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Abstract. The efficiency of traffic flows in urban areas is known to crucially depend on signal operation.
Here, elements of signal control are discussed, based on the minimization of overall travel times or vehicle
queues. Interestingly, we find different operation regimes, some of which involve a “slower-is-faster effect”,
where a delayed switching reduces the average travel times. These operation regimes characterize different
ways of organizing traffic flows in urban road networks. Besides the optimize-one-phase approach, we
discuss the procedure and advantages of optimizing multiple phases as well. To improve the service of
vehicle platoons and support the self-organization of “green waves”, it is proposed to consider the price of
stopping newly arriving vehicles.

PACS. 89.40.Bb Land transportation – 87.19.lr Control theory and feedback – 47.85.L- Flow control

1 Introduction

The study of urban traffic flows has attracted the interest
of physicists for quite a while (see, e.g., Refs. [1–4]). This
includes the issue of traffic light control and the result-
ing dynamics of vehicle flows [5–11]. Theoretical investi-
gations in this direction have primarily focussed on single
intersections and grid-like street networks, e.g. adaptive
control [12–14] of a single traffic light or coordination of
traffic lights in Manhattan-like road networks with unidi-
rectional roads and periodic boundary conditions. Some
of the fascination for traffic light control is due to the re-
lationship with the synchronization of oscillators [15–17]
and other concepts of self-organization [18–25].

The efficiency of traffic light control is essential to
avoid or at least delay the collapse of traffic flows in traffic
networks, particularly in urban areas. It is also crucial for
attempts to reduce the fuel consumption and CO2 emis-
sions of vehicles. Both, delay times and acceleration ma-
neuvers (i.e. the number of stops faced by vehicles)1 cause
additional fuel consumption and additional CO2 emissions
[26]. Within the USA alone, the cost of congestion per year
is estimated to be 63.1 billion US$, related with 3.7 bil-
lion hours of delays and 8.7 billion liters of “wasted” fuel
[27]. Climate change and political goals to reduce CO2

emissions force us to rethink the design and operation of
traffic systems, which contributes about one third to the
energy consumption of industrialized countries. On free-
ways, traffic flows may eventually be improved by auto-

1 For formulas to estimate these quantities as a function of
the utilization of the service capacity of roads see Ref. [28].

mated, locally coordinated driving, based on new sensor
technologies and intervehicle communication [29,30].

But what are options for urban areas? There, traffic
lights are used to resolve conflicts of intersecting traffic
streams. In this way, they avoid accidents and improve
the throughput at moderate or high traffic volumes. For
a discussion of the related traffic engineering literature,
including the discussion of traffic light coordination and
adaptive signal control, see Refs. [23,25] and references
therein. In the following, we will focus our attention on
some surprising aspects of traffic flow optimization.

1.1 Paradoxical Behavior of Transport Systems

Besides Braess’ paradox (which is related to selfish rout-
ing) [31–33], the slower-is-faster effect is another counter-
intuitive effect that seems to occur in many transport net-
works. It has been found for pedestrian crowds, where a
rush of people may delay evacuation [34].

Slower-is-faster effects have fascinated scientists for a
long time. Smeed [35], for example, discussed ”some cir-
cumstances in which vehicles will reach their destinations
earlier by starting later”, but Ben-Akiva and de Palma
[36] showed that this effect disappeared under realistic
assumptions. Moreover, it is known from queuing theory
that idle time can decrease the work in process (i.e. basi-
cally the queue length) in cyclically operated production
systems under certain circumstances, particularly when
the variance in the setup times is large [37]. These cir-
cumstances, however, do not seem to be very relevant for
traffic light control. Nevertheless, there are many exam-
ples of slower-is-faster effects in traffic, production, and
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logistic systems, and it has been suggested that the phe-
nomenon is widespread in networked systems with con-
flicting flows that are competing for prioritization [38,39].
While there are numerical algorithms to exploit this effect
systematically to improve the performance of these sys-
tems [38], there have been only a few analytical studies of
the slower-is-faster effect [40–42]. Therefore, we will put a
particular focus on the study of conditions leading to this
counterintuitive, but practically relevant effect.

Our paper is structured as follows: While Sec. 2 speci-
fies the traffic system investigated in this paper, Sec. 3 dis-
cusses the throughput of intersections. Section 4 continues
with the problem of minimizing travel times, while Sec. 4.5
discusses the minimization of queue lengths. The challenge
in these sections is to come up with a concept that still
leads to reasonably simple formulas, allowing one to study
the behavior of the proposed signal control analytically. A
successful approach in this respect is the “optimize-one-
phase approach”, which seems justified by the short inter-
vals, over which traffic flows can be anticipated reliably.
Among the operation regimes resulting from the optimiza-
tion process are also some with extended green times, cor-
responding to a “slower-is-faster effect” (see Sec. 4.4). A
further improvement of signal operation is reached by ap-
plying multi-phase optimization, when flow constraints are
taken into account. As Sec. 5 shows, this approach leads
to a variety of plausible operation regimes. A summary
and dicussion is presented in Sec. 6. Complementary, Sec.
A will discuss the “price” of stopping vehicles, which is
an interesting concept to support moving vehicle platoons
(and, thereby, the self-organization of “green waves”). For
a more sophisticated, but analytically less accessible ap-
proach to the self-organization of coordinated traffic lights
and vehicle streams in road networks see Refs. [25,38,43].

2 Specification of the Traffic System under

Consideration

In this paper, we will first focus on the study of a single
traffic intersection with uniform arrival flows, before we
discuss later how to extend our control concept in various
ways. Furthermore, for simplicity we will concentrate on
the study of a traffic light control with two green phases
only, which is generalized in Appendix B. As the traf-
fic organization in parts of Barcelona shows, a two-phase
control is sufficient, in principle, to reach all points in
the road network: Just assume unidirectional flows in all
streets with alternating directions. Then, in each phase,
traffic either flows straight ahead and/or turns (right or
left, depending on the driving direction in the crossing
road). Hence, two intersecting unidirectional roads imply
two possible traffic phases, which alternate (see Fig. 1).

While the optimization approach discussed in the fol-
lowing can be also applied to time-dependent arrival flows
A1 and A2 per lane, when numerical solution methods are
applied, for the sake of analytical tractability and closed
formulas we will focus here on the case of constant flows
over the short time periods involved in our optimization.

Fig. 1. Top: Schematic illustration of the unidirectional street
layout in the center of Barcelona. Center and bottom: Illustra-
tion of the two traffic phases, during which vehicles can move
straight ahead or turn (either right or left, depending on the
direction of the crossing road).

Ij will represent the number of lanes of road section j, and
it will be assumed that vehicles passing a green light can
freely enter the respective downstream road section. Anal-
ogously to Refs. [24,44,28], the departure flows γj(t)Oj(t)
(as long as the traffic flows are not obstructed by the
downstream traffic conditions) are given by the possible
outflows Oj(t) (which vary with time t), multiplied with
the permeabilities γj(t). The latter reflect the states of
the traffic lights. During amber and red time periods, the
permeabilities γj(t) are zero, as there is no outflow, while
γj(t) = 1 during green phases. Note that the departure
flows γj(t)Oj(t) may split up into a straight and a turning
flow after the traffic light, but for our further considera-
tions, this is not relevant. The possible outflows Oj(t) are
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determined by the equation

Oj(t) =

{
Q̂j if ∆Nj(t) > 0,
Aj(t − T 0

j ) otherwise.
(1)

Herein, Q̂j is the service rate per lane during the green
phase as long as there is a finite number ∆Nj(t) > 0 of de-

layed vehicles behind the traffic light (i.e. Q̂j corresponds
to the characteristic outflow from congested traffic). Aj(t)
represents the time-dependent arrival rate of vehicles per
lane and Aj(t − T 0

j ) the rate of vehicles arriving at the

traffic light under free flow conditions, where T 0
j denotes

the free travel time needed to pass road section j. In case
of constant arrival rates Aj , the dependence on the time
point t and the delay by the free travel time T 0

j can be
dropped.

In the following, we will use some additional variables
and parameters: Tj shall denote the minimum green time,
after which the vehicle queue in road section j is fully
dissolved (i.e. after which ∆Nj = 0 and Oj = Aj). In
contrast, ∆Tj will stand for the actual green time period.
Consequently,

∆tj = ∆Tj − Tj (2)

(if greater than zero) represents the excess green time, dur-
ing which we have a free vehicle flow with γj(t)Oj(t) = Aj .
τj shall be the setup time before the green phase ∆Tj for
road section j. For illustrative reasons, it is also called the
“amber time (period)”, although it is usually somewhat
longer than that. The sum

Tcyc = τ1 + ∆T1 + τ2 + ∆T2 (3)

is normally called the cycle time. Note, however, that we
do not need to assume periodic operation. Within the
framework of our model assumptions, we may consider
stepwise constant flows. That is, the arrival flows may vary
from one cycle (or even one green time period) to the next.
Under such conditions, each green phase is adjusted to the
changing traffic situation.

Finally note that we do not consider pedestrian flows in
this paper. In order to take them into account, one would
have to consider additional traffic phases for the service
of pedestrians. Alternatively, one could select the setup
times τj for vehicles so large that they cover the amber
time for vehicles plus a sufficient time for pedestrians to
cross the road.

3 Consideration of Traffic Flows

The art of traffic control is to manipulate the permeabili-
ties γj(t) in a way that optimizes a given goal function. In
fact, when the traffic volume is high enough, an oscillatory
service corresponding to the operation of a traffic light can
increase the effective intersection capacity as compared to
the application of a first-come-first-serve rule for arriving
vehicles [23,24]: While the red and amber lights (corre-
sponding to γj(t) = 0) cause vehicles to queue up and

wait, this implies a high flow rate and an efficient service of
vehicles when the traffic light turns green (i.e. γj(t) = 1).

One natural concept of traffic flow optimization would
be to maximize the average overall throughput. This is
measured by the function

Gt(t) =
1

t

∑

j

t∫

0

dt′ γj(t
′)Oj(t

′) . (4)

Due to Eq. (1), Gt(t) depends not only on the outflows
Oj(t), but also on the inflows Aj(t) to the system. This
makes Gt(t) basically dependent on the time-dependent
origin-destination matrices of vehicle flows.

The numbers of vehicles accumulating during the red
and amber time periods are

I1∆Nmax
1 = I1A1(τ2 + ∆T2 + τ1) (5)

and
I2∆Nmax

2 = I2A2(τ1 + ∆T1 + τ2) , (6)

where ∆Nmax
j represents the maximum number of delayed

vehicles per lane in road section j, if the vehicle queue in
it has been fully cleared before. Ij is the number of lanes.
As the service rate of queued vehicles during the green

time ∆Tj is Q̂j, and Aj is the arrival rate of additional
vehicles at the end of the queue, the mimimum green time
required to dissolve the queue is given by

Tj =
∆Nmax

j

Q̂j − Aj

. (7)

From Eqs. (5) to (7) we obtain

T1 =
A1

Q̂1 − A1

(
τ2 + ∆T2 + τ1

)
. (8)

Assuming ∆Tj = Tj (i.e. no excess green times) and in-
serting Eq. (7) yields

T1 =
A1

Q̂1 − A1

(
τ2 +

A2(τ1 + T1 + τ2)

Q̂2 − A2

+ τ1

)
(9)

for the clearing time T1, or

T1 = (τ1 + τ2)

A1

bQ1−A1

(
1 + A2

bQ2−A2

)

1 − A1A2

( bQ1−A1)( bQ2−A2)

. (10)

With the analogous formula for T2 we can determine the
related cycle time, if the traffic light turns red immediately
when all queued vehicles have been served. After a few
intermediate mathematical steps, we finally get

T cyc = τ1 + T1 + τ2 + T2 =
τ1 + τ2

1 − A1/Q̂1 − A2/Q̂2

. (11)

Moreover, one can show [28]

Tj =
Aj

Q̂j

T cyc . (12)
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We can see that the cycle time and the clearing times Tj

diverge in the limit

A1

Q̂1

+
A2

Q̂2

→ 1 . (13)

If this expression (11) becomes negative, the vehicle
queues in one or both ingoing road sections are growing
larger and larger in time, as the intersection does not have
enough capacity to serve both arrival flows. See Ref. [28]
for a discussion of this case.

Note that Eq. (11) determines the smallest cycle time
that allows to serve all queued vehicles within the green
time periods. Let us study now the effect of extending the
green time periods ∆Tj beyond Tj: The average through-
put of the intersection is given by the overall flow of ve-
hicles during one cycle time Tcyc = τ1 + ∆T1 + τ2 + ∆T2.
During that time period, a total number (I1A1+I2A2)Tcyc

of vehicles is arriving in the two considered road sections.
If all arriving vehicles are served during the cycle time
Tcyc, the average throughput is

Gt =
(I1A1 + I2A2)Tcyc

T cyc
= I1A1 + I2A2 . (14)

Therefore, in the case where we do not have an accumula-
tion of vehicles over time, which requires sufficient green
times (∆Tj > Tj) and a sufficient resulting service capac-
ity

I1Q̂1 ∆T1 + I2Q̂2 ∆T2

Tcyc
≥ I1A1 + I2A2 , (15)

the throughput is determined by the sum I1A1 + I2A2 of
the overall arrival flows. Consequently, excess green times
∆tj = ∆Tj −Tj > 0 do not lead to smaller or larger inter-
section throughputs. But under what conditions should a
green phase be extended, if at all? This shall be addressed
in the next sections.

4 Travel-Time-Oriented Signal Operation

Rather than on a consideration of the flow, we will now
focus on the cumulative waiting time

F (t) =
∑

j

Ij

t∫

0

dt′
t′∫

0

dt′′[Aj − γj(t
′′)Oj(t

′′)] (16)

and minimize its average growth over a time period t to
be defined later. This corresponds to a minimization of
the function

G(t) =
1

t

∑

j

Ij

t∫

0

dt′∆Nj(t
′)

=
1

t

∑

j

Ij

t∫

0

dt′
t′∫

0

dt′′[Aj − γj(t
′′)Oj(t

′′)] , (17)

which quantifies the time average of the overall delay time.
The term on the right-hand side describes the increase
of the overall waiting time proportionally to the number
∆Nj of delayed cars, which is given by the integral over
the difference between the arrival and departure flows [24,
28].

Note that the formula (17) makes an implicit simplifi-
cation by assuming that delays occur only in the vehicle
queues behind traffic lights, while no delays accumulate
under uncongested flow conditions. This assumes a trian-
gular flow-density diagram, which, however, seems to be
sufficiently justified for urban traffic flows [44,24]. More-
over, while approaching a vehicle queue, it usually does
not matter, when vehicles travel more slowly than the
speed limit allows: If they would travel faster, they would
be queued earlier, i.e. the delay would stay the same. In
other words, most of the time it is irrelevant, whether vehi-
cles lose their time in the vehicle queue or by decelerating
before.

4.1 The Optimize-One-Phase Approach

When minimizing the goal function G(t), it is essential
upto what time t we extend the integral. In principle, it is
possible to integrate over a full cycle or even many cycles
of traffic operation, but the resulting formulas do not pro-
vide an intuitive understanding anymore. We will, there-
fore, focus on the optimization of a single phase, with full
amber time periods τj in the beginning and τj+1 at the
end. This turns out to result in explicit and plausible for-
mulas, while some other approaches we have tried, did not
result in well interpretable results. Besides this practical
aspect, when analytical results shall be obtained, the spec-
ification t = τ1 + ∆Tj + τ2 chosen in the following makes
sense: It “charges” the switching-related inefficiencies to
the road that “wants” to be served. The switching of a
traffic light should lead to a temporary increase in traffic
performance. After completion of each green phase, the
travel time optimization is repeated, so that one can com-
pose the traffic light schedule as a sequence of optimized
single phases (see Appendix B for details).

In Sec. 5, we will show that a multi-phase optimiza-
tion yields better results, but requires a higher degree of
sophistication. The treatment of situations with varying
or pulsed traffic flows is even more difficult and can usu-
ally be solved only numerically. This issue is addressed in
Ref. [25].

In our calculations, we will assume that the green time
for road section 2 lasted for a time period ∆T2 and ended
at time t = 0. That is, we have now to determine the
optimal duration ∆T1 of the green phase for road section
1 after an intermediate amber time period τ1. For this, we
minimize the function

G1(τ1 + ∆T1 + τ2) =
F1(τ1 + ∆T1 + τ2)

τ1 + ∆T1 + τ2
, (18)

where the subscript “1” of G and F refers to road section
1, for which the green phase is determined. Assuming a
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step-wise constant outflow with γjOj = Q̂j, if ∆Nj > 0,
but γjOj = Aj , if ∆Nj = 0, and γjOj = 0, if γj = 0,
the integral over t′′ results in a stepwise linear function,
and the function F1(t) is characterized by quadradic de-
pendencies. We will distinguish two cases: (a) The green
time is potentially terminated before all queued vehicles
have been served (i.e. ∆Ti ≤ Ti), or (b) it is potentially
extended (i.e. ∆Ti ≥ Ti). Let us start with the first case.

(a) No excess green time (∆T1 ≤ T1): In this case,
A2(t

′′)−γ2(t
′′)O2(t

′′) = A2 for 0 ≤ t′′ ≤ τ1 +∆T1+τ2,
i.e. over the period ∆T1 of the green time for road sec-
tion 1 and the amber time periods τj and τj+1 before
and after it. In addition,

A1−γ1(t
′′)O1(t

′′) =






A1 if 0 ≤ t′′ < τ1,

A1 − Q̂1 if τ1 ≤ t′′ < τ1 + ∆T1,
A1 otherwise.

(19)
Using the abbreviation

∆Nmax
1 = ∆N1(τ1) = ∆N1(0) + A1τ1 , (20)

we get

F a
1 (τ1 + ∆T1 + τ2)

= I1

{
∆N1(0)τ1 + A1

τ1
2

2

+∆Nmax
1 ∆T1 − (Q̂1 − A1)

∆T1
2

2

+[∆Nmax
1 − (Q̂1 − A1)∆T1]τ2 + A1

τ2
2

2

}

+ I2

[
∆N2(0)(τ1 +∆T1 + τ2) +A2

(τ1 +∆T1 + τ2)
2

2

]

= I1

[
∆N1(0)(τ1 + ∆T1 + τ2) +

A1

2
(τ1 + ∆T1 + τ2)

2

−
Q̂1

2
∆T1(∆T1 + 2τ2)

]

+ I2

[
∆N2(0)(τ1 +∆T1 + τ2) +A2

(τ1 +∆T1 + τ2)
2

2

]
,

(21)

where the superscript “a” refers to case (a). Dividing
the above function by (τ1 + ∆T1 + τ2) and making
the plausible assumption τ1 = τ2 of equal amber time
periods for simplicity, we gain

Ga
1(τ1 + ∆T1 + τ2) = I1

[
∆N1(0) + Q̂1τ2

−(Q̂1 − A1)
τ1 + ∆T1 + τ2

2

]

+ I2

[
∆N2(0) +A2

τ1 + ∆T1 + τ2

2

]
.

(22)

If I1(Q̂1−A1) < I2A2, i.e. when the number of queued
vehicles in road section 2 grows faster than it can be

reduced in road section 1, the minimum of this function
is reached for ∆T1 = 0, corresponding to a situation
where it is not favorable to turn green for section j = 1.
For

I1(Q̂1 − A1) > I2A2 , (23)

the value of Ga
1 goes down with growing values of ∆T1,

and the minimum is reached for a value ∆T1 ≥ T1.
(b) Potential green time extension (∆T1 ≥ T1): Let us

assume that we (possibly) have an excess green time,
i.e. ∆ti = ∆Ti − Ti ≥ 0. In this case,

A1 − γ1(t
′′)O1(t

′′) =






A1 if 0 ≤ t′′ < τ1,

A1 − Q̂1 if τ1 ≤ t′′ < τ1 + T1,
A1 if t′′ ≥ τ1 + ∆T1,
0 otherwise.

(24)
Considering that now, ∆N1(t

′) = 0 for τ1 + T1 ≤ t′ <
τ1 + ∆T1, and introducing the clearing time

T1 =
∆Nmax

1

Q̂1 − A1

=
∆N1(0) + A1τ1

Q̂1 − A1

, (25)

we obtain

F b
1 (τ1 + ∆T1 + τ2)

= I1

[
∆N1(0)τ1 + A1

τ1
2

2
+ ∆Nmax

1 T1

−(Q̂1 − A1)
T1

2

2
+ A1

τ2
2

2

]

+ I2

[
∆N2(0)(τ1 + ∆T1 + τ2) + A2

(τ1 + ∆T1 + τ2)
2

2

]

= I1

[
∆Nmax

1 τ1 +
A1

2
(τ2

2 − τ1
2) +

(∆Nmax
1 )2

2(Q̂1 − A1)

]

+ I2

[
∆N2(0)(τ1 + ∆T1 + τ2) + A2

(τ1 + ∆T1 + τ2)
2

2

]

(26)

Assuming again τ1 = τ2 for simplicity, introducing the
abbreviation

E1 = ∆Nmax
1 τ1 +

(∆Nmax
1 )2

2(Q̂1 − A1)
, (27)

and dividing Eq. (26) by (τ1 + ∆T1 + τ2) yields

Gb
1(τ1 + ∆T1 + τ2)

=
I1E1

τ1 + ∆T1 + τ2

+ I2

[
∆N2(0) + A2

τ1 + ∆T1 + τ2

2

]
. (28)

This expression shall be minimized under the con-
straint ∆T1 ≥ T1. In order to determine the minimum,
we set the derivative with respect to ∆T1 to zero and
get

0 =
dGb

1(τ1 + ∆T1 + τ2)

d∆T1
= −

I1E1

(τ1 + ∆T1 + τ2)2
+

I2A2

2
.

(29)
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The minimum is located at

(τ1 + ∆T1 + τ2)
2 =

2I1E1

I2A2
, (30)

if ∆T1 ≥ T1. Considering Eq. (25), ∆T1 ≥ T1 implies

(τ1 + ∆T1 + τ2)
2 ≥

(
τ1 +

∆Nmax
1

Q̂1 − A1

+ τ2

)2

. (31)

With Eq. (30) this leads to the condition

(∆Nmax
1 )2

Q̂1 − A1

(
I1

I2A2
−

1

Q̂1 − A1

)

+2∆Nmax
1

(
I1τ1

I2A2
−

τ1 + τ2

Q̂1 − A1

)
≥ (τ1 + τ2)

2 . (32)

If inequality (32) is not fulfilled, we must have ∆T1 <
T1.

For completeness, we note that

Ga
1(τ1 + T1 + τ2) = Gb

1(τ1 + T1 + τ2) , (33)

i.e. the goal function G1 is continuous in ∆T1 = T1, while
it must not be smooth. Moreover, ∆N1(0) = A1(τ2+∆T2)
and ∆N2(0) = 0, if the vehicle queues have been fully
cleared before the traffic light is switched. The case where
the queue is not fully dissolved is treated in Ref. [28].

4.2 Transformation to Dimensionless Variables and
Parameters

For an analysis of the system behavior, it is useful to trans-
form variables and parameters to dimensionless units.
Such dimensionless units are, for example, the capacity
utilizations

ui =
Ai

Q̂i

(34)

of the road sections i and the relative size

κ =
I1A1

I2A2
=

I1u1Q̂1

I2u2Q̂2

=
u1

u2
K (35)

of the arrival flows, where

K =
I1Q̂1

I2Q̂2

. (36)

Furthermore, we may scale the green times ∆Ti by the
sum of amber time periods τ1 + τ2, which defines the di-
mensionless green times

σi =
∆Ti

τ1 + τ2
(37)

and the dimensionless clearing times

σ̂j =
Tj

τ1 + τ2
=

∆Nmax
1

(1 − u1)Q̂i(τ1 + τ2)
. (38)

In order to express the previous relationships exclusively
by these quantities, we must consider that a number
A1(τ2 +∆T2 + τ1) of vehicles per lane accumulates during
the time period (τ2 + ∆T2 + τ1), in which the vehicle flow
on road section 1 is not served. With Eq. (20) this implies

∆Nmax
1 = ∆N1(0) + A1τ1 = A1(τ2 + ∆T2 + τ1) , (39)

if the vehicle queue in road section 1 has been fully cleared
during the previous green time. Then, we have

∆Nmax
1

τ1 + τ2
= A1(1 + σ2) , (40)

and from Eqs. (27) and (22) we get

2E1

(τ1 + τ2)2
= A1(1 + σ2)

2τ1

τ1 + τ2
+

(A1)
2(1 + σ2)

2

Q̂1 − A1

. (41)

With A1 = u1Q̂1 and τ1 = τ2, Eq. (30) belonging to the
case of extended green time for road section 1 can be writ-
ten as

(1+σ1)
2 = [1+ σ̃1(σ2)]

2 = κ

[
(1+σ2)+

u1

1 − u1
(1+σ2)

2

]
.

(42)
The solution of this equation defines the relationship
σ̃1(σ2) for the optimal scaled green time period σ1 as a
function of σ2, if the green time for road section 1 is ex-
tended. Moreover, in dimensionless variables, the condi-
tion (32) for green time extension becomes

u1

1 − u1
(1+σ2)

2

(
κ −

u1

1 − u1

)
+(1+σ2)

(
κ −

2u1

1 − u1

)
≥ 1

(43)
or
[
u1(1 + σ2)

2

1 − u1
+ (1 + σ2)

](
κ −

u1

1 − u1

)
≥

1 + u1σ2

1 − u1
.

(44)
However, we can check for green time extension also in a
different way, since the extension condition ∆T1 > T1 can
be written as σ̃1 > σ̂1. Using Eqs. (25), (38) and (39), the
dimensionless green time σ1 for the case of no green time
extension may be presented as

σ1 = σ̂1(σ2) =
A1(1 + σ2)

Q̂1 − A1

=
u1(1 + σ2)

1 − u1
(45)

or

1 + σ1 =
1 + u1σ2

1 − u1
. (46)

Moreover, from σ1 = σ̂1(σ2) follows

σ1

1 + σ1 + σ2
=

u1(1 + σ2)

(1 − u1)
[
1 + u1

1−u1
(1 + σ2) + σ2

] = u1 .

(47)
That is, in the case where road section 1 is completely
cleared, but there is no green time extension, the green
time fraction

∆T1

Tcyc
=

σ1

1 + σ1 + σ2
(48)
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agrees with the utilization u1. Moreover, one can show

∂

∂σ1

(
σ1

1 + σ1 + σ2

)
=

1 + σ2

(1 + σ1 + σ2)2
> 0 . (49)

Therefore, σ1 > σ̂1 implies a green time fraction greater
than u1, and we have excess green time for road section 1,
if

σ̃1(σ2)

1 + σ̃1(σ2) + σ2
> u1 . (50)

An analogous condition must be fulfilled, if excess green
times on road section 2 shall be optimal. It reads

σ̃2(σ1)

1 + σ1 + σ̃2(σ1)
> u2 , (51)

where

[1 + σ̃2(σ1)]
2 =

1

κ

[
(1 + σ1) +

u2

1 − u2
(1 + σ1)

2

]
, (52)

which has been gained by interchanging indices 1 and 2
and replacing κ by 1/κ in Eq. (42).

4.3 Control Strategies and Slower-is-Faster Effect

Based on the results of Sec. 4.1 and the scaled formulas of
Sec. 4.2, we can now formulate control strategies for a sin-
gle traffic light within the optimize-one-phase approach:

(i) Terminate the green light for road section 1 im-
mediately, corresponding to σ1 = 0, if condition (23)
is violated, i.e. if

1 − u1 ≤
u2

K
(53)

is fulfilled. To obtain the dimensionless form of this
inequality, we have considered Aj = ujIjQ̂j and Eq.
(36). In case (i), travel time optimization for one phase
advises against turning green for road section 1. Of
course, in reality, drivers cannot be stopped forever.
Either, one would have to give them a short green
phase after a maximum tolerable time period, or at
least one would have to allow vehicles to turn on red,
i.e. to merge the crossing flow, whenever there is a large
enough gap between two successive vehicles. Alterna-
tively, one may apply an optimize-multiple-phases ap-
proach, see Sec. 5. It implies a service of side roads
even when the intersection capacity is insufficient to
satisfy all inflows completely.

(ii) Terminate the green phase for road section 1,

when the vehicle queue is completely resolved,
if conditions (53) and (44) are violated. In this case,
the scaled green time σ1 is given by Eq. (45).

(iii) Extend the green times for road section 1 in
accordance with formula (42), if the condition (44) is
fulfilled. The recommended delay in the switching time
constitutes a slower-is-faster effect. In this situation,
it takes some additional time to accumulate enough
vehicles on road section 2 to guarantee an efficient ser-
vice in view of the inefficiencies caused by the setup
times τj .

In Fig. 2, operation regime (i) is indicated in white and
operation regime (iii) in red, while operation regime (ii)
is shown in green, if road section 2 is served, otherwise in
orange.

4.4 Operation Regimes for Periodic Operation

In the previous section, we have determined the optimal
green time period σ1 for road section 1, assuming that the
last green time period σ2 for road section 2 and N1(0) were
given. Of course, σ1 will then determine σ2, etc. If the uti-
lizations uj are constant and not too high, the sequence of
green phases converges towards a periodic signal operation
(see Fig. 3). It will be studied in the following. While the
formulas for the determination of σ1 were derived in Sec.
4.2, the corresponding formulas for σ2 can be obtained by
interchanging the indices 1 and 2 and replacing κ by 1/κ
in all formulas. In principle, there could be the following
cases, if we restrict ourselves to reasonable solutions with
σj ≥ 0:

Fig. 3. Green time fraction σ2/(1 + σ1 + σ2) for road section
2 vs. green time fraction σ1/(1 + σ1 + σ2) for road section 1, if
we apply the signal control algorithm described in Appendix
B to a randomly chosen initial queue length ∆N1(0) in road
section 1 and K = 2 (i.e. road section 1 has 2 times as many
lanes as road section 2). One can clearly see that the green time
fractions quickly converge towards values that do not change
anymore over time. The solution corresponds to periodic signal
operation.

(0) According to travel time minimization, one or both
road sections should not be served, if (53) is fulfilled
for one or both of the road sections. This case occurs
if

1 − u1 −
u2

K
≤ 0 or 1 − Ku1 − u2 ≤ 0 (54)

(see the area above the white solid line in the right il-
lustration of Fig. 2). According to this, service should
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Fig. 2. Operation regimes of (periodic) signal control for K = 1 (left) and K = 3 (right) as a function of the utilizations uj of
both roads j according to the one-phase travel time optimization approach. For each combination of u1 and u2, the operation
regime has been determined after convergence of the signal control procedure described in Appendix B. The separating lines are
in good agreement with our analytical calculations. For example, the solid falling lines are given by Eq. (54), while the dotted
parabolic line in the right illustration corresponds to u2 = Ku1(1 − u1) and results by equalizing Eq. (42) with the square of
Eq. (46), assuming σ2 = 0 (i.e. no service of road section 2). The different operation regimes are characterized as follows: In
the green triangular or parabolic area to the left of both illustrations, where the utilization u1 of road section 1 is sufficiently
small, the service of road section 2 is extended. In the adjacent red area below the white area (left) or the solid line (right),
road section 2 is just cleared, while above the separating line u2 = 1−Ku1, road section 2 is not served at all. Road section 1,
in constrast, gets just enough green time to clear the vehicle queue in the green area (and the orange area towards the top of
the right illustration), while it gets extended green time in the red area towards the bottom, where the utilization u2 of road
section 2 is sufficiently small. In the white area given by u2 > K(1 − u1), road section 1 gets no green time anymore. Between
the dashed and the solid white lines, road section 2 is not served, although there would be enough capacity to satisfy the vehicle
flows in both roads. Improved operation regimes are presented in Fig. 4.

focus on the main flow, while crossing flows should
be suppressed, thereby enforcing a re-routing of traf-
fic streams when this would be favorable to minimize
travel times. Of course, in such situations vehicles
should still be allowed to turn on red and to merge
the crossing flow, when vehicle gaps are large enough.

(1) Both green time periods are terminated as soon as the
respective vehicle queues are fully dissolved. In this
case, we should have the relationships σ1 = σ̂1(σ2) and
σ2 = σ̂2(σ1), where σ̂j is defined in Eq. (45). After a
few steps, the condition σ1 = σ̂1(σ̂2(σ1)) implies

σj = σ̂j =
uj

1 − u1 − u2
(55)

and
σj

1 + σ1 + σ2
= uj . (56)

According to Eq. (56), the green time fraction of each
road section in case (1) should be proportional to the
respective utilization uj of the flow capacity.

(2) Road section 2 gets an excess green time, while the
green phase of road section 1 ends after the dissolution
of the vehicle queue (see green area in Fig. 2). In this
case we should have σ1 = σ̂1(σ̃2(σ1)), where (1 + σ̃2)

is defined by formula (52). This gives

σ1 =
u1

1 − u1

√
1

κ

(
(1 + σ1) +

u2

1 − u2
(1 + σ1)2

)
, (57)

which eventually leads to a quadratic equation for σ1,
namely

[
u1u2

2 − K(1 − u1)
2(1 − u2)

]
σ1

2

+u1u2(1 + u2)σ1 + u1u2 = 0 . (58)

To determine σ2, we can either use the relationship
σ2 = σ̃2(σ1) or invert the formula σ1 = σ̂1(σ2). Doing
the latter, Eq. (45) gives

σ2 =
1 − u1

u1
σ1 − 1 . (59)

According to Eqs. (47) and (51), the occurence of case
(2) requires that the resulting solution satisfies

σ1

1 + σ1 + σ2
= u1 and

σ2

1 + σ1 + σ2
> u2 . (60)

(3) Road section 1 gets an excess green time, while the
green phase of road section 2 ends after the dissolu-
tion of the vehicle queue (see red area in Fig. 2). The
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formulas for this case are obtained from the ones of
case (2) by interchanging the indices 1 and 2 and re-
placing κ by 1/κ.

(4) Both road sections get excess green time periods. This
case would correspond to σ1 = σ̃1(σ̃2(σ1)), and the
solutions should fulfil

σ1

1 + σ1 + σ2
> u1 and

σ2

1 + σ1 + σ2
> u2 . (61)

According to numerical results (see Fig. 2), cases (0), (2),
and (3) do all exist, while the conditions for cases (1)
and (4) are not fulfilled. Note, however, that small vehicle
flows should better be treated as discrete or pulsed rather
than continuous flows, in order to reflect the arrival of
single vehicles (see Ref. [45] for their possible treatment
within a continuous flow framework). In other words, for
rare vehicle arrivals, we either have u1 > 0 and u2 = 0,
or we have u2 > 0 and u1 = 0. Hence, the case of small
utilizations uj will effectively imply green time extensions
for both road sections due to the discreteness of the flow,
and it allows single vehicles to pass the traffic light without
previously stopping at the red light.

Summarizing the above, one-phase optimization pro-
vides extra green times for road sections, as long as both
of them are fully served. While in one road section, this
slower-is-faster effect allows some vehicles to pass the traf-
fic light without stopping, in the other road section it
causes the formation of a longer vehicle queue, which sup-
ports an efficient service of a substantial number of vehi-
cles after the traffic light turns green. In this connection,
it is useful to remember that switching is costly due to the
amber times, which are “lost” service times.

4.5 Minimization of Vehicle Queues

We have seen that travel time minimization implies the
possibility of case (0), where one of the road sections (the
side road) in not being served. This case should not occur
as long as the intersection capacity is not fully used. Ac-
cording to Eqs. (13) and (34), the intersection capacity is
sufficient, if

u1 + u2 ≤ 1 (62)

As the inequalities (54) and (62) do not agree, conditions
may occur, where the vehicle queue in one road section
(a side road) continuously increases, even though the in-
tersection capacity would allow to serve both flows (see
the orange and red areas above the dashed white line in
Fig. 2). This can result in an “unstable” signal control
scheme, which causes undesired spillover effects and calls
for a suitable stabilization strategy [25]. As we will see in
the following, this problem can be overcome by minimizing
vehicle queues rather than travel times.

Conditions (54) and (62) agree, if K = 1, particularly

when I1 = I2 and Q̂1 = Q̂2. Therefore, let us assume this
case in the following, corresponding to

κ =
I1A1

I2A2
=

I1u1Q̂1

I2u2Q̂2

=
u1

u2
. (63)

Q̂1 = Q̂2 holds, when the street sections downstream of
the intersection do not impose a bottleneck. Furthermore,
I1 = I2 = 1 corresponds to a minimization of the average
queue length rather than the average delay time. Such a
minimization of the queue length makes a lot of sense and
means that the optimization is made from the perspective
of the traffic network rather than from the perspective
of the driver. This minimizes spillover effects and, at the
same time, keeps travel times low.

4.6 Complexity of Traffic Light Control

It is interesting that already a single intersection with
constant arrival flows shows a large variety of operation
regimes. In order to get an idea of the complexity of opti-
mal traffic light control in general, let us ask about the
dimension of the phase space. For such an analysis, it
is common to transform all parameters to dimensionless
form, as above. In this way, all formulas are expressed in
terms of relative flows such as

κ =
I1A1

I2A2
, u1 =

A1

Q̂1

, u2 =
A2

Q̂2

. (64)

Parameters like

I2(Q̂2 − A2)

I1A1
and

I1(Q̂1 − A1)

I2A2
(65)

can be expressed through the previous set of parameters.
A single intersection with 2 phases only is characterized
by the 2 parameters u1 and u2, if queue minimization
is performed, and one additional parameter κ, if travel
time is minimized. Therefore, the optimal operation of n
intersections depends on 2n (or even 3n) parameters. In
view of this, it is obvious that the optimal coordination of
traffic lights in an urban road network constitutes a hard
computational problem [46].

The consideration of non-uniform arrival flows further
complicates matters. If the traffic flows are not constant,
but characterized by vehicle platoons, the phase of traffic
light control can be significant for intersection capacity
[28]. Therefore, the mutual coordination of neighboring
traffic lights has a significant impact [28]. This issue is,
for example, addressed in Refs. [23,25].

5 Optimize-Multiple-Phases Approach

Under certain circumstances, it may be reasonable to in-
terrupt the service of a vehicle queue to clear the way for
a large flow of newly arriving vehicles in the other road
section. Such an interruption may be interpreted as an-
other slower-is-faster effect, occuring in situations where
the interruption-induced delay of vehicles in one road sec-
tion is overcompensated for by the avoidance of delay
times in the other road section. Such effects involving sev-
eral green phases can clearly not be studied within the
optimization of a single phase. One would rather need an
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approach that optimizes two or more phases simultane-
ously.

In the optimize-two-phases approach, it appears logical
to optimize the goal function

G12(τ1 + ∆T1 + τ2 + ∆T2) =
F12(τ1 + ∆T1 + τ2 + ∆T2)

τ1 + ∆T1 + τ2 + ∆T2
,

(66)
which considers the waiting times in the successive green
phase ∆T2 as well. The average delay time G12(τ1+∆T1+
τ2+∆T2) is minimized by variation of both green time peri-
ods, ∆T1 and ∆T2. The optimal green times are character-
ized by vanishing partial derivatives ∂G12/∂∆Tj. There-
fore, we must find those values ∆T1 and ∆T2 which fulfil

∂G12

∂∆Tj

=

∂F12

∂∆Tj

(τ1 + ∆T1 + τ2 + ∆T2) − F12

(τ1 + ∆T1 + τ2 + ∆T2)2
= 0 . (67)

This implies the balancing principle

∂F12(τ1 + ∆T1 + τ2 + ∆T2)

∂∆T1
=

∂F12(τ1 + ∆T1 + τ2 + ∆T2)

∂∆T2
(68)

which is known from other optimization problems as well,
e.g. in economics [47]. Condition (68) allows one to ex-
press the green time ∆T2 as a function of the green time
∆T1. Both values can then be fixed by finding minima
of Gw(τ1 + ∆T1 + τ2 + ∆T2(∆T1)). When this optimiza-
tion procedure is applied after completion of each phase, it
is expected to be adaptive to changing traffic conditions.
However, a weakness of the above approach is its neglec-
tion of the flows in the optimization procedure. Therefore,
the resulting intersection throughput may be poor, and
flows would not necessarily be served, when the intersec-
tion capacity would allow for this. Therefore, we will now
modify the multiple-phase optimization in a suitable way,
focussing on the two-phase case.

5.1 Combined Flow-and-Delay Time Optimization

The new element of the following approach is the introduc-
tion of flow constraints into the formulation of the delay
time minimization. For this, let us start with the formula
for the average delay time T av

j in road section j derived
in Ref. [28]. It reads

T av
j =

(1 − fj)
2

(1 − uj)

Tcyc

2
(69)

with

Tcyc = τ1 +∆T1 + τ2 +∆T2 = (τ1 + τ2)(1+σ1 +σ2) (70)

and

1 − fj =
Tcyc − ∆Tj

Tcyc
=

(1 + σ1 + σ2) − σj

1 + σ1 + σ2
. (71)

As the number of vehicles arriving on road section j during

the time period Tcyc is given by IjAjTcyc = IjujQ̂jTcyc,

the average delay time of vehicles over the two green
phases ∆T1, ∆T2 and amber time periods τ1, τ2 covered
by the cycle time Tcyc(∆T1, ∆T2) is given by

G =

2∑

j=1

T av
j IjujQ̂jTcyc

Tcyc

=

2∑

j=1

[(1 + σ1 + σ2) − σj ]
2

2(1 − uj)(1 + σ1 + σ2)
IjujQ̂j(τ1 + τ2) . (72)

Let us now set θj = θj(σ1, σ2) = 0, if σj ≤ σ̂j (corre-
sponding to σj/(1+σ1 +σ2) ≤ uj), and θj = 1 otherwise.
The dimensionless clearing time

σ̂j =
uj

(1 − uj)
(1 + σ1 + σ2 − σj) (73)

was defined in Eq. (45). With this, we will minimize the
scaled average delay time (72) in the spirit of the optimize-
two-cycles approach, but under the constraint that the
average outflow

O=

2∑

j=1

IjQ̂j

{
∆Tj(1 − θj) + [Tj + uj(∆Tj − Tj)]θj

}

Tcyc

=

2∑

j=1

IjQ̂j

{
σj(1 − θj) + [(1 − uj)σ̂j + ujσj ]θj

}

1 + σ1 + σ2
(74)

reaches the maximum throughput

Ô(u1, u2) = min
(
Gt(u1, u2), Omax(u1, u2)

)
. (75)

The maximum throughput corresponds to the overall flow

Gt(u1, u2) = I1A1 + I2A2 = u1I1Q̂1 + u2I2Q̂2, as long as
the capacity constraint (62) is fulfilled. Otherwise, if the
sum of arrival flows exceeds the intersection capacity, the
maximum throughput is given by2

Omax(u1, u2) = max
xj≤uj

x1+x2=1

(
x1I1Q̂1 + x2I2Q̂2

)
(76)

= max
1−u2≤x1≤u1

I2Q̂2

[
Kx1 + (1 − x1)

]

=

{
I2Q̂2

[
(K − 1)u1 + 1

]
if K ≥ 1

I2Q̂2

[
1 − (1 − K)(1 − u2)

]
if K < 1.

Demanding the flow constraint

O
(
σ1(u1, u2), σ2(u1, u2)

)
= Ô(u1, u2) (77)

and considering Eq. (73), we can derive

Ô =
∑

j

IjQ̂j

[
σj(1 − θj)

1 + σ1 + σ2
+ ujθj

]
. (78)

2 If the cycle time Tcyc is limited to a certain maximum value
Tmax

cyc , one must replace the constraint x1+x2 ≤ 1 by x1+x2 ≤

1 − (τ1 + τ2)/Tmax
cyc and 1 − u2 by 1 − u2 − (τ1 + τ2)/Tmax

cyc .
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This implies a linear relationship between σ1 and σ2. If
the denominator is non-zero, we have:

σ1(σ2) =
θ1u1I1Q̂1 + θ2u2I2Q̂2 − Ô

Ô − (1 − θ1)I1Q̂1 − θ1u1I1Q̂1 − θ2u2I2Q̂2

+
(1 − θ2)I2Q̂2 + θ1u1I1Q̂1 + θ2u2I2Q̂2 − Ô

Ô − (1 − θ1)I1Q̂1 − θ1u1I1Q̂1 − θ2u2I2Q̂2

σ2.

(79)

By demanding the flow constraint, we can guarantee that
all arriving vehicles are served as long as the intersection
capacity is sufficient, while we will otherwise use the maxi-
mum possible intersection capacity. As a consequence, op-
eration regime (0) of the one-phase optimization, which
neglected the service of at least one road section, cannot
occur within this framework. Instead, it is replaced by an
operation regime, in which the vehicle queue in one road
section is fully cleared, while the vehicle queue in the other
road section is served in part.3 Of course, this will hap-
pen only, if the intersection capacity is insufficient to serve
both flows completely (i.e. in the case 1− u1 − u2 < 0). If
K > 1 (i.e. the main flow is on road section 1), we have

σ1

1 + σ1 + σ2
= u1 and

σ2

1 + σ1 + σ2
= (1 − u1) . (80)

If K < 1, the indices 1 and 2 must be interchanged.
Operation regime (1) is still defined as in Sec. 4.4 and

characterized by

σj =
uj

1 − u1 − u2
,

σj

1 + σ1 + σ2
= uj . (81)

In contrast to the one-phase optimization approach, this
“normal case” of signal operation occurs in a large param-
eter area of the two-phase optimization approach (see blue
area in Fig. 4). It implies that both green times are long
enough to dissolve the vehicle queues, but not longer.

The case, where both green phases are extended, is
again no optimal solution. We will, therefore, finally focus
on case (2), where the vehicle queue in road section 1 is
just cleared (θ1 = 0), while road section 2 gets an excess

green time (θ2 = 1). With Ô = Gt = u1I1Q̂1 + u2I2Q̂2,
Eq. (79) yields the simple constraint

σ1(σ2) =
u1

1 − u1
(1 + σ2) , (82)

which corresponds to Eq. (45). It implies

dσ1

dσ2
=

u1

1 − u1
, 1 + σ1 =

1 + u1σ2

1 − u1
, (83)

3 In this case, we do not expect a periodic signal control any-
more, as the growing vehicle queue in one of the road sections,
see Ref. [28], has to be considered in the signal optimization
procedure. Our formulas for one-phase optimization can handle
this case due to the dependence on ∆Nj(0). In the two-phase
optimization procedure, we would have to add

P
j
Ij ∆Nj(0)

to formula (72), where ∆Nj(0) = AjT
k
cyc−

bQj ∆T k
j denotes the

number of vehicles that was not served during the kth cycle
T k

cyc = τ1 + ∆T k
1 + τ2 + ∆T k

2 . This gives an additional termP
j
ujIj

bQj(τ1 + τ2)
P

k
(1 + σk

1 + σk
2 − σk

j /uj) in Eq. (72).

and

1 + σ1 + σ2 =
1 + σ2

1 − u1
,

σ1

1 + σ1 + σ2
= u1 . (84)

We will now determine the minimum of the goal function
G by setting the derivative ∂G/∂σ1 to zero, considering

dσ̂2(σ1)

dσ1
=

u2

1 − u2
. (85)

Multiplying the result with 2(1 − u1)
3(1 − u2)(1 + σ1 +

σ2)
2/(I2Q̂2), we find the following relationship:

2u1u2(1 + σ2)(1 + u1σ2)

+ 2Ku1(1 − u1)(1 − u2)(1 + σ2)
2

= u2(1 + u1σ2)
2 + Ku1(1 − u1)(1 − u2)(1 + σ2)

2 , (86)

which finally leads to

(1 + σ2)
2 =

u2(1 − u1)
2

u1
2u2 + Ku1(1 − u1)(1 − u2)

=
(1 − u1)

2

u1
2 + κ(1 − u1)(1 − u2)

. (87)

According to Eq. (60), for an extended green time on road
section 2, the condition

σ2

1 + σ1 + σ2
> u2 (88)

must again be fulfilled. If the solution σ2(u1, u2) of Eq.
(87) satisfies this requirement, it can be inserted into Eq.
(82) to determine the scaled green time period σ1(u1, u2)
as a function of the capacity utilizations u1 and u2 within
the framework of the optimize-two-phases approach. The
corresponding results are displayed in Figs. 4 to 6. A gen-
eralization to signal controls with more than two phases
is straightforward.

Finally, let us calculate the separating line between
case (1) and case (2). Inserting Eq. (82) into (72), we can
express the goal function G as a function H of a single
variable σ2:

H(σ2) = G(σ̂1(σ2), σ2) . (89)

As Eq. (82) holds for both cases, an exact clearing of road
section 2 or an excess green time for it, the functional
dependence of goal function (89) on σ2 must be the same
for both cases. Now, on the one hand, we may apply Eq.
(81) for the case without excess green time, which yields

1 + σ2 =
1 − u1

1 − u1 − u2
and (1 + σ2)

2 =
(1 − u1)

2

(1 − u1 − u2)2
.

(90)
On the other hand, in the case of excess green time, we
may use Eq. (87). The goal function must be the same
along the separating line between both cases, which re-
quires

(1 − u1)
2

(1 − u1 − u2)2
=

(1 − u1)
2

u1
2 + κ(1 − u1)(1 − u2)

. (91)
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Fig. 4. Operation regimes of periodic signal control as a function of the utilizations uj of both road sections according to
the two-phase optimization approach, assuming K = 1, corresponding to equal roads (left), and K = 3, corresponding to a
three-lane road 1 and a one-lane road 2 (right). For most combinations of utilizations (if u1 is not too different from u2), the
green phases are terminated as soon as the corresponding road sections are cleared (see the blue area below the falling diagonal
line). However, extended green times for road section 1 result (see the red area along the u1 axis), if the utilization of road
section 2 is small. In contrast, if the utlization of road section 1 is small, extended green times should be given to road section
2 (see the green area along the u2 axis). The white separating lines between these areas correspond to Eqs. (94), (95) fit the
numerical results well. Above the line u2 = 1 − u1, the intersection capacity is insufficient to serve the vehicle flows in both
road sections. In this area, the two-phase optimization gives solutions where road section 1 is fully cleared, but road section 2
is served in part (orange area towards the right), or vice versa (yellow area towards the top in the left figure).
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Fig. 5. Optimal green time fractions ∆Tj/Tcyc = σj/(1 + σ1 + σ2) for road section j = 1 (left) and road section j = 2 (right)
as a function of the utilizations uj of both roads j, assuming periodic signal operation according to the two-phase optimization
approach with K = 1. For combinations (u1, u2) with several solutions (with extended green time and without), we display the
solution which minimizes the goal function (72). The results are qualitatively similar to the ones belonging to the one-phase
optimization approach displayed in Fig. 7, but we find periodic solutions above the capacity line u2 = 1 − u1, where one road
section (the one with the greater utilization) is fully cleared, while the other one is served in part.



Dirk Helbing and Amin Mazloumian: Operation Regimes and Slower-is-Faster-Effect in Traffic Control 13

u
1

u 2

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1

u
1

u 2

 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1

Fig. 6. Same as Fig. 5, but for K = 3, corresponding to a three-lane road section 1 (arterial road) and a one-lane road section 2
(crossing side road).

This implies

κ(1 − u1)(1 − u2) = (1 − u1 − u2)
2 − u1

2 (92)

or

κ(1 − u1)(1 − u2) = (1 − 2u1 − u2)(1 − u2) . (93)

The finally resulting equation for the separating line be-
tween the regimes with and without excess green time is
given by

1

κ
=

u2

Ku1
=

1 − u1

1 − 2u1 − u2
. (94)

As Fig. 4 shows, this analytical result fits the result of
our numerical optimization very well. The separating line
between case (1) and case (3) is derived analogously. It
may also be obtained by interchanging the subscripts 1
and 2 and substituting κ by 1/κ, yielding

κ = K
u1

u2
=

1 − u2

1 − 2u2 − u1
. (95)

6 Summary, Discussion, and Outlook

We have studied the control of traffic flows at a single
intersection. Such studies have been performed before, but
we have focussed here on some particular features:

– For the sake of a better understanding, we were inter-
ested in deriving analytical formulas, even though this
required some simplifications.

– A one-phase minimization of the overall travel times in
all road sections tended to give excess green times to
the main flow, i.e. to the road section with the larger
number of lanes or, if the number of lanes is the same
(K = 1), to the road section with the larger utiliza-
tion (see Fig. 2). The excess green time can lead to

situations where one of the vehicle flows is not served,
although there would be enough service capacity for
all flows.

– A minimization of vehicle queues rather than travel
times simplifies the relationships through the special

settings Q̂j = Q̂ and Ij = 1, resulting in K = 1.
Moreover, these settings guarantee that the case of no
service only occurs, if the intersection capacity is ex-
ceeded.

– An optimize-multiple-phases approach considering
flow constraints gives the best results among the opti-
mization methods considered. It makes sure that both
roads are served even when the intersection capacity
is exceeded.

– For all considered optimization approaches, we have
derived different operation regimes of traffic signals
control: One of them is characterized by ending a green
time period upon service of the last vehicle in the
queue, which implies that all vehicles are stopped once
by a traffic signal. However, we have also found con-
ditions under which it is advised to delay switching
for one of the road sections (“slower-is-faster effect”),
which allows some vehicles to pass the signal without
stopping.

– Compared to the one-phase optimization, a two-phase
optimization tends to to give much less excess green
times, in particular if the utilizations of the road sec-
tions are comparable. We hypothesize that this is an
effect of the short-sightedness of the one-phase opti-
mization: It does not take into account future delay
times caused by current excess green times. This hy-
pothesis is confirmed by Fig. 7 (which is to be con-
trasted with the left illustration in Fig. 2). It specifies
the green time durations according to Eqs. (42) and
(45) of the one-phase optimzation, but selects the so-
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lution that minimizes the average delay time (72) over
two phases.

– Although the multi-phase optimization approach pro-
vides extended green times in a considerably smaller
area of the parameter space spanned by the utilizations
uj , the slower-is-faster effect still persists when signal
settings are optimized over a full cycle time (as we ef-
fectively did with the periodic two-phase optimization
approach). The slower-is-faster effect basically occurs
when the utilization of a road section is so small that it
requires some extra time to collect enough vehicles for
an efficient service during the green phase, considering
the efficiency losses by switching traffic lights during
the amber phases.

– In complementary appendices, we discuss traffic con-
trols with more than two phases and an exponentially
weighted goal function for short-term traffic optimiza-
tion. Furthermore, we propose how to take into ac-
count the effect of stopping newly arriving vehicles
and how to assess its impact as compared to queues of
waiting vehicles. As stopping vehicles causes additional
delay times, it becomes often favorable to implement
excess green times (i.e. to apply the slower-is-faster
effect”).

Fig. 7. Operation regimes of periodic signal control as a func-
tion of the utilizations uj of both roads, if one specifies the
clearing times and excess green times according to Eqs. (45)
and (42) of the one-phase optimzation, but selects the solution
that minimizes the overall delay time (72) over two successive
phases. For most combinations of utilizations (if u1 is not too
different from u2), the green phases are terminated as soon as
the corresponding road sections are cleared (see the blue area
below the falling diagonal line). However, extended green times
for road section 1 result (see the red area along the u1 axis), if
the utilization of road section 2 is small. In contrast, if the uti-
lization of road section 1 is small, extended green times should
be given to road section 2 (see green area along the u2 axis)
[48]. Above the line u2 = 1 − u1, the intersection capacity is
insufficient to serve the vehicle flows in both road sections.

In summary, our approach successfully delivers analyti-
cal insights into various operation regimes of traffic sig-
nal control, including the occuring slower-is-faster effects.
Moreover, as the two-phase optimization approach takes
care of side roads and minor flows, it has similar effects as
the stabilization rule that was introduced in Ref. [25] to
compensate for unstable service strategies. This stabiliza-
tion rule tries to avoid spillover effects via an earlier green
time by the next traffic light downstream.

Note that spillover effects imply growing delay times
even in road sections which have a green light. Therefore,
if the utilization is greater than the intersection capacity,
travel time minimization may additionally demand to in-
terrupt the green times of the next traffic lights upstream
(in favor of a road section that could be successfully left
by vehicles when a green light would be given to them).
This effectively requires to generalize the traffic light con-
trol principle discussed before towards a consideration of
the traffic conditions in upstream and downstream road
sections. Such a control is considerably more complicated
and will be addressed in future publications, based on for-
mulas and principles developed in Refs. [28,38].

6.1 Self-Organized Traffic Light Control

Our restriction to analytical calculations implied cer-
tain simplifications such as the assumption of two traffic
phases, the assumption of constant arrival flows, and no
obstructions of the outflow. However, these restrictions
can be easily overcome by straight-forward generaliza-
tions (see Appendices). The assumption of constant arrival
flows, for example, is not needed. Assuming a short-term
prediction based on upstream flow measurements [43], the
expected delay times or queue lengths can be determined
via the integral (17). The optimal solution must then be
numerically determined, which poses no particular prob-
lems. Although the behavior may become somewhat more
complicated and the boundaries of the operation regimes
may be shifted, we expect that the above mentioned signal

operation modes and the control parameters u1 = A1/Q̂1,

u2 = A2/Q̂2, and κ = I1A1/(I2A2) still remain relevant.
In the following, we show that the optimize-one-phase

approach works surprisingly well, when it is applied to
signal-controlled networks with their typical, pulsed vehi-
cle flows. Rather than performing strict travel time opti-
mization, however, we use a simplified approach that de-
termines exponential averages A′

j(t) of the arrival flows
Aj(t) according to

A′
j(t) = αjAj(t) + (1 − αj)A

′
j(t − 1) , (96)

and inserts these values into the formulas for the control
strategies that were derived for constant arrival flows. The
averaging parameters αj are specified such that the aver-
age vehicle speed over 30 minutes is maximized.

Figure 8 shows simulation results for a Barcelona kind
of road network (see Fig. 1) with 72 links, the lengths of
which are uniformly distributed between 100 and 200 me-
ters. For simplicity, the turning fractions have been set to
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Fig. 8. Comparison of the average velocity resulting for an
optimized fixed cycle time control (red circles) with a self-
organized control based on the optimize-one-phase approach
(blue squares) for a speed limit V 0

j = 50 km/h (top) and
V 0

j = 70 km/h (bottom). Both control approaches perform
similarly well. Error bars represent standard deviations. De-
tails of the simulation scenarios are given in the main text.

1/2 for all intersections, the setup times τj to τ = 5 s. Traf-
fic flows were simulated in accordance with the section-
based traffic model [24,44]. The parameters determining
the assumed triangular flow-density relationship on the
road sections are the safe time headway T = 1.8 s, the
maximum density ρmax = 140 vehicles per kilometer, and
the speed limit V 0

j , which is either set to 50 or to 70 kilo-
meters per hour. As one can see, the average speed for the
self-organized traffic light control performs similarly well
as a fixed cycle strategy, where the cycle time is adjusted
to the traffic volume. Specifically, the green times ∆Tj

are linearly increased from 15 s for an average number of
1 car per road section upto 60 s for an average number of
10 cars per road segment. The offsets of the green phases
are optimized by means of Particle Swarm Optimization

(PSO) [49]. This serves to minimize the stopping of mov-
ing vehicle platoons.

A more detailed, numerical comparison of fixed cycle
control schemes with self-organized traffic light controls
for urban road networks will be presented in forth-coming
publications. Note that, in Ref. [25], a somewhat more so-
phisticated self-control principle has been studied, which
involves a short-term anticipation based on measurements
of the arrival flows Aj . This self-control performs partic-
ularly well in cases of heterogeneous road networks and
stochastically varying arrival flows, and it can create co-
ordinated flow patterns similar to “green waves” (where
vehicle platoons are not stopped at every traffic light).
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A Considering the Price of Stopping Vehicles

The previous considerations have only taken into account
delays by vehicles in a vehicle queue. However, it would
also make sense to consider the price of stopping vehicles.
In particular, it must be possible that a large flow of mov-
ing vehicles in one road section is prioritized to a short
queue of standing vehicles in the other road section. But
how can we assess the relative disadvantage of stopping
newly arriving vehicles as compared to stopping the ser-
vice of a vehicle queue at the intersection? If the arrival
flow is not large enough, it would certainly be better to
continue serving the standing vehicle queue in the other
road until it is fully dissolved.

We pursue the following approach: While the flow
model used before implicitely assumes instantaneous ve-
hicle accelerations and decelerations, we will now consider
that, in reality, a finite vehicle acceleration a causes addi-
tional delays of V 0

j /(2a), where V 0
j denotes the free speed

or speed limit. Furthermore, the reaction time Tr must
be taken into account as well. This leads to an additional
delay of

T ′
j = Tr +

V 0
j

2a
(97)

for each vehicle that leaves a queue. Tr is of the order of
the safe time gap T . Note that delays V 0

j /(2b) due to a
finite deceleration b do not additionally contribute to the
delay times, as it does not matter whether delayed vehicles
spend their time decelerating or stopped.4

Furthermore, we must determine the rate at which
such additional delays are produced. This is given by the
rate at which freely moving vehicles join the end of a traffic
jam, i.e. by

ρjam|Cj | =
ρjam

ρjam/Aj − 1/V 0
j

≥ Aj , (98)

where ρjam denotes the density of vehicles per lane in a
standing queue. The propagation speed

Cj =
Aj − 0

Aj/V 0
j − ρjam

(99)

4 The finite deceleration only matters slightly, when the ex-
act moment must be determined when a road section becomes
fully congested.

of the upstream front of the queue corresponds to the
propagation speed of shock fronts, see Refs. [50,44,24].
Depending on the values of Cj (or Aj) and T ′

j, newly ar-

riving vehicles can have an impact T ′
jCjρjam equivalent to

about ∆Nj = 10 queued vehicles.
Summarizing the above considerations, we suggest to

replace the goal function G1(t) by the generalized formula

Ĝ1(t) =
1

t

∑

j

Ij

t∫

0

dt′
[
∆Nj(t

′)+T ′
j|Cj |ρjamΘ(∆Nj > 0)

]
,

(100)
where Θ(∆Nj > 0) = 1, if ∆Nj > 0, and Θ(∆Nj > 0) = 0
otherwise. In case (a) with ∆Ti ≤ Ti, we find

F̂ a
1 (τ1 + ∆Ti + τ2) = F a

1 (τ1 + ∆Ti + τ2)

+ I1T
′
1|C1|ρjam(τ1 + ∆T1 + τ2)

+ I2T
′
2|C2|ρjam(τ1 + ∆T1 + τ2) . (101)

This implies

Ĝa
1(τ1 + ∆Ti + τ2) = Ga

1(τ1 + ∆Ti + τ2)

+ I1T
′
1|C1|ρjam + I2T

′
2|C2|ρjam (102)

with Ga
1(τ1 + ∆Ti + τ2) according to Eq. (22). Therefore,

the partial derivative of Ĝa
1(τ1 + ∆Ti + τ2) with respect

to ∆T1 remains unchanged, and we find the same optimal
green time period ∆T1 = 0 or ∆T1 ≥ T1. However, in case
(b) with ∆T1 ≥ T1, we obtain

F̂ b
1 (τ1 + ∆Ti + τ2) = F b

1 (τ1 + ∆Ti + τ2)

+ I1T
′
1|C1|ρjam(τ1 + T1 + τ2)

+ I2T
′
2|C2|ρjam(τ1 + ∆T1 + τ2) , (103)

which implies

Ĝb
1(τ1 + ∆Ti + τ2) = Gb

1(τ1 + ∆Ti + τ2)

+ I1T
′
1|C1|ρjam + I2T

′
2C2ρjam

− I1T
′
1|C1|ρjam

∆T1 − T1

τ1 + ∆T1 + τ2
(104)

with Gb
1(τ1 + ∆Ti + τ2) according to Eq. (28). In cases

where an excess green time is favorable, the corresponding
formula for the green time duration becomes

(τ1 + ∆T1 + τ2)
2 =

2I1

I2A2
[E1 + T ′

1|C1|ρjam(τ1 + T1 + τ2)] ,

(105)
i.e. the optimal green times tend to be longer. In order
to support excess green times, the condition (τ1 + ∆T1 +
τ2)

2 ≥ (τ1+T1+τ2)
2 must again be fulfilled, which requires

(∆Nmax
1 )2

Q̂1 − A1

(
I1

I2A2
−

1

Q̂1 − A1

)

+2∆Nmax
1

(
I1τ1

I2A2
−

τ1 + τ2

Q̂1 − A1

)

≥ (τ1 + τ2)
2 −

2I1T
′
1|C1|ρmax

I2A2

(
τ1 +

∆Nmax
1

Q̂1 − A1

+ τ2

)
.

(106)
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Comparing this with formula (32), we can see that the
threshold for the implementation of excess green times
∆Tj > Tj is reduced. Therefore, excess green times will be
implemented more frequently, as this reduces the number
of stopped vehicles.

B More than Two Traffic Phases

The above formulas for the optimize-one-phase approach
can be easily generalized to multiple traffic phases of more
complicated intersections as in the case of Barcelona’s cen-
ter (see Fig. 1). For

∆Ti ≤ Ti =
∆Nmax

i

Q̂i − Ai

(107)

with

∆Nmax
i = ∆Ni(0) + Aiτi , (108)

for example, we can derive from Eq. (102)

Ĝa
i (τi + ∆Ti + τi+1)

= Ii

[
∆Ni(0) + Q̂iτi+1

−(Q̂i − Ai)
τi + ∆Ti + τi+1

2

]

+
∑

j( 6=i)

Ij

[
∆Nj(0) + Aj

τi + ∆Ti + τi+1

2

]

+
∑

j

IjT
′
j|Cj |ρjam . (109)

In contrast, for ∆Ti ≥ Ti and with

Ei = ∆Nmax
i τi +

(∆Nmax
i )2

2(Q̂i − Ai)
, (110)

from Eqs. (104) and (28) we obtain

Ĝb
i (τi + ∆Ti + τi+1)

=
IiEi

τi + ∆Ti + τi+1

+
∑

j( 6=i)

Ij

[
∆Nj(0) + Aj

τi + ∆Ti + τi+1

2

]

+
∑

j

IjT
′
j|Cj |ρjam − IiT

′
i |Ci|ρjam

∆Ti − Ti

τi + ∆Ti + τi+1
.

(111)

The minimum of this function is reached for

(τi + ∆Ti + τi+1)
2 =

IiEi + IiT
′
i |Ci|ρjam(τi + Ti + τi+1)∑

j( 6=i) IjAj/2
.

(112)

The occurence of excess green time requires (τi + ∆Ti +
τi+1)

2 ≥ (τi + Ti + τi+1)
2, i.e.

(∆Nmax
i )2

Q̂i − Ai

(
Ii∑

j( 6=i) IjAj

−
1

Q̂i − Ai

)

+2∆Nmax
i

(
Iiτ1∑

j( 6=i) IjAj

−
τi + τi+1

Q̂i − Ai

)

≥ (τi + τi+1)
2 −

2IiT
′
i |Ci|ρjam∑

j( 6=i) IjAj

(
τi +

∆Nmax
i

Q̂i − Ai

+ τi+1

)
.

(113)

It can be seen that the existence of more traffic phases
is unfavorable for providing excess green times. For their
existence, a small number of phases is preferable.

Procedure of Traffic Signal Control

Based on the above formulas, the next green phase i is
determined as follows:

1. Set the time t to zero, after the last green phase i′ has
been completed.

2. Apply the required service time (amber time) of du-
ration τi′+1 and set τj = τi′+1 for all road sections j.
Then, calculate ∆Nmax

j and Ej for all j with formulas

(108) and (110).
3. During the service time, determine the green times

∆Tj and Tj with and without green time extension,
for each road section j with formulas (112) and (107).

4. If ∆Tj > Tj and Ĝb
j (τj + ∆Tj + τj+1) < Ĝa

j (τj +

Tj + τj+1), see Eqs. (111) and (109), consider the
implementation of the extended green time ∆Tj and

set Ĝj = Ĝb
j (τj + ∆Tj + τj+1). Otherwise consider

the implementation of the clearing time Tj and set

Ĝj = Ĝa
j (τj + Tj + τj+1), but if Ĝa

j(τj + τj+1) < Ĝj ,

set ∆Tj = 0 and Ĝj = Ĝa
j(τj + τj+1).

5. Among all road sections j′ different from the previ-
ously selected one i′, choose that one i for service, for

which the expected average travel time Ĝi is smallest

(i.e. Ĝi = minj( 6=i′) Ĝj). Implement the selected green
phase ∆Ti.

6. Update the length of the vehicle queue in road section
i according to

∆Ni(τi + ∆Ti) = 0 (114)

and the queue lengths in all other road sections j 6= i
according to

∆Nj(τi + ∆Ti) = ∆Nj(0) + Aj(τi + ∆Ti) . (115)

If road section was not served (∆Ti = 0), update the
vehicle queues in all road sections j (including i) ac-
cording to Eq. (115).

7. At the end of the corresponding green time duration
∆Ti, set i′ = i and continue with step 1.
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The optimize-multiple-phases approach can be generalized
in a similar way. Then, among all solutions satisfying pre-
set flow constraints, that multi-phase solution is chosen,
which minimizes the goal function and does not start with
a service of the previously served road section. In order to
flexibly adjust to varying traffic conditions, one may re-
peat the optimization after completion of one phase rather
than after completion of all the phases considered in the
multi-phase optimization.

C Limited Forecast Time Horizon

While traffic light optimization is an NP-hard problem
[46], we have simplified it here considerably by restricting
ourselves to local optimization and to limited time hori-
zons. Both simplifications may imply a potentially reduced
traffic performance in the urban street network, but this
loss of performance is small if traffic lights adjust to ar-
riving vehicle platoons [25]. The reliable look-ahead times
are anyway very limited for fundamental reasons (see the
Appendix in Ref. [25]). Therefore, one can restrict traf-
fic light optimization to time periods 1/λ, over which the
traffic forecast can be done with sufficient accuracy. When
traffic lights are switched frequently, the value of 1/λ of
the forecast time horizon will go down.

Note that an optimization based on unreliable long-
term forecasts will yield bad results. Therefore, it is not
only justified, but also successful to replace the optimiza-
tion of one or several full cycles by the optimization of, say,
two phases. Alternatively, one may minimize the exponen-
tially weighted travel times, i.e. minimize the function

G̃ =
∑

j

λIj

∞∫

0

dt e−λt
[
∆Nj(t) + T ′

j |Cj |ρjamΘ(∆Nj > 0)
]

(116)
by variation of the duration and sequence of green phases.
While this approach is less suited for an analytical opti-
mization, it reminds of formulations of discounted func-
tions in economics [47]. Goal function (116) can be opti-
mized numerically, limiting the evaluation of the integral
to the range t < 3/γ.


