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Abstract

The goal of this course is to give an introduction to periodic ho-

mogenization theory with an emphasis on applications to Schrödinger

equation. We shall review the formal method of two-scale asymptotic

expansions, then discuss the rigorous two-scale convergence method as

well as the Bloch wave decomposition. Eventually these tools will be

apply to the Schrödinger equation with a periodic potential perturbed

by a small macroscopic potential. The notion of effective mass for the

one electron model in solid state physics will be derived. Localization

effects will also be emphasized.
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1 Introduction

This set of lecture notes is an elementary introduction to periodic homog-
enization, two-scale convergence, Bloch waves, and their application to the
Schrödinger equation with a periodic potential. In particular, the notion of
effective mass which is central in solid state physics will be rigorously derived
here.

Mathematically, homogenization can be defined as a theory for averag-
ing partial differential equations and defining both effective properties and
macroscopic models. Although this question of averaging and finding effec-
tive properties is very old in physics or mechanics, the mathematical theory
of homogenization is quite recent, going back to the 1970’s. The most gen-
eral framework is known as the H-convergence, or G-convergence, introduced
by Spagnolo [47], [48], and generalized by Tartar and Murat [38], [50]. Al-
though homogenization is not restricted to periodic problems, we shall focus
here on periodic homogenization which is simpler and enough for the asymp-
totic analysis of periodic structures. Indeed, in many fields of science and
technology one has to solve boundary value problems in periodic media. If
the size of the period is small compared to the size of the medium, denoting
by ε their ratio, the complexity of the problem can be reduced by an asymp-
totic analysis, as ε goes to zero. In other words, starting from a microscopic
description of a problem, one seeks a macroscopic, or effective, model. There
are many textbooks on periodic homogenization, see e.g. [9], [10], [17], [31],
[46].
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2 Asymptotic expansions in periodic homog-

enization

This section is devoted to an elementary introduction to periodic homoge-
nization using the heuristic method ot two-scale asymptotic expansions. A
rigorous mathematical justification will be given in the next section on two-
scale convergence.

We consider a model problem of thermal or electrical conductivity in a
periodic medium (for example, an heterogeneous domain obtained by mixing
periodically two different phases, one being the matrix and the other the
inclusions; see Figure 1). To fix ideas, the periodic domain is called Ω (a
bounded open set in R

N with N ≥ 1 the space dimension), its period ε
(a positive number which is assumed to be very small in comparison with
the size of the domain), and the rescaled unit periodic cell Y = (0, 1)N . The
conductivity in Ω is not constant, but varies periodically with period ε in each
direction. It is a matrix (a second order tensor) A(y), where y = x/ε ∈ Y is
the fast periodic variable, while x ∈ Ω is the slow variable. Equivalently, x
is also called the macroscopic variable, and y the microscopic variable. Since
the component conductors do not need to be isotropic, the matrix A can be
any second order tensor that is positive definite, i.e., there exists a positive
constant α > 0 such that, for any vector ξ ∈ R

N and at any point y ∈ Y ,

α|ξ|2 ≤
N
∑

i,j=1

Aij(y)ξiξj.

At this point, the matrix A is not necessarily symmetric (such is the case
when some drift is taken into account in the diffusion process). The matrix
A(y) is a periodic function of y, with period Y , and it may be discontinuous in
y (to model the discontinuity of conductivities from one phase to the other).

Denoting by f(x) the source term (a scalar function defined in Ω), and
enforcing a Dirichlet boundary condition (for simplicity), our model problem
of conductivity reads







−div
(

A
(x

ε

)

∇uε
)

= f in Ω

uε = 0 on ∂Ω,
(1)

where uε(x) is the unknown function, modeling the electrical potential or the
temperature.
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Figure 1: A periodic domain.

The domain Ω, with its conductivity A
(

x
ε

)

, is highly heterogeneous with
periodic heterogeneities of lengthscale ε. Usually one does not need the full
details of the variations of the potential or temperature uε, but rather some
global of averaged behavior of the domain Ω considered as an homogeneous
domain. In other words, an effective or equivalent macroscopic conductivity
of Ω is sought. From a numerical point of view, solving equation (1) by any
method will require too much effort if ε is small since the number of elements
(or degrees of freedom) for a fixed level of accuracy grows like 1/εN . It is thus
preferable to average or homogenize the properties of Ω and compute an ap-
proximation of uε on a coarse mesh. Averaging the solution of (1) and finding
the effective properties of the domain Ω is what we call homogenization.

The mathematical theory of homogenization works completely differently.
Rather than considering a single heterogeneous medium with a fixed length-
scale, the problem is first embedded in a sequence of similar problems for
which the lengthscale ε, becoming increasingly small, goes to zero. Then,
an asymptotic analysis is performed as ε tends to zero, and the conductivity
tensor of the limit problem is said to be the effective or homogenized conduc-
tivity. This seemingly more complex approach has the advantage of defining
uniquely the homogenized properties. Further, the approximation made by
using effective properties instead of the true microscopic coefficients can be
rigorously justified by quantifying the resulting error.

In the case of a periodic medium Ω, this asymptotic analysis of equation
(1), as the period ε goes to zero, is especially simple. The solution uε is
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written as a power series in ε

uε =

+∞
∑

i=0

εiui.

The first term u0 of this series will be identified with the solution of the so-
called homogenized equation whose effective conductivity A∗ can be exactly
computed. It turns out that A∗ is a constant tensor, describing a homoge-
neous medium, which is independent of f and of the boundary conditions.
Therefore, numerical computations on the homogenized equation do not re-
quire a fine mesh since the heterogeneities of size ε have been averaged out.
This homogenized tensor A∗ is almost never a usual average (arithmetic or
harmonic) of A(y). Various estimates will confirm this asymptotic analysis
by telling in which sense uε is close to u0 as ε tends to zero.

Remark 2.1 From a more theoretical point of view, homogenization can be
interpreted as follows. Rather than studying a single problem (1) for the
physically relevant value of ε, we consider a sequence of such problems indexed
by the period ε, which is now regarded as a small parameter going to zero.
The question is to find the limit of this sequence of problems. The notion of
limit problem is defined by considering the convergence of the sequence (uε)ε>0

of solutions of (1): Denoting by u its limit, the limit problem is defined as the
problem for which u is a solution. Of course, u will turn out to coincide with
u0, the first term in the series defined above, and it is therefore the solution
of the homogenized equation. Section 3 is devoted to this approach. Clearly
the mathematical difficulty is to define an adequate topology for this notion
of convergence of problems as ε goes to zero.

The method of two-scale asymptotic expansions is an heuristic method,
which allows one to formally homogenize a great variety of models or equa-
tions posed in a periodic domain. We present it briefly and refer to the
classical books [9], [10], and [46] for more detail. A mathematical justifica-
tion of what follows is to be found in the next section. As already stated,
the starting point is to consider the following ansatz, or two-scale asymptotic
expansion, for the solution uε of e quation (1):

uε(x) =

+∞
∑

i=0

εiui

(

x,
x

ε

)

, (2)
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where each term ui(x, y) is a function of both variables x and y, periodic in
y with period Y = (0, 1)N (ui is called a Y -periodic function with respect to
y). This series is plugged into the equation, and the following derivation rule
is used:

∇
(

ui

(

x,
x

ε

))

=
(

ε−1∇yui + ∇xui
)

(

x,
x

ε

)

, (3)

where ∇x and ∇y denote the partial derivative with respect to the first and
second variable of ui(x, y). For example, one has

∇uε(x) = ε−1∇yu0

(

x,
x

ε

)

+

+∞
∑

i=0

εi (∇yui+1 + ∇xui)
(

x,
x

ε

)

.

Equation (1) becomes a series in ε

−ε−2 [divyA∇yu0]
(

x,
x

ε

)

−ε−1 [divyA(∇xu0 + ∇yu1) + divxA∇yu0]
(

x,
x

ε

)

−ε0 [divxA(∇xu0 + ∇yu1) + divyA(∇xu1 + ∇yu2)]
(

x,
x

ε

)

−
+∞
∑

i=1

εi [divxA(∇xui + ∇yui+1) + divyA(∇xui+1 + ∇yui+2)]
(

x,
x

ε

)

= f(x).

(4)

Identifying each coefficient of (4) as an individual equation yields a cascade of
equations (a series of the variable ε is zero for all values of ε if each coefficient
is zero). It turns out that the three first equations are enough for our purpose.
The ε−2 equation is

−divyA(y)∇yu0(x, y) = 0,

which is nothing else than an equation in the unit cell Y with periodic bound-
ary condition. In this equation, y is the variable, and x plays the role of a
parameter. It can be checked (see Lemma 2.3 below) that there exists a
unique solution of this equation up to a constant (i.e., a function of x inde-
pendent of y since x is just a parameter). This implies that u0 is a function
that does not depend on y, i.e., there exists a function u(x) such that

u0(x, y) ≡ u(x).

Since ∇yu0 = 0, the ε−1 equation is

−divyA(y)∇yu1(x, y) = divyA(y)∇xu(x), (5)
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which is an equation for the unknown u1 in the periodic unit cell Y . Again,
it is a well-posed problem, which admits a unique solution up to a constant,
as soon as the right hand side is known. Equation (5) allows one to compute
u1 in terms of u, and it is easily seen that u1(x, y) depends linearly on the
first derivative ∇xu(x).

Finally, the ε0 equation is

−divyA(y)∇yu2(x, y) = divyA(y)∇xu1

+divxA(y) (∇yu1 + ∇xu) + f(x),
(6)

which is an equation for the unknown u2 in the periodic unit cell Y . Equation
(6) admits a solution if a compatibility condition is satisfied (the so-called
Fredholm alternative; see Lemma 2.3). Indeed, integrating the left hand side
of (6) over Y , and using the periodic boundary condition for u2, we obtain

∫

Y

divyA(y)∇yu2(x, y)dy =

∫

∂Y

[A(y)∇yu2(x, y)] · n ds = 0,

which implies that the right hand side of (6) must have zero average over Y ,
i.e.,

∫

Y

[divyA(y)∇xu1 + divxA(y) (∇yu1 + ∇xu) + f(x)] dy = 0,

which simplifies to

−divx

(
∫

Y

A(y) (∇yu1 + ∇xu) dy

)

= f(x) in Ω. (7)

Since u1(x, y) depends linearly on ∇xu(x), equation (7) is simply an equation
for u(x) involving only the second order derivatives of u.

In order to compute u1 and to simplify (7), we introduce the so-called cell
problems. We denote by (ei)1≤i≤N the canonical basis of R

N . For each unit
vector ei, consider the following conductivity problem in the periodic unit
cell:

{

−divyA(y) (ei + ∇ywi(y)) = 0 in Y
y → wi(y) Y -periodic,

(8)

where wi(y) is the local variation of potential or temperature created by
an averaged (or macroscopic) gradient ei. By linearity, it is not difficult to
compute u1(x, y), solution of (5), in terms of u(x) and wi(y)

u1(x, y) =

N
∑

i=1

∂u

∂xi
(x)wi(y). (9)
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In truth, u1(x, y) is merely defined up to the addition of a function ũ1(x) (de-
pending only on x), but this does not matter since only its gradient ∇yu1(x, y)
is used in the homogenized equation. Inserting this expression in equation
(7), we obtain the homogenized equation for u that we supplement with a
Dirichlet boundary condition on ∂Ω,

{

−divxA
∗∇xu(x) = f(x) in Ω

u = 0 on ∂Ω.
(10)

The homogenized conductivity A∗ is defined by its entries

A∗
ij =

∫

Y

[(A(y)∇ywi) · ej + Aij(y)] dy,

or equivalently, after a simple integration by parts in Y ,

A∗
ij =

∫

Y

A(y) (ei + ∇ywi) · (ej + ∇wj) dy. (11)

The constant tensor A∗ describes the effective or homogenized properties of
the heterogeneous material A

(

x
ε

)

. Note that A∗ does not depend on the
choice of domain Ω, source term f , or boundary condition on ∂Ω.

Remark 2.2 This method of two-scale asymptotic expansions is unfortu-
nately not rigorous from a mathematical point of view. In other words, it
yields heuristically the homogenized equation, but it does not yield a correct
proof of the homogenization process. The reason is that the ansatz (2) is
usually not correct after the two first terms. For example, it does not in-
clude possible boundary layers in the vicinity of ∂Ω (for details, see, e.g.,
[35]). Nevertheless, it is possible to rigorously justify the above homogeniza-
tion process, in particular by the method of two-scale convergence as explained
below.

Lemma 2.3 Let f(y) ∈ L2
#(Y ) be a periodic function. There exists a unique

solution in H1
#(Y )/R of

{

−divA(y)∇w(y) = f in Y
y → w(y) Y -periodic,

(12)

if and only if
∫

Y
f(y)dy = 0 (this is called the Fredholm alternative).
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Remark 2.4 By identifying the unit cell Y with the unit torus, equation
(12) can be seen as posed in the unit torus. Since the torus has no boundary,
it has the advantage of requiring no boundary conditions. In other words, the
formulation of (12) in the unit torus automatically includes the periodicity
of the solution.

Proof. Due to the periodic boundary condition, a simple integration by parts
yields

∫

Y
(divA(y)∇w(y))dy = 0 for any function w ∈ H1

#(Y ). Therefore,
∫

Y
f(y)dy = 0 is a necessary condition of existence of solutions for (12).

Defining the quotient space H1
#(Y )/R of functions defined in H1

#(Y ) up to a
constant, it is easily seen that ‖∇w‖L2(Y )N is a norm for this quotient space.
We check the assumptions of the Lax-Milgram lemma on the variational
formulation of (12). Clearly,

∫

Y
A(y)∇w · ∇φdy is a coercive continuous

bilinear form on H1
#(Y )/R. Furthermore, if

∫

Y
f(y)dy = 0, one finds

∫

Y

f(y)w(y)dy =

∫

Y

f(y)

(

w(y) −
∫

Y

w(y)dy

)

dy,

which is a continuous linear form on H1
#(Y )/R thanks to the following

Poincaré-Wirtinger inequality

∥

∥

∥

∥

w(y) −
∫

Y

w(y)dy

∥

∥

∥

∥

L2(Y )

≤ C‖∇w‖L2(Y )N .

This proves that there exists a unique solution w ∈ H1
#(Y )/R of (12) if

∫

Y
f(y)dy = 0. 2

3 Two-scale convergence

On the contrary of many homogenization methods, like the Γ−, G−, and
H−convergence [21], [31], [51], the two-scale convergence method is devoted
only to periodic homogenization problems. It is therefore a less general
method, but it is also more efficient and simple in the context of periodic
homogenization. Two-scale convergence has been introduced by Nguetseng
[40] and Allaire [2] and is exposed in a self-content fashion below. This sec-
tion is devoted to the main theoretical results which are at the root of this
method. Section 4 is a detailed application of the method on a simple model
problem.
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Before going into the details of the method, let us give its main ideas.
Two-scale convergence is a new type of convergence (see Definition 3.1) and
it yields a rigorous justification of the first term of the ansatz (2) for any
bounded sequence uε, in the sense that it asserts the existence of a two-
scale limit u0(x, y) such that uε, tested again any periodically oscillating test
function, converges to u0(x, y)

∫

Ω

uε(x)ϕ
(

x,
x

ε

)

dx→
∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy. (13)

Two-scale convergence is an improvement over the usual weak convergence
since equation (13) measures the periodic oscillations of the sequence uε. The
two-scale convergence method is based on this result: it turns out that mul-
tiplying the equation satisfied by uε with an oscillating test function ϕ

(

x, x
ε

)

and passing to the two-scale limit automatically yields the homogenized prob-
lem.

Let us introduce some notations: Ω is an open set of R
N (not necessarily

bounded), and Y = (0, 1)N is the unit cube. We denote by C∞
# (Y ) the space

of infinitely differentiable functions in R
N which are periodic of period Y , and

by C#(Y ) the Banach space of continuous and Y -periodic functions. Even-
tually, D(Ω;C∞

# (Y )) denotes the space of infinitely smooth and compactly
supported functions in Ω with values in the space C∞

# (Y ).

Definition 3.1 A sequence of functions uε in L2(Ω) is said to two-scale
converge to a limit u0(x, y) belonging to L2(Ω×Y ) if, for any function ϕ(x, y)
in D(Ω;C∞

# (Y )), it satisfies

lim
ε→0

∫

Ω

uε(x)ϕ
(

x,
x

ε

)

dx =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy.

This notion of “two-scale convergence” makes sense because of the next
compactness theorem.

Theorem 3.2 From each bounded sequence uε in L2(Ω) one can extract a
subsequence, and there exists a limit u0(x, y) ∈ L2(Ω × Y ) such that this
subsequence two-scale converges to u0.

Before sketching the proof of Theorem 3.2, we give a few examples of
two-scale convergences.
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1. Any sequence uε which converges strongly in L2(Ω) to a limit u(x),
two-scale converges to the same limit u(x).

2. For any smooth function u0(x, y), being Y -periodic in y, the associated
sequence uε(x) = u0

(

x, x
ε

)

two-scale converges to u0(x, y).

3. For the same smooth and Y -periodic function u0(x, y) the sequence
defined by vε(x) = u0(x,

x
ε2

) has the same two-scale limit and weak-L2

limit, namely
∫

Y
u0(x, y)dy (this is a consequence of the difference of

orders in the speed of oscillations for vε and the test functions ϕ
(

x, x
ε

)

).
Clearly the two-scale limit captures only the oscillations which are in
resonance with those of the test functions ϕ

(

x, x
ε

)

.

4. Any sequence uε which admits an asymptotic expansion of the type
uε(x) = u0

(

x, x
ε

)

+ εu1

(

x, x
ε

)

+ ε2u2

(

x, x
ε

)

+ · · ·, where the functions
ui(x, y) are smooth and Y -periodic in y, two-scale converges to the first
term of the expansion, namely u0(x, y).

We now briefly give the main ideas of the proof of Theorem 3.2 (it was
first proved by Nguetseng [40], but we follow the proof in [2] to which the
interested reader is referred for more details). For the sake of simplicity in
the exposition, we assume during the proof that Ω is a bounded set. The
following elementary lemma is first required (the proof of which is left to the
reader).

Lemma 3.3 Let B = C(Ω̄;C#(Y )) be the space of continuous functions
ϕ(x, y) on Ω̄ × Y which are Y -periodic in y. Then, B is a separable Banach
space (i.e. it contains a dense countable family), is dense in L2(Ω× Y ), and
any of its elements ϕ(x, y) satisfies

∫

Ω

|ϕ
(

x,
x

ε

)

|2dx ≤ C‖ϕ‖2
B,

and

lim
ε→0

∫

Ω

|ϕ
(

x,
x

ε

)

|2dx =

∫

Ω

∫

Y

|ϕ(x, y)|2dxdy.

Proof of Theorem 3.2. By Schwarz inequality, we have

∣

∣

∣

∣

∫

Ω

uε(x)ϕ
(

x,
x

ε

)

dx

∣

∣

∣

∣

≤ C

∣

∣

∣

∣

∫

Ω

ϕ
(

x,
x

ε

)

dx

∣

∣

∣

∣

1
2

≤ C‖ϕ‖B. (14)
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This implies that the left hand side of (14) is a continuous linear form on
B which can be identified to a duality product 〈µε, ϕ〉B′,B for some bounded
sequence of measures µε. Since B is separable, one can extract a subsequence
and there exists a limit µ0 such µε converges to µ0 in the weak * topology of
B′ (the dual of B). On the other hand, Lemma 3.3 allows us to pass to the
limit in the middle term of (14). Combining these two results, yields

|〈µ0, ϕ〉B′,B| ≤ C

∣

∣

∣

∣

∫

Ω

∫

Y

|ϕ(x, y)|2dxdy
∣

∣

∣

∣

1
2

. (15)

Equation (15) shows that µ0 is actually a continuous form on L2(Ω× Y ), by
density of B in this space. Thus, there exists u0(x, y) ∈ L2(Ω×Y ) such that

〈µ0, ϕ〉B′,B =

∫

Ω

∫

Y

u0(x, y)ϕ(x, y)dxdy,

which concludes the proof of Theorem 3.2. 2

The next theorem shows that more information is contained in a two-
scale limit than in a weak-L2 limit ; some of the oscillations of a sequence are
contained in its two-scale limit. When all of them are captured by the two-
scale limit (condition (17) below), one can even obtain a strong convergence
(a corrector result in the vocabulary of homogenization).

Theorem 3.4 Let uε be a sequence of functions in L2(Ω) which two-scale
converges to a limit u0(x, y) ∈ L2(Ω × Y ).

1. Then, uε converges weakly in L2(Ω) to u(x) =
∫

Y
u0(x, y)dy, and we

have
lim
ε→0

‖uε‖2
L2(Ω) ≥ ‖u0‖2

L2(Ω×Y ) ≥ ‖u‖2
L2(Ω). (16)

2. Assume further that u0(x, y) is smooth and that

lim
ε→0

‖uε‖2
L2(Ω) = ‖u0‖2

L2(Ω×Y ). (17)

Then, we have

‖uε(x) − u0

(

x,
x

ε

)

‖2
L2(Ω) → 0. (18)
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Proof of Theorem 3.4. By taking test functions depending only on x in
Definition 3.1, the weak convergence in L2(Ω) of the sequence uε is estab-
lished. Then, developing the inequality

∫

Ω

|uε(x) − ϕ
(

x,
x

ε

)

|2dx ≥ 0,

yields easily formula (16). Furthermore, under assumption (17), it is easily
obtained that

lim
ε→0

∫

Ω

|uε(x) − ϕ
(

x,
x

ε

)

|2dx =

∫

Ω

∫

Y

|u0(x, y) − ϕ(x, y)|2dxdy.

If u0 is smooth enough to be a test function ϕ, it yields (18). 2

Remark 3.5 The smoothness assumption on u0 in the second part of Theo-
rem 3.4 is needed only to ensure the measurability of u0

(

x, x
ε

)

(which other-
wise is not guaranteed for a function of L2(Ω × Y )). One can further check
that any function in L2(Ω × Y ) is attained as a two-scale limit (see Lemma
1.13 in [2]), which implies that two-scale limits have no extra regularity.

So far we have only considered bounded sequences in L2(Ω). The next
Theorem investigates the case of a bounded sequence in H1(Ω).

Theorem 3.6 Let uε be a bounded sequence in H1(Ω). Then, up to a sub-
sequence, uε two-scale converges to a limit u(x) ∈ H1(Ω), and ∇uε two-
scale converges to ∇xu(x) + ∇yu1(x, y), where the function u1(x, y) belongs
to L2(Ω;H1

#(Y )/R).

Proof. Since uε (resp. ∇uε) is bounded in L2(Ω) (resp. L2(Ω)N), up to a
subsequence, it two-scale converges to a limit u0(x, y) ∈ L2(Ω × Y ) (resp.

ξ0(x, y) ∈ L2(Ω × Y )N). Thus for any ~ψ(x, y) ∈ D
(

Ω;C∞
# (Y )N

)

, we have

lim
ε→0

∫

Ω

∇uε(x) · ~ψ
(

x,
x

ε

)

dx =

∫

Ω

∫

Y

ξ0(x, y) · ~ψ(x, y)dxdy. (19)

Integrating by parts the left hand side of (19) gives

ε

∫

Ω

∇uε(x) · ~ψ
(

x,
x

ε

)

dx = −
∫

Ω

uε(x)
(

divy ~ψ
(

x,
x

ε

)

+ εdivx ~ψ
(

x,
x

ε

))

dx.

(20)
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Passing to the limit yields

0 = −
∫

Ω

∫

Y

u0(x, y)divy ~ψ(x, y)dxdy. (21)

This implies that u0(x, y) does not depend on y. Thus there exists u(x) ∈
L2(Ω), such that u0 = u. Next, in (19) we choose a function ~ψ such that

divy ~ψ(x, y) = 0. Integrating by parts we obtain

lim
ε→0

∫

Ω

uε(x)divx ~ψ
(

x,
x

ε

)

dx = −
∫

Ω

∫

Y

ξ0(x, y) · ~ψ(x, y)dxdy

=

∫

Ω

∫

Y

u(x)divx ~ψ(x, y)dxdy. (22)

If ~ψ does not depend on y, (22) proves that u(x) belongs to H1(Ω). Further-
more, we deduce from (22) that

∫

Ω

∫

Y

(ξ0(x, y) −∇u(x)) · ~ψ(x, y)dxdy = 0 (23)

for any function ~ψ(x, y) ∈ D
(

Ω;C∞
# (Y )N

)

with divy ~ψ(x, y) = 0. Recall that
the orthogonal of divergence-free functions are exactly the gradients (this
well-known result can be very easily proved in the present context by means
of Fourier analysis in Y ). Thus, there exists a unique function u1(x, y) in
L2(Ω;H1

#(Y )/R) such that

ξ0(x, y) = ∇u(x) + ∇yu1(x, y).2 (24)

There are many generalizations of Theorem 3.6 which gives the precise
form of the two-scale limit of a sequence of functions for which some ex-
tra estimates on part of their derivatives. To obtain as much as possible
informations on the two-scale limit is a key point in the application of the
two-scale convergence method as described in the next subsection. For the
sake of completeness we give below two examples of such generalizations of
Theorem 3.6, the proofs of which may be found in [2].

Theorem 3.7 1. Let uε be a bounded sequence in L2(Ω) such that ε∇uε is
also bounded in L2(Ω)N . Then, there exists a two-scale limit u0(x, y) ∈
L2(Ω;H1

#(Y )/R) such that, up to a subsequence, uε two-scale converges
to u0(x, y), and ε∇uε to ∇yu0(x, y).
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2. Let uε be a bounded sequence of vector valued functions in L2(Ω)N such
that its divergence divuε is also bounded in L2(Ω). Then, there exists
a two-scale limit u0(x, y) ∈ L2(Ω × Y )N which is divergence-free with
respect to y, i.e. divyu0 = 0, has a divergence with respect to x, divxu0,
in L2(Ω×Y ), and such that, up to a subsequence, uε two-scale converges
to u0(x, y), and divuε to divxu0(x, y).

Remark 3.8 It is well known that, in general, non-linear functionals are not
continuous with respect to the weak topologies of Lp(Ω) spaces (1 ≤ p ≤ +∞).
Unfortunately, the same is true with the two-scale convergence which is also a
weak-type convergence. As for the usual weak Lp(Ω) topology, we can merely
establish a lower semi-continuity result for convex functionals of the same
type than inequality (16) on the norm of the two-scale limit. For more details
we refer to section 3 in [2] for details.

4 Application to homogenization

This section shows how the notion of two-scale convergence can be used for
the homogenization of partial differential equations with periodically oscil-
lating coefficients. For simplicity we focus on the model problem of diffusion
in a periodic medium, as in section 2. Of course, the principles of the two-
scale convergence method are valid in many other cases with some changes,
including non-linear (monotone or convex) problems.

We recall that Ω is the periodic domain (a bounded open set in R
N), ε its

period, and Y = (0, 1)N the rescaled unit cell. The tensor of diffusion in Ω is
a N × N matrix A

(

x, x
ε

)

, not necessarily symmetric, where A(x, y) belongs

to C(Ω̄;L∞
# (Y ))N

2
and satisfies everywhere in Ω × Y

α|ξ|2 ≤
N
∑

i,j=1

Ai,j(x, y)ξiξj ≤ β|ξ|2,

for any vector ξ ∈ R
N , α and β being two constants such that 0 < α ≤ β.

We consider the following model problem of diffusion

{

−div
(

A
(

x, x
ε

)

∇uε
)

= f in Ω
uε = 0 on ∂Ω.

(25)
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If the source term f(x) belongs to L2(Ω), equation (25) admits a unique
solution uε in H1

0 (Ω) by application of Lax-Milgram lemma. Moreover, uε
satisfies the following a priori estimate

‖uε‖H1
0 (Ω) ≤ C‖f‖L2(Ω) (26)

where C is a positive constant which does not depend on ε.
We now describe the so-called “two-scale convergence method” for ho-

mogenizing problem (25). In a first step, we deduce from the a priori
estimate (26) the precise form of the two-scale limit of the sequence uε. By
application of Theorem 3.6, there exist two functions, u(x) ∈ H1

0 (Ω) and
u1(x, y) ∈ L2(Ω;H1

#(Y )/R), such that, up to a subsequence, uε two-scale
converges to u(x), and ∇uε two-scale converges to ∇xu(x) + ∇yu1(x, y). In
view of these limits, uε is expected to behave as u(x) + εu1

(

x, x
ε

)

.
Thus, in a second step, we multiply equation (25) by a test function

similar to the limit of uε, namely ϕ(x) + εϕ1

(

x, x
ε

)

, where ϕ(x) ∈ D(Ω) and
ϕ1(x, y) ∈ D(Ω;C∞

# (Y )). This yields

∫

Ω

A
(

x,
x

ε

)

∇uε ·
(

∇ϕ(x) + ∇yϕ1

(

x,
x

ε

)

+ ε∇xϕ1

(

x,
x

ε

))

dx (27)

=

∫

Ω

f(x)
(

ϕ(x) + εϕ1

(

x,
x

ε

))

dx.

Regarding At
(

x, x
ε

) (

∇ϕ(x) + ∇yϕ1

(

x, x
ε

))

as a test function for the two-
scale convergence (see Definition 3.1), we pass to the two-scale limit in (27)
for the sequence ∇uε. Although this test function is not necessarily very
smooth, as required by Definition 3.1, it belongs at least to C

(

Ω̄;L2
#(Y )

)

which can be shown to be enough for the two-scale convergence Theorem 3.2
to hold (see [2] for details). Thus, the two-scale limit of equation (27) is

∫

Ω

∫

Y

A(x, y) (∇u(x) + ∇yu1(x, y))·(∇ϕ(x) + ∇yϕ1(x, y))dxdy =

∫

Ω

f(x)ϕ(x)dx.

(28)
In a third step, we read off a variational formulation for (u, u1) in (28).

Remark that (28) holds true for any (ϕ, ϕ1) in the Hilbert space H1
0 (Ω) ×

L2
(

Ω;H1
#(Y )/R

)

by density of smooth functions in this space. Endowing

it with the norm
√

(‖∇u(x)‖2
L2(Ω) + ‖∇yu1(x, y)‖2

L2(Ω×Y )), the assumptions
of the Lax-Milgram lemma are easily checked for the variational formulation

16



(28). The main point is the coercivity of the bilinear form defined by the left
hand side of (28): the coercivity of A yields

∫

Ω

∫

Y

A(x, y) (∇ϕ(x) + ∇yϕ1(x, y)) · (∇ϕ(x) + ∇yϕ1(x, y))dxdy ≥

α

∫

Ω

∫

Y

|∇ϕ(x)+∇yϕ1(x, y)|2dxdy = α

∫

Ω

|∇ϕ(x)|2dx+α
∫

Ω

∫

Y

|∇yϕ1(x, y)|2dxdy.

By application of the Lax-Milgram lemma, we conclude that there exists
a unique solution (u, u1) of the variational formulation (28) in H1

0 (Ω) ×
L2
(

Ω;H1
#(Y )/R

)

. Consequently, the entire sequences uε and ∇uε converge
to u(x) and ∇u(x)+∇yu1(x, y). An easy integration by parts shows that (28)
is a variational formulation associated to the following system of equations,
the so-called “two-scale homogenized problem”,














−divy (A(x, y) (∇u(x) + ∇yu1(x, y))) = 0 in Ω × Y
−divx

(∫

Y
A(x, y) (∇u(x) + ∇yu1(x, y))dy

)

= f(x) in Ω
y → u1(x, y) Y -periodic
u = 0 on ∂Ω.

(29)

At this point, the homogenization process could be considered as achieved
since the entire sequence of solutions uε converges to the solution of a well-
posed limit problem, namely the two-scale homogenized problem (29). How-
ever, it is usually preferable, from a physical or numerical point of view, to
eliminate the microscopic variable y (one doesn’t want to solve the small
scale structure). In other words, we want to extract and decouple the usual
homogenized and local (or cell) equations from the two-scale homogenized
problem.

Thus, in a fourth (and optional) step, the y variable and the u1 un-
known are eliminated from (29). It is an easy exercise of algebra to prove that
u1 can be computed in terms of the gradient of u through the relationship

u1(x, y) =

N
∑

i=1

∂u

∂xi
(x)wi(x, y), (30)

where wi(x, y) are defined, at each point x ∈ Ω, as the unique solutions in
H1

#(Y )/R of the cell problems

{

−divy (A(x, y) (~ei + ∇ywi(x, y))) = 0 in Y
y → wi(x, y) Y -periodic,

(31)
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with (~ei)1≤i≤N the canonical basis of R
N . Then, plugging formula (30) in

(29) yields the usual homogenized problem for u

{

−divx (A∗(x)∇u(x)) = f(x) in Ω
u = 0 on ∂Ω,

(32)

where the homogenized diffusion tensor is given by its entries

A∗
ij(x) =

∫

Y

A(x, y) (~ei + ∇ywi(x, y)) · (~ej + ∇ywj(x, y)) dy. (33)

Of course, all the above formulae coincide with the usual ones, obtained by
using asymptotic exansions, see section 2.

Due to the simple form of our model problem the two equations of (29)
can be decoupled in a microscopic and a macroscopic equation, (31) and (32)
respectively, but we emphasize that it is not always possible, and sometimes
it leads to very complicate forms of the homogenized equation, including
integro-differential operators (see for example the double porosity model in
chapter 3). Thus, the homogenized equation does not always belong to a
class for which an existence and uniqueness theory is easily available, on the
contrary of the two-scale homogenized system, which is in most cases of the
same type as the original problem, but with a double number of variables
(x and y) and unknowns (u and u1). The supplementary microscopic vari-
able and unknown play the role of “hidden” variables in the vocabulary of
mechanics. Although their presence doubles the size of the limit problem, it
greatly simplifies its structure (which could be useful for numerical purposes
too), while eliminating them introduces “strange” effects (like memory or
non-local effects) in the usual homogenized problem.

It is often very useful to obtain so-called “corrector” results which permit
to obtain strong (or pointwise) convergences instead of just weak ones by
adding some extra information stemming from the local equations. Typically,
in the above example we simply proved that the sequence uε converges weakly
to the homogenized solution u in H1

0 (Ω). Introducing the local solution u1,
this weak convergence can be improved as follows

(

uε(x) − u(x) − εu1

(

x,
x

ε

))

→ 0 in H1
0 (Ω) strongly. (34)

This type of result is easily obtained with the two-scale convergence method.
This rigorously justifies the two first term in the usual asymptotic expansion
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of the sequence uε. Remark first that, by standard regularity results for the
solutions wi(x, y) of the cell problem (31), the term u1

(

x, x
ε

)

does actually
belong to L2(Ω) and can be seen as a test function for the two-scale conver-
gence. Furthermore, if the matrix A is smooth in x, say in W 1,∞(Ω), then u
and wi are also smooth in x which implies that u1

(

x, x
ε

)

belongs to H1(Ω).
Under this mild assumption we can write

∫

Ω

A
(

x,
x

ε

)(

∇uε(x) −∇u(x) −∇yu1

(

x,
x

ε

))

·
(

∇uε(x) −∇u(x) −∇yu1

(

x,
x

ε

))

dx

(35)

=

∫

Ω

f(x)uε(x)dx

+

∫

Ω

A
(

x,
x

ε

) (

∇u(x) + ∇yu1

(

x,
x

ε

))

·
(

∇u(x) + ∇yu1

(

x,
x

ε

))

dx

−
∫

Ω

A
(

x,
x

ε

)

∇uε(x) ·
(

∇u(x) + ∇yu1

(

x,
x

ε

))

dx

−
∫

Ω

A
(

x,
x

ε

)(

∇u(x) + ∇yu1

(

x,
x

ε

))

· ∇uε(x)dx.

Using the coercivity condition for A and passing to the two-scale limit, yields

α lim
ε→0

‖∇uε(x) −∇u(x) −∇yu1

(

x,
x

ε

)

‖2
L2(Ω) ≤

∫

Ω

f(x)u(x)dx

−
∫

Ω

∫

Y

A(x, y) (∇u(x) + ∇yu1(x, y)) · (∇u(x) + ∇yu1(x, y)) dxdy.

In view of (29), the right hand side of the above equation is equal to zero,
which gives the desired result.

5 Bloch waves

The method of Bloch waves or the Bloch transform is a generalization of
Fourier transform that leaves invariant periodic functions. It is also known
as Floquet theory [10], [19], [45]. There are two steps in the Bloch decompo-
sition: the first one is general (as is the Fourier transform), while the second
one is specialized to a given self-adjoint partial differential equation.

The first step of the Bloch transform is the following result.
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Theorem 5.1 For any function u(y) ∈ L2(RN) there exists a unique func-
tion û(y, θ) ∈ L2(Y × Y ) such that

u(y) =

∫

Y

û(y, θ)e2iπθ·ydθ. (36)

The function y → û(y, θ) is Y -periodic while the function θ → e2iπθ·yû(y, θ)
is Y -periodic. Furthermore, the linear map B, called the Bloch transform
and defined by Bu = û, is an isometry from L2(RN) into L2(Y × Y ), i.e.
Parseval formula holds for any u, v ∈ L2(RN)

∫

RN

u(y)v(y)dy =

∫

Y

∫

Y

û(y, θ)v̂(y, θ)dy dθ. (37)

Remark 5.2 In Theorem 5.1 θ plays the role of a dual variable (like for
the Fourier transform). It is often called a Bloch parameter or a reduced
frequency since its range is restricted to Y . Indeed, the knowledge of û(y, θ)
on the unit cubes Y × Y is enough to extend it on the whole R

N × R
N . The

physical interpretation of (36) is that any function in L2(RN) is a superposi-
tion (more precisely an integral with respect to θ) of the product of a periodic
function, y → û(y, θ) and of a plane wave with wave number θ.

Proof. Let u(y) be a smooth compactly supported function in R
N . We

define the function û byC∞
c (RN) and bounded on L2(RN)

û(y, θ) =
∑

k∈ZN

u(y + k)e−2iπθ·(y+k).

This sum is well defined because it has a finite number of terms sine u has
compact support. It is also clearly a Y -periodic function of y. On the other
hand, for j ∈ Z

N , we have

û(y, θ + j) = e−2iπj·y
∑

k∈ZN

u(y + k)e−2iπθ·(y+k) = e−2iπj·yû(y, θ).

Thus, θ → e2iπθ·yû(y, θ) is Y -periodic. Next, we compute

∫

TN

û(y, θ)e2iπθ·ydθ =
∑

k∈ZN

u(y + k)

∫

TN

e−2iπθ·kdθ = u(y)
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since all integrals vanish except for k = 0. Therefore (36) is proved for
smoothcompactly supported functions. A similar argument works also for
(37) which, in particular, shows that the Bloch transform B is a linear map,
well defined on C∞

c (RN) and bounded on L2(RN). Since C∞
c (RN) is dense

in L2(RN ), B can be extended by continuity and (36), (37) holds true in
L2(RN). 2

We now give a Lemma showing in which sense the Bloch transform leaves
invariant the periodic functions.

Lemma 5.3 Let a(y) ∈ L∞(TN) be a periodic function. For any u(y) ∈
L2(RN), we have

B(au) = aB(u) ≡ a(y)û(y, θ).

We leave the proof to the reader as a simple exercise.

We now turn to the second step of the Bloch transform which relies on
the choice of a self-adjoint partial differential equation. For simplicity, we
consider the following second-order symmetric p.d.e.

−divy

(

A(y)∇yu
)

+ c(y)u = f in R
N , (38)

where the right hand side f belongs to L2(RN). We assume that the coef-
ficients A(y) and c(y) are real measurable bounded periodic functions, i.e.
their entries belong to L∞(TN). The tensor A is symmetric and uniformly
coercive, i.e. there exists ν > 0 such that for a.e. y ∈ T

N

A(y)ξ · ξ ≥ ν|ξ|2 for any ξ ∈ R
N .

Furthermore, we assume that c is uniformly positive, i.e. there exists c0 > 0
such that for a.e. y ∈ T

N

c(y) ≥ c0 > 0.

The variational formulation of (38) is to find u ∈ H1(RN) such that, for any
φ ∈ H1(RN),

∫

RN

(

A(y)∇yu · ∇yφ+ c(y)uφ
)

dy =

∫

RN

fφ dy. (39)

Thanks to our assumptions on the coefficients, a simple application of the
Lax-Milgram lemma yields the existence and uniqueness of a solution of (39)
and thus of (38).
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A first interesting application of Theorem 5.1 is to simplify (39) which
is posed on the whole space and to reduce it to a family of problems posed
on the simpler compact set T

N . To show this we need the following simple
lemma, the proof of which is left to the reader as a simple exercise.

Lemma 5.4 Let u(y) ∈ H1(RN). The Bloch transform of its gradient is

B(∇yu) = (∇y + 2iπθ)B(u) ≡ ∇yû(y, θ) + 2iπθû(y, θ).

Proposition 5.5 The p.d.e. (38) is equivalent to the family of p.d.e.’s, in-
dexed by θ ∈ T

N ,

−(divy + 2iπθ)
(

A(y)(∇y + 2iπθ)Bu
)

+ c(y)Bu = Bf in T
N , (40)

which admits a unique solution y → (Bu)(y, θ) ∈ H1(TN) for any θ ∈ T
N .

Proof. We apply Lemmas 5.3 and 5.4 to (39) and we obtain the variational
formulation of (40) integrated with respect to θ which is just a parameter
(there is no derivatives with respect to θ). This yields (40). 2

One can still go further in the simplification of (40), and thus of (38),
by using the Hilbertian basis of eigenfunctions of (40). Indeed, the Green
operator for (40) is now compact (on the contrary of that for (38)). More
precisely, for a given θ ∈ T

N , let us consider the Green operator Gθ defined
by

{

L2(TN ) → L2(TN )
g(y) → Gθg(y) = v(y)

(41)

where v ∈ H1(TN ) is the unique solution of

−(divy + 2iπθ)
(

A(y)(∇y + 2iπθ)v
)

+ c(y)v = g in T
N .

Denoting by 〈, 〉 the complex hilbertian product on L2(TN ), the reader can
easily check that

〈Gθg1, g2〉 =

∫

TN

(

A(y)(∇y+2iπθ)v1·(∇y + 2iπθ)v2+c(y)v1v2

)

dy = 〈g1,Gθg2〉.

Clearly, Gθ is a self-adjoint compact complex-valued linear operator acting on
L2(TN). As such it admits a countable sequence of real increasing eigenval-
ues (λn)n≥1 (repeated with their multiplicity) and normalized eigenfunctions
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(ψn)n≥1 with ‖ψn‖L2(TN ) = 1. The eigenvalues and eigenfunctions depend on
the dual parameter or Bloch frequency θ which runs in the dual cell of T

N ,
which is again T

N . In other words, the eigenvalues and eigenfunctions satisfy
the so-called Bloch (or shifted) spectral cell equation

−(divy + 2iπθ)
(

A(y)(∇y + 2iπθ)ψn

)

+ c(y)ψn = λn(θ)ψn in T
N . (42)

The second step of the Bloch transform is the following result.

Theorem 5.6 For any function u(y) ∈ L2(RN) there exists a unique count-
able family of functions ûn(θ) ∈ L2(TN), for n ≥ 1, such that

u(y) =
∑

n≥1

∫

TN

ûn(θ)ψn(y, θ)e
2iπθ·ydθ. (43)

Furthermore, the linear map B, called the Bloch transform and defined by
Bu = (ûn)n≥1, is an isometry from L2(RN) into `2

(

L2(TN)
)

, i.e. Parseval
formula holds for any u, v ∈ L2(RN)

∫

RN

u(y)v(y)dy =
∑

n≥1

∫

TN

ûn(θ)v̂n(θ) dθ. (44)

Proof. With the notations of Theorem 5.1 we decompose each û(y, θ) on
the corresponding eigenbasis

û(y, θ) =
∑

n≥1

ûn(θ)ψn(y, θ) with ûn(θ) =

∫

TN

û(y, θ)ψn(y, θ)dy.

Commuting the sum with respect to n and the integral with respect to θ is
a standard Fubini type result. There is a subtle point about the measura-
bility, with respect to θ, of the eigenfunctions ψn(y, θ). A special choice of
their normalization (they are defined up to multiplication by a unit complex
function of θ) allows to state a measurable selection result (for details, see
[53]). 2

Remark 5.7 As a matter fact, our assumption on the coefficient c(y) to be
uniformly positive is not necessary for Theorem 5.6 to hold true. Indeed, if
c(y) just belongs to L∞(TN ), it is bounded from below and adding a large
positive constant makes it positive, does not change the eigenfunctions and
simply shifts the entire spectrum.
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We come back to our model p.d.e. (38). Applying the Bloch transform of
Theorem 5.6 to the right hand side and solution of (38) we obtain an explicit
algebraic formula for the solution

ûn(θ) =
f̂n(θ)

λn(θ)
∀n ≥ 1, ∀θ ∈ T

N ,

which is a generalization of a similar formula, using Fourier transform, for a
constant coefficient p.d.e..

Definition. According to the context of Theorem 5.1 or of Theorem 5.6,
a Bloch wave is either a function of the type ψ(y)e2iπθ·y where ψ is any
periodic function defined on T

N , or is precisely ψn(y, θ)e
2iπθ·y where ψn is an

eigenfunction of (42).

A crucial point in the study of Bloch waves is to know the regularity of
the eigenvalues λn(θ) and eigenfunctions ψn(y, θ) with respect to θ. Remark
that the coefficients of (40) are polynomial of degree 2 in θ, so that the
Green operator Gθ is analytic with respect to θ. However it is well known
that all eigenvalues and eigenfunctions are not as smooth, and some caution
is in order [32]. Nevertheless, if an eigenvalue λn(θ) is simple at the value
θ = θn, then it remains simple in a small neighborhood of θn and it is a
classical matter to prove that the n-th eigencouple of (42) is analytic in this
neighborhood of θn [32].

Remark 5.8 In one space dimension N = 1 it is well-known that all eigen-
values λn(θ) are simple, except possibly for θ = 0 or θ = ±1/2 when there
is no gap below or above the n-th band (the so-called co-existence case, see
[36]). In higher dimensions, λn(θ) has no reason to be simple although there
are some results of generic simplicity in similar contexts, see [1]. A multiple
eigenvalue corresponds to the occurence of ”crossing” for smooth branches of
eigenvalues, viewed as functions of θ.

In the sequel, we shall consider an energy level n ≥ 1 and a Bloch pa-
rameter θn ∈ T

N such that the eigenvalue

λn(θ
n) is a simple eigenvalue. (45)

Under assumption (45) the n-th eigencouple of (42) is smooth in a neighbor-
hood of θn [32]. Introducing the operator An(θ) defined on L2(TN) by

An(θ)ψ = −(divy + 2iπθ)
(

A(y)(∇y + 2iπθ)ψ
)

+ c(y)ψ − λn(θ)ψ, (46)

24



it is easy to differentiate (42). Denoting by (ek)1≤k≤N the canonical basis of
R
N and by (θk)1≤k≤N the components of θ, the first derivative satisfies

An(θ)
∂ψn
∂θk

= 2iπekA(y)(∇y+2iπθ)ψn+(divy+2iπθ) (A(y)2iπekψn)+
∂λn
∂θk

(θ)ψn,

(47)
and the second derivative is

An(θ)
∂2ψn
∂θk∂θl

= 2iπekA(y)(∇y + 2iπθ)
∂ψn
∂θl

+ (divy + 2iπθ)

(

A(y)2iπek
∂ψn
∂θl

)

+2iπelA(y)(∇y + 2iπθ)
∂ψn
∂θk

+ (divy + 2iπθ)

(

A(y)2iπel
∂ψn
∂θk

)

+
∂λn
∂θk

(θ)
∂ψn
∂θl

+
∂λn
∂θl

(θ)
∂ψn
∂θk

−4π2ekA(y)elψn − 4π2elA(y)ekψn +
∂2λn
∂θl∂θk

(θ)ψn

(48)
There exists a unique solution of (47), up to the addition of a multiple of ψn.
Indeed, since there necessarily exists a partial derivative of ψn with respect to
θk, the right hand side of (47) satisfies the required compatibility condition
or Fredholm alternative (i.e. it is orthogonal to ψn). On the same token,
there exists a unique solution of (48), up to the addition of a multiple of ψn.
The compatibility condition of (48) yields a formula for the Hessian matrix
∇θ∇θλn(θ

n).

6 Schrödinger equation in periodic media

We study the homogenization of the following Schrödinger equation







i
∂uε
∂t

− div
(

A
(x

ε

)

∇uε
)

+
(

ε−2c
(x

ε

)

+ d
(

x,
x

ε

))

uε = 0 in R
N × (0, T )

uε(t = 0, x) = u0
ε(x) in R

N ,
(49)

where 0 < T ≤ +∞ is a final time, and the unknown function uε is complex-
valued.

Our precise assumptions on the coefficients are that Aij(y) and c(y) are
real, measurable, bounded, periodic functions, i.e. belong to L∞(TN), the
tensor A(y) is symmetric uniformly coercive, while d(x, y) is real, measurable
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and bounded with respect to x, and periodic continuous with respect to y,
i.e. belongs to L∞

(

Ω;C(TN )
)

. Remark that c(y) and d(x, y) do not satisfy
any positivity assumption. Of course, the ”usual” Schrödinger equation cor-
responds to the choice A(y) ≡ Id. Other choices may be interpreted as a
periodic metric. The scaling of equation (49) is typical of homogenization
(see e.g. [3], or chapter 4 in [10]) but is different from the scaling for study-
ing its semi-classical limit where there is a ε−1 coefficient in front of the time
derivative (see e.g. [22], [27], [28], [29], [43]). In particular, this implies that
in (49) we consider much larger times than in the semi-classical limit. Then,
if the initial data u0

ε belongs to H1(RN), there exists a unique solution of the
Schrödinger equation (49) in C

(

(0, T );H1(RN)
)

which satisfies the following
a priori estimate.

Lemma 6.1 There exists a constant C > 0 that does not depend on ε such
that the solution of (49) satisfies

‖uε‖L∞((0,T );L2(RN )) = ‖u0
ε‖L2(RN ),

ε‖∇uε‖L∞((0,T );L2(RN )N ) ≤ C
(

‖u0
ε‖L2(RN ) + ε‖∇u0

ε‖L2(RN )N

)

.
(50)

Proof. We multiply equation (49) by uε and we take the real part to obtain

d

dt

∫

RN

|uε(t, x)|2dx = 0.

Next we multiply (49) by ∂uε

∂t
and we take the real part to get

d

dt

∫

RN

(

ε2A
(x

ε

)

∇uε · ∇uε +
(

c
(x

ε

)

− λn(θ
n) + ε2d

(

x,
x

ε

))

|uε|2
)

dx = 0.

This yields the required a priori estimates. 2

The ”standard” homogenization of (49) is simple as we now explain. (By
standard, we mean that assumption (54) on the initial data is satisfied.)
Introduce the first eigencouple of the spectral cell problem (which is just
(42) for n = 1 and θ = 0)

−divy (A(y)∇yψ1) + c(y)ψ1 = λ1ψ1 in T
N , (51)

which, by the Krein-Rutman theorem, is real, simple and satisfies ψ1(y) > 0
in T

N . Furthermore, by a classical regularity result, ψ1 is also continuous.
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Thus, one can change the unknown by writing a so-called factorization prin-
ciple (see e.g. [3], [5], [33], [52])

vε(t, x) = e−i
λ1t

ε2
uε(t, x)

ψ1

(

x
ε

) , (52)

and check easily, after some algebra, that the new unknown vε is a solution
of a simpler equation










i|ψ1|2
(x

ε

) ∂vε
∂t

− div
(

(|ψ1|2A)
(x

ε

)

∇vε
)

+ (|ψ1|2d)
(

x,
x

ε

)

vε = 0 in R
N × (0, T )

vε(t = 0, x) = u0
ε(x)

ψ1(x

ε
)

in R
N .

(53)
The new Schrödinger equation (53) is simple to homogenize (see e.g. [10])
since it does not contain any singularly perturbed term, and we thus obtain
uniform a priori estimates for its solution.

Theorem 6.2 Let v0 ∈ H1(RN). Assume that the initial data satisfies

u0
ε(x) = ψ1

(x

ε

)

v0(x). (54)

The new unknown vε, defined by (52), converges weakly in L2
(

(0, T );H1(RN )
)

to the solution v of the following homogenized problem






i
∂v

∂t
− div (A∗∇v) + d∗(x) v = 0 in R

N × (0, T )

v(t = 0, x) = v0(x) in R
N ,

(55)

where A∗ is the “usual” homogenized tensor for the periodic coefficients (|ψ1|2A)(y)
and d∗(x) =

∫

TN |ψ1|2(y)d(x, y) dy.

In other words, Theorem 6.2 gives the following asymptotic behavior for
the solution of (49)

uε(t, x) ≈ ei
λ1t

ε2 ψ1

(x

ε

)

v(t, x),

where v is the solution of (55). Assumption (54) can be interpreted as an
hypothesis on the well-prepared character of the initial data. There are many
other types of initial data for which Theorem 6.2 is not meaningful. It turns
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out that, according to heuristical results in solid state physics (see e.g. [39],
[42], [44]), there are many other types of well-prepared initial data for which
a result like Theorem 6.2 holds true, but with a different value of A∗ and d∗.
Such results are called effective mass theorems.

Let us describe briefly one example of such an effective mass theorem
(many generalizations are treated in the sequel). We first replace (51) by
the more general Bloch or shifted cell problem (42). Theorem 6.2 (with its
special initial data satisfying (54)) is concerned with the bottom of the first
Bloch band (or ground state). Now, we focus on higher energy initial data
(or excited states) and consider new well-prepared initial data of the type

u0
ε(x) = ψn

(x

ε
, θn
)

e2iπ
θ
n·x
ε v0(x). (56)

Assuming that λn(θ
n) is simple and that ∇λn(θn) = 0, we shall prove in

Theorem 7.2 that the solution of (49) satisfies

uε(t, x) ≈ ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε ψn

(x

ε
, θn
)

v(t, x),

where v(t, x) is the unique solution of the following Schrödinger homogenized
equation







i
∂v

∂t
− div (A∗

n∇v) + d∗n(x) v = 0 in R
N × (0, T )

v(t = 0, x) = v0(x) in R
N ,

(57)

with different homogenized coefficients A∗
n and d∗n, depending on the param-

eter θn and on the energy level n. In other words, the homogenized problem
depends on the type of initial data. If A∗

n is a scalar (instead of a full matrix),
its inverse value is called the effective mass of the particle. A typical effect
is that the effective mass depends on the chosen energy of the particle, may
be negative or zero, and even not a scalar.

To obtain the homogenized limit (57) we can not follow the above simple
idea, namely the factorization principle (52). Indeed, for n > 1 or θn 6= 0
there is no maximum principle, and therefore no Krein-Rutman theorem,
so ψn(y, θ

n) may change sign. Clearly we can not divide by ψn in a formula
similar to (52). In order to homogenize (49) for initial data of the type of (56),
we use a method based on Bloch wave theory to build adequate oscillating
test functions and to pass to the limit using two-scale convergence.
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Apart from the previously quoted references in the physical literature, to
the best of our knowledge effective mass theorems were addressed only in the
two following mathematical papers. First, two-scale asymptotic expansions
were previously performed in section 4 of chapter 4 in [10] for a slightly
different version of this problem: indeed, [10] put a ε−1 scaling factor in front
of the time derivative in the Schrödinger equation (which corresponds to a
short time asymptotic). Second, some special cases of effective mass theorems
were obtained in [43] with a different method of semi-classical measures. Let
us emphasize again that the scaling of (49) is not that of the semi-classical
analysis (see e.g. [22], [27], [28], [29], [43]).

Notation: for any function φ(x, y) defined on R
N × T

N , we denote by φε

the function φ(x, x
ε
).

7 Homogenization without drift

In this section we use the following strong assumption about the stationarity
of λn(θ) at θn

{

(i) λn(θ
n) is a simple eigenvalue,

(ii) θn is a critical point of λn(θ) i.e., ∇θλn(θ
n) = 0.

(58)

Physically, it implies that the particle modeled by the limit wave function
does not experience any drift and is a solution of an effective Schrödinger
equation. This assumption of simplicity has two important consequences.
First, if λn(θ

n) is simple, then it is infinitely differentiable in a vicinity of
θn. Second, if λn(θ

n) is simple, then the limit problem is going to be a single
Schrödinger equation. In Section 9 we make another assumption of a multiple
eigenvalue with smooth branches. Then the homogenized limit is a system
of several coupled Schrödinger equations (as many as the multiplicity).

Remark 7.1 Concerning the existence of critical points of λn(θ), it is easily
checked that for the first band or energy level n = 1 assumption (58) is always
satisfied with θ1 = 0 which is a minimum point of λ1 (see e.g. [10], [20]).
In full generality, there may be or not a critical point of λn(θ). For example,
in the case of constant coefficients, λn(θ) has no critical points for n > 1.
However, in N = 1 space dimension it is well known (see e.g. [36], [45]) that
the top and the bottom of Bloch bands are attained alternatively for θn = 0
or θn = ±1/2, and that the corresponding eigenvalue λn(θ

n) is simple if it
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bounds a gap in the spectrum. Therefore, the maximum point θn below a gap,
or the minimum point θn above a gap, do satisfy assumption (58), which
possibly holds for a non-zero value of θn.

Under assumption (58), i.e. ∇θλn(θ
n) = 0, equations (47) and (48) sim-

plify for θ = θn and we find

∂ψn
∂θk

= 2iπζk,
∂2ψn
∂θk∂θl

= −4π2χkl, (59)

where ζk is the solution in T
N of

An(θ
n)ζk = ekA(y)(∇y + 2iπθn)ψn + (divy + 2iπθn) (A(y)ekψn) , (60)

and χkl is the solution in T
N of

An(θ
n)χkl = ekA(y)(∇y + 2iπθn)ζl + (divy + 2iπθn) (A(y)ekζl)

+elA(y)(∇y + 2iπθn)ζk + (divy + 2iπθn) (A(y)elζk)

+ekA(y)elψn + elA(y)ekψn −
1

4π2

∂2λn
∂θl∂θk

(θn)ψn.

(61)

We obtain the following homogenized problem.

Theorem 7.2 Assume (58) and that the initial data u0
ε ∈ H1(RN) is of the

form

u0
ε(x) = ψn

(x

ε
, θn
)

e2iπ
θ
n·x
ε v0(x), (62)

with v0 ∈ H1(RN ). The solution of (49) can be written as

uε(t, x) = ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε vε(t, x), (63)

where vε two-scale converges strongly to ψn(y, θ
n)v(t, x), i.e.

lim
ε→0

∫

RN

∣

∣

∣
vε(t, x) − ψn

(x

ε
, θn
)

v(t, x)
∣

∣

∣

2

dx = 0, (64)

uniformly on compact time intervals in R
+, and v ∈ C

(

(0, T );L2(RN )
)

is
the unique solution of the homogenized Schrödinger equation







i
∂v

∂t
− div (A∗

n∇v) + d∗n(x) v = 0 in R
N × (0, T )

v(t = 0, x) = v0(x) in R
N ,

(65)

with A∗
n = 1

8π2∇θ∇θλn(θ
n) and d∗n(x) =

∫

TN d(x, y)|ψn(y)|2 dy.
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In the context of quantum mechanics or solid state physics Theorem 7.2
is called an effective mass theorem [39], [42], [44]. More precisely, the inverse
tensor (A∗

n)
−1 is the effective mass of an electron in the n-th band of a periodic

crystal (characterized by the periodic metric A(y) and the periodic potential
c(y)). Since we did not assume that θn was a minimum point, the tensor
A∗
n = 1

8π2∇θ∇θλn(θ
n) can be neither definite nor positive, which is quite

surprising for a notion of mass (but this fact is well understood in solid state
physics [39], [44]).

Remark 7.3 Theorem 7.2 does not fit into the framework of G- or H-
convergence (see e.g. [38], [48]). Indeed these classical theories of homoge-
nization state that the homogenized coefficients are independent of the initial
data, which is not the case here. There is no contradiction in our result
since H-convergence does not apply because we lack a uniform a priori esti-
mate in L2((0, T );H1(RN)) for the sequence of solutions uε, as required by
H-convergence.

Remark 7.4 Assumption (62) can be slightly weakened for proving Theorem

7.2. For example, it still holds true if we merely assume that u0
ε(x)e

−2iπ θ
n·x
ε

two-scale converges strongly to ψn(y, θ
n)v0(x).

On the other hand, if (62) is replaced by the even weaker assumption that

u0
ε(x)e

−2iπ θ
n·x
ε two-scale converges weakly to ψn(y, θ

n)v0(x) (which is always
true up to a subsequence), then Theorem 7.2 is still valid provided that its
conclusion is modified by replacing the strong two-scale convergence of vε by
a weak two-scale convergence.

Remark 7.5 In the case n = 1 and θn = 0 (bottom of the first Bloch band),
it is easy to check (by the factorization method described in Section 6) that
Theorem 7.2 still holds true if we add a non-linear term of the type g(x, x

ε
, uε)

where g(x, y, ξ) is for example

g(x, y, ξ) = g0(x, y)|ξ|p−2ξ with g0(x, y) ≥ C > 0 and p ≥ 2.

Generalizations of this nonlinear result for higher order Bloch bands n > 1
have been obtained by [49].

Proof of Theorem 7.2. This proof is based on ideas of [3]. Define a
sequence vε by

vε(t, x) = uε(t, x)e
−iλn(θn)t

ε2 e−2iπ θ
n·x
ε .
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Since |vε| = |uε|, by the a priori estimates of Lemma 6.1 we have

‖vε‖L∞((0,T );L2(RN )) + ε‖∇vε‖L2((0,T )×RN ) ≤ C,

and applying the compactness of two-scale convergence (see Theorem 3.2), up
to a subsequence, there exists a limit v∗(t, x, y) ∈ L2

(

(0, T ) × R
N ;H1(TN )

)

such that vε and ε∇vε two-scale converge to v∗ and ∇yv
∗, respectively.

Similarly, by definition of the initial data, vε(0, x) two-scale converges to
ψn (y, θn) v0(x).
First step. We multiply (49) by the complex conjugate of

ε2φ(t, x,
x

ε
)ei

λn(θn)t

ε2 e2iπ
θ
n·x
ε

where φ(t, x, y) is a smooth test function defined on [0, T ) × R
N × T

N , with
compact support in [0, T ) × R

N . Integrating by parts this yields

iε2
∫

RN

u0
εφ

ε
e−2iπ θ

n·x
ε dx− iε2

∫ T

0

∫

RN

vε
∂φ

ε

∂t
dt dx

+

∫ T

0

∫

RN

Aε(ε∇ + 2iπθn)vε · (ε∇− 2iπθn)φ
ε
dt dx

+

∫ T

0

∫

RN

(cε − λn(θ
n) + ε2dε)vεφ

ε
dt dx = 0.

Passing to the two-scale limit yields the variational formulation of

−(divy + 2iπθn)
(

A(y)(∇y + 2iπθn)v∗
)

+ c(y)v∗ = λn(θ
n)v∗ in T

N .

By the simplicity of λn(θ
n), this implies that there exists a scalar function

v(t, x) ∈ L2
(

(0, T ) × R
N
)

such that

v∗(t, x, y) = v(t, x)ψn(y, θ
n). (66)

Second step. We multiply (49) by the complex conjugate of

Ψε = ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε

(

ψn(
x

ε
, θn)φ(t, x) + ε

N
∑

k=1

∂φ

∂xk
(t, x)ζk(

x

ε
)

)

(67)
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where φ(t, x) is a smooth test function with compact support in [0, T )×R
N ,

and ζk(y) is the solution of (60). After some algebra we found that

∫

RN

Aε∇uε · ∇Ψεdx =

∫

RN

Aε(∇ + 2iπ
θn

ε
)(φvε) · (∇− 2iπ

θn

ε
)ψ

ε

n

+ε

∫

RN

Aε(∇ + 2iπ
θn

ε
)(
∂φ

∂xk
vε) · (∇− 2iπ

θn

ε
)ζ
ε

k

−
∫

RN

Aεek
∂φ

∂xk
vε · (∇− 2iπ

θn

ε
)ψ

ε

n

+

∫

RN

Aε(∇ + 2iπ
θn

ε
)(
∂φ

∂xk
vε) · ekψ

ε

n

−
∫

RN

Aεvε∇
∂φ

∂xk
· ekψ

ε

n

−
∫

RN

Aεvε∇
∂φ

∂xk
· (ε∇− 2iπθn)ζ

ε

k

+

∫

RN

Aεζ
ε

k(ε∇ + 2iπθn)vε · ∇
∂φ

∂xk
(68)

Now, for any smooth compactly supported test function Φ, we deduce from
the definition of ψn that

∫

RN

Aε(∇ + 2iπ
θn

ε
)ψεn · (∇− 2iπ

θn

ε
)Φ +

1

ε2

∫

RN

(cε − λn(θ
n))ψεnΦ = 0, (69)

and from the definition of ζk
∫

RN

Aε(∇ + 2iπ
θn

ε
)ζεk · (∇− 2iπ

θn

ε
)Φ +

1

ε2

∫

RN

(cε − λn(θ
n))ζεkΦ =

ε−1

∫

RN

Aε(∇ + 2iπ
θn

ε
)ψεn · ekΦ − ε−1

∫

RN

Aεekψ
ε
n · (∇− 2iπ

θn

ε
)Φ.

(70)
Combining (68) with the other terms of the variational formulation of (49),
we easily check that the first line of its right hand side cancels out because of
(69) with Φ = φvε, and the next three lines cancel out because of (70) with

Φ = ∂φ

∂xk

vε. On the other hand, we can pass to the limit in three last terms
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of (68). Finally, (49) multiplied by Ψε yields after simplification

i

∫

RN

u0
εΨε(t = 0)dx− i

∫ T

0

∫

RN

vε

(

ψ
ε

n

∂φ

∂t
+ ε

∂2φ

∂xk∂t
ζ
ε

k

)

dt dx

−
∫ T

0

∫

RN

Aεvε∇
∂φ

∂xk
· ekψ

ε

ndt dx

−
∫ T

0

∫

RN

Aεvε∇
∂φ

∂xk
· (ε∇− 2iπθn)ζ

ε

kdt dx

+

∫ T

0

∫

RN

Aεζ
ε

k(ε∇ + 2iπθn)vε · ∇
∂φ

∂xk
dt dx

+

∫ T

0

∫

RN

dεvεΨε dt dx = 0.

(71)

Passing to the two-scale limit in each term of (71) gives

i

∫

RN

∫

TN

ψnv
0ψnφ(t = 0) dx dy − i

∫ T

0

∫

RN

∫

TN

ψnvψn
∂φ

∂t
dt dx dy

−
∫ T

0

∫

RN

∫

TN

Aψnv∇
∂φ

∂xk
· ekψndt dx dy

−
∫ T

0

∫

RN

∫

TN

Aψnv∇
∂φ

∂xk
· (∇y − 2iπθn)ζkdt dx dy

+

∫ T

0

∫

RN

∫

TN

Aζk(∇y + 2iπθn)ψnv · ∇
∂φ

∂xk
dt dx dy

+

∫ T

0

∫

RN

∫

TN

d(x, y)ψnvψnφdt dx dy = 0.

(72)
Recalling the normalization

∫

TN |ψn|2dy = 1, and introducing

2 (A∗
n)jk =

∫

TN

(

Aψnej · ekψn + Aψnek · ejψn
+Aψnej · (∇y − 2iπθn)ζk + Aψnek · (∇y − 2iπθn)ζj

−Aζk(∇y + 2iπθn)ψn · ej − Aζj(∇y + 2iπθn)ψn · ek
)

dy,

(73)
and d∗n(x) =

∫

TN d(x, y)|ψn(y)|2 dy, (72) is equivalent to

i

∫

RN

v0φdx−i
∫ T

0

∫

RN

v
∂φ

∂t
dt dx−

∫ T

0

∫

RN

A∗v·∇∇φdt dx+
∫ T

0

∫

RN

d∗(x)vφdt dx = 0
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which is a very weak form of the homogenized equation (65). The compat-
ibility condition of equation (61) for the second derivative of ψn yields that
the matrix A∗

n, defined by (73), is indeed equal to 1
8π2∇θ∇θλn(θ

n), and thus
is symmetric. Although, the tensor A∗

n is possibly non-coercive, the homoge-
nized problem (65) is well posed. Indeed, by using semi-group theory (see e.g.
[12] or chapter X in [45]), there exists a unique solution in C((0, T );L2(RN)),
although it may not belong to L2((0, T );H1(RN)). By uniqueness of the so-
lution of the homogenized problem (65), we deduce that the entire sequence
vε two-scale converges weakly to ψn (y, θn) v(t, x).

It remains to prove the strong two-scale convergence of vε. By Lemma
6.1 we have

‖vε(t)‖L2(RN ) = ‖uε(t)‖L2(RN ) = ‖u0
ε‖L2(RN ) → ‖ψnv0‖L2(RN×TN ) = ‖v0‖L2(RN )

by the normalization condition of ψn. From the conservation of energy of the
homogenized equation (65) we have

‖v(t)‖L2(RN ) = ‖v0‖L2(RN ),

and thus we deduce the strong convergence (64) from Theorem 3.4. 2

Remark 7.6 As usual in periodic homogenization, the choice of the test
function Ψε, in the proof of Theorem 7.2, is dictated by the formal two-scale
asymptotic expansion that can be obtained for the solution uε of (49), namely

uε(t, x) ≈ ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε

(

ψn

(x

ε
, θn
)

v(t, x) + ε

N
∑

k=1

∂v

∂xk
(t, x)ζk(

x

ε
)

)

,

where v is the homogenized solution of (65). The purpose of the corrector ζk
is to compensate by its second derivatives the first derivatives of ψn. Since ζk
is proportional to ∂ψn/∂θk, the rule of thumb is that derivatives with respect
to x correspond to derivatives with respect to θ.

Remark 7.7 Our method applies also to systems of equations (see [3]). We
never use the fact that (49) is a single scalar equation.

Remark 7.8 By changing the main assumption on the Bloch spectrum it is
possible to obtain a fourth order homogenized equation instead of the usual
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Schrödinger equation. Specifically, if we consider






iε2
∂uε
∂t

− div
(

A
(x

ε

)

∇uε
)

+
(

ε−2c
(x

ε

)

+ ε2d
(

x,
x

ε

))

uε = 0 in R
N × (0, T )

uε(t = 0, x) = u0
ε(x) in R

N ,

(74)
and if we make the following assumption, instead of (58),

{

(i) λn(θ
n) is a simple eigenvalue,

(ii) ∇θλn(θ
n) = 0,∇θ∇θλn(θ

n) = 0,∇θ∇θ∇θλn(θ
n) = 0,

(75)

then, for the same type of initial data (62), we can prove that the solution of
(74) can be written as

uε(t, x) = ei
λn(θn)t

ε4 e2iπ
θ
n·x
ε vε(t, x), (76)

where vε converges strongly in the sense of two-scale convergence to ψn(y, θ
n)v(t, x)

and v ∈ C
(

(0, T );L2(RN)
)

is the solution of the fourth-order homogenized
problem







i
∂v

∂t
+ div div (A∗

n∇∇v) + d∗n(x) v = 0 in R
N × (0, T )

v(t = 0, x) = v0(x) in R
N ,

(77)

with A∗
n = 1

(2π)44!
∇θ∇θ∇θ∇θλn(θ

n) and d∗n(x) =
∫

TN d(x, y)|ψn(y)|2 dy.
Remark that the time scaling in (74) is not the same than that in (49):

this means that we are looking for an asymptotic for longer time of order ε−2

in (74), compared to (49).
More generally, any p-order critical point of λn(θ) yields a p-order (in

space) homogenized equation. This is a well-known consequence of the du-
ality between derivatives in the physical space and multiplication by Fourier
variables (or more precisely here Bloch variables).

8 Generalization with drift

The Schrödinger equation (49) can still be homogenized when θn is not a crit-
ical point of λn(θ). In other words we generalize Theorem 7.2 by weakening
assumption (58) that we now replace by

λn(θ
n) is a simple eigenvalue. (78)

36



This yields a large drift in the homogenized problem associated to the group
velocity

V =
1

2π
∇θλn(θ

n). (79)

To begin with, we shall show that assumption (78) leads to a drift of velocity
V at the small time scale of order ε. Looking at such a ε time asymptotic is
equivalent to replace the original Schrödinger equation (49) by






i

ε

∂uε
∂t

− div
(

A
(x

ε

)

∇uε
)

+
(

ε−2c
(x

ε

)

+ d
(

x,
x

ε

))

uε = 0 in R
N × (0, T ),

uε(t = 0, x) = u0
ε(x) in R

N ,
(80)

with the new ε−1 scaling in front of the time derivative (this is precisely the
scaling of semi-classical analysis).

Proposition 8.1 Assume that the initial data u0
ε ∈ H1(RN) is of the form

u0
ε(x) = ψn

(x

ε
, θn
)

e2iπ
θ
n·x
ε v0(x),

with v0 ∈ L2(RN). The solution of (80) can be written as

uε(t, x) = ei
λn(θn)t

ε e2iπ
θ
n·x
ε vε(t, x),

where vε(t, x) two-scale converges strongly to ψn(y, θ
n)v(t, x) and v ∈ C

(

(0, T );L2(RN )
)

is the unique solution of the following transport equation






∂v

∂t
− V · ∇v = 0 in R

N × (0, T ),

v(t = 0, x) = v0(x) in R
N ,

(81)

which admits the explicit solution v(t, x) = v0 (x+ Vt), and we have

lim
ε→0

∫

RN

∣

∣

∣
vε(t, x) − ψn

(x

ε
, θn
)

v0 (x+ Vt)
∣

∣

∣

2

dx = 0,

uniformly on compact time intervals in R
+.

Proof. As in the first step of the proof of Theorem 7.2, by virtue of the a
priori estimates of Lemma 6.1, a suitable subsequence of

vε(t, x) = uε(t, x)e
−i

λn(θn)t
ε e−2iπ θ

n·x
ε
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two-scale converges to a limit ψn (y, θn) v(t, x). Then, in a second step we
multiply (80) by the complex conjugate of

Ψε = ε ei
λn(θn)t

ε e2iπ
θ
n·x
ε

(

ψn(
x

ε
, θn)φ(t, x) + ε

N
∑

k=1

∂φ

∂xk
(t, x)ζ ′k(

x

ε
)

)

(82)

where φ(t, x) is a smooth test function with compact support in [0, T )× R
N

and ζ ′k(y) is defined by
∂ψn
∂θk

= 2iπζ ′k.

Note that ζ ′k is different from ζk, the solution of (60), since it is a solution of

An(θ
n)ζ ′k = ekA(y)(∇y + 2iπθn)ψn + (divy + 2iπθn) (A(y)ekψn)

− i

2π

∂λn
∂θk

(θn)ψn in T
N ,

(83)

and ∇θλn(θ
n) 6= 0. After integration by parts and some algebra similar to

that in the proof of Theorem 7.2 we obtain

i

∫

RN

v0|ψεn|2φ(t = 0) dx− i

∫ T

0

∫

RN

vεψ
ε

n

∂φ

∂t
dt dx

− 1

2iπ

∂λn
∂θk

∫ T

0

∫

RN

vεψ
ε

n

∂φ

∂xk
dt dx = o(1),

(84)

where o(1) denotes all other terms going to zero with ε. Passing to the two-
scale limit in (84) gives a variational formulation of (81). By uniqueness of
the solution of (81) the entire sequence converges to this solution. The strong
two-scale convergence is obtained as in the proof of Theorem 7.2 by using
the energy conservation of the original and homogenized equations. 2

We now come back to the original time scale of the Schrödinger equation
(49)







i
∂uε
∂t

− div
(

A
(x

ε

)

∇uε
)

+
(

ε−2c
(x

ε

)

+ d
(

x,
x

ε

))

uε = 0 in R
N × (0, T ),

uε(t = 0, x) = u0
ε(x) in R

N ,
(85)
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where the macroscopic zero-order term is assumed to satisfy

lim
|x|→+∞

d(x, y) = d∞(y) uniformly in T
N . (86)

Actually, assumption (86) could be weakened by stating that the limit exists
for any fixed direction in x but may vary. Using the following extension of
the notion of two-scale convergence (see [2], [40]), which has been introduced
in [37], it is possible to homogenize (85).

Theorem 8.2 Let V ∈ R
N be a given drift velocity. Let (uε)ε>0 be a uni-

formly bounded sequence in L2((0, T )×R
N). There exists a subsequence, still

denoted by ε, and a limit function u0(t, x, y) ∈ L2((0, T ) × R
N × T

N ) such
that uε two-scale converges with drift weakly to u0 in the sense that

lim
ε→0

∫ T

0

∫

RN

uε(t, x)φ

(

t, x+
V
ε
t,
x

ε

)

dt dx =

∫ T

0

∫

RN

∫

TN

u0(t, x, y)φ(t, x, y) dt dx dy

(87)

for all functions φ(t, x, y) ∈ L2
(

(0, T ) × R
N ;C(TN)

)

.

Recall that, T
N being the unit torus, the test function φ in (87) is (0, 1)N -

periodic with respect to the y variable. Remark that Theorem 8.2 does not
reduce to the usual definition of two-scale convergence upon the change of
variable z = x + V

ε
t because there is no drift in the fast variable y = x

ε
.

The proof of Theorem 8.2 is similar to the proof of compactness of the usual
two-scale convergence, except that it relies on the following simple lemma.

Lemma 8.3 Let φ(t, x, y) ∈ L2
(

(0, T ) × R
N ;C(TN)

)

. Then

lim
ε→0

∫ T

0

∫

RN

∣

∣

∣

∣

φ

(

t, x +
V
ε
t,
x

ε

)
∣

∣

∣

∣

2

dt dx =

∫ T

0

∫

RN

∫

TN

|φ(t, x, y)|2dt dx dy.

It is not difficult to check that the L2-norm is weakly lower semi-continuous
with respect to the two-scale convergence (see Proposition 1.6 in [2]), i.e., in
the present setting

lim
ε→0

‖uε‖L2((0,T )×RN ) ≥ ‖u0‖L2((0,T )×RN×TN ).

The next Proposition asserts a corrector-type result when the above inequal-
ity turns out to be an equality.
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Proposition 8.4 Let (uε)ε>0 be a sequence in L2((0, T ) × R
N) which two-

scale converges with drift to a limit u0(t, x, y) ∈ L2((0, T )×R
N×T

N ). Assume
further that

lim
ε→0

‖uε‖L2((0,T )×RN ) = ‖u0‖L2((0,T )×RN×TN ).

Then, it is said to two-scale converges with drift strongly and it satisfies

lim
ε→0

∫ T

0

∫

RN

∣

∣

∣

∣

uε(t, x) − u0

(

t, x +
V
ε
t,
x

ε

)
∣

∣

∣

∣

2

dx dt = 0,

if u0(t, x, y) is smooth, say u0(t, x, y) ∈ L2
(

(0, T ) × R
N ;C(TN)

)

.

The proofs of Theorem 8.2 and Lemma 8.3 can be found in [37]. That of
Proposition 8.4 is a simple adaptation of Theorem 1.8 in [2].

Under assumption (78) we obtain the following generalization of Theorem
7.2.

Theorem 8.5 Assume that the initial data u0
ε ∈ H1(RN) is of the form

u0
ε(x) = ψn

(x

ε
, θn
)

e2iπ
θ
n·x
ε v0(x), (88)

with v0 ∈ H1(RN ). The solution of (85) can be written as

uε(t, x) = ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε vε(t, x), (89)

where vε(t, x) converges strongly in the sense of two-scale convergence with
drift to ψn(y, θ

n)v(t, x), i.e.

lim
ε→0

∫ T

0

∫

RN

∣

∣

∣

∣

vε(t, x) − ψn

(x

ε
, θn
)

v

(

t, x+
V
ε
t

)
∣

∣

∣

∣

2

dx dt = 0, (90)

and v ∈ C
(

(0, T );L2(RN )
)

is the unique solution of the Schrödinger homog-
enized problem







i
∂v

∂t
− div (A∗

n∇v) + d∗n v = 0 in R
N × (0, T ),

v(t = 0, x) = v0(x) in R
N ,

(91)

with A∗
n = 1

8π2∇θ∇θλn(θ
n) and d∗n =

∫

TN d
∞(y)|ψn(y)|2 dy.
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Remark 8.6 For the longer time scale of equation (85), the transport equa-
tion (81) can still be seen in the large drift V/ε of formula (90).

Proof of Theorem 8.5. The proof is similar to that of Theorem 7.2 and
Proposition 8.1. Nevertheless, we do not use, as before, the usual two-scale
convergence but rather the two-scale convergence with drift. In a first step,
by multiplying (85) by a test function

ε2φ

(

t, x +
V
ε
t,
x

ε

)

ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε ,

where φ(t, x, y) is a smooth test function defined on [0, T ) × R
N × T

N , with
compact support in [0, T ) × R

N , we prove that the sequence

vε(t, x) = uε(t, x)e
−iλn(θn)t

ε2 e−2iπ θ
n·x
ε

two-scale converges with drift to a limit ψn (y, θn) v(t, x). Then, in a second
step we multiply (85) by the complex conjugate of

Ψε = ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε

(

ψn(
x

ε
, θn)φ(t, x+

V
ε
t) + ε

N
∑

k=1

∂φ

∂xk
(t, x+

V
ε
t)ζ ′k(

x

ε
)

)

,

which is different from the previous test function (82) by the ε factor, the
time scale of the phase, and mostly the large drift in the macroscopic variable.
Integrating by parts we perform a computation which is identical to that in
the proof of Theorem 7.2 except that two new terms arise and cancel out
exactly, namely the term

− 1

2iπε

∂λn
∂θk

∫ T

0

∫

RN

vεψ
ε

n

∂φ

∂xk
dt dx

which comes from the new equation (70) satisfied by ζ ′k, and the same term
with positive sign which arises in the integration by parts of

∫ T

0

∫

RN

i
∂uε
∂t

Ψεdt dx.

The rest of the proof is as in Theorem 7.2, provided the usual two-scale
convergence is replaced by the two-scale convergence with drift which relies
on test functions having a large drift in the macroscopic variable. 2
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9 Homogenized system of equations

In this section we investigate the case of a Bloch eigenvalue which is not
simple. Physically speaking it can be interpreted as a crossing of modes.
The semi-classical limit of this problem yields the so-called Landau-Zerner
formula, recently analyzed in [23], [24]. Our study is different in two respects.
First our scaling is not that of semi-classical analysis. Second the crossing is
tangential, i.e. the drift or velocity vectors ∇θλn(θ) are assumed to be the
same for each mode. To simplify the exposition we consider an eigenvalue of
multiplicity two, but the argument works through for any multiplicity. We
replace assumption (58) by the following one: for n ≥ 1, we consider a Bloch
parameter θn ∈ T

N such that























(i) λn(θ
n) = λn+1(θ

n) 6= λk(θ
n) ∀k 6= n, n + 1,

(ii) locally near θn, λn(θ) and λn+1(θ) form two
smooth branches of eigenvalues with corresponding
smooth eigenfunctions ψn(θ) and ψn+1(θ),

(iii) ∇θλn(θ
n) = ∇θλn+1(θ

n) = 0.

(92)

By a convenient abuse of language we still denote by λn(θ) and λn+1(θ)
the two smooth (local) branches of eigenvalues passing through θn (this is
equivalent to a pointwise relabeling of these two eigenvalues, not necessarily
following the usual increasing order). In dimension N = 1 a double eigenvalue
can only occur when there is no gap between two consecutive Bloch bands
and assumption (92) is automatically satisfied [36]. However, in dimension
N > 1 it is not even clear that, near a double eigenvalue, one can find two
smooth branches because θ is a vector-valued parameter (see [32]). Therefore,
(92) is a very strong mathematical assumption which is physically not very
relevant in dimension N > 1.

Theorem 9.1 Assume (92) and that the initial data u0
ε ∈ H1(RN) are of

the form

u0
ε(x) = ψn

(x

ε
, θn
)

e2iπ
θ
n·x
ε v0

1(x) + ψn+1

(x

ε
, θn
)

e2iπ
θ
n·x
ε v0

2(x), (93)

with v0
1 , v

0
2 ∈ H1(RN). The solution of (49) can be written as

uε(t, x) = ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε vε(t, x), (94)

42



where vε two-scale converges strongly to ψn(y, θ
n)v1(t, x)+ψn+1(y, θ

n)v2(t, x),
i.e., uniformly on compact time intervals in R

+,

lim
ε→0

∫

RN

∣

∣

∣
vε(t, x) − ψn

(x

ε
, θn
)

v1(t, x) − ψn+1

(x

ε
, θn
)

v2(t, x)
∣

∣

∣

2

dx = 0, (95)

and (v1, v2) ∈ C
(

(0, T );L2(RN)2
)

is the unique solution of the homogenized
Schrödinger system of two equations


















i
∂v1

∂t
− div (A∗

n∇v1) + d∗11(x) v1 + d∗12(x) v2 = 0 in R
N × (0, T )

i
∂v2

∂t
− div

(

A∗
n+1∇v2

)

+ d∗21(x) v1 + d∗22(x) v2 = 0 in R
N × (0, T )

(v1, v2)(t = 0, x) = (v0
1, v

0
2)(x) in R

N ,
(96)

with A∗
n = 1

8π2∇θ∇θλn(θ
n), A∗

n+1 = 1
8π2∇θ∇θλn+1(θ

n) and

(

d∗11(x) d∗12(x)
d∗21(x) d∗22(x)

)

=

∫

TN

d(x, y)

(

ψn(y)ψn(y) ψn(y)ψn+1(y)

ψn+1(y)ψn(y) ψn+1(y)ψn+1(y)

)

dy.

Remark 9.2 The main point in Theorem 9.1 is that the homogenized system
is of dimension equal to the multiplicity of the eigenvalue λn(θ

n). However,
the homogenized system (96) is coupled only by zero-order terms since the
diffusion operator is diagonal.

Proof of Theorem 9.1. Introducing a sequence vε defined by

vε(t, x) = uε(t, x)e
−i

λn(θn)t

ε2 e−2iπ θ
n·x
ε ,

which satisfies the same a priori estimates as uε, and applying Theorem 3.2,
there exists a limit v∗(t, x, y) ∈ L2

(

(0, T ) × R
N ;H1(TN )

)

such that, up to a
subsequence, vε and ε∇vε two-scale converge to v∗ and ∇yv

∗, respectively.
First step. We multiply (49) by the complex conjugate of

ε2φ(t, x,
x

ε
)ei

λn(θn)t

ε2 e2iπ
θ
n·x
ε

where φ(t, x, y) is a smooth test function defined on [0, T ) × R
N × T

N , with
compact support in [0, T ) × R

N . Integrating by parts and passing to the
two-scale limit yields the variational formulation of

−(divy + 2iπθ)
(

A(y)(∇y + 2iπθ)v∗
)

+ c(y)v∗ = λn(θ
n)v∗ in T

N .
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Since λn(θ
n) = λn+1(θ

n) is of multiplicity 2, there exist two scalar functions
v1(t, x), v2(t, x) ∈ L2

(

(0, T ) × R
N
)

such that

v∗(t, x, y) = v1(t, x)ψn(y, θ
n) + v2(t, x)ψn+1(y, θ

n). (97)

Second step. We multiply (49) by the complex conjugate of

Ψε = ei
λn(θn)t

ε2 e2iπ
θ
n·x
ε

(

ψn(
x

ε
, θn)φ1(t, x) + ψn+1(

x

ε
, θn)φ2(t, x)

+ε
N
∑

k=1

(

∂φ1

∂xk
(t, x)ζ1

k(
x

ε
) +

∂φ2

∂xk
(t, x)ζ2

k(
x

ε
)

)

)

where φ1, φ2 are two smooth test functions with compact support in [0, T )×
R
N , and ζ1

k(y) is the solution of (60) with ψn in the right hand side (respec-
tively, ζ2

k(y) with ψn+1). Note that at this point we strongly use the assump-
tion on the smoothness of the eigenfunctions since ζ1

k(y) (respectively, ζ2
k(y))

is defined as the partial derivative of ψn (respectively, ψn+1) with respect
to θk. We integrate by parts and we pass to the two-scale limit using the
same algebra as in the proof of Theorem 7.2. We also use the orthogonality
property

∫

TN

ψnψn+1 dy = 0,

to obtain

i

∫

RN

(

v0
1φ1(0) + v0

2φ2(0)
)

dx− i

∫ T

0

∫

RN

(

v1
∂φ1

∂t
+ v2

∂φ2

∂t

)

dt dx

−
∫ T

0

∫

RN

2
∑

p,q=1

A∗
pqvp · ∇∇φq dt dx

+

∫ T

0

∫

RN

∫

TN

d(ψnv1 + ψn+1v2)(ψnφ1 + ψn+1φ2) dt dx dy = 0,

(98)
where A∗

11 = A∗
n and A∗

22 = A∗
n+1, defined by (73), and A∗

12 is defined by

2 (A∗
12)jk =

∫

TN

(

Aψnej · ekψn+1 + Aψnek · ejψn+1

+Aψnej · (∇y − 2iπθn)ζ
2

k + Aψnek · (∇y − 2iπθn)ζ
2

j

−Aζ2

k(∇y + 2iπθn)ψn · ej − Aζ
2

j(∇y + 2iπθn)ψn · ek
)

dy,

(99)

44



with a symmetric formula for A∗
21. Recall that A∗

n = 1
8π2∇θ∇θλn(θ

n) because
of the compatibility condition of equation (61) for the second derivative of
ψn. This compatibility condition is obtained by multiplying (61) by ψn and
remarking that

∫

TN

An(θ
n)χklψn dy =

∫

TN

χklAn(θn)ψn dy = 0

because An(θ
n)ψn = 0. However, the same holds true if we multiply (61) by

ψn+1
∫

TN

An(θ
n)χklψn+1 dy = 0

because An(θ
n)ψn+1 = 0. Therefore, we deduce that (99) is equivalent to

2 (A∗
12)lk =

∫

TN

1

4π2

∂2λn
∂θl∂θk

(θn)ψnψn+1 dy = 0

by orthogonality of ψn and ψn+1. Thus A∗
12 = A∗

21 = 0 and (98) is a weak for-
mulation of the limit system (96) which is thus coupled only through the zero-
order terms. It is easily seen that (96) is well-posed in C

(

(0, T );L2(RN )2
)

.
The rest of the proof is as for Theorem 7.2. 2

Remark 9.3 Of course, Theorem 9.1 can easily be generalized in the case
of a common drift V = ∇θλn(θ

n)/2π = ∇θλn+1(θ
n)/2π 6= 0. If assumption

(iii) in (92) is not satisfied, i.e. if there are two different values of the drift
velocity, ∇θλn(θ

n) 6= ∇θλn+1(θ
n), then we obtain an uncoupled limit system,

i.e. each branch of eigenfunctions yields a different homogenized Schrödinger
equation. We safely leave the details to the reader.

10 Localization

We now come back to the scaling of semi-classical analysis and consider the
following Schrödinger equation







i

ε

∂uε
∂t

− div
(

A
(

x,
x

ε

)

∇uε
)

+
1

ε2
c
(

x,
x

ε

)

uε = 0 in R
N × R

+

uε(0, x) = u0
ε(x) in R

N .
(100)
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The main difference with the previous sections is that the periodic coefficients
are now macroscopically modulated. The results are going to be completely
different as we shall see, featuring in particular a localization phenomenon.

At least in the case when A ≡ Id and c(x, y) = c0(x) + c1(y), there
is a well-known theory for the asymptotic limit of (100) when ε goes to
zero. By using WKB asymptotic expansion or the notion of semi-classical
measures (or Wigner transforms) the homogenized problem is in some sense
the Liouville transport equation for a classical particle which is the limit of
the wave function uε. First of all, the Bloch spectral cell problem (42) now
depends on x as a parameter. In other words, (42) is replaced by

−(divy + 2iπθ)(A(x, y)(∇y + 2iπθ)ψn) + c(x, y) = λn(x, θ)ψn in T
N .

(101)
For an initial data living in the n-th Bloch band and under some technical
assumptions on the Bloch spectral cell problem (101), the semi-classical limit
of (100) is given by the dynamic of the following Hamiltonian system in the
phase space (x, θ) ∈ R

N × T
N

{

ẋ = ∇θλn(x, θ)

θ̇ = −∇xλn(x, θ)
(102)

where the Hamiltonian λn(x, θ) is precisely the n-th Bloch eigenvalue of (101)
(see [14], [22], [27], [28], [29], [30], [41], [43] for more details).

Our approach to (100) is different since we consider special initial data
that are monochromatic, have zero group velocity and zero applied force.
Namely the initial data is concentrating at a point (xn, θn) of the phase
space where ∇θλn(x

n, θn) = ∇xλn(x
n, θn) = 0. In such a case, the previ-

ous Hamiltonian system (102) degenerates (its solution is constant) and is
unable to describe the precise dynamic of the wave function uε. We exhibit
another limit problem which is again a Schrödinger equation with quadratic
potential. In other words we build a sequence of approximate solutions of
(100) which are the product of a Bloch wave and of the solution of an ho-
mogenized Schrödinger equation. Furthermore, if the full Hessian tensor of
the Bloch eigenvalue λn(x, θ) is positive definite at (xn, θn), we prove that all
the eigenfunctions of an homogenized Schrödinger equation are exponentially
decreasing at infinity. In other words, we exhibit a localization phenomenon
for (100) since we build a sequence of approximate solutions that decay ex-
ponentially fast away from xn. The root of this localization phenomenon is

46



the macroscopic modulation (i.e. with respect to x) of the periodic coeffi-
cients which is similar in spirit to the randomness that causes Anderson’s
localization (see [15] and references therein).

Our main assumptions are that there exist xn ∈ R
N and θn ∈ T

N such
that

(i) x→ A(x, y), c(x, y) are C2 in a neighborhood of xn,
(ii) λn(x

n, θn) is a simple eigenvalue,
(iii) (xn, θn) is a critical point of λn(x, θ), i.e.

∇xλn(x
n, θn) = ∇θλn(x

n, θn) = 0.

(103)

Notations. We introduce a new intermediate scale variable z, defined by

z :=
√
ε(y − yn) ≡ x− xn√

ε
.

Theorem 10.1 Under assumption (103) and for an initial data

u0
ε(x) = ψn

(

xn,
x

ε
, θn
)

e2iπ
θ
n·x
ε v0

(x− xn√
ε

)

, (104)

the solution of (100) can be written as

uε(t, x) = ei
λnt

ε e2iπ
θ
n·x
ε vε

(

t,
x− xn√

ε

)

, (105)

where vε(t, z) two-scale converges strongly to ψn(y)v(t, z), i.e.

lim
ε→0

∫

RN

∣

∣

∣

∣

vε(t, z) − ψn

(

z√
ε

)

v(t, z)

∣

∣

∣

∣

2

dz = 0, (106)

uniformly on compact time intervals in R
+, and v is the unique solution of

the homogenized Schrödinger equation







i
∂v

∂t
− div (A∗∇v) + div(vB∗z) + c∗v + vD∗z · z = 0 in R

N × R
+

v(0, z) = v0(z) in R
N

(107)
where

A∗ =
1

8π2
∇θ∇θλn(x

n, θn) , B∗ =
1

2iπ
∇θ∇xλn(x

n, θn) , D∗ =
1

2
∇x∇xλn(x

n, θn) ,
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and c∗ is given by

c∗ =

∫

TN

[

A(∇y + 2iπθn)ψn ·
∂ψ̄n
∂xk

ek − A(∇y − 2iπθn)
∂ψ̄n
∂xk

· ψn ek

− ∂A

∂xk
(xn, y)(∇y − 2iπθn)ψ̄n · ψnek

]

dy .

(108)

Notice that even if the tensor A∗ might be non-coercive, the homogenized
problem (107) is well posed. Indeed the operator A

∗ : L2(RN) → L2(RN)
defined by

A
∗φ = −div (A∗∇φ) + div(φB∗z) + c∗φ+ φD∗z · z (109)

is self-adjoint by virtue of Proposition 10.2 below and therefore by using semi-
group theory (see e.g. [12] or Chapter X in [45]), one can show that there
exists a unique solution in C(R+;L2(RN)), although it may not belong to
L2(R+;H1(RN)). The next result establishes the conservation of the L2-norm
for the solution v of the homogenized equation (107) and the self-adjointness
of the operator A

∗.

Proposition 10.2 Let v ∈ C(R+;L2(RN )) be solution to (107). Then

||v(t, ·)||L2(RN ) = ||v0||L2(RN ) ∀ t ∈ R
+ . (110)

Moreover the operator A
∗ defined in (109) is self-adjoint.

Proof. We multiply the equation (107) by v̄ and take the imaginary part to
obtain

1

2

d

dt

∫

RN

|v|2 dz = Im

(
∫

RN

vB∗z · ∇v̄ − c∗|v|2 dz
)

. (111)

After integrating by parts one finds that the right hand side of (111) equals

−
( 1

2i
trB∗ + Imc∗

)

∫

RN

|v|2 dz

and therefore (110) is proved as soon as we show that

1

2i
trB∗ + Imc∗ = 0 . (112)
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Actually, (112) is a conseqence of the Fredholm alternatives for the deriva-
tives, with respect to x and θ, of the cell spectral equation (101) (for details,
see [6]).

In order to prove the self-adjointness of the operator A
∗, one first checks

that A
∗ is symmetric, which easily follows by (112) and the fact thatB

∗
= −B∗,

and then observes that up to addition of a multiple of the identity the oper-
ator A

∗ is monotone (see e.g. [13], Chapter VII). 2

In the next proposition we will denote by ∇∇λn the Hessian matrix of
the function λn(x, θ) evaluated at the point (xn, θn), namely

∇∇λn =

(

∇x∇xλn ∇θ∇xλn
∇θ∇xλn ∇θ∇θλn

)

(xn, θn) .

Proposition 10.3 Assume that the matrix ∇∇λn is positive definite. Then
there exists an orthonormal basis {φn}n≥1 of eigenfunctions of A

∗; moreover
for each n there exists a real constant γn > 0 such that

eγn|z|φn , e
γn |z|∇φn ∈ L2(RN) . (113)

Proof. Up to shifting the spectrum of the operator A
∗, we may assume

that Re(c∗) = 0. In order to prove the existence of an orthonormal basis of
eigenfunctions we introduce the inverse operator of A

∗, denoted by G∗

G∗ : L2(RN) → L2(RN )
f → φ unique solution in H1(RN) of

A
∗φ = f in R

N

(114)

and we show that G∗ is compact. Indeed multiplication of (114) by φ̄ yields
∫

RN

[A∗∇φ · ∇φ̄− iB∗Im(φz · ∇φ̄) +D∗z · z|φ|2] dz =

∫

RN

fφ̄ dz . (115)

Upon defining the 2N -dimensional vector-valued function Φ

Φ :=

(

2iπzφ
∇φ

)

we rewrite (115) in agreement with this block notation
∫

RN

1

8π2
∇∇λnΦ · Φ dz =

∫

RN

fφ̄ dz .

49



By the positivity assumption on the matrix ∇∇λn it follows that there exists
a positive constant c0 such that

c0

(

||∇φ||2L2(RN ) + ||zφ||2L2(RN )

)

≤ ||f ||L2(RN )||φ||L2(RN ) ,

which implies by a standard argument

||φ||2L2(RN ) + ||∇φ||2L2(RN ) + ||zφ||2L2(RN ) ≤ C||f ||2L2(RN ),

from which we deduce the compactness of G∗ in L2(RN)-strong. Thus there
exists an infinite countable number of eigenvalues for A

∗.
We are left to prove the exponential decay of the eigenfunctions. Let φn

be an eigenfunction and let σn be the associated eigenvalue

A
∗φn = σnφn . (116)

Let R0 > 0 and ρ ∈ C∞(R) be a real function such that 0 ≤ ρ ≤ 1, ρ(s) = 0
for s ≤ R0 and ρ(s) = 1 for s ≥ R0 +1 and for every positive integer k define
ρk ∈ C∞(RN) in the following way

ρk(z) := ρ(|z| − k).

We now multiply (116) by φ̄nρ
2
k to get

∫

RN

ρ2
k

(

A∗∇φn · ∇φ̄n − iB∗Im(φnz · ∇φ̄n) +D∗z · z|φn|2 − σn|φn|2
)

dz =

∫

RN

(

ρk|φn|2B∗z · ∇ρk − 2ρk φ̄nA
∗∇φn · ∇ρk

)

dz . (117)

Next remark that since the left hand side of (117) is real the right hand side
must be also real and therefore it is equal to

∫

RN

−2ρk Re(φ̄nA
∗∇φn) · ∇ρk dz . (118)

Let Bk denote the ball of radius R0 +k and center z = 0 and observe that the
support of ∇ρk is contained in Bk+1 \ Bk. Then putting up together (117)
and (118) and using again the positive definiteness of the matrix ∇∇λn we
obtain for R0 sufficiently large (

√
R0 > σn does the job)

||φn||2H1(RN\Bk+1)
≤ c1

(

||φn||2H1(RN\Bk) − ||φn||2H1(RN\Bk+1)

)
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where c1 is a positive constant independent of k. Thus we deduce that

||φn||2H1(RN \Bk+1)
≤
( c1

1 + c1

)k

||φn||2H1(RN\B0) . (119)

Upon defining a positive constant γ0 > 0 by

( c1
1 + c1

)k

= e−2γ0(k+R0)

it is finally seen that (119) implies the estimate (113) for any exponent 0 <
γn < γ0. 2

Proof of Theorem 10.1. We content ourselves in giving a sketch of it. The
main idea is to rescale the space variable by introducing

z =
x− xn√

ε
,

and to perform a Taylor expansion in the coefficients for z close to the origin.
We define a sequence vε by

vε(t, z) := e−i
λnt

ε e−2iπ θ
n·x
ε uε(t, x) . (120)

The a priori estimates of Lemma 6.1 (which are still valid here) implies that
vε(t, z) satisfies

||vε||L∞(R+;L2(RN )) +
√
ε||∇vε||L∞(R+;L2(RN )) ≤ C.

We apply the compactness of two-scale convergence (see Theorem 3.2) with
test functions oscillating periodically in z with period

√
ε (instead of ε as

before). Therefore, up to a subsequence, there exists a limit v∗(t, z, y) ∈
L2
(

R
+ × R

N ;H1(TN )
)

such that vε and
√
ε∇vε two-scale converge to v∗ and

∇yv
∗, respectively. Similarly, by definition of the initial data, vε(0, z) two-

scale converges to ψn(y)v
0(z).

Although vε is the unknown which will pass to the limit in the sequel, it
is simpler to write an equation for another function, namely

wε(t, z) := e
2iπ θ

n·z√
ε vε(t, z) = e−i

λnt

ε uε(t, x) . (121)
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Upon this change of unknown and of variable, it can be checked that wε
solves the following equation






i
∂wε
∂t

− div[A
(√

εz, z/
√
ε
)

∇wε] +
1

ε
[c(

√
εz, z/

√
ε) − λn]wε = 0 in R

N × R
+

wε(0, z) = u0
ε(
√
εz) in R

N

(122)
where the differential operators div and ∇ act with respect to the new vari-
able z.
First step. As usual we multiply the equation (122) by the complex conju-
gate of

εφ
(

t, z,
z√
ε

)

e
2iπ θ

n·z√
ε

where φ(t, z, y) is a smooth test function defined on R
+ × R

N × T
N , with

compact support in R
+ × R

N . Since this test function has compact support
(fixed with respect to ε), the effect of the non-periodic variable in the coeffi-
cients is negligible for sufficiently small ε. Therefore we can replace the value
of each coefficient at (

√
εz, z/

√
ε) by its Taylor expansion of order two about

the point (0, z/
√
ε). Passing to the two-scale limit we get the variational

formulation of

−(divy + 2iπθn)
(

A(y)(∇y + 2iπθn)v∗
)

+ c(y)v∗ = λnv
∗ in T

N .

The simplicity of λn implies that there exists a scalar function v(t, z) ∈
L2
(

R
+ × R

N
)

such that

v∗(t, z, y) = v(t, z)ψn(y). (123)

Second step. We multiply (122) by the complex conjugate of

Ψε(t, z) = e
2iπθn· z√

ε

[

ψεnφ(t, z) +
√
ε

N
∑

k=1

( 1

2iπ

∂ψεn
∂θk

∂φ

∂zk
(t, z) + zk

∂ψεn
∂xk

φ(t, z)
)]

,

(124)
where φ(t, z) is a smooth test function with compact support in R

+ × R
N .

Remark the new terms depending linearly on z in (124), new with respect
to (67). Nevertheless a similar computation (see [6] for details) allows us to
pass to the scale limit and obtain a weak formulation of (107). 2
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(1993).

[22] M. Dimassi, J.-C. Guillot, J. Ralston, Semiclassical asymptotics in mag-
netic Bloch bands, J. Phys. A 35, no. 35, 7597–7605 (2002).

[23] C. Fermanian-Kammerer, P. Gérard, Mesures semi-classiques et croise-
ment de modes, Bull. Soc. Math. France 130, pp.123-168 (2002).

[24] C. Fermanian-Kammerer, P. Gérard, A Landau-Zener formula for non-
degenerated involutive codimension 3 crossings, Ann. Henri Poincaré 4,
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