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Monge’s optimal transport problem

We consider:
— X, Y complete and separable metric spaces;
—pe P(X),ve 2(Y);
—acost functionc: X x Y — RU {+oc}.
We minimize

T e / c(x, T(x)) dp(x)
X
/% Y
< among all transport maps T from p

o tov:

wW(T-YE)) =v(E) VE e B(Y).
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Notation: T: X — Y, T, : 2(X) — 2(Y),

Tu(E):= u(T(E))  VE e B(Y).

(SoTyh=SoT [ odTu= [ 6oTdn

Monge’s problem can be ill-posed because:

1) No admissible T exists: p = dg, v = (d_1 + 91)/2;

2) the infimum is not attained;

3) the constraint T; = v is not weakly sequentially closed.




Lemmai. LetT : X = R" — Y = R" be injective and
differentiable out of a .£"-negligible set with detV T # 0 a.e.
Then

T(012") = 2" & pa(T(X)|detV T(x)] = pi(x) ae.

Proof. By a Lusin approximation, the change of variables
formula still holds for T, hence

_ ~1
/¢oTp1dx /¢\detVT\ o T 'dy.

This implies that pp = (p1/|detVT|) o T-1. O

Remark. If det VT = 0 in a set of positive .#"-measure, then
Ti(p1-Z") is singular with respect to .2, with a singular part
having mass f{detVT:O} p10X.




Kantorovich’s formulation of optimal transportation

We minimize
T c(x,y) dn(x,y)
XxY
in the set I'(u, v) of all transport plans 7 € Z2(X x Y) from u to
v

T(AxY) = u(A) VA€ B(X), w(XxB)=uv(B) VBe B(Y).

Equivalently: (mx)sm = p, (7y)sm = v.

6/45



Heuristic meaning of :

7(A x B) = the mass initially at A sent at B

Advantages:

1) ['(i, v) is not empty (it contains u x v);

2) The set I'(u1, v) is weakly closed in Z(X x Y),and 7w — [ cdn
is linear;

3) Solutions always exist under mild assumptions on c.

4) Transport plans “include” transport maps, since Ty = v
implies that 7 := (ld x T)su belongs to I'(u,v). If, cis
real-valued, then

inf(Monge) = inf (Kantorovich).




Theorem 2. If ¢ is lower semicontinuous, then (K) has a
solution.

Notation. We shall use the notation I'y(u, v) for optimal plans.
Proof. = — [ cdn is sequentially l.s.c. with respect to
convergence in duality with Cp(X x Y), since

dcp € Cp(X x Y), cnlc.

On the other hand, by Ulam theorem, there exist nondecreasing
sequences of compact sets C, C X and K, C Y such that
w(X\UnCp) =0and v(Y \ UpKy) = 0. It turns out that

(X x Y\ Cphx Kp) <u(X\Cp)+v(Y\ Ky Ve M(u,v),

hence I'(p, v) is a tight family in Z2(X x Y). Prokhorov theorem

ensures the sequential relative compactness w.r.t. the weak

topology of (s, v). O ®
Rt
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Can we recover an optimal T from an optimal = ?
Why should we look for (optimal) transport maps ? Optimal
transport provides a canonical way to “rearrange” a mass
distribution into another.




c-monotonicity
Definition. We say that ' C X x Y is c-monotone if (x;, y;) € T,
1 < i< n,implies

n n

> el yi) <Y e(x,¥i)  for all permutations o.

i=1 i=1

If X = Y = Hand ¢(x,y) = |x — y|?/2, this concept reduces
to the classical cyclical monotonicity. Indeed, expanding the
squares, one obtains

n

> Vi Xo(iy — Xi) < 0.

i=1

Remark. For general cost functions the c-monotonicity is much
harder, if not impossible, to characterize, and it should be taken
as it is. It is much better to extend the concepts of duality, %‘?i?
subdifferential, etc. to general cost c.
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For F: H— RU{+o0} and x € D(F) = {F < +o0} the
subdifferential OF (x) is defined by

OF(x):={veH: F(y)> F(x)+ (v,y — x) Yy € H}.

Theorem 3. (Rockafellar) ¢ H x H is cyclically monotone
iff it is contained in the graph of OF for some l.s.c. proper
F:H—RU{+o0}.

The easy implication: add the inequalities

Vi, Xo(iy — Xi) < F(Xo(y) — F(xi)

to get

n

> ¥ Xo(iy — Xi) < 0.

i=1

The converse implication requires a construction that we will »@
see later on, in a more general context. 2
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Theorem 4. Assume c I.s.c., = optimal and f cdr finite. Then «
is concentrated on a Borel c-monotone set. The converse holds
if

(%) c(x,y) < a(x) + b(y), acll(n), bel'(v).

Remark. Condition (*) is natural in some, but not all, problems.
For instance problems with constraints or in Wiener spaces
include +oo-valued costs.

Since Theorem 4 is easy to show for discrete measures, a
possibility is to work by approximation. But, this provides only
the existence of some optimal = concentrated on a c-monotone
set (this would suffices for the proof of duality).

Following Gangbo-McCann, we follow a slightly different
strategy.




Proof. (only necessity, in the case ¢ € Cp(X x Y)). Assume,
by contradiction, that the cyclical monotonicity condition fails
for some {(x;, i) }1<i<n C suppm and some permutation . By
continuity we can find neighbourhoods U; 3 x;, V; > y; with

n

> e(ui, Vogy) — (Ui vi) <0 Y(upv) € Upx Vi, 1<i<n.

i=1

Our goal is to build a “variation” # = 7 + o of 7 in such a way
that minimality of 7 is violated.To this aim, we need a signed
measure o with:

(i) o= < (so that 7 is nonnegative);
(i) null first and second marginal (so that 7 € I'(u, v));
(iii) [ cdo < 0 (so that 7 is not optimal).
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If we are given measures Aq,..., Ap in @ measurable space
Z, we know the existence of a probability space (2, P) and
measurable maps h; : Q@ — Z with hy P = ); (for instance one
may take Q = Z" with the product measure).
Apply this construction to the measures \; = %XUIXV(.W, with
m; = 7(U; x V;), to find maps h; = (f;,gi) : @ — U; x V; such
that ]

(fi,90)sP = A < T

If we define
. n
min; m;
2N " [(f Goiiy )5 P — (£, 9P,

g =
obviously (i) and (ii) above are fulfilled, and

min; m
[edr =" ’/Z[cf,,gg,) et dP<0. &
|z\i",lﬁl?"
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Theorem 4 leads in a natural way to the analysis of the
properties of c-monotone sets, to see how far are they from
being graphs. Indeed:
Lemma 5. Assume that I is a m-measurable graph and that
n € I'(u,v) is concentrated on I'. Then = is induced by a
transport T, i.e.

= (ld x T)p.

Proof. Let T : mx(I') — Y be the map whose graph is I and let
Kn C T compact with 7(I" \ Kp) — 0, Fj := 7(Kp).

Since u(Fn) = v(Fn x Y) > v(Kn) — 1, the union F of F, covers
u-almost all of X. On the other hand, T : F, — Y is continuous
(since its graph K}, is closed), hence T is u-measurable.

Since y = T(x) m-a.e. in X x Y we conclude that

/ o(x.y) dr(x.y) = / 6(x, T(x)) dr(x, y) = / o(x, T(x)) du(x),

sothat7 = (/d x T)yu. O [




The dual formulation
Developed by Kantorovich, Kellerer, Levin, Rischendorf,...
Theorem 6. Assume thatc: X x Y — [0, +oc] is I.s.c. Then

min(K):sup{/wdqu/qbdu: (p.0) €Ly, x L, go+w§c}.
X y

The inequality > is trivial:

/cpd;H—/l/)dU—/ 90+w)d7r</xxycd7r Vi € T(u,v).

We prove the opposite inequality in the simplest case, namely
when ¢ € Cp(X x Y). Fix m € I'(1, v) optimal and a c-monotone
set I' on which 7 is concentrated. For ¢ : X — RU {—o0} we
define the c-transform of ¢ by

#°(y) = Inf o(x.y) ~ $(x). &




Obviously ¢ + ©¢ < ¢ (¢° is the largest with this property) and
we conclude that duality holds, with ¢ := ¢°, if we are able to
build ¢ in such a way that

0+ @°=c onT (and, in particular, 7-a.e.)
To do this, we adapt the construction of Rockafellar, defining

o(x) = inf{c(x, Vi) = (s Y) + (X Y1) — (X1, Y1)

4.4 C(tho) — C(X07y0)}’

where (Xp, yo) € I is fixed and the infimum runs among all finite
families {(x;, yi)}1<i<n C . The definition of ¢ immediately

gives

(*) ex)—cx.y) <p(X)—c(x,y) V(xy)el, x eX
hence ¢°(x) = c(x, y) — ¢(x) on I'. However, we need to check
that both  and ¢ are integrable! Monotonicity of I implies that |
©(Xp) = 0 and this, in combination with (*), yields ¢ € L>(X), &
o e Lo(Y). O s
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Regularity of the optimal ¢
Remark. We have seen that the “optimal” potential ¢ is
c-concave, namely it can be represented as an inf-convolution:

o(x) = i_m; c(x,yi) —m; Vx e X.
e

In the case c(x, y) = |x — y|?/2, c-concavity is equivalent to
semiconcavity, more precisely

X .
o(x) — o is concave.

In the case c(x, y) = distance, c-concavity is equivalent to
1-Lipschitz continuity with respect to c.




Back to transport maps
If (p,%) is @ maximizing pair and = € 'g(u, v) has finite cost,
“min = max” leads to the optimality condition:

o(X)+9Y(y)=c(x,y) mae inXxY.

lf X =Y =H,c(x,y) =|x—y?/2,and (x, y) € supp, then
1
X' = SIX =y = ()
attains its minimum, equal to ¥ (y), at X’ = x. As a consequence
y =x-Vp(x)
provided ¢ is differentiable at x.
Key point: 7 is concentrated on a graph if we have
differentiability, at least u-a.e., of the maximizing dual
Kantorovich potential ¢. If H = R", since ¢ is semiconcave, a
result by Zajicek shows that ¢ is differentiable out of the union

of countably many Lipschitz hypersurfaces (and in particular
Z"-a.e.).




Notation. 2,(H) := {u € Z(H): [, |x|?du < oo}.
Theorem 7. (Brenier, Knott-Smith, Ruschendorf) Assume
X=Y=R"c(x,y)=|x—y[2/2, u,ve Po(R"). If u < £" or,
more generally, i1 vanishes on Lipschitz hypersurfaces, then:

(i) there exists a unique optimal transport map T ;

(il) the map is the gradient of a convex function .

Proof. The assumption u, v € Z(R") ensures finiteness of the
minimal cost. We have seen that any optimal = is concentrated
on the graph of the function x — T(x) := x — Vp(x); it is
the gradient of the convex map 3|x|> — ¢(x). This proves that
m = (Id x T)yp is uniquely determined by ¢, so uniqueness
holds even in the larger class of transport plans. O

Writing © = p1£", v = p2.£", the transport condition
p2(T(x))|det VT|(x) = p1(x) gives that ¢ is a pointwise solution
to the Monge-Ampere equation

2 _p1(x)
Vo) = e
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Regularity of the optimal map

Alexandrov theorem. (A-Alberti, '99) Let T : R" — P(R") be a
monotone operator. Then

(i) for £"-a.e. x € D(T), T'(x) = {p(x)} is single-valued;
(i) for £"-a.e. x € D(I') there exists A(x) € R™" with

im |q — p(x) — A(X)(y — x)| o
qer(y), y—x ly — x|

nxn

IfT(x) = 0p(x), with p(x) convex and I.s.c., then A € Sym’]
Z"-a.e.

It follows by a canonical 1-1 correspondence between
monotone operators and 1-Lipschitz maps. Under this
translation Alexandrov theorem corresponds to Rademacher
differentiation theorem of Lipschitz maps.




Minty correspondence

X
_ yxx
U—\@
—_y=x
v_\/é




Regularity the optimal map
In general the optimal transport map is only BV (and
discontinuities can occur), unless geometric restrictions are
imposed on supp v.

Regularity theorem. (Caffarelliy Assume V convex,
Inpy, Inpp € L®(V). Then o € C'*(V) foralla« < 1 and

p1, p2 € CO(V) = © € C>(V).

The convexity assumption on V is needed to show that ¢ is
a viscosity solution to (MA), and then the regularity theory for
(MA), developed by Caffarelli and Urbas, applies.

Open problem. Under the assumption of the regularity
theorem, we know T = Vi is Hlder continuous and BV. Can
we say that T € WH1(V;R") ?

A positive solution would give existence of solutions, in the
physical (velocity) variables to a semi-geostrophic PDE in fluid &
mechanics (Brenier, Cullen-Gangbo, Cullen-Feldman). 5




Application: polar factorization

Let D C R" be a bounded domain, denote by 1p the normalized
Lebesgue measure on D and consider the space

S(D):={s:D—D: syup=pp}-

The following result provides a kind of (nonlinear) projection on
the (nonconvex) space S(D).

Polar factorization theorem. Let f ¢ L?(up; R") be satisfying
the non-degeneracy condition f,up < £". Then there exist

s € S(D) and ¢ convex such thatf = (Vy) o s.

Remark. Compare with the Helmholtz projection f = Vp + g, g
divergence-free.

Proof. Let T be the optimal transport map from fup € F(R")
to up. Then s = T o f is measure-preserving and

f=T'os=(Vy)os.




Extensions of Brenier’s result
— Infinite-dimensional Hilbert spaces, A-Gigli-Savaré.
— compact Riemannian manifolds (M, g), ¢ = d,/2: McCann.
— cost functions induced by Lagrangians Bernard-Buffoni,
namely

1
C(Xay) ;= inf {/O L(t,y(t),v(t)) at: 7(0) =X 7(1) = y} )

— Carnot groups and sub-Riemannian manifolds, ¢ = d%C/Z:
A-Rigot, Figalli-Rifford;

— cost functions induced by sub-Riemannian Lagrangians
Agrachev-Lee.

A common framework is to consider measures 7 in the space Q
of paths in M, minimizing an action

| A) dne)

with the constraint (ep)sn = 1, (e1)ym = v, where ¢t : Q — M
are the evaluation maps, e:(w) = w(t).




Extensions of Brenier’s result
— Wiener spaces (E, H,v), Feyel-Ustiinel. Here E is a Banach
space, v € Z(E) is Gaussian and H is its Cameron-Martin
space, namely

H:={he E: ()i <}.

In this case

x—y& .
o y) =4 2 xTVyeh
400 otherwise.

This model is extremely interesting: ¢ = +oo for “most” pairs

(x,y) (since v(H) = 0), nevertheless we have the Talagrand
transport inequality

nt{ [ o0 TN () s o=} < [ oin et




Optimal maps on manifolds

Theorem. M compact Riemannian manifold with no boundary.
c = 5d?. Then, for u, v € 2(M) with i < voly there exists a
unique optimal transport map.

Here, the extra difficulty is that d?(x,y) need not be
differentiable. However, a little bit of nonsmooth analysis solves
the problem: first, the differentiation argument gives

Vi(x) € Dy o (-)(x) = d(x, Y)IrdC,y)(x).

Here Of is the Frechet subdifferential), namely

9p(x) = {v € TeM: ¢(exp,w) > ¢(x) + gx(v, w) + o(|w])} .




Optimal maps on manifolds

'y

On the other hand, if £ € T,M is the final velocity of any unit
speed minimizing geodesic from y to x, it is easy to check that

—£€ 8IJ—'rd(vy)(X)

(here 9t is the Frechet superdifferential).




Optimal maps on manifolds

Since d(-, y) is both sub- and super- differentiable at x, it is
differentiable and —£d(x, y) = V¢(x). We conclude that

y = expy(=€d(x,y)) = exp, (Veo(x)) = T(X)

is uniquely determined by x and we recover the optimal map T.

We know actually more: there exists a unique geodesic from x
to y, so that the optimal transport map does not go beyond the
cut locus!

Regularity of the optimal transport map, cut and focal locus:
Ma-Trudinger-Wang, Loeper, Loeper-Villani, Figalli-Rifford-
Villani.




Cost=distance
In the case cost=Euclidean distance, by differentiating
| —y| — p(X') at x' = x, we get
X—y

X) = .

0= =y
Hence, the information is only on the direction of transportation,
not on transportation length.
If c(x,y) = ||x — y|| with || - || not strictly convex, even this
information is (partially) lost:

X —y € (dep) :={veR": |dep(v)| =[IV[}.

In order to attack this problem one has to get the missing pieces
of information by a perturbation argument (for instance, in the
case cost=Euclidean distance, considering the costs

c(x,y) =[x —y|'"t,  €|0).




Cost=distance

The analysis of this problem is related to deep questions in Real
Analysis and Probability (regularity of disintegrations, Nikodym
sets,..).

—’78 Sudakov, any norm (?);

— 96 Evans-Gangbo, Euclidean norm;

-’00 Caffarelli-Feldman-McCann, A, Trudinger-Wang, C? and
uniformly round norms;

—’03 A-Kirchheim-Pratelli, crystalline norms;

—’08 Champion-DePascale, Caravenna strictly convex norms;
— 09 General norms: Champion-DePascale, Caravenna,
Caravenna-Daneri.




Branched optimal transportation and irrigation models

The optimal transportation problem, in its classical formulation,
is not realistic for some real life problems where networks, i.e.
branched transportation structures, are expected.
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E.N.Gilbert: Minimum cost communication networks. Bell
System Tech. J., 1967.

Q.Xia: Optimal paths related to transport problems. Comm.
Contemp. Math., 2003.

M.Bernot-V.Caselles-J.M.Morel: Optimal transportation
networks — models and theory. Springer, LNM 1955, 2009.




In shipping two items from nearby cities to the same far away
city, it may be less expensive to first bring them into a common
location and put them on a single truck for most of the transport.
In this way a “Y shaped” path is preferable to a “V shaped”

path.




Gilbert’s model

We consider an oriented finite tree T C R”, with initial nodes
N;, final nodes Ny and a nonnegative multiplicity function w(e)
defined on edges satisfying Kirchoff’s rule

(Kir) > we)= > w(e)

e incoming at x e outgoing from x

at any “internal” node x of T.
The measures

pA) = X > w(e)

xeANN; e outgoing from x

v(B) = X >, w(e)

yeBNN; e incoming at y

play the role of “initial” and “final” measures and, by (Kir), they
have the same total mass.




Then, for a € [0, 1], one minimizes the cost function

Z w*(e)length(e).

ecT

among all trees starting from p to v.

Limit cases. o = 0: Steiner’s problem.
a = 1: Monge-Kantorovich problem, cost=distance.

As soon as a < 1 a branched transportation structure does
appear, and another critical parameteris o« =1 —1/n.




Continuous formulation

We consider “continuous” trees, i.e. countably .7 -rectifiable
sets I', oriented by a tangent vector field 7 : I — S"~! and an
integrable multiplicity function w : I' — [0, +00).

Canonically associated with (I, 7, w) is the R"-valued measure
Jrow = wrH'LT <i.e. / ¢ AJrrw = / wor d%1>.
r

Both the initial/final condition and (Kir) become V - J = v — p,
and

Ea(d) = / we dat,
r




Existence and regularity results
Theorem. (Xia, Maddalena-Solimini, Bianchini-Brancolini) For
all o € [0,1) there exists a continuous tree with minimal cost
among those connecting p tov. If u =46, andv = £"[0,1]",
the minimal cost is finite if and only if « > 1 —1/n.

Remark. If « > 1 — 1/n, an “irrigation” T with finite &, cost can
be achieved by a dyadic splitting procedure, i.e. first reaching
the center of [0, 1]", then the centers of the 2" subcubes, and
so on.

5a(T) ~ Z 2nk . 2fank . 27/( — Z 2k(nfanf1).
k=1 k=1




Existence and regularity results

Theorem. (Xia, Bernot-Caselles-Morel) Let « € [0,1) and let
(I, 7, w) be a continuous tree with minimal £, cost between p
andv. ThenT is locally a finite tree away from supp U supp v.

Finally, a Lagrangian formulation involves the minimization of
the nonlocal action

T(v)
() = /Q /0 (O] |(0)] ot dn(7),

where
[X]n :==n{w: x € w([0,+o0])}.




Variational models in incompressible Euler equations

We consider an incompressible fluid moving inside a d-
dimensional region D with velocity u. The Euler equations for u
are

V-u=0 in [0, T] x D,
u-n=0 on [0, T] x 9D,

where p, the pressure field, is a Lagrange multiplier for the
divergence-free constraint.

{ ou+(u-Vyu=-Vp in[0,T] x D,

If uis smooth, it produces a unique flow map g, given by
{ g(t7 a) = U(t, g(t7 a))?

g9(0,a) = a.




By the incompressibility condition, we get that g(¢t,) : D — D is
a measure-preserving diffeomorphism of D, g(t,-)suup = pp-
Writing Euler’s equations in terms of g, we get

{ g(t7 a) —Vp(t g(t a)) (t7 a) € [0¢ T] x D
g(ova) acD,
g(t,-) € Slef(D) te[0,T].

We can (formally) view the space SDiff(D) of measure-
preserving diffeomorphisms of D as an infinite-dimensional
manifold with the metric inherited from the embedding in L?(D),
and with tangent space made by the divergence-free vector
fields.
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Arnold’s geodesic interpretation

Using this viewpoint, Arnold interpreted the previous ODE,
and therefore Euler’s equations, as a geodesic equation on
SDiff(D). Therefore one can look for solutions of Euler’s

equations by minimizing

1
| [ 3latt 08 duot

among all paths g(t,-) : [0,1] — SDiff(D) with g(0,-) = f and
g(1,-) = h prescribed (typically, by right invariance, f is taken
as the identity map i).

Existence: Ebin-Marsden (1970), go f~1 ~ i.

In general, as pointed out by Shnirelman, geodesics (and even
curves with finite length if d = 2) need not exist.




Relaxed formulation

These results led in 1989 Brenier to the following model: we
minimize the action functional

1
= [ 5[ Raton). ne2@)

with the constraints

(€0, €1)sm = (I x h)gup,  (&1)ym = pp Vt € [0, T].

Classical flows g(t, a) induce generalized ones via the relation
n = (®g)sup, With

oy : D — Q(D), d4(a) :=g(:; a).




Advantages: existence of solutions, uniqueness of the pressure
field (identified through a suitable dual formulation). An
adaptation of this approach produces a complete length
distance in the space I'(up, up) of measure-preserving plans.
First variation also leads to a weak formulation of Euler’'s
equations

OtVi(x) + V- (V@ vi(x)) + Vxp(t,x) = 0.
Here

Viup = (et)ﬁ(d)(t)n), VR Viup = (et)ﬁ(dj(t) ®@ w(t)n).

In general, however, v ® v; # V; ® v; (due to branching and
multiple velocities), and this precisely marks the difference
between genuine distributional solutions to Euler’'s equation and
“generalized” ones (in analogy with the DiPerna-Majda weak @
solutions). |
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Connection with optimal transport models

The following result provides a regularity condition on

the pressure field (improving Brenier's condition Vp €
Mioc((0, T) x D)) and necessary optimality conditions.
Theorem (A-Figalli) Vp € L2 _((0, T); Minc(D)), so that p(t,-) is
BVio.(D), and any minimizer n is concentrated on curves locally
minimizing in (0, T) the action

L (v / |lo(r) ,v(n)ar.

We also provide necessary and sufficient optimality conditions,
whose formulation is however more involved.
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