# Model hierarchies and optimization for dynamic flows on networks

#### S. Göttlich and A. Klar

Department of mathematics, TU Kaiserslautern

Fraunhofer ITWM, Kaiserslautern





#### **Collaborators:**

- P. Degond (Toulouse)
- M. Herty (Aachen)
- B. Piccoli (Rome)
- C. Ringhofer (Tempe)
- A. Fügenschuh, A. Martin (Darmstadt)
- R. Borsche, A. Dittel, U. Ziegler (TU / ITWM Kaiserslautern)



# Introduction





## **Example: Traffic Networks**







Fraunhofer Institut

Techno- und
Wirtschaftsmathematik

## **Example: Supply-Chains**









## **Example: Gas/Water Networks**









#### **Networks**



#### General Tasks:

- Modelling: Determine dynamics on the arcs, coupling conditions
- Model reduction, simplified models
- Optimization of throughput, etc.



#### Contents of the course

- 1. Dynamic models for traffic flow, supply chains and gas flow
- 2. PDE Network models (dynamics at junctions/coupling conditions)
  - 1. Scalar equations: LW-type traffic models and supply-chain models
  - 2. System of equations: Multipolicy sc, gas dynamics, higher order traffic models
- 3. Model reduction: Simplified network models
- 4. Optimization and control
  - 1. Continous approaches / adjoints
  - 2. Discrete optimization, large scale networks
  - 3. Numerical comparison of the two approaches



1. Dynamic models for traffic flow, supply chains and gas/water flow



## **Traffic flow**





### **Traffic flow: Microscopic models**

Ordinary differential equations/Follow the leader  $(x_i(t), v_i(t))$ 

$$\underline{x_{i}} = v_{i},$$

$$\underline{v_{i}} = \frac{v_{i+1} - v_{i}}{(x_{i+1} - x_{i})^{\gamma+1}} + \frac{1}{T} \left[ V(\frac{1}{x_{i+1} - x_{i}}) - v_{i} \right]$$

Kinetic/Vlasov/mean field models f(x, v, t)

$$\partial_t f + v \partial_x f = C(f)$$

$$\partial_t f + v \partial_x f + \partial_v (B[f]f - D[f]\partial_v f) = 0$$



### Macroscopic/fluid dynamic equations

#### **Lighthill-Whitham**

Basic equations:

$$\partial_t \rho(x,t) + \partial_x f(\rho(x,t)) = 0$$
  
 $f(\rho) = \rho V^e(\rho)$ 

ho(x,t) : density of vehicles

 $V^e(
ho)$  : Equilibrium velocity





#### Second order models (Aw-Rascle):

$$\partial_t \rho + \partial_x (\rho u) = 0$$

$$\partial_t (\rho u) + \partial_x (\rho u^2) + c(\rho) \partial_x u = S(\rho, u).$$

$$S(\rho, u) \sim \frac{\rho}{T} [V^e(\rho) - u].$$

u(x,t) : mean velocity of vehicles

 $c(\rho)$  : anticipation factor  $c(\rho) = -\rho^{\gamma+1}$ 

Derivation from FtL-mode

See also: Zhang, Greenberg, Colombo, ...





### Stop and go waves, traffic instabilities



Many attempts, revised Aw-Rascle equations:

$$\partial_t \rho + \partial_x (\rho u) = 0$$
  
$$\partial_t (\rho u) + \partial_x (\rho u^2) + c(\rho) \partial_x u = S^{ex}(\rho, u).$$

$$S^{ex}(
ho,u) \sim rac{
ho}{ au} \left\{ egin{array}{ll} u_1^e(
ho) - u &, & 
ho < R(u) \ u_2^e(
ho) - u &, & 
ho \ge R(u) \,. \end{array} 
ight.$$



Derivation from kinetic mode



Fraunhofer Institut
Techno- und
Wirtschaftsmathematik



# **Supply chains**





# **Supply-Chain Models:**

#### Microscopic models (~Follow the leader)

Discrete event simulations: track each item, equations for processing time of each part

Problem: Simulation and optimization is computationally expensive

### Macroscopic/fluid dynamic models (~Lighthill-Whitham)

(Armbruster, Degond, Ringhofer):

Assume many parts in DES, dynamics for product density by PDE





## Microscopic models: discrete event

M processors, each supplier m is linked to only one previous supplier m-1.

au(m,n): arrival time of part n at supplier m

T(m): processing time.

 $\mu(m)$ : maximal processing rate.

$$\tau(m+1,n) = \max\{\tau(m,n) + T(m), \tau(m+1,n-1) + \frac{1}{\mu(m)}\}$$



## **Basic equations for Supply Chains**

Basic equations:



$$\partial_t \rho(x,t) + \partial_x f(\rho(x,t)) = 0$$

$$f(\rho) = \min\{\mu, v\rho(x,t)\}$$

ho : density of parts

 $\mu$  : maximum processing capacity

V : processing velocity

**Derivation from DES** 





#### Gas / Water





### (Macroscopic) Equations for Gasflow

#### **Isothermal Euler equations with friction**

$$\partial_t \rho + \partial_x (\rho u) = 0$$
$$\partial_t (\rho u) + \partial_x (\rho u^2 + a^2 \rho) = -f_g \frac{q|q|}{2D\rho}$$

$$\partial_t U + \partial_x F(U) = R(U)$$

with

$$U = \begin{pmatrix} \rho \\ \rho u \end{pmatrix}.$$

Similar for water flow (different pressure law): St. Venant/Shallow Water



# 2. Network models based on partial differential equations



# 2. 1. Scalar equations: Lighthill-Whitham type traffic models and supply chain models



# **Traffic models**





### Traffic: Network model and coupling conditions

Dynamic equations on each arc: Lighthill-Whitham

$$\partial_t \rho_i(x,t) + \partial_x f_i(\rho_i(x,t)) = 0 \quad \forall i \in I, x \in [a_i,b_i], t \geq 0$$

$$\rho_i(0,t) = \rho_{i,0}(x) \quad \forall x \in [a_i,b_i]$$

$$f_i(\rho) = \rho V_i^e(\rho) : \text{ Fundamental diagram}$$

Additionally: conditions at the junctions





### Conditions at the junctions (general approach)

j-1  $\alpha$  j+1

- 1. Consider waves emerging out of the junctions
- 2. Equality of in- and outgoing fluxes

$$\sum_{i=1}^{n} f_i(\rho_i(b_i, t)) = \sum_{i=n+1}^{n+m} f_i(\rho_i(a_i, t)) \quad \forall t$$

3. Include wishes of drivers (  $\alpha_{ki}$  : percentage of drivers from road i to road k)

$$0 1 and  $\sum_{k=n+1}^{n+m}lpha_{ki}=$  1,  $orall i.$$$

$$f_k(\rho_k(a_k,t)) = \sum_{i=1}^n \alpha_{ki} f_i(\rho_i(b_i,t)) \quad \forall k = n+1,\ldots,n+m.$$



## Further conditions at the junctions



FIFO (First in first out): Engineering literature, Piccoli et al.

4. Maximize ingoing flow

$$\sum_{i=1}^n f(\rho_i).$$



## Other approaches:

NON FIFO: J.P. Lebacque

or

Detailed multilane modelling of the junction,

determination of new states as asymptotic states

of the multilane problem

Wirtechaftemathamatik



### Waves out of the junction



$$\begin{array}{llll} \overline{\rho}_i \in [\sigma,1] & \rho_{i,0} \geq \sigma & i = 1,\ldots,n \\ \overline{\rho}_i \in \{\rho_{i,0}\} \cup [\tau(\rho_{i,0}),1] & \rho_{i,0} \, \Box \, \sigma & i = 1,\ldots,n \\ \overline{\rho}_i \in [0,\sigma] & \rho_{i,0} \, \Box \, \sigma & i = n+1,\ldots,n+m \\ \overline{\rho}_i \in [0,\tau(\rho_{i,0})] \cup \{\rho_{i,0}\} & \rho_{i,0} \geq \sigma & i = n+1,\ldots,n+m \end{array}$$

 $\tau(\rho)$  is the unique number  $\tau(\rho) \neq \rho$ , s.t.  $f(\rho) = f(\tau(\rho))$ . Thus  $\rho < \sigma \Rightarrow \tau(\rho) > \sigma$  and vice versa.





## **Example (FIFO)**

j-1  $\alpha$  j+1

 $c_j$ : maximal °ux on road j, i.e. either  $c_j = f(\rho_{j,0})$  or  $c_j = f(\sigma)$ .

(1) 
$$\gamma_1 \in -1 = [0, c_1], \alpha_{j,1} \gamma_1 \in -j \text{ for } j = 2,3.$$

(2) Maximize  $\gamma_1$  w.r.t. (1).

(3) 
$$\gamma_j = \alpha_{j,1}\gamma_1$$
,  $j = 2,3$ .  $\gamma_1 = \min\{c_1, c_2/\alpha_{2,1}, c_3/\alpha_{3,1}\}$ .

Typical situation: If road 2 is full, then  $\,c_2=\,0\,$  , i.e.  $\,\gamma_1=\,0\,$ 

### **Example (NON FIFO)**



(1) 
$$\gamma_j \in \text{-} \ _j \text{ and } \gamma_j/\alpha_{j,1} \in \text{-} \ _1 \text{ for } j=2,3.$$

(2) Maximize  $\gamma_j$  w.r.t. (1) for j = 2,3.

(3) 
$$\gamma_1 = \sum_{j=2}^{3} \gamma_j$$
.  $\gamma_j = \min\{\alpha_{j,1}c_1, c_j\}, j = 2,3$ 

Typical situation: If road 2 is full, then  $c_2 = 0$  and  $\gamma_1$  must not! be equal to 0.



## **Traffic: Theory**

Holden et al.

Piccoli et al.

etc.

Existence of weak network solutions



# Supply chain models





#### **Network Models**

- Production network as directed graph
- Each processor is described by an arc e described by the interval  $[a^e, b^e]$ .
- Dynamics of the processor is described by

$$\partial_t \rho(x,t) + \partial_x f(\rho(x,t)) = 0$$
$$f(\rho) = \min\{\mu, v\rho(x,t)\}$$

- •.  $v,\mu$  constant for each processor
- Add equation for queues in front of the processor



#### **Consecutive Processors**



$$\partial_t \rho_e(x,t) + \partial_x f_e(\rho_e(x,t)) = 0, \quad f_e(\rho) = v_e \rho$$

$$f_e(\rho_e(a_e,t)) = \begin{cases} \min\{f_{e-1}(\rho_{e-1}(b_{e-1},t)), \mu_e\} & q_e(t) = 0\\ \mu_e & q_e(t) > 0 \end{cases}$$

Inflow is whatever is in the queue, but at most the maximal capacity

$$\partial_t q_e(t) = f_{e-1}(\rho_{e-1}(b_{e-1},t)) - f_e(\rho_e(a_e,t))$$

rate of change of queue e = Inflow from arc e-1 - inflow to processor e





## Reformulation of the dynamics:

Regularization (Ringhofer et al.)

$$f_e(\rho_e(a_e, t)) = \min\{\mu_e; \frac{q_e(t)}{\epsilon}\}$$

$$q \leq \epsilon \mu$$
:
$$f_e(\rho_e(a_e, t)) = \frac{q_e}{\epsilon}, \quad \partial_t q_e(t) = f_{e-1}(\rho_{e-1}(b_{e-1}, t)) - \frac{q_e}{\epsilon},$$

$$q_e \sim \epsilon f_{e-1}(\rho_{e-1}(b_{e-1}, t))$$

$$q > \epsilon \mu$$
:

$$f_e(\rho_e(a_e,t)) = \mu_e$$





#### **General networks**

Directed graph, arc e is described by the interval  $[a^e,b^e]$ .



For a vertex the set of all ingoing arcs is  $\delta^-$ ,  $\delta^+$  is the set of all outgoing arcs.

#### Distribution of total mass flux:

 $A(t) \in \mathbb{R}^{|\delta^+|}$  having entries  $A_e(t) \in [0,1]$  and satisfying  $\sum_{e \in \delta^+} A_e(t) = 1$ .

#### **Equation for queues:**

$$\partial_t q^e(t) = A_e(t) \left( \sum_{\tilde{e} \in \delta_-} f^{\tilde{e}}(\rho^{\tilde{e}}(b^{\tilde{e}}, t)) \right) - f^e(\rho^e(a^e, t))$$



#### **General networks:**

Dynamics in processor e:

$$\partial_t \rho^e + v^e \partial_x \rho^e = 0, \quad v^e \rho^e(a^e, t) = \min\{\mu^e; \frac{q^e(t)}{\epsilon}\}$$

$$\partial_t q^e(t) = \sum_{\tilde{e} \in \tilde{e}} A_e(t) f^{\tilde{e}}(\rho^{\tilde{e}}(b^{\tilde{e}}, t)) - \min\{\mu^e; \frac{q^e(t)}{\epsilon}\}$$

The second equation is rephrased as

Dynamics in queue e:

$$\partial_t q^e(t) = h^e(\rho, A) - \min\{\mu^e; \frac{q^e(t)}{\epsilon}\}$$

Release rule queue to processor:

Inflow is whatever is in the queue but at most the maximal capacity

Geometry of network:

 $h^e$  (controllable) inflow to arc e with controls A



#### **Example: Dispersing junction**



$$\partial_t q_j = \alpha f_{j-1}(\rho_{j-1}(b_{j-1},t)) - f_j(\rho_j(a_j,t))$$
  
$$\partial_t q_{j+1} = (1-\alpha)f_{j-1}(\rho_{j-1}(b_{j-1},t)) - f_{j+1}(\rho_j(a_j,t))$$

$$f_j(\rho_j(a_j,t)) = \begin{cases} \min\{\alpha f_{j-1}(\rho_{j-1}(b_{j-1},t)), \, \mu_j\} & q_j(t) = 0\\ \mu_j & q_j(t) > 0 \end{cases}$$

$$f_{j+1}(\rho_j(a_j,t)) = \begin{cases} \min\{(1-\alpha)f_{j-1}(\rho_{j-1}(b_{j-1},t)), \mu_{j+1}\} & q_{j+1}(t) = 0\\ \mu_{j+1} & q_{j+1}(t) > 0 \end{cases}$$





#### **Example: Merging Junctions**



$$\begin{split} \partial_t q_j(t) &= f_{j-2}(\rho_{j-2}(b_{j-1},t)) + f_{j-1}(\rho_{j-1}(b_{j-1},t)) - f_j(\rho_j(a_j,t)) \\ & f_j(\rho_j(a_j,t)) \\ &= \begin{cases} \min\{f_{j-2}(\rho_{j-2}(b_{j-1},t)) + f_{j-1}(\rho_{j-1}(b_{j-1},t)), \, \mu_j\} & q_j(t) = 0 \\ \mu_j & q_j(t) > 0 \end{cases} \end{split}$$



# **Theory**

Theorem (Piccoli et al.):

There exists a unique solution  $(\rho^e(x,t),q^e(t))$  on the network, such that  $\rho^e \in C^{0,1}(0,T;L^1(a^e,b^e))$  is a weak solution to the pde and  $q^e \in W^{1,1}([0,T])$ .

**Remark:** proof by construction of approximate solutions via front-tracking, estimate on number of interaction at vertices (between waves and waves with queues), estimate on total variation of solutions

Remark: Uniqueness of solutions using arguments as in Bressan/Crasta/Piccoli.





### **Numerical Example**

| Processor j | $N_j$ | $\mu_j$ | $T_j$ | $L_j$ |
|-------------|-------|---------|-------|-------|
| 1           | 10    | 25      | 1     | 1     |
| 2           | 10    | 15      | 1     | 0.2   |
| 3           | 30    | 10      | 3     | 0.6   |
| 4           | 10    | 15      | 1     | 0.2   |

#### Inflow:







Queues 1,2,3:







# **Comparison of CPU times:**

| Model | Parameters       |                  | CPU Time |          |         |         |  |
|-------|------------------|------------------|----------|----------|---------|---------|--|
| DES   | K = 3            | n=10000          | 2.0229   | 0.010014 | 0.91331 | 2.9442  |  |
| DES   | $T_{max} = 100$  | n=50000          | 9.6238   | 0.020029 | 4.6267  | 14.2705 |  |
| DES   | $\Delta t = 0.5$ | n=100000         | 19.0374  | 0.040058 | 9.4937  | 28.5711 |  |
| PDE   |                  | $\Delta x = 0.1$ |          |          |         | 1.4220  |  |





2.2. System of equations: Multipolicy supply chains, gas dynamic equations, higher order traffic models





# **Multipolicy supply chains**





#### **Network Models with multiple policies**

**Equations: Armbruster, Degond, Ringhofer** 

Idea: Fluxes with higher priority (e.g. time to due-date) are preferred.

**Example:** 

$$K=2$$
  $Y_1$  (high priority)  
 $Y_1 < Y_2$   $Y_2$  (low priority)

$$\partial_t \rho_k + \partial_x f_k = 0,$$
  
$$\partial_t (\rho_k Y_k) + \partial_x f_k Y_k = 0,$$

- 1. If  $\mu < \rho_1 v_1$ , then  $f_1 = \mu$  and  $f_2 = 0$ .
- 2. If  $\rho_1 v_1 < \mu < \rho_1 v_1 + \rho_2 v_2$ , then  $f_1 = \rho_1 v_1$  and  $f_2 = \mu \rho_1 v_1$ .
- 3. If  $\rho_1 v_1 + \rho_2 v_2 \le \mu$ , then  $f_k = \rho_k v_k$ , k = 1, 2.





#### **Network Models with multiple policies**

Idea: Use above equations to describe dynamics inside a processor and define coupling conditions using queues as before.

**New:** Introduce a pointer-function  $\mathcal{Y}^{\nu}(t)$  which indicates the lowest priority which is still processed on the outgoing processor.









#### Gas /Water





#### **Gas Networks**

Isothermal Euler equations with friction

$$\partial_t \rho_j + \partial_x (\rho_j u_j) = 0,$$

$$\partial_t (\rho_j u_j) + \partial_x (\rho_j u_j^2 + a^2 \rho_j) = -f_g \frac{q_j |q_j|}{2D\rho_j}.$$

or without friction

$$\partial_t U_j + \partial_x F(U_j) = 0,$$

with

$$U_j = \begin{pmatrix} \rho_j \\ q_j \end{pmatrix}, \quad F(U_j) = \begin{pmatrix} q_j \\ q_j/\rho_j + a^2\rho_j \end{pmatrix}.$$

Water: St. Venant





#### Gas network model: Coupling conditions I

Equality of fluxes:

$$\sum_{j=1\cdots n} q_j(b_j,t) = \sum_{j=n+1\cdots m} q_j(a_j,t).$$

Further conditions are necessary!







#### Gas network model: Coupling conditions II

Equality of pressure at the vertex:

$$a^2 \rho_j = a^2 \rho_{j'}.$$

Equality of momentum (not physical)



Partial conservation of momentum

Engineering approach: Minor losses in pressure



#### Theorem (special cases):

Consecutive pipes 1,2. Under suitable conditions (subsonic) there exists a unique weak entropic solution  $U_j(x,t), j=1,2$  with the following properties

- 1. Equality of fluxes is satisfied for all times t > 0, at the vertex,  $q_1(b_1, t) = q_2(a_2, t)$ .
- 2. Pressure equality  $a^2 \rho_1(b_1, t) = a^2 \rho_2(a_2, t)$ .
- 3. The flux at the interface  $q_1(b_1,t)$  is maximal subject to the other two conditions



#### **General theorem**



Colombo, Herty et al.

includes

equality of pressure (subsonic), equality of momentum,...



#### **Discussion**

**Remark:** In contrast to traffic networks the distribution of flow for a dispersing junction can not be chosen, but is implicitly given.

**Remark:** Engineers do not care too much about the above considerations!

For real world applications the pressure at the vertex is reduced by so called minor losses. This is modelled by a pressure drop factor depending on geometry, flow and density at the intersection.

Realistic coupling conditions by 3-D simulations





#### **Example: Numerical Results**

Equality of pressure



Pressure increase on the two vertical pipes 2 and 4

$$U_2^0(x) = \begin{cases} (4,2) & x < \frac{1}{2} \\ (4+\frac{1}{2}\sin(\pi(2x-1)),2) & x > \frac{1}{2} \end{cases}$$

$$U_4^0(x) = \begin{cases} 4+\frac{1}{2}\sin(4\pi(x-\frac{1}{4})),2) & \frac{1}{2} < x < \frac{3}{4} \\ (4,2) & \text{else} \end{cases}$$

Initial conditions on pipes 1, 3, 5 are (4, 2), (4, 4), (4, 6).





#### **Numerical Results**







#### **Extension: Water network including surface flow**

Network flow:

St. Venant equations

Surface flow:

2-D Shallow Water equations



#### **Example: Water network including surface flow**

Network flow: St. Venant equations

$$\partial_t A + \partial_x Q = 0$$



$$\partial_t Q + \partial_x \left( \frac{Q^2}{A} + p(A, r) \right) = 0$$

Surface flow: 2-D Shallow Water equations

$$\partial_t h + \partial_x (hu) + \partial_y (hv) = S_c^1$$

$$\partial_t (hu) + \partial_x \left( hu^2 + \frac{g}{2}h^2 \right) + \partial_y (huv) = S_c^2$$

$$\partial_t(hv) + \partial_x(huv) + \partial_y\left(hv^2 + \frac{g}{2}h^2\right) = S_c^3$$



#### **Example: Water network including surface flow**

Coupling in the network:

Equal heights

$$h(A_1) = h(A_2)$$

$$\vdots$$

$$h(A_{n-1}) = h(A_n)$$

Conservation of mass

$$\sum_{i=1}^{n} Q_i = -Q_D + S_C$$

Dropshaft equation

store mass

$$Q_D = |A_J| \partial_t h(A_1)$$

 $A_{J}\,\,$  : Dropshaft cross section





#### **Example: Water network including surface flow**

Coupling the network to the surface:

In the network

$$S_C = \gamma \int_{A_J} \left( h(\vec{x}, t) - |h(A_1(0, t)) - d|_+ \right) d\vec{x}$$

On the surface

mass

$$S_c^1 = -\gamma \chi_J \left( h(\vec{x}, t) - |h(A_1(0, t)) - d|_+ \right)$$

(conserved)

momentum

$$S_c^2 = -\gamma \chi_J \left| h(\vec{x}, t) - |h(A_1(0, t)) - d|_+ \right|_+ u(\vec{x}, t)$$

(not conserved)

$$S_c^3 = -\gamma \chi_J |h(\vec{x}, t) - |h(A_1(0, t)) - d|_+|_+ v(\vec{x}, t)$$





# Numerical example 1: Two connected pools (R. Borsche)



# **Example 2: Diamond under street (R. Borsche)**





### **Traffic flow**





### **Higher order traffic models**

Discussion of Riemann problems at the junction

Herty, Rascle

Garavello, Piccoli

Expensive for large networks compared to Lighthill-Whitham



# 3. Simplified network models



#### **Traffic: Simplified model**

#### Model 1: ODE

3-point discretization of hyperbolic problem  $\Rightarrow$ 

$$\partial_t \rho_j^{(a)}(t) = -\frac{2}{L} \Big( f_j(\rho_j(m,t)) - f_j(p_j^a(t)) \Big)$$

$$\partial_t \rho_j^{(b)}(t) = \frac{2}{L} \Big( f_j(\rho_j(m,t)) - f_j(p_j^b(t)) \Big)$$

with

$$ho_j^{(a)}(t) \sim rac{2}{b-a} \int_a^m 
ho_j(x,t) \, dx$$
: average density

$$ho_j(m,t)\sim rac{1}{2}ig(
ho_j^{(a)}(t)+
ho_j^{(b)}(t)ig)$$
: density at midpoint

 $p_{j}^{a/b}(t)$  density at endpoint given by coupling conditions)

#### **Traffic: Simplified models**

# j-1 j-2

#### Model 2: Algebraic model

Track waves to obtain nonlinear system of equations, compute/approximate arrival times of waves at junctions

$$t_{j} = (t_{l} + \frac{L_{l}}{s_{l}}) \frac{\rho_{l,0}}{\rho_{l,0} + \rho_{k,0}} + (t_{k} + \frac{L_{k}}{s_{k}}) \frac{\rho_{k,0}}{\rho_{k,0} + \rho_{k,0}},$$

$$s_{j} = \frac{f(\rho_{j})}{\rho_{j}}.$$

Approximation of arrival times for a junction with two ingoing and one outgoing road (single ingoing wave)





# **Supply chains**

See section on optimization





#### Gas/water networks

**Hierachy of simplified equations** 

**Shallow water equations** 

Neglecting nonlinear terms (inertia) and gravity

Stationary models / pressure drop (algebraic models)

Improved algebraic models





#### Water networks

#### **Shallow water equations**

$$0 = \frac{\partial \varrho}{\partial t} + \frac{\partial q}{\partial x}$$

$$0 = \frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left( \frac{q^2}{\varrho} + p \right) + g \varrho \frac{dh(x)}{dx} + \frac{\lambda(q)|q|q}{2D} \varrho$$

$$\varrho = \frac{M}{RT} \frac{p}{z(p,T)}$$



#### Gas/water networks

Neglecting nonlinear terms (inertia) and gravity and time derivative for q

$$0 = \frac{\partial}{\partial t} \frac{p}{z(p,T)} + \frac{RT}{M} \frac{\partial}{\partial x} q$$

$$0 = \frac{p}{z(p,T)} \frac{\partial}{\partial x} p + \frac{RT}{2DM} \lambda(q) |q| q.$$

Integrating the second equation over the whole length L of the pipe  $\bar{\phantom{a}}$  nally yields:



#### Gas/water networks

Stationary models /pressure drop equations (algebraic models)

$$F(p_0) - F(p_L) = \frac{RTL}{2DM} \lambda(q) |q| q.$$

with

$$F(p) = \int_{-\infty}^{p} \frac{\varphi}{z(\varphi, T)} \, d\varphi.$$

Further approximations yield the pressure drop equation:

$$sign(q) |q|^{b_q} = ap_0^{b_0} - bp_L^{b_L}.$$



# 4. Optimization and control

# 4.1 Continuous approaches

# **Traffic Flow**





#### **Traffic flow networks**



**Goal:** Optimization of outgoing flow (i.e. flux on road (7))

#### **Method:**

Distribute traffic at the junctions (J\_1, J\_2) in a suitable way



#### **Traffic: Optimization of PDE model**

$$J_1: \eta = \eta(t), \quad J_2: \mu = \mu(t)$$



$$G(\mu,\eta)=\sum_{j=1}^J\int_0^T\int_{a_j}^{b_j}
ho_j(t,x)dtdx o \min$$
 subject to  $(\mu,\eta)\in(0,1) imes(0,1)$ 



#### **Traffic: Optimization of PDE model**

Numerical solution: Front tracking algorithm, Godunov upwind discretization



Optimization: General Functional

$$\min_{A(t)} \sum_{a} \int_{0}^{T} \int_{a^{e}}^{b^{e}} \mathcal{F}(\rho^{e}(x,t), q^{e}(t)) dx dt, \quad \mathcal{F}(\rho^{e}, q^{e}) = \rho^{e}(x,t) + q^{e}(t),$$



#### **Methods**

#### Methods for Optimization:

- 1. Quasi-Newton, Finite difference approximation of functional-derivative
- 2. adjoint calculus, solve first order optimality system numerically, Computation of adjoint equations

#### Computational costs:

Adjoint calculus: similar to costs of the network simulation

Finite differences: proportional to number of control parameters times costs of the network simulation





#### Computation times for global optimization with adjoint approach

| Model and Scheme                   | Parameters | CPU time |
|------------------------------------|------------|----------|
| Godunov scheme for pde model       | N=100      | 135.65 s |
| Godunov scheme for pde model       | N=50       | 45.17 s  |
| ODE-Model (2-point discretization) | N=3        | 3.39 s   |

Improved optimization procedures:

Instantaneous control: use only solution at the next time step to optimize the system





#### **Comparison for example network**

#### Differences of the simplified (algebraic) model to PDE model:

See later

#### **Computation times:**

| PDE, Discrete Differences with Godunov Scheme | N=100 | 135.655s |
|-----------------------------------------------|-------|----------|
| PDE, Discrete Differences for Front-Tracking  | mk=25 | 45.172s  |
| PDE, Discrete Differences with Godunov Scheme | N=50  | 45.172s  |
| ODE Model                                     | N=100 | 7.753s   |
| PDE, Discrete Differences for Front-Tracking  | mk=5  | 6.183s   |
| ODE Model                                     | N=50  | 3.391s   |
| Algebraic model                               |       | 0.149s   |





#### **Large Networks**

# Convergence history for algebraic model with \$2\$ to \$15\$ junctions







#### **Further Example**

"Realistic" network (Frankfurt - München)

# Congestion between Mannheim and Stuttgart

Frankfurt 110 Nuemberg 90 70 100 265  $\eta 4 \rightarrow$ Mannheim Feuchtwangen Heilbronn 90 60 100 80 120 Ulm Stuttgart Karlsruhe 130

Optimal parameters (free/congested)

$$\eta_1 = 0.57/0.27$$
 $\eta_2 = 1.0/0.37$ 
 $\eta_3 = 0.0/0.0$ 
 $\eta_4 = 1.0/0.04$ 
 $\eta_5 = 0.0/0.42$ 

Outgoing °ow (free/congested)

0.74/0.73





# **Supply Chains**



Mirtechaftemathamatik



#### Supply chains: Optimal control problem

$$\min_{A(t)} \sum \int_0^T \int_{a^e}^{b^e} \mathcal{F}(\rho^e(x,t), q^e(t)) dx dt, \quad \mathcal{F}(\rho^e, q^e) = \rho^e(x,t) + q^e(t),$$

$$\partial_t \rho^e + v^e \partial_x \rho^e = 0, \quad v^e \rho^e(a^e, t) = \psi^e(q^e)$$

$$\partial_t q^e(t) = h^e(\rho, A) - \psi^e(q^e)$$

$$\psi^e(q^e) = \min\{\mu^e; \frac{q^e}{\epsilon}\}$$

## Approach: Adjoint calculus for the network system

- Derive first order optimality system
- Discretize optimality system
- Solve numerically with descent algorithm, etc.





#### **Supply chains: Optimization of PDE models**

#### **Example 1 (Optimization of distribution rates):**









# **Example 2 (Braun, Frankfurt)**





| Processor | $\mu^e$ | $v^e$   | $L^e$ | $\overline{q}^e$ |
|-----------|---------|---------|-------|------------------|
| 1         | 100     | 0.01333 | 1     | 100              |
| 2         | 0.71    | 0.35714 | 1.5   | 18               |
| 3 - 8     | 0.06666 | 0.01333 | 1     | 8                |
| 9         | 0.71    | 0.04762 | 3     | 1                |
| 10 - 11   | 0.24    | 0.119   | 1.5   | 1                |
| 12        | 0.71    | 0.35714 | 1.5   | 1                |





## Gas / Water





#### Optimal control of gas/water flows

Colombo, Herty, ....

Control for example by compressor stations

Two pipes connected with a compressor

Customers require certain pressure and flow

Control P through a modified coupling condition:

$$P = q_1((\frac{p(\rho_1)}{p(\rho_2)})^k - 1), q_1 = q_2$$



# 4.2 Mixed-Integer, Linear Programming



#### **Traffic**





#### **Traffic: Simplififed models**

#### Track waves to obtain nonlinear system of equations

Arrival times:

$$t_j = (t_l + \frac{L_l}{s_l}) \frac{\rho_{l,0}}{\rho_{l,0} + \rho_{k,0}} + (t_k + \frac{L_k}{s_k}) \frac{\rho_{k,0}}{\rho_{k,0} + \rho_{k,0}}, \ s_j = \frac{f(\rho_j)}{\rho_j}.$$

Functional:

$$\sum_{j=1}^{J} \int_{0}^{T} \int_{a_{j}}^{b_{j}} \rho_{j}(t,x)dtdx = \sum_{j=1}^{J} (T - t_{j}) L_{j} \rho_{j,0} - \frac{\rho_{j,0}}{2s_{j}} L_{j}^{2}$$



Rewriting model in terms of fluxes on the arcs and Linearization gives

Mixed integer program (MIP)

Fast numerical treatment by combinatorial methods or CPLEX etc.





#### Comparison of models: PDE versus MIP for Free Flow

$$G(\mu, \eta) = \sum_{j=1}^{J} \int_{0}^{T} \int_{a_{j}}^{b_{j}} \rho_{j}(t, x) dt dx$$





#### **Coarse versus fine linear discretization**





## PDE versus simplified model (Jam situation)







# Comparison of computation times for simple network

| Model and Scheme              | Parameters                            | CPU time |
|-------------------------------|---------------------------------------|----------|
| Godunov scheme for pde model  | N=100                                 | 135.65 s |
| Godunov scheme for pde model  | N=50                                  | 45.17 s  |
| ODE-Model                     | N=3                                   | 3.39 s   |
| Simplified nonlinear model    |                                       | 0.05 s   |
| Linear Model with dynamics    | $D_q = D_t = 100, N_i \cdot N_j = 25$ | 0.02 s   |
| Linear Model without dynamics | $D_q = 100$                           | 0.01 s   |



## **Large networks**





#### Computation times for large network optimization

| Model                      | # Roads | $D_q$ | $D_t$ | $N_i N_j$ | Gap  | CPU time         |
|----------------------------|---------|-------|-------|-----------|------|------------------|
| Simplified nonlinear model | 240     | n.a.  | n.a.  | n.a.      | n.a. | 6 s              |
| Linear with dynamics       |         | 10    | 10    | 25        | 1%   | 11 m             |
|                            |         | 10    | 10    | 25        | 10%  | 3.8 m            |
|                            |         | 10    | 10    | 9         | 0.1% | 2.6 m            |
|                            |         | 10    | 10    | 9         | 10%  | 57 s             |
| Linear without dynamics    |         | 100   | n.a.  | n.a.      | 0.1% | <0.01 s          |
| Simplified nonlinear model | 1′500   | n.a.  | n.a.  | n.a.      | n.a. | 57 m             |
| Linear with dynamics       |         | 10    | 10    | 25        | 10%  | 4.7 h            |
|                            |         | 10    | 10    | 9         | 10%  | 26 m             |
|                            |         | 5     | 5     | 9         | 10%  | 5 m              |
| Linear without dynamics    |         | 1000  | n.a.  | n.a.      | 0.1% | 24.98 s          |
|                            |         | 100   | n.a.  | n.a.      | 0.1% | 12.75 s          |
|                            |         | 5     | n.a.  | n.a.      | 0.1% | 1.8 s            |
| Simplified nonlinear model | 15'000  | n.a.  | n.a.  | n.a.      | n.a. | >4d              |
| Linear with dynamics       |         | 5     | 5     | 9         | 10%  | 6.2 h            |
| Linear without dynamics    |         | 100   | n.a.  | n.a.      | n.a. | 22. <b>7</b> 9 m |
|                            |         | 10    | n.a.  | n.a.      | n.a. | 7.33 m           |
| Linear without dynamics    | 150'000 | 10    | n.a.  | n.a.      | n.a. | 16.77 h          |





# **Supply chains**





#### Supply chains: Simplified models

Much simpler: piecewise linear flux functions

Two point discretization yields MIP or even LP depending on the model:

Very fast algorithms for very large problems



# **Approach: Mixed-Integer, Linear Programming**

- Simplification of the dynamics (2-point discretization on each arc)
- Linear dynamics in processor and queue yield discretized linear equations except for

$$\psi^e(q^e) = \min\{\mu^e; \frac{q^e}{\epsilon}\}$$

- Rewrite  $\,\psi\,$  using binary variables
- Discretized optimization problem is a large scale mixed-integer problem



#### **Remarks:**

- The functional needs to be linear (otherwise more binary variables are needed)
- The problem is solved using CPLEX
- Suitable preprocessing routines for CPLEX can be derived from PDE Ansatz
- Further reduction to linear programmes in special cases



# Model extensions are easy in MIP formulation:

Finite size buffers

$$q_t^e \leq \text{const}, \forall e, t.$$

Optimal inflow profile

$$\max \sum_{e=1,t} f_t^e,$$

Maintenance shut-down



# **Example I (Braun, Frankfurt)**





| Processor | $\mu^e$ | $v^e$   | $L^e$ | $\overline{q}^e$ |
|-----------|---------|---------|-------|------------------|
| 1         | 100     | 0.01333 | 1     | 100              |
| 2         | 0.71    | 0.35714 | 1.5   | 18               |
| 3 - 8     | 0.06666 | 0.01333 | 1     | 8                |
| 9         | 0.71    | 0.04762 | 3     | 1                |
| 10 - 11   | 0.24    | 0.119   | 1.5   | 1                |
| 12        | 0.71    | 0.35714 | 1.5   | 1                |





# Numerical results II (Comparison of CPU times, small networks)

Comparison of MIP/CPLEX and adjoint/gradient approach

Same optimal functional value



| NT   | Adjoint | MIP    |
|------|---------|--------|
| 200  | 7.31    | 5.52   |
| 400  | 26.10   | 17.06  |
| 800  | 45.10   | 68.09  |
| 2000 | 124.58  | 592.61 |

See following talks





# **Numerical results III (Large scale, MIP, CPLEX)**

"PDE solution" not feasible

Computing times for kx2 networks with 100+k, 100+k/20 time steps:





**Remark**: LP allows for larger networks.





#### Gas / water





#### Mixed Integer Models for Gas/Water

simplified models for gas / water lead after piecewise linearization again to

Mixed integer problems

discrete optimization community



## Further topics / current work:

#### **Numerical improvements:**

- Multilevel approaches, hybrid methods
- Preprocessing techniques for MIP (U. Ziegler, A. Dittel))

#### **Extensions:**

- Stochastic effects (S. Martin)
- supply chains: Nonlinear dynamics at nodes, Multi-policy networks
- gas/water: numerical realization / optimization for full problem /coupling to surface flow(R. Borsche)



