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Abstract. This contribution compares several different approaches allowing one to derive macroscopic
traffic equation directly from microscopic car-following models. While it is shown that some conventional
approaches lead to theoretical problems, it is proposed to use an approach reminding of smoothed particle
hydrodynamics to avoid gradient expansions. The derivation circumvents approximations and, therefore,
demonstrates the large range of validity of macroscopic traffic equations, without the need of averaging
over many vehicles. It also gives an expression for the “traffic pressure”, which generalizes previously used
formulas. Furthermore, the method avoids theoretical inconsistencies of macroscopic traffic models, which
have been criticized in the past by Daganzo and others.

PACS. 89.40.Bb Land transportation – 45.70.Vn Granular models of complex systems; traffic flow –
47.10.ab Conservation laws and constitutive relations

1 Introduction1

In order to describe the dynamics of traffic flows, a large2

number of mathematical models has been developed. The3

analysis of the spatio-temporal features and statistics of4

traffic patterns has often been done with methods from5

non-linear dynamics and statistical physics. An overview6

of modeling approaches and methods is, for example,7

given in references [1–4]. Among these are cellular au-8

tomata, “microscopic” car-following models, “mesoscopic”9

gas-kinetic, and macroscopic traffic models.10

Cellular automata can often be interpreted as dis-11

cretized versions of car-following models, while gas-kinetic12

models have frequently been used to derive macroscopic13

from microscopic models. Such derivations were driven by14

the desire to improve phenomenological specifications of15

macroscopic traffic models [5–7], which were criticized to16

have unrealistic properties [21]. However, the derivation17

of gas-kinetic models from car-following models usually18

simplifies the interactions among vehicles by a collisional19

approach assuming immediate braking maneuvers. More-20

over, the derivation of macroscopic traffic models from21

gas-kinetic ones terminates an infinite and poorly converg-22

ing series expansion, which replaces dynamical equations23

for higher moments of the velocity distribution by simpli-24

fied equilibrium relationships [8].25

Although this leads to macroscopic equations which26

work well in most theoretical and practical aspects [9],27

the implications of the approximations are hardly known.28
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Moreover, the approach seems to require an averaging over 29

at least 100 vehicles for each speed class and spatial lo- 30

cation. While this constitutes no problem for gases with 31

1023 particles within a small volume, for traffic flows this 32

would require an averaging over spatial intervals much 33

greater than the scale on which traffic flow changes. Hence, 34

it is not well understood, whether or why macroscopic 35

traffic equations can be used at all. 36

In this paper, we will therefore focus on attempts to 37

derive macroscopic traffic equations directly from micro- 38

scopic ones. Doing so, we will compare three different ap- 39

proaches: first, we study the gradient expansion approach 40

in Section 2. Second, we turn to the linear interpolation 41

approach in Section 3. Third, we discuss an approach re- 42

minding of smoothed particle hydrodynamics in Section 4 43

and compare the results with macroscopic traffic models 44

such as the Payne model, the Aw-Rascle model, and a 45

non-local traffic model. In the conclusions of Section 5, 46

we summarize and discuss our results, in particular with 47

regard to the mathematical form of the traffic pressure and 48

the theoretical consistency of macroscopic traffic models. 49

2 The gradient expansion approach 50

Already in the 1970’s, Payne [10,11] used a gradient ex- 51

pansion approach to derive a macroscopic velocity equa- 52

tion complementing the continuity equation 53

∂ρ

∂t
+

∂

∂x
[ρ(x, t)V (x, t)] = 0. (1)
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It relates the vehicle density ρ(x, t) at location x and time t1

with the average velocity V (x, t) or the vehicle flow2

Q(x, t) = ρ(x, t)V (x, t), (2)

respectively, and describes the conservation of the number3

of vehicles [12].4

Payne derived his model from Newell’s car-following5

model [13]6

vi(t + τ) = vo(di(t)), (3)

which assumes that the speed vi(t) of vehicle i at time t7

will be adjusted with a delay of τ to some optimal8

speed vo, which depends on the distance di(t) = xi−1(t)−9

xi(t) between the location of the leading vehicle xi−1(t)10

and the location xi(t) of the following car.11

Payne identified microscopic and macroscopic veloci-12

ties as follows:13

vi(t + τ) = V (x + V τ, t + τ)

≈ V (x, t) + V τ
∂V (x, t)

∂x
+ τ

∂V (x, t)
∂t

. (4)

Then, Taylor approximations (gradient expansions) were14

used in several places. For example, Payne substituted the15

inverse of the distance di to the leading vehicle by the16

density ρ at the place x+di(t)/2 in the middle between the17

leading and the following vehicle. In this way, he obtained18

1
di(t)

= ρ

(
x +

di(t)
2

, t

)
= ρ

(
x +

1
2ρ

, t

)

≈ ρ(x, t) +
1
2ρ

∂ρ(x, t)
∂x

. (5)

When defining the so-called equilibrium velocity Ve(ρ)19

through20

Ve(ρ) = vo

(
1
ρ

)
or Ve

(
1
di

)
= vo(di), (6)

a first order Taylor approximation and equation (5) imply21

vo(di(t)) = Ve

(
1

di(t)

)

≈ Ve(ρ(x, t)) +
1

2ρ(x, t)
dVe(ρ)

dρ

∂ρ(x, t)
∂x

. (7)

Starting from the previous equations, one finally arrives22

at Payne’s macroscopic velocity equation23

∂V

∂t
+ V

∂V

∂x
=

1
τ

[
Ve(ρ) − D(ρ)

ρ

∂ρ

∂x
− V (x, t)

]
, (8)

where we have introduced the density-dependent diffusion24

25

D(ρ) = −1
2

dVe(ρ)
∂ρ

=
1
2

∣∣∣∣dVe(ρ)
dρ

∣∣∣∣ ≥ 0. (9)

The single terms of equation (8) have the following inter-26

pretation: the term V ∂V/∂x is called the transport term27

and describes a motion of the velocity profile with the28

vehicles. The term −[D(ρ)/(ρ Δt)]∂ρ/∂x is called antici- 29

pation term, as it reflects the reaction of drivers to the 30

traffic situation in front of them. The relaxation term 31

[Ve(ρ) − V ]/Δt delineates the adaptation of the average 32

velocity V (x, t) to the density-dependent equilibrium ve- 33

locity Ve(ρ) with a delay τ . 34

Other authors have applied similar gradient expan- 35

sions to the optimal velocity model defined by 36

dvi(t)
dt

=
1
τ

[
vo(di(t)) − vi(t)

]
(10)

with ddi/dt = vi−1(t) − vi(t), see e.g. references [15,16]. 37

Equation (10) results from the Newell model (3) by a first- 38

order Taylor approximation vi(t + τ) ≈ vi(t) + τ dvi/dt. 39

Regarding the derivation of macroscopic traffic equations 40

from the optimal velocity model, it is also worth reading 41

references [15,16]. 42

One weakness of the gradient expansion approach is 43

that its validity implicitly requires small gradients. How- 44

ever, it is well-known that many microscopic and macro- 45

scopic traffic equations give rise to emergent traffic jams, 46

which are related with steep gradients. That calls for the 47

consideration of higher-order terms and leads to macro- 48

scopic traffic equations that are not anymore simple and 49

well tractable (even numerically). Let us, therefore, study 50

other approaches to determine macroscopic from micro- 51

scopic equations. 52

3 The linear interpolation approach 53

The optimal velocity model may be also written in the 54

form 55

dvi

dt
= ai(t) =

v0 − vi(t)
τ

+ f(di(t)), (11)

where ai(t) denotes the acceleration, v0 the “desired ve- 56

locity” or “free speed”, and 57

f(di) =
vo(di) − v0

τ
≤ 0 (12)

the repulsive interaction among the leading vehicle i − 1 58

and its follower i. 59

In reference [17], it has been suggested to establish 60

a micro-macro link between microscopic and macroscopic 61

traffic variables by the definitions 62

ρ(x, t) =

1
xi(t) − xi+1(t)

[
xi−1(t) − x

]
xi−1(t) − xi(t)

+

1
xi−1(t) − xi(t)

[x − xi(t)]

xi−1(t) − xi(t)
, (13)

V (x, t) =
vi(t)

[
xi−1(t) − x

]
+ vi−1(t)

[
x − xi(t)

]
xi−1(t) − xi(t)

, (14)

A(x, t) =
ai(t)

[
xi−1(t) − x

]
+ ai−1(t)

[
x − xi(t)

]
xi−1(t) − xi(t)

. (15)
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These definitions assume that the macroscopic variables in1

the vehicle locations x = xi(t) would be given by the mi-2

croscopic ones, while in locations x between two vehicles,3

they would be defined by linear interpolation.4

Let us consider the consequences of such an approach.5

For this, we determine the partial derivative of6

G(x, t) =
gi(t)[xi−1(t) − x] + gi−1(t)[x − xi(t)]

xi−1(t) − xi(t)
(16)

with respect to x, which gives7

∂G(x, t)
∂x

=
−gi(t) + gi−1(t)
xi−1(t) − xi(t)

(17)

for any specification of gi(t), for example, gi(t) = vi(t).8

The partial derivative with respect to time is9

∂G(x, t)
∂t

=
dgi(t)

dt [xi−1(t) − x] + gi(t)
dxi−1(t)

dt

xi−1(t) − xi(t)

+
dgi−1(t)

dt [x − xi(t)] − gi−1(t)
dxi(t)

dt

xi−1(t) − xi(t)

−
(

dxi−1(t)
dt − dxi(t)

dt

)
gi(t)[xi−1(t) − x]

[xi−1(t) − xi(t)]2

−
(

dxi−1(t)
dt − dxi(t)

dt

)
gi−1(t)[x − xi(t)]

[xi−1(t) − xi(t)]2
. (18)

For gi(t) = vi(t) = dxi/dt and with dvi/dt = ai(t), this10

formula simplifies to the following expression:11

∂V (x, t)
∂t

=
ai(t)[xi−1(t) − x] + vi(t)vi−1(t)

xi−1(t) − xi(t)

+
ai−1(t)[x − xi(t)] − vi−1(t)vi(t)

xi−1(t) − xi(t)

− vi−1(t) − vi(t)
xi−1(t) − xi(t)

×vi(t)[xi−1(t) − x] + vi−1(t)[x − xi(t)]
xi−1(t) − xi(t)

= A(x, t) − ∂V (x, t)
∂x

V (x, t). (19)

As a consequence, we find the exact relationship12

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= A(x, t). (20)

This would be fully compatible with Payne’s macroscopic13

traffic equation (8), if14

A(x, t) =
1
τ
[Ve(ρ) − V (x, t)] − D(ρ)

τρ(x, t)
∂ρ

∂x
. (21)

However, the expression for gi(t) = 1/[xi−1(t)−xi(t)] does 15

not simplify in a way that would finally lead to the con- 16

tinuity equation (1). Therefore, a micro-macro link based 17

on the linear interpolation (16) of the microscopic vari- 18

ables gi(t) does not exactly imply the conservation of the 19

number of vehicles, i.e. it is theoretically not consistent. 20

Nevertheless, it works surprisingly well in practise [17]. 21

In the next section, we will see that the interpola- 22

tion approach fails because it does not reflect the non- 23

locality of the correct macroscopic traffic equations, see 24

equation (39) or (47). The dependence on gradients makes 25

the model too isotropic, while vehicles should only respond 26

to the traffic situation ahead of them, but not behind 27

them. This problem is usually taken care of by hyperbolic 28

schemes such as the Godunov scheme, as used for exam- 29

ple in reference [18]. This scheme naturally discretizes the 30

velocity in a downwind way, which avoids the isotropy 31

problem of Payne’s model and similar ones [21]. 32

To avoid this problem, reference [19] suggests a hy- 33

brid Lagrangian approach. This is based on a transforma- 34

tion into Lagrangian coordinates, i.e. a moving coordinate 35

system. As a result, the continuity equation (1) becomes 36

linear. For piecewise linear ρ and V , the result can then 37

be transformed back into Eulerian coordinates, i.e. into 38

the stationary frame of reference. In the following, we 39

will present an alternative method that yields macroscopic 40

traffic equations from microscopic ones directly, without 41

the need of transformation into Lagrangian coordinates. 42

4 An approach reminding of smooth particle 43

hydrodynamics 44

4.1 Derivation of the continuity equation 45

In this section, we will start with the derivation of the con- 46

tinuity equation from the equation of motion dxi/dt = vi, 47

using a “trick” that I learned from Isaac Goldhirsch. For 48

this, we represent the location xi(t) of an element i in 49

space by a delta function δ(x − xi(t)), which may be 50

treated here like a very narrow Gaussian distribution. 51

Moreover, we introduce a symmetrical smoothing function 52

53

s(x′ − x) = s(|x′ − x|) = s(x − x′), (22)

for example, a Gaussian distribution with a finite variance 54

or a differentiable approximation of a triangular function 55

or a rectangular one. The smoothing function shall be nor- 56

malized by demanding 57

∞∫
−∞

dx′ s(x′ − x) = 1 (23)

for any value of x. With this, we define the local density 58

ρ(x, t) =

∞∫
−∞

dx′ s(x′ − x)
∑

i

δ(x′ − xi(t)) (24)

=
∑

i

s(xi(t) − x). (25)
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Herein, we sum up over all particles i. Note that the re-1

placement of the conventional formula
∑

i δ(xi(t)− x) for2

the vehicle density by the formula
∑

i s(xi(t)−x) reminds3

of a substitution of point-like particles by “fuzzy” parti-4

cles, which is the idea behind smoothed particle hydro-5

dynamics. Nevertheless it should be remembered that we6

have formally related the smoothing function s(x′ − x) to7

locations x′ in the stationary frame of reference, and not8

to the moving vehicles themselves.9

Now, we define the average velocity V (x, t) as usual10

via a weighted average with the weight function δ(x′ −11

xi(t))s(x′ − x):12

V (x, t) =

∞∫
−∞

dx′ ∑
i

vi(t)δ
(
x′ − xi(t)

)
s(x′ − x)

∞∫
−∞

dx′
∑

i

δ(x − xi(t))s(x′ − x)

=

∞∫
−∞

dx′ ∑
i

vi(t)δ(x′ − xi(t))s(x′ − x)

ρ(x, t)

=

∑
i

vi(t)s(xi(t) − x)

∑
i

s(xi(t) − x)

=

∑
i

vi(t)s(xi(t) − x)

ρ(x, t)
. (26)

This implies the well-known fluid-dynamic flow relation-13

ship14

Q(x, t) = ρ(x, t)V (x, t). (27)

Differentiation of equation (24) with respect to time and15

application of the chain rule gives16

17

∂ρ(x, t)
∂t

=18

∞∫
−∞

dx′ ∑
i

(
−dxi

dt

)
·
[

∂

∂x′ δ(x
′ − xi(t))

]
s(x′ − x)19

=

∞∫
−∞

dx′ ∑
i

vi(t)δ(x′ − xi(t))
[

∂

∂x′ s(x
′ − x)

]
, (28)20

21

where we have applied partial integration to obtain the22

last results. That is, we have used the theorem23

∞∫
−∞

dx′
[

∂

∂x′ u(x′)
]

v(x′) = [u(x)v(x)]∞−∞

−
∞∫

−∞
u(x′)

[
∂

∂x′ v(x′)
]

, (29)

considering the vanishing of the first term after the equal-24

ity sign due to the vanishing of u(x)v(x) at the bound-25

aries. Taking into account the symmetry of the smooth- 26

ing function s(x′ − x), we may replace ∂s(x′ − x)/∂x′ by 27

−∂s(x′ − x)/∂x, which finally yields equation (1) as fol- 28

lows: 29

∂ρ(x, t)
∂t

= − ∂

∂x

∞∫
−∞

dx′ ∑
i

vi(t)δ(x′ − xi(t))s(x′ − x)

= − ∂

∂x
[ρ(x, t)V (x, t)]. (30)

To obtain this desired result, we have finally applied the 30

definition (26) of the average velocity V (x, t). As a con- 31

sequence of this, the validity of the continuity equation 32

does not require an averaging over large numbers of enti- 33

ties, i.e. macroscopic volumes to average over. This makes 34

the equation absolutely fundamental and explains its large 35

range of validity. 36

4.2 Derivation of the macroscopic velocity equation 37

In order to derive the equation for the average velocity, 38

we start by deriving the formula 39

ρ(x, t)V (x, t) =
∑

i

vi(t)s(xi(t) − x) (31)

for the vehicle flow with respect to time. This gives 40

∂

∂t
[ρ(x, t)V (x, t)] =

∑
i

dvi(t)
dt

s(xi(t) − x)

+
∑

i

vi(t)
∂

∂xi
[s(xi(t) − x)]

dxi(t)
dt

=
∑

i

ai(t)s(xi(t) − x)

− ∂

∂x

∑
i

[vi(t)]2s(xi(t) − x). (32)

Introducing δvi(x, t) = vi(t) − V (x, t) and defining the 41

velocity variance 42

θ(x, t)=

∞∫
−∞

dx′ ∑
i[vi(t)−V (x, t)]2δ(x′ − xi(t))s(x′ − x)

∞∫
−∞

dx′ ∑
i δ(x′ − xi(t))s(x′ − x)

=
∑

i[vi(t) − V (x, t)]2s(xi(t) − x)∑
i s(xi(t) − x)

=
∑

i[δvi(x, t)]2s(xi(t) − x)
ρ(x, t)

(33)
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similarly to the average velocity (26), we can make the1

decomposition2

3 ∑
i

[vi(t)]2s(xi(t) − x) =4

∑
i

[V (x, t) + δvi(x, t)]2s(xi(t) − x)5

=
∑

i

{
[V (x, t)]2 + 2V (x, t)δvi(x, t)6

+ [δvi(x, t)]2
}
s(xi(t) − x)7

= ρ(x, t)[V (x, t)]2 + 2ρ(x, t)V (x, t)[V (x, t) − V (x, t)]8

+ ρ(x, t)θ(x, t), (34)9
10

where we have considered11 ∑
i

δvi(x, t)s(xi(t) − x)=
∑

i

[vi(t)−V (x, t)] s(xi(t) − x)

=Q(x, t) − ρ(x, t)V (x, t)=0, (35)

see equations (26) and (25). Altogether, we get12

∂

∂t
[ρ(x, t)V (x, t)] = − ∂

∂x

{
ρ(x, t)

[
V (x, t)2 + θ(x, t)

]}
+

∑
i

ai(t)s(xi(t) − x). (36)

Now, we carry out the partial differentiation applying the13

product rule of Calculus. Taking into account14

ρ(x, t)
∂V (x, t)

∂t
= −V (x, t)

∂ρ(x, t)
∂t

+
∂

∂t
[ρ(x, t)V (x, t)]

(37)
and15

16

∂

∂x
{[ρ(x, t)V (x, t)] V (x, t)} = ρ(x, t)V (x, t)

∂V

∂x
17

+ V (x, t)
∂

∂x
[ρ(x, t)V (x, t)] , (38)18

19

with equation (36) we obtain the following:20

ρ(x, t)
∂V (x, t)

∂t
= −V (x, t)

∂ρ(x, t)
∂t

−V (x, t)
∂

∂x
[ρ(x, t)V (x, t)]

−ρ(x, t)V (x, t)
∂V (x, t)

∂x

− ∂

∂x
[ρ(x, t)θ(x, t)]

+
∑

i

ai(t)s(xi(t) − x). (39)

Inserting the continuity equation (30) for ∂ρ/∂t and divid-21

ing the above equation by ρ(x, t) finally yields the velocity22

equation23

24

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= − 1

ρ(x, t)
∂

∂x
[ρ(x, t)θ(x, t)]25

+
1

ρ(x, t)

∑
i

ai(t)s(xi(t) − x). (40)26

27

Fig. 1. Illustration of rectangular (—), triangular (– –), and
Gaussian (· · · ) smoothing functions s(x′ − x). xk and xk−1

are the locations of the two closest vehicles k and k − 1 with
respect to a reference location x. Their distance 1/� = xk−1 −
xk determines the size 2/� of the smoothing range chosen in
the calculations of the main text.

Inserting equation (11) for ai(t), we find 28

29∑
i

ai(t)s(xi(t) − x) = 30

∑
i

[
v0 − vi

τ
+

∑
i

f(di(t))

]
s(xi(t) − x) 31

=
v0 − V (x, t)

τ
+

∑
i

f(di(t))s(xi(t) − x). (41) 32

33

For further simplification, let us now specify the smooth- 34

ing function by the rectangular function 35

s(xi − x) =
�

2
·
{

1 if |xi − x| ≤ 1/�
0 otherwise, (42)

with a large enough smoothing window of length Δx = 36

2/� (see Fig. 1). Then, the number of vehicles i within 37

the smoothing interval [x − 1/�, x + 1/�] is expected to 38

be ρ Δx = 2ρ/�, where ρ represents the average vehicle 39

density in this interval. Therefore, 40

ρ(x, t) =
∑

i

s(xi(t) − x) =
2ρ

�

�

2
= ρ, (43)

which shows the consistency of this approach. 41

If the smoothing parameter � is specified via the in- 42

verse vehicle distance 43

� = �k =
1
dk

=
1

xk−1 − xk
= ρ(x, t) for xk < x ≤ xk−1,

(44)
the smoothing window of length Δx = 2/� will usually 44

contain only two vehicles k− 1 and k with xk < x ≤ xk−1 45

(see Fig. 1). With this, the sum over i reduces to two terms 46

with i = k and i = k − 1 only. This finally yields 47

ρ(x, t)V (x, t) =
∑

i

vi(t)s(xi(t) − x)

= vk(t)s(xk(t) − x) + vk−1(t)s(xk−1(t) − x)

=
�

2
[vk−1(t) + vk(t)]

= ρ(x, t)
vk−1(t) + vk(t)

2
(45)
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and, considering equation (44),1 ∑
i

s(xi(t) − x)f(di(t)) =
�

2
f(dk) +

�

2
f(dk−1)

=
�

2
f

(
1
�k

)
+

�

2
f

(
1

�k−1

)

=
ρ(x, t)

2
f

(
1

ρ(x, t)

)

+
ρ(x, t)

2
f

(
1

ρ(x + 1/ρ, t)

)
. (46)

In summary, the macroscopic velocity equation related to2

the optimal velocity model corresponds to1
3

4

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=5

− 1
ρ(x, t)

∂

∂x
[ρ(x, t)θ(x, t)] +

v0 − V (x, t)
τ

6

+
1
2
f

(
1

ρ(x, t)

)
+

1
2
f

(
1

ρ(x + 1/ρ, t)

)
. (47)7

8

Note that the last line of this equation contains more9

terms, if more than 2 vehicles are located in the spatial10

interval between x − 1/� and x + 1/�, as it can happen11

due to density variations. Since this does not affect a nu-12

merical implementation of the macroscopic equations (40)13

and (41), we do not need to be concerned about this. Equa-14

tion (43) anyway remains unchanged.15

At the cost of less straight-forward analytical evalu-16

ation, it is also possible to use other than rectangular17

smoothing functions (see Fig. 1). A triangular function,18

for example, puts less weight on the boundaries of the19

smoothing window, so it will make little difference whether20

there are 2 or 3 cars in the smoothing range. Using the21

specification22

s(xi − x) = max[�(1 − �|xi − x|), 0] (48)

and considering23

|xk−1−x|+|x−xk| = (xk−1−x)+(x−xk) = xk−1−xk =
1
�

(49)
shows that a triangular specification leads to the same24

consistent density measurement:25

ρ(x, t) = s(xk−1(t) − x) + s(xk(t) − x)
= 2�− �2(xk−1 − xk) = �. (50)

4.3 Discussion of the non-locality26

The crucial point of equation (47) is its non-locality. The27

dependence on x + 1/ρ(x, t) reflects the anticipatory be-28

havior of drivers, who react to the traffic situation ahead29

1 If another smoothing function is applied, the last term of
equation (47) is replaced by a similar weighted mean value, as
equation (41) reveals, but the essence stays the same. That is,
the way of looking at the microscopic equations (i.e. the way
of defining the density and velocity moments) potentially has
some influence on the dynamics, but it is expected to be small.

of them. From the point of view of traffic simulation, the 30

non-locality does not constitute a problem. Non-local traf- 31

fic models such as the gas-kinetic based traffic model sum- 32

marized in Appendix A can be even more efficient numer- 33

ically than second-order models with diffusion terms, that 34

would result from a gradient expansion. 35

In fact, the reason for the numerical inefficiency of ex- 36

plicit solvers for partial differential equations is the dif- 37

fusion instability, which must be avoided by small time 38

discretizations [20]. As pointed out by Daganzo [21], a dif- 39

fusion term also implies theoretical inconsistencies such as 40

the possible occurence of negative velocities at upstream 41

jam fronts. Therefore, it should be underlined that nu- 42

merical inefficiencies and theoretical inconsistencies can 43

be avoided by working with the non-local velocity equa- 44

tion rather than with the gradient expansion of it, which 45

will be looked at in the next section. 46

4.4 Comparison with other macroscopic traffic models 47

4.4.1 The Payne model 48

Despite the before-mentioned problems, we will now carry 49

out a Taylor expansion of the non-local terms in equa- 50

tion (47), exclusively for the sake of comparison with other 51

traffic models. A first-order approximation gives 52

53

f

(
1

ρ(x + 1/ρ, t)

)
≈ f

⎛
⎝ 1

ρ(x, t) + ∂ρ(x,t)
∂x

1
ρ(x,t)

⎞
⎠ 54

≈ f

(
1

ρ(x, t)

(
1 − ∂ρ(x, t)

∂x

1
ρ(x, t)2

))
55

≈ f

(
1

ρ(x, t)

)
+

df(d)
dd

·
(
−∂ρ(x, t)

∂x

1
ρ(x, t)3

)
, (51) 56

57

where we have applied the geometric series expansion 58

1/(1− z) ≈ 1+ z+ . . . Note that the relation ρ = 1/d and 59

60

Ve(ρ) = Ve

(
1
d

)
= vo(d) = v0 + τf(d) = v0 + τf

(
1
ρ

)

(52)
imply 61

df(d)
dd

=
(

d

dρ

Ve(ρ) − v0

τ

)
dρ

dd
=

1
τ

dVe(ρ)
dρ

·
(
− 1

d2

)

= −ρ2

τ

dVe(ρ)
dρ

. (53)

Therefore, using equation (46), we finally obtain: 62

∑
i

s(xi(t)−x)f(t)≈ρ(x, t)f
(

1
ρ(x, t)

)
+

1
2τ

dVe(ρ)
dρ

∂ρ(x, t)
∂x

.

(54)
Considering Ve(ρ) = v0 + τf(ρ) and defining the “traffic 63

pressure” as 64

P (x, t) = ρ(x, t)θ(x, t) +
v0 − Ve(ρ)

2τ
, (55)
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the corresponding macroscopic velocity equation becomes1

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= − 1

ρ(x, t)
∂P (x, t)

∂x

+
Ve(ρ) − V (x, t)

τ
. (56)

If the velocity variance θ is zero, this model corresponds2

exactly to Payne’s macroscopic traffic model with the3

pressure term [10,11]4

P (ρ) =
V 0 − Ve(ρ)

2τ
. (57)

As a check of consistency between the Payne model and5

the optimal velocity model, one may perform an instability6

analysis of both models. Such an analysis is carried out in7

reference [22] and demonstrates indeed that the instability8

conditions and the characteristic velocities are compatible,9

as expected.10

4.4.2 The macroscopic traffic model by Aw and Rascle11

Note that Daganzo has seriously criticized macroscopic12

traffic equations of the type (56) [23]. For example, he13

studied the case of a vehicle queue of maximum den-14

sity ρ = ρjam and speed V = Ve(ρjam) = 0, the end15

of which was assumed to be at some location x = x0.16

In this situation, equation (56) predicts V = 0 and17

dV/dt = ∂V/∂t + V ∂V/∂x < 0 for the last vehicle in the18

queue, i.e. the occurence of negative velocities, if pressure19

relations such as P = ρθ0 − η0∂V/∂x with non-negative20

parameters θ0 and η0 are assumed [7].21

In order to overcome Daganzo’s criticism, Aw and22

Rascle have proposed the macroscopic velocity equation23

24

∂

∂t
[V + p(ρ)] + V

∂

∂x
[V + p(ρ)] = 0 (58)

with p(ρ) = ργ [23]. Let us study, how this model relates25

to the previous macroscopic models. For this purpose, let26

us apply the chain rule of Calculus to obtain27

28

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=29

− dp(ρ)
dρ

∂ρ(x, t)
∂t

− V (x, t)
dp(ρ)
dρ

∂ρ(x, t)
∂x

. (59)30

31

Inserting the continuity equation (30) for ∂ρ/∂t on the32

right-hand side, we get33

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=

dp(ρ)
dρ

∂

∂x
[ρ(x, t)V (x, t)]

−V (x, t)
dp(ρ)
dρ

∂ρ(x, t)
∂x

= ρ(x, t)
dp(ρ)
dρ

∂V (x, t)
∂x

.(60)

This model can be rigorously derived from particular car-34

following models [18]. By comparison with the macro-35

scopic velocity equation (56) we see that the model by36

Aw and Rascle does not have a relaxation term [Ve(ρ) − 37

V (x, t)]/τ , which would correspond to the limit τ → ∞. 38

Moreover, we find 39

− 1
ρ(x, t)

∂P (x, t)
∂x

= ρ(x, t)
dp(ρ)
dρ

∂V (x, t)
∂x

. (61)

Therefore, the traffic pressure according to the model of 40

Aw and Rascle is a function of the velocity gradient rather 41

than the density gradient, in contrast to Payne’s pressure 42

term (57). Consequently, Aw’s and Rascle’s pressure term 43

must result in a different way than Payne’s one, i.e. from 44

a different kind of car-following model [18]. In order to 45

illustrate this, let us now discuss a generalization of the 46

optimal velocity model and its macroscopic counterpart. 47

4.4.3 Non-local macroscopic traffic models 48

It is well-known [24] that the optimal velocity model may 49

produce accidents, if the initial condition, the optimal ve- 50

locity function vo(d), and the parameter τ are not carefully 51

chosen. In order to have both, the emergence of traffic jams 52

and the avoidance of accidents, we need to assume that the 53

repulsive interaction force among vehicles does not only 54

depend on the vehicle distance di(t) = xi−1(t)−xi(t), but 55

also on the vehicle velocity vi(t) (to reflect the dependence 56

of the safe distance on the vehicle speed) or on the relative 57

velocity 58

Δvi(t) = vi(t) − vi−1(t) = −ddi

dt
. (62)

The corresponding generalization of the acceleration equa- 59

tion (11) reads 60

dvi

dt
= ai(t) =

v0 − vi(t)
τ

+ f(di(t), vi(t), Δvi(t)). (63)

This also changes the associated macroscopic traffic equa- 61

tion. Namely, equation (47) has to be replaced by 62

63

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= 64

− 1
ρ(x, t)

∂

∂x
[ρ(x, t)θ(x, t)] +

v0 − V (x, t)
τ

65

+
1
2
f

(
1

ρ(x, t)
, V (x, t), ΔV (x, t)

)
66

+
1
2
f

(
1

ρ(x + 1/ρ, t)
, V (x + 1/ρ, t), ΔV (x + 1/ρ, t)

)
.

(64)

67

68

For the sake of comparison with other macroscopic traf- 69

fic models and linear stability analyses, let us perform a 70
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Taylor approximation of this. First, we may write1

2

f

(
1

ρ(x + 1/ρ, t)
, ΔV (x + 1/ρ, t), V (x + 1/ρ, t)

)
≈3

f

(
1

ρ(x, t)
, ΔV (x, t), V (x, t)

)
4

+
∂f

∂d

dd

dρ
[ρ(x + 1/ρ, t)− ρ(x, t)]5

+
∂f

∂v
[V (x + 1/ρ, t)− V (x, t)]6

+
∂f

∂Δv

[
ΔV (x + 1/ρ, t)− ΔV (x, t)

]
. (65)7

8

Then, we may insert dd/dρ = −1/ρ2,9

ρ(x + 1/ρ, t)− ρ(x, t) ≈ ∂ρ

∂x

1
ρ
, (66)

10

V (x + 1/ρ, t)− V (x, t) ≈ ∂V

∂x

1
ρ
. (67)

Furthermore, considering Δvi(t) = −ddi/dt, ρ(x, t) =11

1/di(t), and the continuity equation dρ/dt = ∂ρ/∂t +12

V ∂ρ/∂x = −ρ ∂V/∂x, we get13

ΔV (x, t) = − d

dt

(
1

ρ(x, t)

)
=

1
ρ(x, t)2

dρ(x, t)
dt

= − 1
ρ(x, t)

∂V (x, t)
∂x

≈ V (x, t) − V (x + 1/ρ, t) (68)

and14

ΔV (x + 1/ρ, t)− ΔV (x, t) ≈ ∂ΔV

∂x

1
ρ

≈ −1
ρ

∂

∂x

(
∂V

∂x

1
ρ

)

=
1
ρ3

∂ρ

∂x

∂V

∂x
− 1

ρ2

∂2V

∂x2

≈ − 1
ρ2

∂2V

∂x2
, (69)

since a linearization drops products of gradient terms such15

as (∂ρ/∂x)(∂V/∂x) (which are assumed to be smaller than16

the linear terms). Altogether, with dd/dρ = −1/ρ2 we can17

write18

19

f

(
1

ρ(x + 1/ρ, t)
, V (x + 1/ρ, t), ΔV (x + 1/ρ, t)

)
≈20

f

(
1

ρ(x, t)
, ΔV (x, t), V (x, t)

)
− 1

ρ3

∂f

∂d

∂ρ

∂x
21

+
1
ρ

∂f

∂v

∂V

∂x
− 1

ρ2

∂f

∂Δv

∂2V

∂x2
. (70)22

23

With the definition24

Vo(ρ, V, ΔV ) = v0 + τf

(
1
ρ
, V, ΔV

)
, (71)

we may finally write 25

26

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= −1

ρ

∂

∂x
[ρ(x, t)θ(x, t)] 27

+
Vo(ρ, V, ΔV ) − V (x, t)

τ
− 1

2ρ3

∂f

∂d

∂ρ

∂x
28

+
1
2ρ

∂f

∂v

∂V

∂x
− 1

2ρ2

∂f

∂Δv

∂2V

∂x2
. (72) 29

30

Furthermore, let us assume that the variance can be ap- 31

proximated as a function of the density and the average 32

velocity: 33

θ(x, t) = θe(ρ(x, t), V (x, t)). (73)

With the definitions 34

∂P1

∂ρ
= θe(ρ, V ) + ρ

∂θe(ρ, V )
∂ρ

+
1

2ρ2

∂f(1/ρ, V, ΔV )
∂d

, (74)

∂P2

∂V
= ρ

∂θe(ρ, V )
∂V

− 1
2

∂f(1/ρ, V, ΔV )
∂v

, (75)

η = − 1
2ρ2

∂f(1/ρ, V, ΔV )
∂Δv

(76)

(where η should be greater than zero), we may also write 35

the linearized macroscopic traffic equations as 36

37

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= −1

ρ

∂P1

∂ρ

∂ρ

∂x
38

− 1
ρ

∂P2

∂V

∂V

∂x
+ η

∂2V

∂x2
39

+
Vo(ρ, ΔV, V ) − V (x, t)

τ
. (77) 40

41

The term η∂2V/∂x2 can be interpreted as viscosity term 42

and has a smoothing effect. Further viscosity (and diffu- 43

sion) terms may be derived by second-order Taylor ex- 44

pansions. It is interesting to note that the pressure term 45

containing P2 looks similar to equation (61). Therefore, 46

it is possible to derive Aw’s and Rascle’s model from a 47

suitably specified microscopic traffic model [18]. 48

5 Summary, discussion, and conclusions 49

In this paper, we have discussed several approaches to de- 50

rive macroscopic traffic equations from microscopic car- 51

following models. It has been pointed out that a Taylor 52

approximation may be used only for linear stability analy- 53

ses, as the gradients would otherwise often be too large for 54

the approximation to work. Further undesireable conse- 55

quences of a gradient expansion are the possible occurence 56

of negative velocities, diffusion instabilities, and inefficient 57

numerical solution methods. 58

The linear interpolation approach often works well in 59

practise [17], but it is theoretically inconsistent as it vio- 60

lates the continuity equation which is required for the con- 61

servation of the vehicle number. In contrast, the approach 62

reminding of smoothed particle hydrodynamics was suited 63
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in all respects. It led to a non-local macroscopic traffic1

model, which partially reminds of the non-local gas-kinetic2

based traffic model [9] (see Appendix A). In order to reach3

a realistic traffic dynamics (in particular accident avoid-4

ance if a vehicle with speed v0 approaches a standing car),5

one needs to take into account that the repulsive vehicle6

interactions not only depend on the vehicle distance, but7

also on the relative velocity and the vehicle velocity. This8

leads to a specification of the traffic pressure which con-9

tains variance-dependent terms, additional terms propor-10

tional to ∂ρ/∂x as in Payne’s model, and further terms11

proportional to ∂V/∂x as in Aw’s and Rascle’s model.12

While the variance-dependent term describes dispersion13

effects, Payne’s, Aw’s and Rascle’s terms reflect effects14

of vehicle interactions. Furthermore note that, in case of15

multi-lane traffic, the additional inter-lane variance16
17

Θ(x, t) =
1
L

L∑
l=1

ρl(x, t)
ρ(x, t)

[Vl(x, t) − V (x, t)]2, (78)

must be added to the inner-lane variance θ(x, t), where18

ρl(x, t) is the density and Vl(x, t) the average velocity in19

lane l at location x and time t [2,25].20

Let us finally discuss whether the above “smoothed21

particle hydrodynamics approach” may lead to incons-22

tencies such as extremely high densities. An unrealistic23

car-following model may, in fact, imply a theoretically in-24

consistent macroscopic traffic model, but a plausible mi-25

croscopic model should generate a plausible macroscopic26

one: specifically, the preservation of the order of vehicles27

requires a car-following model that does not produce ac-28

cidents. Examples for this are the intelligent driver model29

(IDM) [26] or the Gipps model [27]. Furthermore, if the30

car-following model implies that vehicles keep a minimum31

distance of dmin, as the IDM does, this will translate into a32

maximum density ρjam = 1/dmin in the equivalent macro-33

scopic traffic model. This can be seen from equation (43)34

with ρ = 1/dmin. Therefore, in order to obtain a realistic35

macroscopic traffic model, one needs to make a suitable36

specification of the repulsive interaction force f . Generally,37

it is advised to work with speed-dependent interaction38

forces. An example for a microcopically derived macro-39

scopic traffic model that takes into account the finite space40

requirements of vehicles is the non-local gas-kinetic-based41

traffic model (see Appendix A).42
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Christian Schmeiser at the Wolfgang Pauli Institute in Vienna46
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Appendix A: The non-local, gas-kinetic based48

traffic model49

For comparison, let us shortly recall the form of the non-50

local gas-kinetic based traffic model (GKT model). This51

has been derived via a collision approximation [9] and can52

be written in the form of equation (56) with P (x, t) =53

ρ(x, t)θ(x, t), but Ve(ρ) must be replaced by a non-local 54

expression 55

Vg(ρ, V, θ, ρ+ , V+ , θ+) = v0 −τ [1 − p(ρ+)]χ(ρ+)ρ+B(Δ)︸ ︷︷ ︸
repulsive interaction term

.

(79)
Here, the index “+” indicates evaluation at the advanced 56

“interaction point” x + s0 + TV , where s0 represents the 57

minimum vehicle distance and TV the velocity-dependent 58

safety distance. The related non-locality has some effects 59

that other macroscopic models generate by their pressure 60

and viscosity terms. The dependence of the non-local re- 61

pulsive interaction on the effective dimensionless velocity 62

difference 63
64

Δ =
V − V+√

θ − 2r
√

θθ+ + θ+

(80)

takes into account effects of the velocity variances θ, θ+ , 65

and velocity correlations r among successive cars [25]. Fur- 66

thermore, the “Boltzmann factor” 67
68

B(Δ) =
(
θ − 2r

√
θθ+ + θ+

)[
ΔN(Δ) +

(
1 + Δ2

)
E(Δ)

]
(81)

in the braking term is monotonically increasing with ΔV . 69

It contains the normal distribution 70
71

N(Δ) =
e−Δ2/2

√
2π

(82)

and the Gaussian error function 72
73

E(Δ) =

Δ∫
−∞

dz N(z). (83)

To close the system of equations, the velocity correlation r 74

is specified as a function of the density in accordance with 75

empirical observations. Moreover, for a description of the 76

presently known properties of traffic flows it seems suffi- 77

cient to set 78
79

θ = A(ρ)V 2. (84)

This guarantees that the velocity variance will vanish 80

whenever the average velocity goes to zero, but it will be 81

positive otherwise. It should be noted that the variance 82

prefactor A is higher in congested traffic than in free traf- 83

fic [9]. The “effective cross section” is, finally, specified via 84
85

[1 − p(ρ)]χ(ρ) =
v0ρT 2

τA(ρjam)(1 − ρ/ρjam)2
, (85)

where T is the safe time headway and ρjam the maximum 86

vehicle density. This formula makes also sense in the low- 87

density limit ρ → 0, where χ → 1 and p → 1. 88

A linear stability analysis of the non-local traffic model 89

can be done via a gradient expansion. It results in equa- 90

tions of the kind (77) and further viscosity and diffusion 91

terms [28]. 92
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