for suitablem1, . . . ,mk ∈ {0, . . . , n} satisfyingm1+· · ·+mk = q.
For α1, . . . , αk ≥ 0, we clearly have

Vq(f(α1F1 × · · · × αkFk))

= αm1
1 · · ·αmk

k c(f, F1, . . . , Fk)Vm1(F1) · · ·Vmk
(Fk),

where c(f, F1, . . . , Fk) is the factor by which the linear map f |aff(F1×· · ·×Fk)
changes the q-dimensional volume. Together with (54), this gives

Vq(f(α1P1 × · · · × αkPk))

=
n∑

m1,...,mk=0
m1+···+mk=q

αm1
1 · · ·αmk

k V f
m1,...,mk

(P1, . . . , Pk) (56)

with
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V f
m1,...,mk

(P1, . . . , Pk)

=
∑

Fi∈Fmi
(Pi),i=,1,...,k

F1×···×Fk∈Gv(P1×···×Pk)

c(f, F1, . . . , Fk)Vm1(F1) · · ·Vmk
(Fk). (57)

Here v is chosen according to (55), for P = P1× · · · ×Pk. The expansion (56)
determines the coefficients V f

m1,...,mk
(P1, . . . , Pk) uniquely; hence they do not

depend on the choice of the set Gv(P1×· · ·×Pk). These coefficients represent a
general type of mixed functionals, depending on the choice of the number
k and the linear map f .

For a concrete example, let f : (Rn)k → Rn be defined by f(x1, . . . , xn) :=
x1 + · · ·+ xn. Then

f(α1P1 × · · · × αkPk) = α1P1 + · · ·+ αkPk,

and (56) gives

Vn(α1P1 + · · ·+ αkPk)

=
n∑

m1,...,mk=0
m1+···+mk=n

αm1
1 · · ·αmk

k V f
m1,...,mk

(P1, . . . , Pk).

This shows that

V f
m1,...,mk

(P1, . . . , Pk) =
(

n

m1, . . . ,mk

)
V (P1, . . . , P1︸ ︷︷ ︸

m1

, . . . , Pk, . . . , Pk︸ ︷︷ ︸
mk

),

where V : Kn → R denotes the mixed volume, known from the theory of
convex bodies. Equation (57) provides a class of special representations for
the mixed volumes of polytopes.

In the second example, let g : (Rn)k → (Rn)k−1 be defined by g(y1, . . . , yk)
:= (y1 − y2, . . . , y1 − yk). Then

g(P1 × · · · × Pk) = {(x2, . . . , xk) ∈ (Rn)k−1 : P1 ∩ x2P2 ∩ · · · ∩ xkPk 6= ∅},

hence

V(k−1)n(g(α1P1 × · · · × αkPk))

=
∫

Rn

. . .

∫
Rn

χ(α1P1 ∩ x2α2P2 ∩ · · · ∩ xkαkPk)λn(dx2) · · ·λn(dxk).

Now (56) shows that

V g
m1,...,mk

(P1, . . . , Pk) = V (0)
m1,...,mk

(P1, . . . , Pk),

thus we obtain the basic mixed functionals. The constructions leading to
mixed volumes and to basic mixed functionals can be considered as duals of
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each other, since the kernels of the employed maps f and g are complementary
orthogonal subspaces of (Rn)k.

In order to make the representation (57) more explicit in the concrete cases,
one has to translate condition (55) to the actual situation and to determine the
factors c(f, F1, . . . , Fk). We give here the result only for the second example.
In that case, we say that a vector w ∈ Rn is admissible for the polytopes
P1, . . . , Pk if

w /∈ N(P1, F1) + · · ·+N(Pk, Fk)

whenever F1 ∈ Fm1(P1), . . . , Fk ∈ Fmk
(Pk) with numbers m1, . . . ,mk ∈

{1, . . . , n} satisfying m1 + · · ·+mk = (k− 1)n+ 1. Then we get the following
result. If w is admissible for P1, . . . , Pk, then

V (0)
m1,...,mk

(P1, . . . , Pk)

=
∑

F1∈Fm1 (P1)

· · ·
∑

Fk∈Fmk
(Pk)

1N(P1,F1)+···+N(Pk,Fk)(w)

×[F1, . . . , Fk]Vm1(F1) · · ·Vmk
(Fk). (58)

This representation is more general than (52). Equation (58) holds for all vec-
tors w ∈ Sn−1, with the exception of those in finitely many great subspheres
(depending on P1, . . . , Pk). Integration over Sn−1 with respect to spherical
Lebesgue measure σn−1 yields (52).

Our second aim in this subsection is the presentation of a set-valued analogue
of the iterated translative formula (51), of the form∫

Rn

. . .

∫
Rn

(α1K1 ∩ x2α2K2 ∩ · · · ∩ xkαkKk)λn(dx2) · · ·λn(dxk)

=
n∑

m1,...,mk=0
m1+···+mk=(k−1)n+1

αm1
1 · · ·αmk

k Tm1,...,mk
(K1, . . . ,Kk) + t, (59)

with convex bodies Tm1,...,mk
(K1, . . . ,Kk) and a translation vector t. The

integral of a function with values in K is defined via support functions, so
that this formula is equivalent to a relation for support functions.

It is convenient in the following to use the centred support function
h∗. This is the support function with respect to the Steiner point s, thus

h∗(K,u) = h(K − s(K), u) = h(K,u)− 〈s(K), u〉,

where the Steiner point of the convex body K is defined by

s(K) :=
1
κn

∫
Sn−1

h(K,u)uσn−1(du).

The centred support function is related to a special case of the mixed
measures. We recall from Subsection 3.1 that the mixed measures can be
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extended to unbounded closed convex sets. The special representations for
polytopes extend to polyhedral sets. We use this for the sets

u+ := {x ∈ Rn : 〈x, u〉 ≥ 0}, u⊥ := {x ∈ Rn : 〈x, u〉 = 0},

where u ∈ Sn−1. Choosing a Borel set A(u) ⊂ u⊥ with λn−1(A(u)) = 1, we
have, for polytopes P ,

h∗(P, u) =
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]V1(F ) (60)

= Φ
(0)
1,n−1(P, u

+; Rn ×A(u)). (61)

To prove (60), we first remark that, for a polytope P ,∑
e∈F0(P )

γ(e, P )e = s(P )
∑

e∈F0(P )

γ(e, P ) = χ(P ) = 1, (62)

where, for the ease of notation, we do not distinguish between a vertex e and
the corresponding 0-face {e} of P . Let

H+
u,t := {x ∈ Rn : 〈x, u〉 ≥ t}

for u ∈ Sn−1 and t ∈ R, and choose a number c satisfying P ⊂ H+
u,c. Then

h(P, u)− c =
∫ ∞

c

χ
(
P ∩H+

u,t

)
dt. (63)

Using (62), we get∫ ∞

c

χ
(
P ∩H+

u,t

)
dt

=
∫ ∞

c

∑
e∈F0(P∩H+

u,t)

γ
(
e, P ∩H+

u,t

)
dt

=
∫ ∞

c

∑
e∈F0(P )

γ(e, P )1{〈e, u〉 ≥ t}dt

+
∫ ∞

c

∑
F∈F1(P )

γ(F, u⊥;P, u+)χ(F ∩Hu,t) dt

=
∑

e∈F0(P )

γ(e, P )(〈e, u〉 − c) +
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]V1(F )

= 〈s(P ), u〉 − c+
∑

F∈F1(P )

γ(F, u⊥;P, u+)[F, u⊥]V1(F ),

which together with (63) proves (60).
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As mentioned earlier, the mixed measures, which arose from an iterated
translative formula, satisfy themselves an iterated formula. We can apply this
to the mixed measure (61), or else we can use essentially the same method
that led to the iterated formula (48). In either way, the following theorem can
be obtained.

Theorem 3.2. If P1, . . . , Pk ⊂ Rn are polytopes and α1, . . . , αk ≥ 0 (k ≥ 2),
then ∫

Rn

. . .

∫
Rn

h∗(α1P1 ∩ x2α2P2 ∩ · · · ∩ xkαkPk, ·)λn(dx2) · · ·λn(dxk)

=
n∑

m1,...,mk=0
m1+···+mk=(k−1)n+1

αm1
1 · · ·αmk

k h∗m1,...,mk
(P1, . . . , Pk; ·) (64)

with

h∗m1,...,mk
(P1, . . . , Pk;u) (65)

:=
∑

F1∈Fm1 (P1)

· · ·
∑

Fk∈Fmk
(Pk)

γ
(
F1, . . . , Fk, u

⊥;P1, . . . , Pk, u
+
)

× [F1, . . . , Fk, u
⊥]Vm1(F1) · · ·Vmk

(Fk) (66)

for u ∈ Sn−1.

The left-hand side of (64) is clearly a support function. It is, at the moment,
not clear that each summand on the right-hand side is also a support function.
To prove that this holds true, we need a class of more general representations
of the functions h∗m1,...,mk

(P1, . . . , Pk; ·). These can be obtained by methods
similar to those employed previously in this subsection. Let u ∈ Rn \ {0}. We
say that the vector w ∈ Rn is admissible for (P1, . . . , Pk, u) if it is admissible
for (P1, . . . , Pk) and if

w /∈ N(P1, F1) + · · ·+N(Pk, Fk) + pos{−u}

(where pos denotes the positive hull) whenever F1 ∈ Fm1(P1), . . . , Fk ∈
Fmk

(Pk) for numbers m1, . . . ,mk ∈ {1, . . . , n} satisfying m1 + · · · + mk =
(k − 1)n + 2. If w ∈ Rn is admissible for (P1, . . . , Pk, u), it can be deduced
from (60) and (58) that

h∗m1,...,mk
(P1, . . . , Pk;u) (67)

= 〈vm1,...,mk
(P1, . . . , Pk, w), u〉

+
∑

F1∈Fm1 (P1)

· · ·
∑

Fk∈Fmk
(Pk)

1N(P1,F1)+···+N(Pk,Fk)+pos {−u}(w)

×‖u‖[F1, . . . , Fk, u
⊥]Vm1(F1) · · ·Vmk

(Fk)
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for u ∈ Rn. By vm1,...,mk
(P1, . . . , Pk, w) we have denoted a vector which could

be given explicitly. The point now is that every u0 ∈ Rn \ {0} has a convex
neighbourhood U with the following properties: there is a vector w that is
admissible for (P1, . . . , Pk, u), for all u ∈ U , and the function

u 7→ 1N(P1,F1)+···+N(Pk,Fk)+pos {−u}(w)

is constant for u ∈ U . This implies that the right-hand side of (67) defines a
convex function of u ∈ U . Hence, the function h∗m1,...,mk

(P1, . . . , Pk; ·) is locally
a support function and therefore also globally. The convex body determined by
this support function is denoted by Tm1,...,mk

(P1, . . . , Pk). With this definition,
(59) holds for polytopes, and an extension to general convex bodies can be
achieved by approximation.

Hints to the literature. The general type of mixed functionals, of which
the mixed volumes and the basic mixed functionals are special cases, was
introduced in [43]; the representation (58) is found there. Theorem 3.2 was
first obtained in [58]. Also formula (60) appears there. The simpler proof of
the latter, as given here, and the general representation (67), are in [47]. The
convexity of the functions h∗m1,...,mk

(P1, . . . , Pk; ·), and thus formula (59) with
convex bodies Tm1,...,mk

(K1, . . . ,Kk), was first proved in [9] (for k = 2); the
simpler proof sketched here is carried out in [47]. McMullen [26] has developed
a general theory of ‘mixed fibre polytopes’, of which the mixed polytopes
Tm1,...,mk

(P1, . . . , Pk) are a special case.

3.3 Further topics of translative integral geometry

We briefly mention further results of translative integral geometry. First, the
elementary formula (47),∫

Rn

χ(K ∩ tM)λn(dt) =
n∑

i=0

(
n

i

)
Vi(K,M∗),

has counterparts where one or both of the bodies are replaced by their bound-
aries. This fact is highly non-elementary. One reason is that the boundary of
a general convex body need not even be a set with positive reach, another is
the observation that the intersection of the boundary of a convex body with
another convex body need not have finite Euler characteristic (for which now
a topological definition is needed). Moreover, approximation by polytopes (for
which the results are easy) cannot be applied. Nevertheless, the following has
been proved. If K,M ∈ K are n-dimensional convex bodies, then∫

Rn

χ(∂K ∩ tM) dt

=
n−1∑
i=0

(
n

i

){
Vi(K,M∗) + (−1)n−i−1Vi(K,M)

}
(68)
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and ∫
Rn

χ(∂K ∩ t∂M) dt

= (1 + (−1)n)
n−1∑
i=0

(
n

i

){
Vi(K,M∗) + (−1)i−1Vi(K,M)

}
. (69)

From these formulae one can deduce, by additional integrations over the ro-
tation group, the kinematic formulae∫

Gn

χ(∂K ∩ gM)µ(dg)

=
n−1∑
k=0

(1− (−1)n−k)ck,n−k
0,n Vk(K)Vn−k(M) (70)

and ∫
Gn

χ(∂K ∩ g∂M)µ(dg)

= (1 + (−1)n)
n−1∑
k=0

(1− (−1)k)ck,n−k
0,n Vk(K)Vn−k(M). (71)

Our second topic in this subsection is motivated by Hadwiger’s general in-
tegral geometric theorem (Theorem 1.4). It provides an abstract version of
the principal kinematic formula, holding for arbitrary continuous valuations
(additive functions). One may ask whether a similarly general result holds in
translative integral geometry. However, this can hardly be expected. What can
be achieved, is an analogous result for continuous valuations that are simple.
A valuation on K is simple if it is zero on convex bodies of dimension less
than n.

The following theorem involves, besides the support function h(K, ·) of a
convex body K, also its area measure Sn−1(K, ·) = 2Ξn−1(K,Rn × ·). The
geometric meaning of this measure is as follows. For a Borel subset A of the
unit sphere Sn−1, the value Sn−1(K,A) is the area (the (n − 1)-dimensional
Hausdorff measure) of the set of boundary points of K at which there exists
an outer unit normal vector in A.

Theorem 3.3. Let ϕ : K → R be a continuous simple valuation. Then∫
Rn

ϕ(K ∩ xM)λn(dx) = ϕ(K)Vn(M) +
∫

Sn−1
fK,ϕ(u)Sn−1(M,du)

for K,M ∈ K, where fK,ϕ : Sn−1 → R is the odd function given by
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fK,ϕ(u) = −ϕ(K)h(K,u) +
∫ h(K,u)

−h(K,−u)

ϕ(K ∩H−(u, t)) dt.

Hints to the literature. The kinematic formulae (70) und (71) were con-
jectured by Firey (see Problem 18 in the collection [11]). A proof of the more
general formulae (68) und (69), and thus of (70) und (71), was given in [21].
In [20], these integral geometric results were extended to lower-dimensional
sets, and iterated formulae were established; these were applied to stochastic
geometry. Theorem 3.3 was proved in [48].

4 Intersection Formulae without Invariance

If M ∈ K is a k-dimensional convex body, k ∈ {1, . . . , n − 1}, the case j = 0
of the Crofton formula (15) reduces to∫

En
n−k

card (M ∩ E)µn−k(dE) =
κkκn−k(

n
k

)
κn

λk(M), (72)

since V0(M ∩ E) = card (M ∩ E) for µn−k-almost all (n − k)-planes E (here
card denotes the number of elements, possibly ∞), and Vk(M) = λk(M).
Formula (72) remains true if M is a k-dimensional compact C1 submanifold
of Rn (or, more generally, a (Hk, k)-rectifiable Borel set) and λk denotes the
k-dimensional Euclidean surface area. Relations of this type are also known as
Crofton formulae. They provide beautiful integral geometric interpretations
of k-dimensional areas.

In this section, we study such Crofton formulae from a more general and
‘reverse’ point of view: given a notion of k-dimensional area that replaces λk,
does there exist a measure on the space En

n−k of (n − k)-planes so that a
counterpart to (72) is valid for a sufficiently large class of k-dimensional sur-
faces M? The measures on En

n−k we are seeking are always locally finite Borel
measures. We shall admit signed measures as well, but we distinguish clearly
between the cases of positive and of signed measures. Invariance properties
of these measures are only postulated to the extent that the considered areas
are themselves invariant. In the first subsection, areas and measures will be
translation invariant, but no invariance property is assumed in the second
subsection.

The third subsection is devoted to a special topic from stochastic geometry,
the Poisson hyperplane processes. The connection with the Crofton formulae
treated before will not be that of an application, but will rather consist in a
common structural background. A basic feature in both studies is a relation
between certain measures on the space of hyperplanes and special convex
bodies, the (generalized) zonoids. Another common feature is the generation
of lower dimensional flats as intersections of hyperplanes, and a corresponding
generation of measures.
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4.1 Minkowski Spaces

Our first topic are Crofton formulae in Minkowski geometry. A Minkowski
space is (here) a finite dimensional normed space, say (Rn, ‖ · ‖). The unit
ball of this space,

B := {x ∈ Rn : ‖x‖ ≤ 1},

is a convex body with 0 as interior point and centre of symmetry. The space
of such convex bodies will be denoted by Cn. The norm ‖ · ‖ induces a metric
d by d(x, y) := ‖x− y‖ for x, y ∈ Rn.

For the subsequent computations, it is convenient to retain also the Eu-
clidean structure on Rn given by the scalar product 〈·, ·〉, although we work
in a Minkowski space with norm ‖ · ‖. This ‘impure’ procedure simplifies cal-
culations and presentation.

The metric d induces, in a well-known way, a notion of curve length for
rectifiable curves. This curve length is invariant under translations. We denote
the Minkowskian length by vol1; thus, in particular, vol1(S) = ‖a− b‖ if S is
the segment with endpoints a, b.

In contrast to the case k = 1, where the metric induces a natural notion
of curve length, for k > 1 there is no canonical notion of a k-dimensional area
in Minkowski spaces, but rather a variety of options. The principal ambiguity
can be made clear in the case k = n, the case of a notion of volume. A
reasonable notion of volume in the Minkowski space (Rn, ‖·‖) should be a Borel
measure, assigning a positive finite value to every nonempty bounded open
set, and determined solely by the Minkowskian metric. For the latter reason,
it should be invariant under Minkowskian isometries and thus, in particular,
under translations. The theory of Haar measures tells us that such a measure
is unique up to a positive constant factor, and thus it is a constant multiple of
the Lebesgue measure λn induced by the chosen Euclidean structure. Thus, a
Minkowskian notion of volume in (Rn, ‖ · ‖) is fixed if we assign a value of this
volume to the unit ball B. Since the notion of volume should be the same in
isometric Minkowski spaces, the value assigned to B should depend only on the
equivalence class of B under linear transformations. Thus, choosing a notion
of Minkowskian volume for n-dimensional Minkowski spaces is equivalent to
choosing a positive real function αn on the space Cn which is invariant under
linear transformations of Rn. If αn is chosen, then in the Minkowski space
with unit ball B the induced volume αn,B is given by

αn,B(M) =
αn(B)
λn(B)

λn(M)

for M ∈ B(Rn) (recall that B(X) is the σ-algebra of Borel sets of the topolog-
ical space X). This convenient representation does not depend on the choice
of the Euclidean structure.

The choice just of a normalizing factor may seem rather unimportant, but
it is not. Different choices make essential differences if we now employ this
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procedure for the definition of lower dimensional areas. Let k ∈ {1, . . . , n}.
For a k-dimensional convex body M , we denote by LM the linear subspace of
Rn parallel to the affine hull of M . Since a Minkowskian k-area is assumed to
be translation invariant, its value at M should depend only on the Minkowski
metric in the subspace LM . The unit ball of this Minkowski space is B ∩LM .
This leads us to the following axioms for a Minkowskian k-area. Let Ck denote
the set of k-dimensional convex bodies in Rn which are centrally symmetric
with respect to 0. A k-normalizing function is a function αk : Ck → R+

which is (i) continuous, (ii) invariant under linear transformations, and (iii)
satisfies αk(Ek) = κk if Ek is a k-dimensional ellipsoid. Such a function
induces, in a Minkowski space (Rn, ‖ · ‖) with unit ball B, a Minkowskian
k-area αk,B by

αk,B(M) :=
αk(B ∩ LM )
λk(B ∩ LM )

λk(M)

for every k-dimensional convex body M . Again, this is independent of the
Euclidean structure. The axiom (i) for a k-normalizing function seems reason-
able, (ii) ensures the invariance of the k-area under Minkowskian isometries,
and (iii) is assumed in order to obtain the standard k-area if the space is
Euclidean. The Minkowskian k-area can be extended to more general sets, for
example to k-dimensional C1-submanifolds M , by

αk,B(M) =
∫

M

αk(B ∩ TxM)
λk(B ∩ TxM)

λk(dx),

where TxM denotes the tangent space of M at x, considered as a subspace of
Rn.

For the quotient appearing in the integrand, we use the notation

αk(B ∩ L)
λk(B ∩ L)

=: σk,B(L) for L ∈ Ln
k

(which depends on the Euclidean structure) and call σk,B the scaling func-
tion; then

αk,B(M) = σk,B(LM )λk(M).

A 1-normalizing function is uniquely determined, hence σ1,B = 1, thus for
k = 1 we get the Minkowskian curve length vol1 again.

Now we can study the existence of Crofton formulae. We assume that a k-
normalizing function αk and a Minkowski space (Rn, ‖ · ‖) with unit ball B
are given.

Definition. A Crofton measure for αk,B is a translation invariant signed
measure ηn−k on En

n−k for which∫
En

n−k

card (M ∩ E) ηn−k(dE) = c αk,B(M) (73)
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holds for every k-dimensional convex body M , with a positive constant c
(which will be set equal to 1 in the following).

It is no essential restriction of the generality to consider here only convex
k-dimensional sets M . If (73) holds for these, the formula can be extended to
more general k-dimensional surfaces.

Let us suppose that a Crofton measure ηn−k for αk,B exists. Since it is
translation invariant and locally finite, there is a finite signed measure ϕ on
Ln

n−k such that∫
En

n−k

f dηn−k =
∫
Ln

n−k

∫
L⊥

f(L+ x)λk(dx)ϕ(dL) (74)

holds for every nonnegative measurable function f on En
n−k (see, e.g., [52,

4.1.1]). Let M be a k-dimensional convex body. For a subspace L, we denote
by |L the orthogonal projection to L. With the function [·, ·] introduced in
Subsection 2.1, we have λk(M |L⊥) = λk(M)[LM , L]. Now we obtain

αk,B(M) =
∫
En

n−k

card (M ∩ E) ηn−k(dE)

=
∫
En

n−k

1{M ∩ E 6= ∅} ηn−k(dE)

=
∫
Ln

n−k

∫
L⊥

1{M ∩ (L+ x) 6= ∅}λk(dx)ϕ(dL)

=
∫
Ln

n−k

λk(M |L⊥)ϕ(dL)

= λk(M)
∫
Ln

n−k

[LM , L]ϕ(dL).

This yields

σk,B(E) =
∫
Ln

n−k

[E,L]ϕ(dL) for E ∈ Ln
k . (75)

Conversely, if (75) is satisfied with a finite signed measure ϕ, then we can use
(74) to define a signed measure ηn−k on En

n−k, and this is a Crofton measure
for αk,B .

The crucial integral equation (75) is now first considered for k = 1. Choos-
ing v ∈ Sn−1 and for M the segment with endpoints v and −v, for which
α1,B(M) = vol1(M) = 2‖v‖, and representing (n− 1)-dimensional linear sub-
spaces by their Euclidean unit normal vectors, we see that (75) is equivalent
to

‖v‖ =
∫

Sn−1
|〈u, v〉| ρ(du)

with an even finite signed measure ρ on Sn−1.
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Introducing the polar unit ball (the dual body of B, where Rn and its dual
space have been identified via the scalar product),

Bo := {x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ B},

we have ‖v‖ = h(Bo, v) (e.g., [39, p. 44]); hence (75), for k = 1, is equivalent
to

h(Bo, v) =
∫

Sn−1
|〈u, v〉| ρ(du) for v ∈ Rn. (76)

A convex body Bo whose support function has a representation (76) with a
finite signed measure ρ is called a generalized zonoid, and it is a zonoid (as
defined in Subsection 1.3, i.e., a convex body which can be approximated by
finite vector sums of line segments) if there is such a representation with a
positive measure ρ. Every body in Cn with sufficiently smooth support func-
tion is a generalized zonoid. Therefore, the generalized zonoids are dense in
the space Cn, whereas the zonoids are nowhere dense in Cn. The crosspolytope
is an example of a centrally symmetric convex body which is not a generalized
zonoid. Hence, in the Minkowski space `n∞, no Crofton measure for vol1 exists.

Now we suppose that a positive Crofton measure for vol1 exists, and we
draw a second conclusion. For this, we choose m points p1, . . . , pm ∈ Rn and
integers N1, . . . , Nm with

m∑
i=1

Ni = 1. (77)

Let H be a hyperplane not incident with one of the points p1, . . . , pm, and
let H+,H− be the two closed halfspaces bounded by H. Then, denoting the
segment with endpoints pi, pj by pipj , we have

∑
i<j

1{H ∩ pipj 6= ∅}NiNj =

 ∑
pi∈H+

Ni

 ∑
pj∈H−

Nj


=

 ∑
pi∈H+

Ni

1−
∑

pi∈H+

Ni


≤ 0,

where we have used (77) and the fact that z(1 − z) ≤ 0 for every integer
z. Integrating the obtained inequality over all H ∈ En

n−1 with respect to the
positive measure ηn−1 (and observing that the set of hyperplanes through one
of the points p1, . . . , pm has measure zero), we obtain∑

i<j

d(pi, pj)NiNj ≤ 0. (78)

Generally, a metric d satisfying (78) for all m-tuples (N1, . . . , Nm) of integers
with (77) and all m ∈ N is called a hypermetric. We say that our Minkowski
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space (Rn, ‖ · ‖) is hypermetric if its induced metric is a hypermetric. Now
we can formulate a theorem.

Theorem 4.1. In the Minkowski space (Rn, ‖ · ‖) with unit ball B, a Crofton
measure for vol1 exists if and only if the polar unit ball Bo is a generalized
zonoid. The following conditions are equivalent:

(a) There exists a positive Crofton measure for vol1.

(b) The polar unit ball Bo is a zonoid.

(c) The Minkowski space (Rn, ‖ · ‖) is hypermetric.

For the implication (c) ⇒ (b), which we do not prove here, we refer to [1] and
the references given there.

We turn to k-areas for k > 1 and first introduce two special cases of such
areas, which play a prominent role. The Busemann k-area, denoted by βk,
is defined by the constant k-normalizing function, αk(C) = κk for C ∈ Ck.
The Holmes-Thompson k-area is defined by the k-normalizing function
αk(C) := κ−1

k vp(C) for C ∈ Ck, where

vp(C) := λk(C)λk(Co)

is the volume product; here the polar body Co is taken with respect to the
k-dimensional linear subspace containing C. The volume product is invari-
ant under linear transformations and therefore independent of the Euclidean
structure. The scaling function of the Busemann k-area is given by

σBus
k,B (L) =

κk

λk(B ∩ L)
for L ∈ Ln

k ,

and hence the Busemann k-area of a k-dimensional C1 submanifold M by

βk(M) =
∫

M

κk

λk(B ∩ TxM)
λk(dx). (79)

For the scaling function of the Holmes-Thompson k-area we obtain σHT
k,B(L) =

κ−1λk((B ∩ L)o). Convex geometry tells us that (B ∩ L)o = Bo|L, hence

σHT
k,B(L) =

λk(Bo|L)
κk

for L ∈ Ln
k . (80)

We denote the Holmes-Thompson k-area by volk; then

volk(M) =
∫

M

λk(Bo|TxM)
κk

λk(dx) (81)

for a k-dimensional C1 submanifold M .
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LetHk
B denote the k-dimensional Hausdorff measure that is induced by the

metric d of our Minkowski space. It can be shown that the Busemann k-area
βk(M) is nothing but Hk

B(M) (if the Hausdorff measure is suitably normal-
ized). Using this Hausdorff measure instead of the Euclidean area measure λk,
we can write the Holmes-Thompson area in the form

volk(M) =
1
κ2

k

∫
M

vp(B ∩ TxM)Hk
B (dx), (82)

which does not use the auxiliary Euclidean structure any more.

Now we study the existence of Crofton measures for a general Minkowskian
(n− 1)-area αn−1,B . Writing

σ(u) := 〈u, u〉1/2σn−1,B(u⊥) for u ∈ Rn \ {0},

we see that (75) for k = n− 1 is equivalent to

σ(u) =
∫

Sn−1
|〈u, v〉| ρ(dv), u ∈ Sn−1, (83)

with an even finite signed measure ρ on Sn−1.
Suppose that a positive Crofton measure exists for αn−1,B . Then ρ in

(83) is a positive measure, hence σ is the support function of a zonoid. This
zonoid is denoted by Iα,B and called the isoperimetrix. The name comes
from the isoperimetric problem: it can be shown that a convex body in Rn

with given positive volume has smallest (n − 1)-area αn−1,B of its boundary
if and only if it is homothetic to the isoperimetrix.

Conversely, if (83) holds with a positive measure ρ, then there exists a pos-
itive Crofton measure for the (n− 1)-area αn−1,B . For the Holmes-Thompson
(n − 1)-area this is always the case, in any Minkowski space. In fact, from a
well-known formula for projection volumes of convex bodies, we get for the
Holmes-Thompson area

σ(u) =
1

κn−1
λn−1(Bo|u⊥) =

1
2κn−1

∫
Sn−1

|〈u, v〉|Sn−1(Bo,dv)

for u ∈ Sn−1, and here the area measure Sn−1(Bo, ·) is positive.
For the Busemann (n−1)-area, it can be shown that the function σ is again

a support function, but not necessarily of a zonoid or a generalized zonoid.
As a consequence, there need not exist a Crofton measure for the Busemann
(n− 1)-area. More precise information is contained in the following theorem,
whose proof is based on properties of zonoids and generalized zonoids. Here,
Cn denotes a cube in Rn with centre 0.

Theorem 4.2. (a) There exist Minkowski spaces, with unit ball arbitrarily
close to Bn, in which there is no Crofton measure for the Busemann (n− 1)-
area. There also exist Minkowski spaces with unit ball arbitrarily close to Bn,
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but different from an ellipsoid, in which there is a positive Crofton measure
for the Busemann (n− 1)-area.

(b) In every Minkowski space of sufficiently large dimension n and with unit
ball sufficiently close to Cn, there is no positive Crofton measure for the Buse-
mann (n− 1)-area.

(c) There exist Minkowski spaces, for example `n∞ and `n1 , in which there is
no positive Crofton measure for any general Minkowskian (n−1)-area, except
for the multiples of the Holmes-Thompson (n− 1)-area.

(d) In every Minkowski space, there is a positive Crofton measure for the
Holmes-Thompson (n− 1)-area.

The preceding theorem is sufficient reason for us to concentrate, from now
on, on the Holmes-Thompson area. This is even more justified in view of the
following theorem.

Theorem 4.3. Let (Rn, ‖·‖) be a Minkowski space. If in this space there exists
a Crofton measure (a positive Crofton measure) for vol1, then there also exists
a Crofton measure (a positive Crofton measure) for volk, k ∈ {2, . . . , n− 2}.

Proof. Suppose that in the Minkowski space with unit ball B there is a Crofton
measure for vol1. Then, by (76), there is an even finite signed measure ρ on
Sn−1 such that

h(Bo, u) =
∫

Sn−1
|〈u, v〉| ρ(dv) for u ∈ Rn. (84)

We employ a result from the theory of generalized zonoids. For vectors
u1, . . . , uk ∈ Sn−1, we denote by L(u1, . . . , uk) the linear subspace spanned
by these vectors and by [u1, . . . , uk] the k-dimensional Euclidean volume of
the parallelepiped spanned by them. Then for E ∈ Ln

k we have

λk(Bo|E) (85)

=
2k

k!

∫
Sn−1

. . .

∫
Sn−1

[E,L(u1, . . . , uk)⊥][u1, . . . , uk] ρ(du1) · · · ρ(duk)

(see [56], and observe that the proof is valid if ρ is a signed measure). We
define a signed measure ρ(k) on Ln

k by

ρ(k)(A) := ck

∫
Sn−1

. . .

∫
Sn−1

1A(L(u1, . . . , uk))[u1, . . . , uk] ρ(du1) · · · ρ(duk)

for Borel sets A ⊂ Ln
k , where

ck =
2k

k!κk
. (86)



54 Rolf Schneider

Then we can write (80) in the form

σHT
k,B(E) =

∫
Ln

k

[E,L⊥] ρ(k)(dL) =
∫
Ln

n−k

[E,L] ρ(k)(dL)

for E ∈ Ln
k ; here ρ(k) is the image measure of ρ(k) under the map L 7→ L⊥

from Ln
k to Ln

n−k. We see that the integral equation (75) has a solution for
σHT

k,B , hence there is a Crofton measure for volk.
If there is a positive Crofton measure for vol1, then ρ is a positive measure,

which implies that ρ(k) is a positive measure, hence there is a positive Crofton
measure for volk. ut

In the proof of Theorem 4.3 we started with a Crofton measure for vol1, say η,
and we constructed a Crofton measure for volk, say ηn−k. This construction
has a nice geometric interpretation. Given is a measure η on the space of
hyperplanes, and we need a measure on the space of (n− k)-planes. It turns
out that ηn−k, as constructed, is the image measure of ckη⊗k H∗

k under the
intersection map

(H1, . . . ,Hk) 7→ H1 ∩ · · · ∩Hk

from H∗
k to En

n−k, where H∗
k denotes the set of all k-tuples (H1, . . . ,Hk) of

hyperplanes with dim(H1∩· · ·∩Hk) = n−k and denotes restriction. More
explicitly, for A ∈ B(En

n−k) we have

ηn−k(A) = ck η ⊗ · · · ⊗ η︸ ︷︷ ︸
k

({(H1, . . . ,Hk) ∈ H∗
k : H1 ∩ · · · ∩Hk ∈ A}).

There are two main cases where the assumption of Theorem 4.3 is satis-
fied. If the norm ‖ · ‖, which is equal to h(Bo, ·), is sufficiently smooth, then
Bo is a generalized zonoid, hence a Crofton measure exists for vol1. If the
Minkowski space (Rn, ‖ · ‖) is hypermetric, then Theorem 4.1 says that a pos-
itive Crofton measure for vol1 exists. Hence, in either of these two cases, the
Holmes-Thompson area of any dimension satisfies an intersection formula of
Crofton type.

Hints to the literature. Motivated by earlier work of Busemann, a study
of integral geometric formulae for areas in affine spaces, and particularly in
Minkowski spaces, was made in [53]. Much of the material exposed here, in-
cluding the proof of Theorem 4.3, is found there, together with additional
information. Parts (a) and (b) of Theorem 4.2 are proved in [44], and part (c)
in [41].

4.2 Projective Finsler Spaces

The main result of the previous subsection, the existence of Crofton measures
for Holmes-Thompson areas in smooth or hypermetric Minkowski spaces, can
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be extended to certain spaces where one has no longer any nontrivial in-
variance under a transformation group. We sketch here, without proofs, the
main ideas of such an extension. It takes place in a natural generalization of
Minkowski spaces, the projective Finsler spaces. Generally speaking, a Finsler
space is a differentiable manifold together with a norm in each tangent space,
satisfying certain smoothness assumptions. Here we consider only Rn as the
underlying manifold (where we canonically identify each tangent space of Rn

with Rn itself), and we consider Finsler metrics on Rn which are compatible
with the affine structure of Rn, in the sense we shall now make precise.

By a Finsler metric on Rn we understand here a continuous function
F : Rn × Rn → [0,∞) such that F (x, ·) =: ‖ · ‖x is a norm on Rn for each
x ∈ Rn. If this holds, the pair (Rn, F ) is called a Finsler space. In such a
Finsler space, the length of a parameterized piecewise C1 curve γ : [a, b] →
Rn is defined by

LF (γ) :=
∫ b

a

F (γ(t), γ′(t)) dt;

this is independent of the parameterization since F (γ(t), ·) is a norm. For
p, q ∈ Rn, the distance dF (p, q) is defined as the infimum of the lengths of
all piecewise C1 curves connecting p and q. Then dF is a metric, called the
metric induced by F . The Finsler space (Rn, F ) is called projective if line
segments are shortest curves connnecting their endpoints. If this holds, the
segment with endpoints p, q has length dF (p, q).

Let (Rn, F ) be a Finsler space. For x ∈ Rn, the unit ball of the Minkowski
space (Rn, ‖ · ‖x) is denoted by Bx (recall that we have identified the tangent
space TxRn of Rn at x with Rn). As in the previous subsection, we use a fixed
auxiliary scalar product 〈·, ·〉 on Rn. With its aid, we define the polar body of
Bx,

Bo
x := {v ∈ Rn : 〈u, v〉 ≤ 1 for all u ∈ Bx}.

(Without our simplifying conventions, Bx would be a convex body in the
tangent space TxRn, and Bo

x would be a convex body in the dual tangent
space T ∗x Rn.)

Extending the definition given for Minkowski spaces, one can define
the Holmes-Thompson k-area of a k-dimensional C1-submanifold M in
(Rn, F ) by

volk(M) =
1
κk

∫
M

λk(Bo
x|TxM)λk(dx).

This definition uses the Euclidean structure in several ways, but is, in fact,
independent of its choice. Formula (82), which does not use the Euclidean
structure, can be extended as follows. If Hk

F denotes the k-dimensional Haus-
dorff measure induced by the metric dF , then

volk(M) =
1
κ2

k

∫
M

vp(Bx ∩ TxM)Hk
F (dx). (87)
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As in the special case of Minkowski spaces, the existence of Crofton mea-
sures (which we define in the same way) for Holmes-Thompson areas is closely
related to the theory of generalized zonoids. First, we study this connection
under a smoothness assumption. We assume that the Finsler space (Rn, F )
is smooth, meaning that the function F is of class C∞ (weaker assumptions
would be sufficient, but this is not an issue here).

Let x ∈ Rn be given. Due to the smoothness assumption, the integral
equation

F (x, v) =
∫

Sn−1
|〈u, v〉|γx(u)σn−1(du)

has a continuous even solution γx on Sn−1 (see, e.g., [39, Theorem 3.5.3]).
Now the assumption that the Finsler space (Rn, F ) is projective has a strong
implication on γx(u), as a function of its two variables x and u: there exists a
continuous function g : Sn−1 × R → R such that g(u, τ) = g(−u,−τ) and

γx(u) = g(u, 〈x, u〉) for (x, u) ∈ Rn × Rn.

This follows from Pogorelov’s [27] work on Hilbert’s Fourth Problem (see [45]
for a brief sketch of the main ideas). Recalling that F (x, ·) = ‖ · ‖x = h(Bo

x, ·),
which is the support function of the polar unit ball at x, we now have

h(Bo
x, v) =

∫
Sn−1

|〈u, v〉|g(u, 〈x, u〉)σn−1(du) (88)

for v ∈ Rn. This representation is of the form of (76) and can be employed in
a similar way. We use it for the construction of signed measures ηn−k on the
space En

n−k of (n−k)-flats, as in the proof of Theorem 4.3 and the subsequent
remark, in the following way. The function x 7→ g(u, 〈x, u〉) is constant on the
hyperplane H through x with normal vector u, let h(H) be its value on H.
This defines a function h on En

n−1. Let η be the signed measure on En
n−1 which

has density h with respect to the rigid motion invariant measure on En
n−1.

Explicitly, this comes down to the following. We parameterize hyperplanes of
Rn by

Hu,t = {y ∈ Rn : 〈y, u〉 = t}, u ∈ Sn−1, t ∈ R,

and then define a signed measure η on En
n−1 by

η(A) :=
∫

Sn−1

∫
R
1A(Hu,t)g(u, t) dt σn−1(du) (89)

for A ∈ B(En
n−1). Next, we define ηn−k as the image measure of ckη⊗k under

the intersection map (H1, . . . ,Hk) 7→ H1 ∩ · · · ∩Hk (with ck given by (86)).
Explicitly, this means that

ηn−k(A) := ck

∫
Sn−1

. . .

∫
Sn−1

∫
R
. . .

∫
R
1A(Hu1,t1 ∩ · · · ∩Huk,tk

)

g(u1, t1) · · · g(uk, tk) dt1 · · ·dtk σn−1(du1) · · ·σn−1(duk) (90)
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for A ∈ B(En
n−k).

With these measures, we can now state Crofton formulae in a very general
version. A set M ⊂ Rn is called (Hk, k)-rectifiable, for k ∈ {1, . . . , n}, if
Hk(M) < ∞ and there are Lipschitz maps fi : Rk → Rn (i ∈ N) such
that Hk(M \

⋃
i∈N fi(Rk)) = 0. Here the k-dimensional Hausdorff measure

Hk and the notion of Lipschitz map refer to a Euclidean structure, but the
class of (Hk, k)-rectifiable sets is independent of the choice of this structure.
The definition of the Holmes-Thompson k-area can be extended to (Hk, k)-
rectifiable Borel sets, for example by (87).

Theorem 4.4. Let (Rn, F ) be a smooth projective Finsler space. Then, for
k ∈ {1, . . . , n− 1} and every (Hk, k)-rectifiable Borel set M in Rn,∫

En
n−k

card (M ∩ E) ηn−k(dE) = volk(M). (91)

An even more general version holds. This refers to the case where M and
the intersecting flats are not necessarily of complementary dimensions. For
j ∈ {1, . . . , n−1} and k ∈ {n− j, . . . , n}, and for (Hk, k)-rectifiable Borel sets
M , ∫

En
j

volk+j−n(M ∩ E) ηj(dE) =
ck+j−ncn−j

ck
volk(M). (92)

We turn to the existence of positive Crofton measures. A projective Finsler
space (Rn, F ) is called hypermetric if its induced metric dF is a hypermetric.
We assume now that the Finsler space (Rn, F ) is smooth, projective, and
hypermetric. Then every polar local unit ball Bo

x is not only a generalized
zonoid (which it is by (88)), but even a zonoid (as proved in [1]), which means
that the function g(·, 〈x, ·〉) in (88), and hence g, is nonnegative. It follows
that each ηn−k is a positive measure.

The existence of positive Crofton measures, as just established, can be ex-
tended to general (i.e., not necessarily smooth) hypermetric projective Finsler
spaces. Such an extension can be based on the following approximation re-
sult, which Pogorelov [27] and Szabó [54] established in their work on Hilbert’s
Fourth Problem. For every ε > 0, there is a smooth projective Finsler space
(Rn, Fε) such that limε→0 Fε = F , uniformly on every compact set. Moreover,
each (Rn, Fε) is hypermetric (see [1]). Therefore, to every ε, there exists a pos-
itive Crofton measure ηn−1 for the Holmes-Thompson 1-area, as constructed
above. This measure depends on ε; we denote it by η(ε). Making essential use
of the positivity of these measures, one can show that the family (η(ε))ε∈(0,1)

of measures is relatively compact in the vague topology. Hence, there is a
sequence (εi)i∈N tending to zero such that the sequence (η(εi))i∈N converges
vaguely to a measure η on En

n−1. With this measure, we repeat the earlier
construction: we define the measure ηn−k on En

n−k as the image measure of
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ckη
⊗k H∗

k under the map (H1, . . . ,Hk) 7→ H1 ∩ · · · ∩Hk from H∗
k to En

n−k.
Using the vague convergence of (η(εi))i∈N to η, it can be proved that∫

En
n−k

card (M ∩ E) ηn−k(dE) = volk(M) (93)

for k ∈ {1, . . . , n − 1} and every k-dimensional convex body M . By defini-
tion, ηn−k is a positive Crofton measure for the Holmes-Thompson k-area in
(Rn, F ). However, it has not been investigated, in this case of a general Finsler
metric, whether (93) can be extended to (Hk, k)-rectifiable Borel sets M , nor
whether (92) has a counterpart.

We remark that a measure ηn−k satisfying (93) for all k-dimensional convex
bodies M is uniquely determined if either k = 1 or k = n− 1, but not in the
intermediate cases.

Theorem 4.2(d) can be extended from Minkowski spaces to projective
Finsler spaces, thus a positive Crofton measure for the Holmes-Thompson
(n − 1)-area in the projective Finsler space (Rn, F ) exists even if the space
is not hypermetric. The clue for a proof of this fact is again a formula from
the theory of generalized zonoids. First we assume that (Rn, F ) is a smooth
projective Finsler space. Let sn−1(Bo

x, u) denote the product of the principal
radii of curvature of the boundary of Bo

x at the point with outer normal vector
u ∈ Sn−1. From the representation (88), one has an explicit integral repre-
sentation of sn−1(Bo

x, u) in terms of the function g; see [55, Satz 7]. With its
aid, one can show that a function δ on En

1 can be defined by

δ(lin{u}+ x) := sn−1(Bo
x, u) for u ∈ Sn−1, x ∈ Rn

and that this function is a density of the signed measure η1 with respect to the
suitably normalized rigid motion invariant measure on the space En

1 of lines.
Since this density is always nonnegative, the Crofton measure η1 is positive.
The existence of a positive Crofton measure for the Holmes-Thompson (n−1)-
area in non-smooth projective Finsler spaces can then again be obtained by
approximation.

We collect the stated results in a theorem.

Theorem 4.5. Let (Rn, F ) be a projective Finsler space. In this space, there
exists a positive Crofton measure for the Holmes-Thompson (n−1)-area. If the
space is hypermetric, there exists a positive Crofton measure for the Holmes-
Thompson k-area, for each k ∈ {1, . . . , n− 1}.

Hints to the literature. For smooth projective Finsler spaces and smooth
submanifolds, a version of the Crofton formula (91) was proved in [2], using
the symplectic structure on the space of geodesics of a projective Finsler
space. The general formula (92), together with its proof based on the theory
of generalized zonoids, appears in [46]. Theorem 4.5 was proved in [45].
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4.3 Nonstationary hyperplane processes

Finally, we treat a special topic from stochastic geometry which is closely
related to the preceding subsection. The relation to Crofton measures in pro-
jective Finsler spaces is not one of application, but consists in the similarity
of the underlying structures. We study stochastic processes of k-planes in Rn,
and in particular of hyperplanes.

First we need some explanations. Let S be an arbitrary locally compact
space with a countable base. A subset F ⊂ S is called locally finite if F ∩C
is finite for every compact subset C of S. Let Flf be the system of all locally
finite subsets of S. One equips Flf with the smallest σ-algebra for which all
counting functions

F 7→ card (F ∩A), A ∈ B(S),

are measurable. A simple point process in S is a random variable X on
some probability space (Ω,A,P) with values in Flf . The expectation

Θ(A) := E card (X ∩A), A ∈ B(S),

defines the intensity measure of the point process X. The point process
X with intensity measure Θ is called a Poisson process if Θ is finite on
compact sets and if, for every Borel set A ⊂ S with Θ(A) <∞ and all j ∈ N0

one has

P(card (X ∩A) = j) =
Θ(A)j

j!
e−Θ(A).

This is now applied to the space S = En
k , where k ∈ {0, . . . , n− 1}. We as-

sume that X is a simple point process in En
k , with an intensity measure Θ 6≡ 0

which is finite on compact sets. We call X a k-flat process. The process
X is stationary (isotropic) if its distribution is invariant under transla-
tions (rotations). Stationary k-flat processes have been thoroughly studied in
stochastic geometry. We work here with a weaker assumption.

Definition. The k-flat process X is regular if its intensity measure has a
continuous density with respect to some translation-invariant, locally finite
measure on En

k .

Let X be a regular k-flat process, with intensity measure Θ. Thus, there exist
a locally finite, translation invariant measure µ on En

k and a nonnegative,
continuous function h on En

k such that

Θ(A) =
∫
A
hdµ for A ∈ B(En

k ).

By the decomposition result (74), there is a finite measure Φ on Ln
k such that∫

En
k

f dµ =
∫
Ln

k

∫
L⊥

f(L+ x)λk(dx)Φ(dL)
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for every nonnegative, measurable function f on En
k . This gives

Θ(A) =
∫
Ln

k

∫
L⊥

1A(L+ x)h(L+ x)λk(dx)Φ(dL) (94)

for A ∈ B(En
k ).

To measure the local ‘denseness’ of the process X, we consider the expec-
tations

E
∑
E∈X

λk(E ∩B)

for B ∈ B(Rn) with λn(B) <∞. One obtains

E
∑
E∈X

λk(E ∩B) =
∫

B

∫
Ln

k

h(L+ x)Φ(dL)λn(dx).

Thus, the measure E
∑

E∈X λk(E ∩ ·) has a continuous density with respect
to Lebesgue measure λn, given by

γ(x) :=
∫
Ln

k

h(L+ x)Φ(dL).

This function γ is called the intensity function of the process X. If X is
stationary, this function is a constant, called the intensity ofX. The following
more intuitive interpretation of the intensity function can be proved:

γ(x) = lim
r→0

1
κn−krn−k

E card ({E ∈ X : E ∩ (rBn + x) 6= ∅}).

From now on we assume that k = n− 1, so that X is a regular hyperplane
process. The density h is now defined on the space En

n−1 of hyperplanes, hence
we can define a function g : Sn−1 × R → [0,∞) by

g(u, t) := h(Hu,t).

Then g is continuous and satisfies g(u, t) = g(−u,−t). The measure Φ on
Ln

n−1 defines an even measure Φ̃ on the sphere Sn−1 satisfying

Φ̃(A) =
1
2
Φ({Hu,0 : u ∈ A})

for Borel sets A ⊂ Sn−1 without antipodal points. Now (94) can be written
in the form

Θ(A) =
∫

Sn−1

∫
R
1A(Hu,t)g(u, t) dt Φ̃(du) (95)

for A ∈ B(En
n−1). Note that this representation is of the type (89), but is more

general. In the preceding subsection, the function g was derived from the local
unit balls of a given projective Finsler metric. We will now, reversely, use the
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present function g to construct ‘local unit balls’ and exhibit their relevance
for the geometry of the hyperplane process X.

For each x ∈ Rn, we define a finite even measure ρx on Sn−1 by

ρx(A) :=
∫

A

g(u, 〈u, x〉) Φ̃(du), A ∈ B(Sn−1).

Then we define the local associated zonoid Πx of X at x as the convex
body with support function

h(Πx, u) =
∫

Sn−1
|〈u, v〉| ρx(dv), u ∈ Rn. (96)

The main results of this subsection are two examples showing how these
local associated zonoids enter the discussion of natural geometric questions
about the hyperplane process X.

First, let M ⊂ Rn be a closed line segment. We ask for the expected
number of intersection points of M with the hyperplanes of X. Putting

HM := {H ∈ En
n−1 : H ∩M 6= ∅},

this expected number is given by

E card (X ∩HM ) = Θ(HM ) =
∫

Sn−1

∫
R
1HM

(Hu,t)g(u, t) dt Φ̃(du).

For the computation of the inner integral, we choose a C1 parameterization
y : [a, b] → Rn of M with y′ 6= 0. Let u ∈ Sn−1 be given, without loss
of generality not orthogonal to M , and let 1HM

(Hu,t) = 1. Then there is a
unique s ∈ [a, b] with M ∩Hu,t = {y(s)}, hence t = 〈u, y(s)〉. Substituting t
by s · sgn 〈u, y′〉, we get

E card (X ∩HM ) =
∫

Sn−1

∫ b

a

g(u, 〈u, y(s)〉) |〈u, y′(s)〉|ds Φ̃(du)

=
∫ b

a

h(Πy(s), y
′(s)) ds.

Defining a Finsler metric F by

F (x, u) := h(Πx, u),

we see that

E card (X ∩HM ) =
∫ b

a

F (y(s), y′(s)) ds,

hence we can formulate the following result.
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Theorem 4.6. The expected number of hyperplanes in the regular hyperplane
process X hitting the segment M is equal to the Finsler length of M, for the
Finsler metric defined by the support function of the local associated zonoids.

For our second question we assume now, in addition, that X is a Poisson
process. The question concerns the processes of lower dimensional flats that
are generated by intersecting hyperplanes of X. For k ∈ {2, . . . , n} we take,
in every realization of X, all intersections of any k hyperplanes in X which
have linearly independent normal vectors. This defines a simple process of
(n− k)-flats. We denote it by Xk, and its intensity measure by Θk. Using the
strong independence properties of Poisson processes, it can be shown that

Θk(A) =
1
k!

∫
En

n−1

· · ·
∫
En

n−1

1A(H1 ∩ · · · ∩Hk)Θ(dH1) · · ·Θ(dHk) (97)

for A ∈ B(En
n−k). This formula is similar to (90). From (97) and the regularity

of X it can be deduced that Xk is also regular. In particular, the intensity
function of Xk is defined; we denote it by γk. A computation gives

γk(x) =
1
k!

∫
Sn−1

· · ·
∫

Sn−1
[u1, . . . , uk] ρx(du1) · · · ρx(duk). (98)

The geometric question we want to answer is whether one can find sharp
bounds for the intensity function of the intersection process of order k in
terms of the intensity function of the process X itself. The answer comes
from a beautiful interpretation of the integral (98). We have mentioned in
Subsection 4.1 that the integral representation (84) implies the representation
(85) for the k-dimensional projection volume. Further, we know from (17) that
averaging the k-dimensional projection volumes over all directions gives the
kth intrinsic volume. Applying this to the convex body Πx, which has the
representation (96), we must get a formula for the intrinsic volume Vk(Πx).
The result is

Vk(Πx) =
2k

k!

∫
Sn−1

· · ·
∫

Sn−1
[u1, . . . , uk] ρx(du1) · · · ρx(duk).

Comparison with (98) now shows that

γk(x) = Vk(2−1Πx).

The intrinsic volumes of convex bodies satisfy well-known inequalities. As
a consequence, and with some additional arguments concerning the equality
case, the following sharp estimate can be obtained.

Theorem 4.7. Let X be a regular Poisson hyperplane process in Rn with in-
tensity function γ. Let k ∈ {2, . . . , n}, and let γk be the intensity function of
the intersection process Xk of order k. Then
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γk(x) ≤
(
n
k

)
κk

n−1

nkκn−kκ
k−1
n

γ(x)k

for x ∈ Rn. Equality for all x ∈ Rn holds if and only if the process X is
stationary and isotropic.

Hints to the literature. Processes of k-flats are treated, for example, in
[52]. The contents of this subsection are taken from [49], where full proofs can
be found.
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1979.

12. Hadwiger, H: Einige Anwendungen eines Funktionalsatzes für konvexe Körper
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