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Introduction



Example: Traffic Networks



Example: Supply-Chains



Example: Gas/Water Networks



Networks

General Tasks: 

� Modelling: Determine dynamics on the arcs, coupling conditions

� Model reduction, simplified models

� Optimization of throughput, etc.



Contents of the course

1. Dynamic models for traffic flow, supply chains and gas flow

2. PDE Network models (dynamics at junctions/coupling conditions)

1. Scalar equations: LW-type traffic models and supply-chain models 

2. System of equations: Multipolicy sc, gas dynamics, higher order traffic models 

3. Model reduction: Simplified network models

4. Optimization and control

1. Continous approaches / adjoints

2. Discrete optimization, large scale networks

3. Numerical comparison of the two approaches



1.  Dynamic models for traffic flow, supply chains and 
gas/water flow



Traffic flow



Traffic flow: Microscopic models

Ordinary differential equations/Follow the leader

Kinetic/Vlasov/mean field models

∂tf + v∂xf = C( f )

∂tf + v∂xf + ∂v
(
B[f ]f − D[f ]∂vf

)
= 0

_xi = vi,

_vi =
vi+ 1 − vi

(xi+ 1 − xi) γ+ 1
+

1

T

[

V (
1

xi+ 1 − xi
) − vi

]

f (x, v, t)

(xi( t) , vi( t) )



Macroscopic/fluid dynamic equations

Basic equations:

:  density of vehicles

: Equilibrium velocity

Lighthill-Whitham



Second order models (Aw-Rascle):

:  mean velocity of vehicles

: anticipation factor

∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) + c(ρ)∂xu = S(ρ, u) .

S(ρ, u) ∼
ρ

T
[V e(ρ) − u] .

u(x, t)

c(ρ) c(ρ) = −ργ+ 1

See also: Zhang, Greenberg, Colombo, …

Derivation from FtL-model



Stop and go waves, traffic instabilities

Many attempts, revised Aw-Rascle equations:

∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) + c(ρ)∂xu = Sex(ρ, u) .

Sex(ρ, u) ∼
ρ

τ






ue1(ρ) − u , ρ < R(u)

ue2(ρ) − u , ρ ≥ R(u) .

Derivation from kinetic model



Supply chains



Supply-Chain Models:

Microscopic models (~Follow the leader)

Discrete event simulations: track each item, equations for processing time of each part

Problem: Simulation and optimization is computationally expensive

Macroscopic/fluid dynamic models (~Lighthill-Whitham)

(Armbruster, Degond, Ringhofer): 

Assume many parts in DES,  dynamics for product density by PDE



Microscopic models: discrete event

M processors, each supplier m is linked t o only

one previous supplier m− 1.

τ (m,n) : arrival t ime of part n at supplier m

T (m) : processing t ime.

µ(m) : maximal processing rat e.

τ (m + 1, n) = max{τ (m,n) + T (m) , τ (m + 1, n− 1) +
1

µ(m)
}



Basic equations for Supply Chains

Basic equations:

: density of parts

: maximum processing capacity

V   : processing velocity

Derivation from DES



Gas / Water



(Macroscopic) Equations for Gasflow

Isothermal Euler equations with friction

Similar for water flow (different pressure law):  St. Venant/Shallow Water



2.  Network models based on partial differential 
equations



2. 1. Scalar equations: Lighthill-Whitham type traffic 
models and supply chain models 



Traffic models



Traffic: Network model and coupling conditions

Dynamic equations on each arc: Lighthill-Whitham

Additionally: conditions at the junctions



Conditions at the junctions (general approach)

1. Consider waves emerging out of the junctions

2. Equality of in- and outgoing fluxes

3. Include wishes of drivers (              : percentage of drivers from road i to road k)

0 < αkn < 1 and
n+ m∑

k= n+ 1

αki = 1, ∀i.

αki



Further conditions at the junctions 

FIFO (First in first out):    Engineering literature, Piccoli et al.

4. Maximize ingoing flow n∑

i= 1

f (ρi) .



Other approaches:

NON FIFO:  J.P. Lebacque

or 

Detailed multilane modelling of the junction,

determination of new states as asymptotic states

of the multilane problem



Waves out of the junction

ρi ∈ [σ, 1] ρi,0 ≥ σ i = 1, . . . , n
ρi ∈ {ρi,0} ∪ [τ (ρi,0) , 1] ρi,0 · σ i = 1, . . . , n
ρi ∈ [0, σ] ρi,0 · σ i = n + 1, . . . , n + m
ρi ∈ [0, τ (ρi,0) ] ∪ {ρi,0} ρi,0 ≥ σ i = n + 1, . . . , n + m

τ (ρ) is t he unique number τ (ρ) 
= ρ, s.t . f (ρ) =

f ( τ (ρ) ) . T hus ρ < σ ⇒ τ (ρ) > σ and vice versa.



Example (FIFO)

cj: maximal °ux on road j, i.e. eit her cj =

f (ρj,0) or cj = f (σ) .

( 1) γ1 ∈ - 1 = [0, c1 ], αj,1γ1 ∈ - j for j = 2, 3.

( 2) M axim ize γ1 w.r.t . ( 1) .

( 3) γj = αj,1γ1, j = 2, 3. γ1 = min{c1, c2/α2,1, c3/α3,1}.

Typical situation: If road 2 is full, then , i.e. γ1 = 0c2 = 0



Example (NON FIFO)

( 1) γj ∈ - j and γj/αj,1 ∈ - 1 for j = 2, 3.

( 2) M axim ize γj w.r.t . ( 1) for j = 2, 3.

( 3) γ1 =
3∑

j= 2
γj. γj = min{αj,1c1, cj}, j = 2, 3

Typical situation: If road 2 is full, then and            must not ! be equal to 0. c2 = 0 γ1



Traffic: Theory

Holden et al. 

Piccoli et al.

etc.

Existence of weak network solutions



Supply chain models 



Network Models

• Production network as directed graph

• Each processor is described by an arc e described by the interval

• Dynamics of the processor is described by

•.              constant for each processor

• Add equation for queues in front of the processor



Consecutive Processors

Inflow is whatever is in the queue, but at most the maximal capacity

rate of change of queue e  =   Inflow from arc e-1  – inflow to processor e



Reformulation of the dynamics:



General networks



General networks:

The second equation is rephrased as 

Dynamics in processor e: 

Dynamics in queue e: 

Release rule queue to 
processor : 

Inflow is whatever is in the queue but at most the
maximal capacity

Geometry of network: (controllable)  inflow to arc e with controls A



Example: Dispersing junction



Example: Merging Junctions



Theory

Remark:  Uniqueness of solutions using arguments as in Bressan/Crasta/Piccoli.

Remark: proof by construction of  approximate solutions via front-tracking,

estimate on number of interaction at vertices (between waves and waves with queues),

estimate on total variation of solutions

Theorem (Piccoli et al.):



Numerical Example

Density: Queues 1,2,3:
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Inflow:



Comparison of CPU times:



2.2. System of equations: Multipolicy supply chains, 
gas dynamic equations, higher order traffic models



Multipolicy supply chains



Network Models with multiple policies

Idea: Fluxes with higher priority (e.g. time to due-date) are preferred. 

Equations: Armbruster, Degond, Ringhofer

(high priority)

(low priority)

Example:



Network Models with multiple policies

Idea: Use above equations to describe dynamics inside a processor and define 

coupling conditions using queues as before.

New: Introduce a pointer-function           which
indicates the lowest priority which is still processed 

on the outgoing processor.

queuequeue ingoingingoing fluxflux



Gas /Water



Gas Networks

Isothermal Euler equations with friction

or without friction

Water: St. Venant



Gas network model: Coupling conditions I

Further conditions are necessary!



Gas network model: Coupling conditions II

Equality of momentum (not physical)

Partial conservation of momentum

Engineering approach:  Minor losses in pressure



Theorem (special cases):



General theorem

Colombo, Herty et al.

includes

equality of pressure (subsonic), equality of momentum,…



Discussion

Remark: In contrast to traffic networks the distribution of flow for a dispersing
junction can not be chosen, but is implicitly given.

Remark: Engineers do not care too much about the above considerations!

For real world applications the pressure at the vertex is reduced by so called minor
losses. This is modelled by a pressure drop factor depending on geometry, flow
and density at the intersection.

Realistic coupling conditions by 3-D simulations



Example: Numerical Results

Pressure increase on the two vertical pipes 2 and 4

Equality of pressure



Numerical Results
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Extension: Water network including surface flow

Network flow: 

St. Venant equations

Surface flow: 

2-D Shallow Water equations



Example: Water network including surface flow

Surface flow: 2-D Shallow Water equations

Network flow: St. Venant equations



Example: Water network including surface flow

Coupling in the network: 

Equal heights

Conservation of mass

Dropshaft equation

store mass
: Dropshaft cross section



Example: Water network including surface flow

Coupling the network to the surface: 

In the network

On the surface

mass

(conserved)

momentum

(not conserved)



Numerical example 1: Two connected pools (R. Borsche) 



Example 2: Diamond under street (R. Borsche) 



Traffic flow



Higher order traffic models

Discussion of Riemann problems at the junction

Herty, Rascle

Garavello, Piccoli

Expensive for large networks compared to Lighthill-Whitham



3.  Simplified network models



Model 1: ODE
3-point discret izat ion of hyperbolic problem ⇒

∂tρ
(a)
j ( t) = −

2

L

(
fj(ρj(m, t) ) − fj( ¹ρaj ( t) )

)

∂tρ
( b)
j ( t) =

2

L

(
fj(ρj(m, t) ) − fj( ¹ρbj( t) )

)

wit h

ρ
(a)
j ( t) ∼ 2

b−a

∫m
a ρj(x, t)dx: average densit y

ρj(m, t) ∼ 1
2

(
ρ

(a)
j ( t) + ρ

( b)
j ( t)

)
: densit y at m id-

point

¹ρ
a/b
j ( t) densit y at endpoint given by coupling

condit ions)

Traffic: Simplififed model



Traffic: Simplififed models

Model 2: Algebraic model

Track waves to obtain nonlinear system of equations, compute/approximate arrival  
times of waves at junctions

Approximation of arrival times for a junction with two ingoing and one outgoing

road (single ingoing wave)



Supply chains

See section on optimization



Gas/water networks

Hierachy of simplified equations

Shallow water equations

Neglecting nonlinear terms (inertia) and gravity

Stationary models / pressure drop (algebraic models)

Improved algebraic models



Water networks

Shallow water equations

0 =
∂̺

∂t
+

∂q

∂x

0 =
∂q

∂t
+

∂

∂x

(
q2

̺
+ p

)

+ g̺
dh(x)

dx
+

λ( q)

2D

|q| q

̺

̺ =
M

RT

p

z(p, T )



Gas/water networks

Neglecting nonlinear terms (inertia) and gravity and time derivative for q  

0 =
∂

∂t

p

z(p, T )
+

RT

M

∂

∂x
q

0 =
p

z(p, T )

∂

∂x
p +

RT

2DM
λ( q) |q| q .

Int egrat ing t he second equat ion over t he whole

lengt h L of t he pipe ¯ nally yields:



Gas/water networks

Stationary models /pressure drop equations (algebraic models)

F (p0) − F (pL) =
RTL

2DM
λ( q) |q| q .

wit h

F (p) =

p∫
ϕ

z(ϕ, T )
dϕ .

sign( q) |q|bq = ap
b0
0 − bp

bL
L .

Further approximations yield the pressure drop equation: 



4.  Optimization and control



4.1 Continuous approaches



Traffic Flow



Traffic flow networks

Goal: Optimization of outgoing flow (i.e. flux on road (7))

Method:

Distribute traffic at the junctions (J_1, J_2) in a suitable way



Traffic: Optimization of PDE model



Numerical solution: Front tracking algorithm, Godunov

upwind discretization

Optimization: General Functional

Traffic: Optimization of PDE model



Methods

Methods for Optimization: 

1. Quasi-Newton, Finite difference approximation of functional-derivative

2. adjoint calculus, solve first order optimality system numerically, Computation of 
adjoint equations

Computational costs:

Adjoint calculus: similar to costs of the network simulation

Finite differences: proportional to number of control parameters times costs of the
network simulation



Computation times for global optimization with adjoint approach

Improved optimization procedures:

Instantaneous control: use only solution at the next time step

to optimize the system



Comparison for example network

Differences of the simplified (algebraic) model to PDE model: 

See later

Computation times:

PDE, Discrete Differences with Godunov Scheme N=100  135.655s 

PDE, Discrete Differences for Front-Tracking mk=25    45.172s 

PDE, Discrete Differences with Godunov Scheme N=50  45.172s 

ODE Model   N=100 7.753s 

PDE, Discrete Differences for Front-Tracking mk=5   6.183s 

ODE Model N=50   3.391s 

Algebraic model 0.149s 



Large Networks

Convergence history for algebraic model with
$2$ to $15$ junctions



Further Example

"Realistic" network (Frankfurt - München)

Congestion between Mannheim and 
Stuttgart O pt imal paramet ers ( f ree/ congest ed)

η1 = 0.57/0.27

η2 = 1.0/0.37

η3 = 0.0/0.0

η4 = 1.0/0.04

η5 = 0.0/0.42

O ut going °ow ( free/ congest ed)

0.74/0.73



Supply Chains



Supply chains: Optimal control problem

Approach: Adjoint calculus for the network system

• Derive first order optimality system

• Discretize optimality system

• Solve numerically with descent algorithm, etc. 



Supply chains: Optimization of PDE models

Example 1 (Optimization of distribution rates):
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Example 2 (Braun, Frankfurt)



Gas / Water



Optimal control of gas/water flows

Colombo, Herty, ….

Control for example by compressor stations

Two pipes connected with a compressor

Customers require certain pressure and flow

Control P through a  modified coupling condition: 

P = q1( (
p(ρ1)

p(ρ2)
) k − 1) , q1 = q2



4.2  Mixed-Integer, Linear Programming



Traffic



Traffic: Simplififed models

Track waves to obtain nonlinear system of equations

Arrival times:

Functional:



Rewriting model in terms of fluxes on the arcs and Linearization gives

Mixed integer program (MIP)

Fast numerical treatment by combinatorial methods or CPLEX etc.



Comparison of models: PDE versus MIP for Free Flow



Coarse versus fine linear discretization



PDE versus simplififed model (Jam situation)



Comparison of computation times for simple network



Large networks



Computation times for large network optimization



Supply chains



Supply chains: Simplified models

Much simpler: piecewise linear flux functions

Two point discretization yields MIP or even LP depending on the model: 

Very fast algorithms for very large problems



Approach: Mixed-Integer, Linear Programming

• Simplification of the dynamics (2-point discretization on each arc)

• Linear dynamics in processor and queue yield discretized linear equations except for

• Rewrite using binary variables

• Discretized optimization problem is a large scale mixed-integer problem



• The functional needs to be linear (otherwise more binary variables are needed)

• The problem is solved using CPLEX

• Suitable preprocessing routines for CPLEX can be derived from PDE Ansatz

• Further reduction to linear programmes in special cases

Remarks:



Model extensions are easy in MIP formulation:

Finite size buffers

Optimal inflow profile

Maintenance shut-down



Example I (Braun, Frankfurt)



Numerical results II (Comparison of CPU times, small
networks)

Comparison of MIP/CPLEX and adjoint/gradient approach

Same optimal functional value

See following talks



Numerical results III (Large scale, MIP, CPLEX)

Computing times for kx2 networks with 100+k, 100+k/20 time steps:

Remark: LP allows for larger networks.

„PDE solution“ not feasible



Gas / water



Mixed Integer Models for Gas/Water

simplified models for gas / water lead after piecewise linearization again to

Mixed integer problems

discrete optimization community→



Further topics / current work:

Numerical improvements:

• Multilevel approaches, hybrid methods

• Preprocessing techniques for MIP (U. Ziegler, A. Dittel))

Extensions: 

• Stochastic effects (S. Martin)

• supply chains: Nonlinear dynamics at nodes, Multi-policy networks

• gas/water: numerical realization / optimization for full problem /coupling to surface
flow(R. Borsche)


