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Abstract. Daganzo’s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transpn.
Res. B. 29, 277 (1995)] and Aw and Rascle’s proposal how to overcome them [A. Aw, M. Rascle, SIAM J.
Appl. Math. 60, 916 (2000)] have stimulated an intensive scientific activity in the field of traffic modeling.
Here, we will revisit their arguments and the interpretations behind them. We will start by analyzing the
linear stability of traffic models, which is a widely established approach to study the ability of traffic models
to describe emergent traffic jams. Besides deriving a collection of useful formulas for stability analyses,
the main attention is put on the characteristic speeds, which are related to the group velocities of the
linearized model equations. Most macroscopic traffic models with a dynamic velocity equation appear to
predict two characteristic speeds, one of which is faster than the average velocity. This has been claimed
to constitute a theoretical inconsistency. We will carefully discuss arguments for and against this view. In
particular, we will shed some new light on the problem by comparing Payne’s macroscopic traffic model
with the Aw-Rascle model and macroscopic with microscopic traffic models.

PACS. 89.40.Bb Land transportation – 45.70.Vn Granular models of complex systems; traffic flow –
83.60.Wc Flow instabilities

1 Introduction1

Understanding traffic congestion has puzzled not only2

traffic engineers, but also a large number of physi-3

cists [1–4]. Scientists have been particularly interested in4

emergent traffic jams, which are related to instabilities in5

the traffic flow. Such instabilities have been found in em-6

pirical data [5], but also in recent experiments [6].7

The theoretical analysis is usually done by computer8

simulation or by linear stability analysis. Both techniques9

have been used since the early days of traffic engineer-10

ing [7] and traffic physics [8,9]. Here, we will perform the11

analysis for macroscopic and microscopic models in par-12

allel, as there should be a correspondence between the13

properties of both kinds of models. In contrast to previous14

publications, the analysis of macroscopic traffic equations15

is done for a model that considers a dependence of the16

optimal velocity function and the traffic pressure on the17

average velocity, not only the density. Such a dependence18

results for models which represent vehicle interactions re-19

alistically, taking into account a velocity-dependent safety20

distance [10]. This is, for example, important to avoid ac-21

cidents, and it changes the instability conditions signifi-22

cantly (see Sect. 3).23
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Besides determining the stability threshold, a partic- 24

ular focus will be put on the calculation of the group 25

velocities of the partial differential equations underlying 26

the macroscopic traffic model (see Sect. 3.2). For clarity, 27

the definition of the group velocities will be compared with 28

those of phase velocities and of characteristic speeds. All 29

three definitions describe propagation processes of waves. 30

It will be shown, that they lead to identical results under 31

certain circumstances, but not necessarily so. 32

Furthermore, we will derive conditions under which 33

one of the group velocities is greater than the average ve- 34

locity. In Section 2, we will shortly summarize the main 35

points of the controversial discussion that this observa- 36

tion has triggered. We will also address Daganzo’s other 37

criticisms of second-order fluid approximations of traffic 38

flow [11]. After the formal analysis in Section 3, Section 4 39

will be dedicated to a careful discussion of the results. In 40

particular, we will analyze different conceivable reasons for 41

characteristic speeds faster than the vehicle speeds: (1) 42

artifacts due to approximations underlying second-order 43

macroscopic traffic models; (2) indirect long-range forward 44

interactions with followers on a circular road; (3) the def- 45

inition of the propagation speed of perturbations; (4) the 46

variability of vehicle velocities; (5) the interpretation of 47

characteristic speeds. Since characteristic speeds are pri- 48

marily perceived as a problem of second-order macroscopic 49
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traffic models, in Section 5 we will compare them with the1

group velocities predicted by microscopic traffic models.2

Finally, we will summarize our results in Section 6.3

2 Summary of the controversy regarding4

second-order traffic flow models5

In the area of macroscopic traffic flow modeling, it is com-6

mon to formulate equations for the vehicle density ρ(x, t)7

as a function of space x and time t and for the aver-8

age velocity V (x, t). The most well-known model, some-9

times called the LWR model, was proposed by Lighthill10

et al. [12,13]. It is based on the continuity equation11

∂ρ(x, t)
∂t

+ V (x, t)
∂ρ(x, t)

∂x
= −ρ(x, t)

∂V (x, t)
∂x

(1)

for the density and a speed-density relationship12

V (x, t) = Ve

(
ρ(x, t)
)

(2)

or, alternatively, a “fundamental diagram” Q(x, t) =13

Qe(ρ(x, t)) for the vehicle flow Q(x, t) = ρ(x, t)V (x, t).14

Obviously, the LWR model is based on a (hyperbolic) par-15

tial differential equation of first order. A detailed analy-16

sis is given in references [12,14]. It is well-known, that it17

describes the generation of shock waves characterized by18

discontinuous density changes.19

Therefore, in his famous “Requiem for Second-Order20

Fluid Approximations of Traffic Flow” [11], Carlos21

Daganzo correctly notes on page 285 that, “Besides a22

coarse representation of shocks, other deficiencies of the23

LWR theory include its failure to describe platoon diffu-24

sion properly ... and its inability to explain the instability25

of heavy traffic, which exhibits oscillatory phenomena on26

the order of minutes”. However, he also criticizes theoret-27

ical inconsistencies of alternative models, which, at that28

time, were mainly second-order models containing diffu-29

sion, pressure, or viscosity terms. The Payne-Whitham30

model [14–16], for example, has a dynamic velocity equa-31

tion of the form32

33

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= − ν

ρ(x, t)
∂ρ(x, t)

∂x
34

+
1
τ

[
Ve

(
ρ(x, t)
)− V (x, t)

]
(3)35

36

with37

ν = − 1
2τ

dVe(ρ)
dρ

=
1
2τ

∣
∣
∣∣
dVe(ρ)

dρ

∣
∣
∣∣ ≥ 0. (4)

Here, the term containing ν is called anticipation term,38

while the last term is known as relaxation term. Ve(ρ)39

denotes the equilibrium velocity and τ the relaxation time.40

Some of the second-order models, including the Payne-41

Whitham model [15,16], can be derived from car-following42

models by certain approximations. This involves gra-43

dient expansions of non-local, forwardly directed (i.e.44

anisotropic) vehicle interactions [10]. Such approximations45

are problematic, since they lead to terms containing spa- 46

tial derivatives, which imply undesired backward interac- 47

tion effects as well. The related theoretical inconsisten- 48

cies were elaborated by Daganzo. In the following, we will 49

summarize his critique by quotes from reference [11] (page 50

numbers in square brackets): 51

1. Lack of anisotropy: “a fluid particle responds to stim- 52

uli from the front and from behind, but a car is an 53

anisotropic particle that mostly responds to frontal 54

stimuli” [p. 279]. 55

2. Insufficient description of jam fronts: “the width of a 56

traffic shock only encompasses a few vehicles”, while 57

second-order models involving viscosity terms would 58

typically imply extended jam fronts [p. 279]. Daganzo 59

argues that “the smoothness of the shock is inherently 60

unreasonable” [p. 282], because “spacings and density 61

must change abruptly whenever the road behind is 62

empty” [p. 282]. Based on the analysis of concrete ex- 63

amples, Daganzo further finds that “the cars at the end 64

of the queue move back and the behavior spreads to 65

the remaining vehicles in the queue ... from the back to 66

the front!” [p. 283]. Further on, new arrivals of vehicles 67

would “compress a queue from behind” [p. 283]. 68

3. Insufficient representation of acceleration processes 69

and driver characteristics: according to the “relax- 70

ation” mechanism for the velocity distribution as- 71

sumed in the gas-kinetic traffic model by Prigogine 72

et al. [17], the “desired speed distribution is a property 73

of the road and not the drivers, as noted by Paveri- 74

Fontana (1975)” [p. 280]. However, “Unlike molecules, 75

vehicles have personalities (e.g., aggressive and timid) 76

that remain unchanged by motion” [p. 279], and mod- 77

els should make sure “that interactions do not change 78

the ‘personality’ (agressive/timid) of any car” [p. 280]. 79

Therefore, “a slow car should be virtually unaffected 80

by its interaction with faster cars passing it (or queue- 81

ing behind it) ...” [p. 280]. 82

A further criticism concerns the propagation speeds of 83

perturbations in the traffic flow, predicted by second- 84

order traffic models, which will be addressed after we have 85

replied to the above, well-taken points: 86

1. The lack of anisotropy is a consequence of gradient ex- 87

pansions and can be avoided by non-local macroscopic 88

traffic models [10], such as the gas-kinetic-based traffic 89

model (GKT model) [18,19]. 90

2. Non-local traffic models can represent sharp shock 91

fronts well, as has been demonstrated for the GKT 92

model [20]. They are also capable of avoiding negative 93

vehicle velocities, if properly specified [20]. For exam- 94

ple, the speed variance θ appearing in some macro- 95

scopic traffic models, in particular in the “pressure 96

term” (see below) must vanish, whenever the average 97

velocity V vanishes. This can be reached by a rela- 98

tionship of the form θ(ρ, V ) = α(ρ)V 2 with a suitable, 99

density-dependent function α(ρ) ≥ 0 [18,19]. 100

3. The personality of drivers can be represented by multi- 101

class traffic models [19,21,22]. Moreover, the unrealis- 102

tic acceleration-behavior implied by Prigogine’s gas- 103

kinetic traffic model [17] has been overcome by the 104
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gas-kinetic model by Paveri-Fontana [23] and its gen-1

eralizations to different driver-vehicle classes [19,21]. In2

these models, it is not the velocity distribution which3

relaxes to a desired velocity distribution (which would4

imply discontinuous velocity jumps at a certain rate).5

Rather they describe a continuous adaptation of indi-6

vidual vehicle velocities to their desired speeds.7

Let us now turn to the discussion of the “characteristic8

speeds”. Characteristic speeds relate to the eigenvalues of9

hyperbolic partial differential equations. They determine10

the solutions for given initial and boundary conditions, in11

particular which locations influence the solution at other12

locations at a given time [24,25] (see Appendix A). The13

characteristic speeds are also important for the stabil-14

ity of numerical solution schemes for partial differential15

equations [26].16

What implications does this have for macroscopic traf-17

fic models based on systems of hyperbolic partial dif-18

ferential equations with source terms? In his “Requiem19

for second-order fluid approximations of traffic flow” [11],20

Daganzo argues that “high-order models always exhibit21

one characteristic speed greater than the macroscopic fluid22

velocity... This is highly undesirable because it means that23

the future conditions of a traffic element are, in part, de-24

termined by what is happening ... BEHIND IT! ... it is a25

manifestation of the erroneous cause and effect relation-26

ship between current and future variables that is at the27

heart of all high-order models” [p. 281].28

Is this violation of causality a result of crude ap-29

proximations underlying second-order macroscopic traf-30

fic models? Or could the assumption of circular bound-31

ary conditions explain an influence from behind, even32

in the case where vehicle interactions are exclusively di-33

rected to the front? Or is the faster characteristic speed34

related to vehicle interactions at all? Until today, the prob-35

lem of characteristic speeds is puzzling, and it has stimu-36

lated many scientists to develop and investigate improved37

macroscopic traffic models [27–36]. Here, we restrict our38

discussion to the most prominent example: in their “Res-39

urrection of ‘second order’ models of traffic flow” [27], Aw40

and Rascle propose a new model with two characteris-41

tic speeds, one of which is smaller than and the other42

one equal to V , where V denotes the macroscopic vehicle43

speed. Details are discussed in Section 4.1. While, without44

any doubt, such an approach is interesting and worth pur-45

suing, we will address the question, whether it is necessary46

to overcome the problem pointed out by Daganzo. This47

issue must be analyzed very carefully in order to exclude48

misunderstandings and to avoid jumping to a conclusion.49

To provide a complete chain of arguments, the main text50

of this paper is supplemented by several appendices.51

3 Linear instability of macroscopic traffic52

models53

Let us start our analysis with the continuity equation (1)54

for the vehicle density ρ(x, t) and a macroscopic equation55

for the average velocity V (x, t) of the type derived at the56

end of Section 4.4.3 of reference [10]: assuming repulsive 57

vehicle interactions that depend on the vehicle distance 58

and vehicle speed, but (for simplicity) not on the relative 59

velocity, it reads 60

61

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= −1

ρ

∂P1(ρ, V )
∂ρ

∂ρ(x, t)
∂x

62

− 1
ρ

∂P2(ρ, V )
∂V

∂V (x, t)
∂x

+
Vo(ρ, V ) − V (x, t)

τ
. (5) 63

64

Herein, P1 and P2 are contributions to the “traffic pres- 65

sure”, and Vo(ρ, V ) is the “optimal velocity” function. 66

Our stability analysis starts with an initial state of 67

uniform vehicle density ρe. The related stationary and 68

homogeneous (i.e. time- and location-independent) solu- 69

tion is obtained by setting the partial derivatives ∂/∂t and 70

∂/∂x to zero. In this way, equation (5) yields the implicit 71

equation 72

Ve(ρe) = Vo

(
ρe, Ve(ρe)

)
(6)

for the equilibrium speed Ve(ρe). With this, we can define 73

the deviations 74

δρ(x, t) = ρ(x, t)− ρe and δV (x, t) = V (x, t)− Ve.
(7)

Inserting ρ(x, t) = ρe+δρ(x, t) and V (x, t) = Ve +δV (x, t) 75

into the continuity equation, performing Taylor approx- 76

imations, where necessary, and dropping all non-linear 77

terms because of the assumption of small deviations 78

δρ(x, t)/ρe � 1 and δV (x, t)/Ve � 1, we end up with 79

the following linearized equation: 80

∂ δρ(x, t)
∂t

+ Ve(ρe)
∂ δρ(x, t)

∂x
= −ρe

∂ δV (x, t)
∂x

. (8)

Analogously, the linerarized dynamical equation for the 81

average velocity becomes 82

83

∂ δV (x, t)
∂t

+ Ve
∂ δV (x, t)

∂x
= − 1

ρe

[
∂P1(ρe, Ve)

∂ρ

∂ δρ(x, t)
∂x

84

+
∂P2(ρe, Ve)

∂V

∂ δV (x, t)
∂x

]
+

1
τ

[
∂Vo(ρe, Ve)

∂ρ
δρ(x, t) 85

+
∂Vo(ρe, Ve)

∂V
δV (x, t) − δV (x, t)

]
. (9) 86

87

The terms on the right-hand side in the first square 88

bracket may be considered to describe dispersion and 89

interaction effects contributing to the “traffic pressure”, 90

while the terms in the second square bracket result from 91

the so-called relaxation term, i.e. the adaptation of the av- 92

erage velocity V (x, t) to some “optimal velocity” Vo(ρ, V ) 93

with a relaxation time τ . 94

As is shown in Appendix B, a linear stability analysis 95

of equations (8) and (9) leads to the characteristic poly- 96

nomial 97

98

(λ̃)2 + λ̃

[
iκ
ρe

∂P2

∂V
+

1
τ

(
1 − ∂Vo

∂V

)]
99

+ iκρe

(
− iκ

ρe

∂P1

∂ρ
+

1
τ

∂Vo

∂ρ

)
= 0. (10) 100

101
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It has the two solutions (eigenvalues)1

λ̃±(ρe, κ) = λ±(ρe, κ) − iω̃±(ρe, κ)

= − 1
2τ̂

− iκ
2ρe

∂P2

∂V
±
√
� ± i|�| (11)

with2

1
τ̂(ρe, κ)

=
1
τ

(
1 − ∂Vo

∂V

)
≥ 0, (12)

�(ρe, κ) =
1

4τ̂2
− κ2 ∂P1

∂ρ
− κ2

4ρe
2

(
∂P2

∂V

)2

, (13)

±|�(ρe, κ)| = −κρe

τ

dVo

dρ
+

κ

2ρeτ̂

∂P2

∂V
. (14)

Here, we have used the abbreviations3

λ̃ = λ − iω̃ and ω̃ = ω − κVe(ρe). (15)

As the square root contains a complex number, it is diffi-4

cult to see the sign of the real value λ of λ̃. However, we5

may apply the formula6

√
�± i|�| =

√
1
2

(√
�2 + �2 + �

)

± i

√
1
2

(√
�2 + �2 −�

)
, (16)

which is derived in Appendix C. From this and equa-7

tion (11), we get the following relationship for the real8

part of the eigenvalues λ̃±(ρe, κ):9

λ±(ρe, κ) = Re
(
λ̃±(ρe, κ)

)
= − 1

2τ̂
±
√

1
2

(√
�2+�2+�

)
.

(17)
The expression for the imaginary part gives10

−ω̃±(ρe, κ) = Im
(
λ̃±(ρe, κ)

)

= − κ

2ρe

∂P2

∂V
±
√

1
2

(√
�2 + �2 −�

)
.(18)

3.1 Derivation of the instability condition11

A transition from stable to unstable behavior, i.e. the12

change from negative to positive values of λ±(ρe, κ) oc-13

curs only for the eigenvalue λ̃+(ρe, κ), namely under the14

condition15

λ+(ρe, κ) = − 1
2τ̂

+

√
1
2

(√
�2 + �2 + �

)
= 0. (19)

This implies16

(
1

4τ̂2
− �

2

)2

=
1
4
(�2 + �2) (20)

and, therefore,17

1
16τ̂4

=
�

4τ̂2
+

�2

4
. (21)

Inserting the above definitions of � and �, we eventually 18

find 19

κ2

4τ̂2

[
∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2
]

=
1
4

(
−κρe

τ

∂Vo

∂ρ

+
κ

2ρeτ̂

∂P2

∂V

)2

. (22)

From this and definition (12), we can derive the following 20

condition for the instability threshold: 21

1
τ̂

√
∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2

= −ρe

τ

∂Vo

∂ρ
+

1
2ρeτ̂

∂P2

∂V
. (23)

Assuming the relationships ∂Vo(ρ)/∂ρ ≤ 0, ∂Vo/∂V ≤ 0, 22

and ∂P2/∂V ≤ 0, the condition for Re(λ̃+) > 0 becomes 23

ρe

∣
∣∣
∣
∂Vo

∂ρ

∣
∣∣
∣ >

⎡

⎣

√
∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2

+
1

2ρe

∣
∣∣
∣
∂P2

∂V

∣
∣∣
∣

⎤

⎦

×
(

1 +
∣
∣
∣
∣
∂Vo

∂V

∣
∣
∣
∣

)
. (24)

We notice that this instability condition is not fulfilled, if 24

the average velocity Vo(ρ, V ) changes little with the den- 25

sity ρ, which is typically the case for small densities and, in 26

many models, also for large ones. However, λ+(ρe, κ) may 27

be greater than zero at medium densities, where |dVe/dρ| 28

is large according to empirical observations. The related 29

instability mechanism is based on a reduction of the aver- 30

age velocity with increasing density. Due to the continuity 31

equation, this tends to cause a further compression (but 32

the “traffic pressure” terms P1 and P2 partially counteract 33

this re-inforcement mechanism). 34

As a consequence of the inequality (24), we can state 35

that the speed-dependence of the traffic pressure term P2 36

and the optimal velocity Vo tends to make traffic flow 37

more stable with respect to perturbations. The speed- 38

dependence also resolves problems related to the fact 39

that ∂P1/∂ρ may become negative in a certain density 40

range. This would imply a negative discriminant of the 41

square root, if the negative contribution ∂P1/∂ρ < 0 was 42

not compensated for by (∂P2/∂V )2/(4ρe
2) [10]. The case 43

∂P1/∂ρ < 0 could also cause negative accelerations and 44

speeds, particularly at the end of congestion areas, which 45

would not be realistic [11]. Again, the second pressure con- 46

tribution P2 can resolve the problem, if properly chosen. 47

3.2 Characteristic speeds, phase, and group velocities 48

When neglecting the relaxation term (i.e. in the limit 49

τ → ∞), the so-called characteristics may be imagined as 50

(parametrized) space-time lines, along which the solution 51

of a macroscopic traffic model based on partial differen- 52

tial equations does not change in time. In Appendix A, we 53

derive the characteristics of the linearlized equations (8) 54
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and (9). In the following, we will compare the charac-1

teristic speeds Cj(ρe) = Ve(ρe) + cj(ρe) given by equa-2

tion (66) with the phase velocities Ve(ρe) + ω̃±(ρe, κ)/κ3

and the group velocities Ve(ρe) + ∂ω̃±(ρe, κ)/∂κ result-4

ing from the above linear instability analysis. While the5

phase velocity describes the propagation of a single wave6

mode, the group velocity describes the propagation of a7

wave packet composed of waves with different wave num-8

bers κ (see Appendix D for details). The group velocity9

is usually considered to represent the speed of informa-10

tion propagation1. Due to dispersion effects, we may have11

∂ω̃±(ρe, κ)/∂κ 	= ω̃±(ρe, κ)/κ.12

Let us first study the situation in the limit τ → ∞ of13

arbitrarily slow adaptation to changed traffic conditions.14

Considering the definitions (12) to (14), we find 1/τ̂(κ) =15

0, |�(ρe, κ)| = 0, and16

�(ρe, κ) = −κ2 ∂P1

∂ρ
− κ2

4ρe
2

(
∂P2

∂V

)2

. (25)

For � ≤ 0, we have
√�2 + �2 = |�| = −� and, due to17

equations (17) and (18), we obtain18

λ± = 0 and ω̃± = − κ

2ρe

∣∣
∣
∣
∂P2

∂V

∣∣
∣
∣∓
√
|�(ρe, κ)|

(26)
in the limit τ → ∞. This implies19

∂ω̃±(ρe, κ)
∂κ

=
ω̃±(ρe, κ)

κ

= − 1
2ρe

∣
∣∣
∣
∂P2

∂V

∣
∣∣
∣∓
√

∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2

.

(27)

Therefore, group and phase velocity in the limit τ → ∞20

are the same. A comparison with equation (66) shows that21

they also agree with the characteristic speeds. This is ex-22

pected, because of λ± = 0, which means that the wave23

amplitudes do not grow or decay – they just propagate24

along the characteristics.25

For finite values of τ , which are typical for real traffic26

flows, the phase and group velocities may be different,27

and they also do not need to agree with the characteristic28

speeds, as we will see below: the group velocities, i.e. the29

propagation speeds of small perturbations, are given by30

Cl(ρe, κ) =
∂ωl(ρe, κ)

∂κ
= Ve(ρe) +

∂ω̃l(ρe, κ)
∂κ

= Ve(ρe) + cl(ρe, κ), (28)

as derived in Appendix D. Obviously, there are two group31

velocities C± = Ve + c±, which can be determined by32

differentiation of the expression for ω̃±(ρe, κ) given in33

equation (18):34

c±(ρe, κ) = +
1

2ρe

∂P2

∂V
∓ ∂

∂κ

√
1
2

(√
�2 + �2 −�

)
. (29)

1 A typical example is the modulation of electromagnetic
waves used to transfer information via radio.

Considering ∂P2/∂V ≤ 0 and 35

1
2

(√
�2 + �2 −�

)
=

1
2

(√
�2 + �2 + �

)
−�

=
(

λ± +
1
2τ̂

)2

−�, (30)

which is implied by equations (17) and (18), we may also 36

write 37

c±(ρe, κ) = − 1
2ρe

∣
∣
∣
∣
∂P2

∂V

∣
∣
∣
∣∓

∂

∂κ

√(
λ± +

1
2τ̂

)2

−�. (31)

Taking into account equation (13), this is generally not 38

the same as ω̃±(ρe, κ)/κ, i.e. the phase velocities differ. 39

Interestingly enough, however, at the stability threshold 40

given by λ+ = 0, we find 41

c+(ρe, κ) = − 1
2ρe

∣
∣
∣∣
∂P2

∂V

∣
∣
∣∣−

∂

∂κ

√
1

4τ̂2
−�

= − 1
2ρe

∣
∣
∣∣
∂P2

∂V

∣
∣
∣∣−
√

∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2

. (32)

At the stability threshold we furthermore have λ− = 42

−1/τ̂ . Inserting this into equation (31) reveals 43

c−(ρe, κ) = − 1
2ρe

∣∣
∣
∣
∂P2

∂V

∣∣
∣
∣+

∂

∂κ

√
1

4τ̂2
−�

= − 1
2ρe

∣∣
∣
∣
∂P2

∂V

∣∣
∣
∣+

√
∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2

. (33)

The same expressions are found for the phase velocities. A 44

comparison with equation (66) shows that they also agree 45

with the characteristic speeds. Note that c+ is smaller 46

than zero. However, we have c− ≤ 0 (corresponding to 47

characteristic speeds slower than the average vehicle ve- 48

locity or equal to it) only if 49

√
∂P1

∂ρ
+

1
4ρe

2

(
∂P2

∂V

)2

≤ 1
2ρe

∣
∣
∣
∣
∂P2

∂V

∣
∣
∣
∣ (34)

or 50

0 ≤ −∂P1

∂ρ
≤ 1

4ρe
2

(
∂P2

∂V

)2

. (35)

4 Discussion 51

For the discussion of our results regarding the character- 52

istic speeds, let us study two particular models first, the 53

Payne model [15,16] and the Aw-Rascle model [27]. 54

4.1 Characteristic speeds in the Aw-Rascle model 55

The model proposed by Aw and Rascle [27] corresponds 56

to equations (1) and (5) with τ → ∞, 57

∂P1(ρ, V )
∂ρ

= 0 and
∂P2(ρ, V )

∂V
= −γρ(x, t)γ+1 ≤ 0,

(36)
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see reference [10]. γ is a positive constant. This implies1

1/τ̂ = 0, �(κ) = −κ2(∂P2/∂V )2/(4ρe
2) < 0 and |�(κ)| =2

0. Therefore, equation (29) implies3

c±(ρe, κ) = − 1
2ρe

∣
∣∣
∣
∂P2

∂V

∣
∣∣
∣∓

∂

∂κ

√
1
2

(|�| − �)

= − 1
2ρe

∣
∣
∣
∣
∂P2

∂V

∣
∣
∣
∣∓

1
2ρe

∣
∣
∣
∣
∂P2

∂V

∣
∣
∣
∣ . (37)

This leads to c+ = −γρ(x, t)γ and c− = 0, correspond-4

ing to the characteristic speeds V − γρ(x, t)γ and V , in5

agreement with Aw’s and Rascle’s calculations [27]. That6

is, their model does not have a characteristic speed faster7

than the average vehicle speed, which elegantly avoids the8

problem raised by Daganzo [11].9

However, is it really necessary to exclude the existence10

of a characteristic speed faster than the vehicle speeds? In11

order to address this problem, we will now study Payne’s12

macroscopic traffic model, which has received most of the13

criticism. We do this primarily for the sake of illustra-14

tion, while we are well aware of the weaknesses of this15

model (like the possibility of backward moving vehicles at16

upstream jam fronts for certain initial conditions). There-17

fore, the authors of this paper generally prefer the use of18

non-local macroscopic traffic models [10], but this is not19

the issue to be discussed, here.20

4.2 Payne’s traffic model21

Payne’s macroscopic traffic model [15,16] has a solely22

density-dependent optimal velocity23

Vo(ρ, V ) = Ve(ρ) (38)

and the pressure gradients24

∂P1(ρ, V )
∂ρ

=
1
2τ

∣
∣
∣
∣
dVe(ρ)

dρ

∣
∣
∣
∣ ≥ 0,

∂P2(ρ, V )
∂V

= 0. (39)

This simplifies the instability condition (24) considerably,25

and we get26

ρe

∣∣
∣
∣
dVe(ρe)

dρ

∣∣
∣
∣ >

1
2ρeτ

. (40)

Traffic flow becomes unstable, if the equilibrium velocity27

Ve(ρ) decreases too rapidly with an increase in the density28

ρ, and greater relaxation times τ tend to imply larger29

instability regimes. For the characteristic speeds at the30

instability threshold, with ρe|dVe/dρ| = 1/(2ρeτ) we find31

c±(ρe) = ∓
√

∂P1

∂ρ
= ∓
√

1
2τ

∣∣
∣
∣
dVe(ρe)

dρ

∣∣
∣
∣ = ∓ρe

∣∣
∣
∣
dVe(ρe)

dρ

∣∣
∣
∣ .

(41)
Clearly, c−(ρ) is non-negative, i.e. the related characteris-32

tic speed Ve(ρ) + c−(ρ) tends to be larger than the av-33

erage vehicle speed Ve(ρ). Nevertheless, by demanding34

Ve(ρ) + c−(ρ) ≤ V 0, e.g. by assuming a linear speed-35

density function36

Ve(ρ) = V 0

(
1 − ρ

ρjam

)
, (42)

one could still reach that the characteristic speed Ve(ρ) + 37

c−(ρ) lies within the variability of the vehicle speeds. In 38

fact, we have c± = 0 whenever the vehicle speed cannot 39

vary, namely at density zero and at maximum density, 40

where ρe|dVe(ρe)/dρ| = 0. However, do we need to im- 41

pose such conditions on the characteristic speed and the 42

speed-density relationship? This shall be addressed in the 43

following and in Section 5. 44

In connection with this question, it is interesting to 45

note that, according to equations (33) and (41), the group 46

velocity c+ corresponding to the solution with the unsta- 47

ble eigenvalue λ+ is negative with respect to the average 48

velocity Ve. In contrast, propagation at the positive speed 49

c− with respect to the average velocity Ve is related with 50

an eigenmode that decays quickly, basically at the rate at 51

which the vehicle speeds adjust. Therefore, the forwardly 52

propagating mode cannot emerge by itself. It could only be 53

produced by a particular specification of the initial condi- 54

tion, enforcing a finite amplitude of the forwardly moving 55

mode. We will come back to this in Section 5. 56

It is noteworthy that already Whitham performed a 57

thorough analysis of the speeds characterizing the traffic 58

dynamics in what is known as the Payne model today (see 59

Ref. [14], Chaps. 3 and 10). He showed that the linearized 60

partial differential equations (8) and (9), when specified 61

in accordance with equations (38) and (39), can be cast 62

into the equation 63

64

∂δρ(x, t)
∂t

+
(

Ve(ρ) + ρ
dVe(ρ)

dρ

)
∂δρ(x, t)

∂x
= 65

− τ

(
∂

∂t
+
[
Ve(ρ) + c+(ρ)

] ∂

∂x

)
66

×
(

∂

∂t
+
[
Ve(ρ) + c−(ρ)

] ∂

∂x

)
δρ(x, t). (43) 67

68

Whitham was perfectly aware of the fact that the char- 69

acteristic speed Ve(ρ) + c−(ρ) was faster than the average 70

vehicle velocity Ve(ρ), but not at all worried about this. 71

His perception was that all three velocities were meaning- 72

ful, and that the kinematic speed Ve(ρ) + ρ dVe/dρ would 73

dominate in the limit of small values of τ (which implies 74

stable vehicle flows). However, the open problem is still, 75

how a characteristic speed Ve(ρ) + c−(ρ) > Ve(ρ) can be 76

interpreted, without violating causality. 77

4.3 Characteristic speeds vs. vehicle speeds 78

In physical systems, it is not necessarily surprising to find 79

characteristic speeds faster than the average speed. Let 80

us illustrate this for the example of sound propagation. 81

In one spatial dimension, this is described by the continu- 82

ity equation (1) in combination with the one-dimensional 83

velocity equation 84

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= −1

ρ

∂P(ρ)
∂x

. (44)

These so-called Euler equations [37] can be considered 85

to model frictionless fluid or gas flows in one dimension. 86
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Compared to the velocity equation (5), we have dropped1

the relaxation term [Ve(ρ) − V ]/τ . Therefore, we do not2

have an equilibrium velocity-density relation Ve(ρ), now.3

In order to determine the solution of the above equa-4

tions, one can derive linearized equations for the case of5

small deviations δρ(x, t) = ρ(x, t) − ρe and δV (x, t) =6

V (x, t) − Ve from the stationary and homogeneous solu-7

tion ρ(x, t) = ρe and V (x, t) = Ve = 0. The quantity ρe8

corresponds to the average density of the fluid or gas.9

Inserting (7) into equations (1) and (44) and neglecting10

non-linear terms in the small deviations δρ, δV results in11

∂δρ(x, t)
∂t

+ Ve
∂δρ(x, t)

∂x
= −ρe

∂δV (x, t)
∂x

(45)

and12

∂δV (x, t)
∂t

+ Ve
∂δV (x, t)

∂x
= − 1

ρe

dP(ρe)
dρ

∂δρ(x, t)
∂x

. (46)

Considering Ve = 0, deriving equation (45) with respect13

to t, and equation (46) with respect to x yields14

∂2δρ(x, t)
∂t2

+ ρe
∂2δV (x, t)

∂t ∂x
= 0 (47)

and15

∂2δV (x, t)
∂x ∂t

= − 1
ρe

dP(ρe)
dρ

∂2δρ(x, t)
∂x2

. (48)

Inserting equation (48) into equation (47) finally gives the16

so-called wave equation17

∂2δρ(x, t)
∂t2

− ĉ2 ∂2δρ(x, t)
∂x2

= 0, (49)

which is well-known from one-dimensional sound propa-18

gation. The constant19

ĉ =

√
dP(ρe)

dρ
, (50)

corresponds to the speed of sound. In order to determine20

the spatio-temporal solution of equation (49), we rewrite21

this equation, inspired by the relationship (a2 − b2) =22

(a + b)(a − b):23

(
∂

∂t
+ ĉ

∂

∂x

)(
∂

∂t
− ĉ

∂

∂x

)
δρ(x, t) = 0. (51)

According to this equation, perturbations propagate back-24

ward and forward at the speed ±ĉ, although the average25

speed is V = 0. However, for gases we may assume an ap-26

proximate pressure law of the form P = ρθ0 [37], where θ027

is the velocity variance of gas molecules. Hence, the speed28

of sound is given by ĉ =
√

θ0, i.e. by the standard devia-29

tion of velocities. As a consequence, the speed of sound can30

actually be propagated by the mobility of gas molecules.31

In a similar way, we can understand characteristic32

speeds faster than the average vehicle speed in the macro-33

scopic model of Phillips [38] or Kühne [8], Kerner and34

Konhäuser [39], and Lee et al. [40]. Their pressure func- 35

tions are also given by the formula “density times veloc- 36

ity variance”. Therefore, the faster characteristic speed of 37

these macroscopic traffic models is expected to lie within 38

the range of individual vehicle speeds2. 39

As we have seen above, the situation is generally differ- 40

ent for Payne’s model. However, it is illustrative to note 41

that Vo(ρ) + c+(ρ) may become negative, even when all 42

vehicles move forward. That is, it is possible to have char- 43

acteristic speeds outside of the range of vehicle speeds: 44

according to equations (41) and (15), the slower charac- 45

teristic speed at the instability threshold is 46

47

Ve(ρ) + c+(ρ) = Ve(ρ) − ρ

∣
∣
∣
∣
dVe(ρ)

dρ

∣
∣
∣
∣ 48

= Ve(ρ) + ρ
dVe(ρ)

dρ
=

dQe(ρ)
dρ

. (52) 49

50

Since Qe(ρ) = ρVe(ρ) represents the “fundamental dia- 51

gram”, dQe(ρ)/dρ describes the negative speed of kine- 52

matic waves in the congested regime [14]. This does not 53

constitute any theoretical inconsistency, even if Ve(ρe) + 54

c+(ρ) < 0. In fact, we all know situations involving nega- 55

tive group velocities from dissolving congestion fronts, e.g. 56

when a traffic light turns green: there, the negative propa- 57

gation speed just results from the fact that the congestion 58

front moves backward, whenever vehicles leave a congested 59

area with some delay. Hence, the negative characteristic 60

speed does not describe the speed of cars. It reflects the 61

propagation of gaps rather than vehicles. 62

Therefore, could we have a similar mechanism that 63

generates characteristic speeds faster than the vehicle 64

speeds? If vehicles would react to their leaders with a neg- 65

ative delay, this would in fact be the case, but it would 66

violate causality. Therefore, all possible explanations for 67

characteristic speeds faster than the vehicle speeds con- 68

sidered so far have failed to resolve the problem. However, 69

the problem may still be a result of the approximations 70

underlying second-order macroscopic traffic models. As we 71

have indicated before, the gradient expansion required to 72

derive them implies some degree of backward interactions. 73

Therefore, it is conceivable that following vehicles would 74

cause their leaders to accelerate, even beyond their desired 75

speed V 0. 76

If this would be the explanation of a characteristic 77

speed faster than the average speed V or free speed V 0, 78

we should not observe it in microscopic traffic models 79

with forward interactions only. Therefore, we will now de- 80

termine the characteristic speeds of the optimal velocity 81

model [9]. This car-following is chosen, because the Payne 82

model can be considered as a macroscopic approximation 83

of it (see [10] and references therein). Besides, we will com- 84

pare the instability conditions of both models. 85

2 Note that the existence of perturbations in the traffic flow
always implies a variation of the vehicle speeds.
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5 Linear instability and characteristic speeds1

of the optimal velocity model2

We have seen that macroscopic traffic models behave un-3

stable with respect to small perturbations in a certain den-4

sity range, where the average velocity changes too rapidly5

with the density. The same is true for many car-following6

models. As an example, we will shortly discuss the dy-7

namic behavior of the optimal velocity model. While its8

stability has been already studied in the past [9], we will9

focus here on the characteristic speeds, in order to show10

that characteristic speeds greater than the average veloc-11

ity are not an artifact of macroscopic traffic models.12

According to the optimal velocity model, the change13

of the speed vi(t) of vehicle i is given by14

dvi

dt
=

vo

(
di(t)
)− vi(t)
τ

(53)

and the temporal change of the distance di(t) = xi−1(t)−15

xi(t) to the leading vehicle i − 1 is determined by16

ddi

dt
= vi−1(t) − vi(t). (54)

In the above equations, the distance-dependent function17

vo(di) is called the optimal velocity function and τ is again18

the relaxation time for adjustments of the speed.19

Appendix E sketches the linear stability analysis of the20

optimal velocity model. In the following, we will focus on21

the analysis of the group velocity c± with respect to the22

average velocity vo(de), i.e. the velocity at which perturba-23

tions are expected to propagate. Relative to the average24

motion of vehicles with speed ve(de), the characteristic25

speeds are26

c±(de, k) =
∂ω̃±(de, κ)

∂κ
=

L

2π

∂ω̃±(de, k)
∂k

= ∓ L

2π

∂

∂k

√
1
2

(√
�2 + �2 −�

)
. (55)

This can be derived analogously to equation (29), using27

equation (16) and κ = 2πk/L. According to equation (31)28

and due to the series expansion cos(x) ≈ 1 − x2/2, at29

the instability threshold with λ+ = 0 and dvo(de)/dd =30

1/(2τ), we obtain with equation (105)31

c±(de, k) = ∓ L

2π

∂

∂k

√(
1
2τ

)2

−�

= ∓ L

2π

∂

∂k

√
1
τ

dvo(de)
dd

[
1 − cos(2πk/N)

]

≈ ∓ L

2π

∂

∂k

√
1
τ

dvo(de)
dd

1
2

(
2πk

N

)2

= ∓ L

N

√
1
2τ

dvo(de)
dd

= ∓de

√
1
2τ

dvo(de)
dd

(56)

= ∓de

√(
dvo(de)

dd

)2

= ∓de
dvo(de)

dd
. (57)

It is remarkable that the group velocity of the optimal ve- 32

locity model can again exceed the average vehicle velocity 33

vo(de), namely by an amount c−(de) = de dvo(de)/de > 0. 34

Moreover, it can be shown that the instability thresholds 35

and the related characteristic speeds are the same as for 36

the Payne model (see Appendix F). This confirms that the 37

Payne model may be viewed as macroscopic approxima- 38

tion of the optimal velocity model (see [10] and references 39

therein). In view of these results, it is hard to argue that a 40

characteristic speed faster than the vehicle speeds consti- 41

tutes primarily a theoretical inconsistency of certain kinds 42

of macroscopic traffic models. Quite unexpectedly, it also 43

occurs for microscopic traffic models that, according to 44

computer simulations, behave reasonably well. 45

Therefore, the approximations underlying the Payne 46

model cannot be the problem for the existence of a char- 47

acteristic speed faster than the vehicle speeds. However, 48

it is interesting to note that the larger group velocity 49

vo(de)+ c−(de) is related to a negative real part λ− of the 50

eigenvalue λ̃−. According to equation (29), the fast charac- 51

teristic speed Ve(ρe)+ c−(ρe) of macroscopic second-order 52

models is related to a negative eigenvalue λ−(ρe) as well, 53

see equation (17). Therefore, the related eigenmode decays 54

quickly, and it will be hard to observe in reality. In particu- 55

lar, the faster propagating mode may not emerge by itself. 56

A closer analysis shows that both, for the optimal velocity 57

model and the Payne model, λ− is of the order −1/τ , i.e. 58

related to the relaxation time τ of vehicles. We will see 59

that this observation is highly relevant for understanding 60

perturbations that move faster than the vehicles do. 61

After all, does the fast characteristic speed really con- 62

stitute a theoretical inconsistency? Not so, if we can find 63

initial conditions, for which a following car accelerates or 64

decelerates earlier than the leading car does, although the 65

leader does not react to the follower. In fact, such initial 66

condition can be constructed: Figure 1 shows the result of 67

a computer simulation with N vehicles on a circular road 68

of length L. We assume that all vehicles have the distance 69

d = de = L/N initially. Moreover, all vehicles, with the 70

exception of 10 subsequent vehicles, are assumed to have 71

the initial speed vo(de). Furthermore, the speed of the last 72

of the 10 vehicles is set to 0 (or v0), the speed of the first 73

one to vo(de). The speeds of the vehicles in between are 74

determined by linear interpolation. For this scenario, it is 75

quite natural that the last of the 10 vehicles accelerates 76

(or decelerates) first, since it experiences the largest devi- 77

ation of its actual velocity vi(0) from the optimal velocity 78

vo(de). However, as this earlier acceleration (or decelera- 79

tion) is not interaction-induced, it does not violate causal- 80

ity. The large characteristic speed in macroscopic traffic 81

models can be understood in a similar way. 82

6 Summary, conclusions, and outlook 83

In this paper, we have started with a discussion of 84

Daganzo’s sharp criticism of second-order macroscopic 85

traffic flow models [11]. We have argued that most of 86

the deficiencies identified by Daganzo were fully justified, 87
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Fig. 1. (Color online) Simulation result of the optimal velocity
model with vo(d) = v0

{
tanh[(d − l)/s0 − 1.2] + tanh(1.2)

}
/2,

v0 = 115 km/h, s0 = 50 m, and l = 4 m. We have chosen
a particular initial condition, where all vehicles started with
a distance de = 200 m to their respective leader, but some
vehicles i had a speed vi(0) < vo(de) in the beginning. As a
consequence, these vehicles adjusted their speeds to the opti-
mal velocity. The relevant point here is that followers reach the
optimal velocity (or certain fractions of it) earlier than their
respective leaders. That is, for the particular initial condition
chosen here, the perturbation in the speeds propagates faster
than the vehicle speeds. This effect, however, does not violate
causality, as the earlier acceleration of upstream cars is not
triggered by interactions with followers – it just results from
the relaxation term. Therefore, the perturbation disappears on
a time scale that is determined by the relaxation time τ = 1 s,
as predicted by the real part of the eigenvalue λ̃−, see equa-
tion (104). The relaxation takes longer for larger values of τ .
In the limit τ → ∞, the perturbation does not decay anymore,
but according to equation (104), we then have c± → 0. There-
fore, despite its fast speed, the perturbation did not overtake
the first car upstream of the initial perturbation in our simula-
tions, when the parameters were chosen in a way that avoided
accidents. This confirms the validity of the causality principle.

but could be overcome in the course of time by improved1

macroscopic traffic models, particularly by non-local2

multi-class models. However, the issue of characteristic3

speeds faster than the average vehicle speed was still an4

open, controversial problem, as it seems to violate causal-5

ity. In order to study it, we have performed a linear insta-6

bility analysis of a generalized macroscopic traffic model,7

which took into account speed-dependencies of the opti-8

mal velocity and the traffic pressure terms. Such speed-9

dependencies occur, for example, in Aw’s and Rascle’s10

model [27]. They result when realistic vehicle interactions11

are considered, and when the possibility of accidents and12

negative vehicle speeds shall be avoided [10,41]. Require-13

ments for reasonable models seem to be14

∂Vo(ρ, V )
∂ρ

≤ 0,
∂Vo(ρ, V )

∂V
≤ 0,

∂P2(ρ, V )
∂V

≤ 0,

(58)

and 15

∂P1(ρ, V )
∂ρ

+
1

4ρ2

(
∂P2(ρ, V )

∂V

)2

> 0. (59)

These conditions are, for example, fulfilled by the 16

gas-kinetic-based traffic model (GKT model), see 17

reference [43]. 18

Our main attention was dedicated to the characteris- 19

tic speeds (or group velocities) rather than the instabil- 20

ity thresholds. In the following, we summarize the main 21

results: 22

1. While the characteristic speeds may generally differ 23

from the group and the phase velocities, in the limit 24

τ → ∞ of a vanishing source (relaxation) term, they 25

are all the same. Therefore, using a different definition 26

of propagation speeds does not resolve the problem of 27

characteristic speeds faster than the (average or max- 28

imum) vehicle speed. 29

2. Velocity-dependent pressure terms tend to reduce the 30

characteristic speeds, see equation (31). This is best 31

illustrated by Aw’s and Rascle’s model, where the fast 32

characteristic agrees with the average vehicle speed. 33

3. Most macroscopic traffic models have a characteris- 34

tic speed faster than the average velocity, but it may 35

still be within the variability of the vehicle speeds, see 36

equation (42) and Section 4.3. 37

4. In some models like the Payne model, the characteris- 38

tic speeds can move slower than the slowest vehicle and 39

faster than the fastest vehicle. The first case is related 40

to delayed acceleration maneuvers at jam fronts and 41

related to gap propagation during jam dissolution, but 42

the second case remained a mystery for a long time. 43

5. The faster characteristic speed is related with a neg- 44

ative real part of the eigenvalue. This causes a quick 45

decay of the corresponding eigenmode, basically at the 46

rate, at which the vehicle speed is adjusted. Therefore, 47

this eigenmode will not emerge by itself (see Sect. 3.2). 48

6. If the faster characteristic speed were a result of inter- 49

actions with following vehicles in a circular road ge- 50

ometry (where following vehicles influence the down- 51

stream flow as well), the fast eigenmode should decay 52

with the length L of the circular road, not with the 53

relaxation time τ . Therefore, periodic boundary con- 54

ditions cannot be responsible for a characteristic speed 55

faster than the vehicle speeds. This has also been ver- 56

ified with simulations3. 57

7. A characteristic speed faster than the vehicle speeds 58

cannot be explained as a result of the approxima- 59

tions underlying macroscopic second-order models, as 60

it is also found for microscopic car-following models, 61

in which vehicle interactions are forwardly directed 62

and velocities are restricted to a range between zero 63

and some maximum speed. For the macroscopic Payne 64

model and the optimal velocity model, we have shown 65

a correspondence not only of the instability thresholds, 66

3 Simulations for open boundary conditions basically yield
the same results as for periodic boundary conditions, given
the system (in terms of the road length L) is sufficiently large.
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but also of formulas for the group velocities (see Ap-1

pendix F).2

8. Assuming particular initial conditions, characteristic3

speeds faster than the average vehicle speed could be4

demonstrated to exist in computer simulations, where5

followers accelerate (or decelerate) before their leaders6

do (see Fig. 1). As these acceleration (or deceleration)7

processes are induced by artificial initial perturbations8

rather than by vehicle interactions, this does not imply9

a violation of causality.10

Given these findings, we conclude that characteristic11

speeds faster than the average speed of vehicles do not con-12

stitute a theoretical inconsistency of traffic models and do13

not need to be “healed” by particularly constructed traffic14

models4. From our point of view, the problem is that char-15

acteristic speeds are hard to imagine. In fact, there is no16

direct correspondence to particle or vehicle velocities (see17

Sect. 4.3 and Appendix D). The group velocity is nothing18

more than a matter of phase relations between oscillations19

of successive vehicles in an eigenmode, and the interpre-20

tation as speed of information transmission is sometimes21

misleading.22

D.H. would like to thank for the inspiring discussions with23

the participants of the Workshop on “Multiscale Problems and24

Models in Traffic Flow” organized by Michel Rascle and Chris-25

tian Schmeiser at the Wolfgang Pauli Institute in Vienna from26

May 5–9, 2008, with partial support by the CNRS.27

Author contributions: D.H. performed the analytical calcula-28

tions and proposed the initial conditions for the simulation29

presented in Figure 1. A.J. generated the computational re-30

sults and prepared the figure.31

Appendix A: Hyperbolic sets of partial differ-32

ential equations and characteristic speeds33

Let us rewrite equations (8) and (9) in the form of a system34

of linear partial differential equations. With35

S(δρ, δV ) =
1
τ

[
∂Vo(ρe, Ve)

∂ρ
δρ(x, t)

+
∂Vo(ρe, Ve)

∂V
δV (x, t) − δV (x, t)

]
(60)

we obtain36

∂

∂t

(
δρ(x, t)

δV (x, t)

)

+

(
A11 A12

A21 A22

)
∂

∂x

(
δρ(x, t)

δV (x, t)

)

=

(
0

S

)

(61)

4 Of course, this does not speak against models of the Aw-
Rascle type.

with 37

A =

(
A11 A12

A21 A22

)

=

⎛

⎝
Ve(ρe) ρe

1
ρe

∂P1(ρe,Ve)
∂ρ Ve(ρe)+ 1

ρe

∂P2(ρe,Ve)
∂V

⎞

⎠.

(62)
As will be shown below, the solution of this system of par- 38

tial differential equations is given by the initial condition 39

δρ(x, 0) and δV (x, 0). The solution procedure consists ba- 40

sically of two steps: on the one hand, we must determine 41

the so-called characteristics, and on the other hand, we 42

must solve a set of ordinary differential equations to find 43

the solutions along them (see Ref. [42] and footnote 3): 44

With u(x, t) =
(
δρ(x, t), δV (x, t)

)′ and S = (0, S)′ (where 45

the prime indicates a transposed, i.e. a column vector), we 46

can rewrite equation (61) as 47

∂u(x, t)
∂t

+ A
∂u(x, t)

∂x
= S = B u(x, t). (63)

The source term can be rewritten as S = B u(x, t) with 48

B =

(
B11 B12

B21 B22

)

=

⎛

⎝
0 0

1
τ

∂Vo(ρe,Ve)
∂ρ

1
τ

(
∂Vo(ρe,Ve)

∂V − 1
)

⎞

⎠ .

(64)
Now, let Cj denote the eigenvalues of the matrix A. The 49

values of Cj = Ve(ρe)+ cj satisfying det(A−Cj1) = 0 are 50

given by the characteristic polynomial 51

cj
2 − cj

ρe

∂P2

∂V
− ∂P1

∂ρ
= 0, (65)

which results in 52

cj =
1

2ρe

∂P2

∂V
±
√

1
4ρe

2

(
∂P2

∂V

)2

+
∂P1

∂ρ
. (66)

Furthermore, let zj be the eigenvectors related with the 53

eigenvalues Cj = Ve + cj, i.e. 54

Azj = Cjzj . (67)

Finally, let R = (Rij) be the matrix containing the eigen- 55

vectors zj as their jth column, and y(x, t) = R−1u(x, t) or 56

u(x, t) = R y(x, t). Then, inserting this into equation (63) 57

and multiplying the result with the inverse matrix R−1 of 58

R yields 59

∂yj(x, t)
∂t

+Cj
∂yj(x, t)

∂x
= (R−1S)j = (R−1B R y)j . (68)

For S = 0 (corresponding to the limiting case τ → ∞), 60

we have 61

yj(x, t) = yj(x − Cjt, 0), (69)

which means that the solution does not change in time 62

along the characteristics xj(t) = Cjt. The quantities Cj 63
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are called the characteristic speeds5. If u(x, 0) is the ini-1

tial condition, the solution of the set of partial differential2

equations is3

ui(x, t) =
∑

j

Rijyj(x − Cjt, 0) (70)

with y(x, 0) = R−1u(x, 0)6. Therefore, the spatio-4

temporal solution u(x, t) is fully determined by the initial5

condition. In other words, the future state of the system is6

given by its previous state, and the principle of causality7

should be valid.8

Appendix B: Stability analysis for macroscopic9

traffic models10

In order to understand the dynamics of traffic flows, it is11

important to find out whether and under what conditions12

variations in the traffic flow can grow and eventually cause13

traffic congestion. For this, it is useful to make the solution14

ansatz15

δρ(x, t) = δρ0 exp
(
iκx + (λ − iω)t

)
= δρ0 eλt ei(κx−ωt),

δV (x, t) = δV0 exp
(
iκx + (λ − iω)t

)
= δV0 eλt ei(κx−ωt).

(71)

Because of exp(iκx) = cos(κx) + i sin(κx) (see Ap-16

pendix C), ansatz (71) assumes that the perturbation of17

the stationary and homogeneous traffic situation can be18

represented as a periodic function with the wave num-19

ber κ and wavelength 2π/κ. The wave frequency of equa-20

tion (71) is ω, while δρ0 exp(λt) and δV0 exp(λt) are the21

amplitudes at time t. That is, if the “growth rate” λ is22

greater than zero, even small perturbations will eventually23

grow, which can give rise to “phantom traffic jams”. For24

λ < 0, however, the initial perturbation will be damped25

out and the stationary and homogeneous solutions will be26

re-established, i.e. it is stable with respect to small per-27

turbations.28

Below we will see that, for each specification of κ and29

the average density ρe, there exist two solutions l ∈ {+,−}30

with the frequencies ωl(κ) and the growth rates λl(κ). All31

the corresponding specifications of ansatz (71) are solu-32

tions of the linearized partial differential equations. The33

5 The idea behind the characteristics is to introduce a param-
eterization t(s1, s2), x(s1, s2), which is defined by ∂t/∂sj = 1
and ∂x/∂sj = Cj . Then, one can rewrite equation (68) as

∂yj

∂sj
=

∂yj(x, t)

∂t

∂t

∂sj
+

∂yj(x, t)

∂x

∂x

∂sj
= (R−1B R y)j .

In the generalized coordinates s1 and s2, the partial differential
equations in x and t we were starting with, turn into ordinary
differential equations. These are much easier to solve.

6 Note that formulas (69) and (70) only apply to the limiting
case τ → ∞, where the relaxation term of the macroscopic
traffic model vanishes.

same applies to their superpositions. The general solution 34

for an arbitrary initial perturbation is of the form 35

δρ(x, t) =
∑

l∈{+,−}

∫
dκ δρl

0(κ) exp
(
iκx +
[
λl(κ) − iωl(κ)

]
t
)
,

δV (x, t) =
∑

l∈{+,−}

∫
dκ δV l

0 (κ) exp
(
iκx +
[
λl(κ) − iωl(κ)

]
t
)
.

(72)

In order to find the possible κ-dependent wave numbers ω 36

and growth rates λ, we insert ansatz (71) into the lin- 37

earized macroscopic traffic equations (8) and (9) and use 38

the relationship i2 = −1. The result can represented as an 39

eigenvalue problem: 40

(
M11 M12

M21 M22

)(
δρ0

δV0

)
!=
(

0
0

)
, (73)

where 41

M11 = −λ̃, (74)
M12 = −iκρe, (75)

M21 = − iκ
ρe

∂P1

∂ρ
+

1
τ

∂Vo

dρ
, (76)

M22 = −λ̃ − iκ
ρe

∂P2

∂V
+

1
τ

∂Vo

∂V
− 1

τ
(77)

and 42

λ̃ = λ − iω̃ with ω̃ = ω − κVe(ρe). (78)

Equation (73) is fulfilled only for certain values of λ̃(κ), 43

the so-called “eigenvalues”. These depend on the average 44

density ρe and solve the characteristic polynomial of sec- 45

ond order in λ̃, which is obtained by determining the de- 46

terminant 47

det(M) = M11M22 − M21M12 (79)

of the matrix M and requiring that it becomes zero. The 48

corresponding characteristic polynomial is given by equa- 49

tion (10). 50

Appendix C: Derivation of formula (19) 51

Remember that a complex number 52

z = � + i� = reiϕ = r cos(ϕ) + ir sin(ϕ) (80)

can be represented in two-dimensional space with coordi- 53

nates � = Re(z) = r cos(ϕ) and � = Im(z) = r sin(ϕ), 54

respectively, called the real part and the imaginary part. 55

The absolute value is given as 56

r =
√
�2 + �2 =

√
(� + i�)(� − i�) =

√
z z = |z|, (81)
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where z = �− i� = re−iϕ is the conjugate complex num-1

ber. The angle ϕ is determined by2

tan(ϕ) =
sin(ϕ)
cos(ϕ)

=
�
� =

Im(z)
Re(z)

, (82)

and the exponential functions is defined as for real num-3

bers by the infinite series expansion4

exp(z) = ez =
∞∑

l=0

zl

l!
, (83)

where l! = l · (l − 1) . . . 2 · 1. Therefore, the relationships5

for exponential functions apply also to the case of complex6

numbers, i.e. the product of two complex numbers z1 =7

�1 + i�1 = r1eiϕ1 and z2 = �2 + i�2 = r2eiϕ2 is given by8

z1z2 =
(�1�2 −�1�2

)
+ i
(�1�2 + �1�2

)

= r1eiϕ1r2eiϕ2 = r1r2ei(ϕ1+ϕ2)

= r1r2 cos(ϕ1 + ϕ2) + ir1r2 sin(ϕ1 + ϕ2). (84)

As the real and imaginary part are linearly independent of9

each other, this implies �1�2 −�1�2 = r1r2 cos(ϕ1 + ϕ2)10

and �1�2 + �1�2 = r1r2 sin(ϕ1 + ϕ2). The inverse of a11

complex number is given by12

1
z

=
1

reiϕ
=

e−iϕ

r
. (85)

The imaginary unit i has the property i2 = −1 and may,13

therefore, be written as i =
√−1 = eiπ/2.14

The square of complex numbers15

z = re±iϕ = r
[
cos(ϕ) ± i sin(ϕ)

]
, (86)

can, on the one hand, be written as16

z2 = r2
[
cos2(ϕ) ± 2i cos(ϕ) sin(ϕ) − sin2(ϕ)

]
. (87)

On the other hand, using the well-known law ex1 · ex2 =17

ex1+x2 for the exponential function, we find the alternative18

representation19

z2 = r2
(
e±iϕ
)2 = r2e±i2ϕ = r2

[
cos(2ϕ)± i sin(2ϕ)]. (88)

Comparing the real parts and using the trigonometric re-20

lationship sin2(x) + cos2(x) = 1, we find21

cos(2ϕ) = 1−2 sin2(ϕ) = 1−2
[
1−cos2(ϕ)

]
= 2 cos2(ϕ)−1,

(89)
from which we can derive the trigonometric formulas22

sin2(ϕ/2) =
1
2
[
1 − cos(ϕ)

]
(90)

and23

cos2(ϕ/2) =
1
2
[
1 + cos(ϕ)

]
. (91)

Therefore, the square root of a complex number is given24

by25

√
z =

√
re±iϕ/2 =

√
r
[
cos(ϕ/2) ± i sin(ϕ/2)

]

=

√
1
2
[
r + r cos(ϕ)

]± i

√
1
2
[
r − r cos(ϕ)

]
. (92)

Considering � = r cos(ϕ), � = r sin(ϕ), and �2+�2 = r2, 26

we end up with the desired equation 27

√
�± i|�|=

√
1
2

(√
�2 + �2 + �

)
± i

√
1
2

(√
�2 + �2 −�

)
.

(93)

Appendix D: Meaning of the group velocity 28

Let us start with the representation (72) of the general 29

solution of the linearized system of equations, focusing 30

(for simplicity) on the case λl(κ) = 0 and assuming a 31

“Gaussian wave packet” with 32

δρl
0(κ) =

e−(κ−κ0)
2/(2θ)

√
2πθ

. (94)

Via the linear Taylor approximation ωl(κ) = ωl(κ0) + 33

Cl Δκ with Cl = dωl(κ0)/dκ and Δκ = (κ − κ0), from 34

equation (72) we get 35

36

δρ(x, t) =
∑

l∈{+,−}

∞∫

−∞
dκ

e−(κ−κ0)
2/(2θ)

√
2πθ

ei[κx−ωl(κ)t]
37

=
∑

l∈{+,−}
ei[κ0x−ωl(κ0)t]

∞∫

−∞
dΔκ

e−(Δκ)2/(2θ)

√
2πθ

ei[Δκx−Clt]
38

=
∑

l∈{+,−}
ei[κ0x−ωl(κ0)t]

∞∫

−∞
dΔκ

e−[Δκ−iθ(x−Clt)]
2/(2θ)

√
2πθ

︸ ︷︷ ︸
=1

39

× e−θ(x−Clt)
2/2

40

=
∑

l∈{+,−}
ei[κ0x−ωl(κ0)t]e−θ(x−Clt)

2/2. (95) 41

42

While the single waves of frequency ωl(κ) move with the 43

“phase velocity” x/t = ωl(κ)/κ, it turns out that their 44

superposition behaves like a wave with frequency ωl(κ0) 45

and speed x/t = ωl(κ0)/κ0. However, the wave packet 46

or, more exactly speaking, its amplitude e−θ(x−Clt)
2/2 is 47

moving with the group velocity x/t = Cl = dωl(κ)/dκ. 48

Note that the case Cl > ωl(κ0)/κ0, in which the group 49

velocity is greater than the phase velocity (wave velocity), 50

is possible. It is called “anomalous dispersion”. 51

Appendix E: Linear stability analysis 52

of the optimal velocity model 53

For a linear stability analysis of the optimal velocity 54

model, we imagine the situation of N vehicles i distributed 55

over a circular road of length L. This allows us to assume 56

periodic boundary conditions. The stationary solution for 57
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this case is given by dvi/dt = 0 and ddi/dt = 0, which1

implies2

di(t) = de = L/N = const.
vi−1(t) = vi(t) = vo(de) = const. (96)

We are now interested how the deviations from this solu-3

tion, i.e. the variables4

δdi(t) = di(t) − de ,

δvi(t) = vi(t) − vo(de), (97)

develop in time, assuming that the initial deviations are5

small, i.e. δdi(0) � de and δvi(0) � ve(de). For this, we6

linearize the model equations (53) and (54) around the7

stationary and homogeneous solution. This results in8

dδvi(t)
dt

=
1
τ

(
dvo(de)

dd
δdi(t) − δvi(t)

)
,

dδdi(t)
dt

= δvi−1(t) − δvi(t). (98)

For the analysis of stability, we use the solution ansatz9

δvj(t) = δv0 ei2πjk/N+λ̃t = δv0 eijκL/N+λ̃t,

δdj(t) = δd0 ei2πjk/N+λ̃t = δd0 eijκL/N+λ̃t, (99)

where κ = 2πk/L is the so-called wave number, which is10

inversely proportional to the wave length 2π/κ = L/k.11

Note that, due to the assumed periodic boundary condi-12

tions, possible wavelength are fractions L/k of the length13

L or the circular road. The shortest wave length is given14

by the average vehicle distance de = L/N , i.e. k ∈15

{1, 2, . . . , N}. Summing up the functions (99) over these16

values of k results in the Fourier representation of δvj(t)17

and δdj(t):18

δvj(t) =
N∑

k=1

δvkei2πjk/N+λ̃t,

δdj(t) =
N∑

k=1

δdkei2πjk/N+λ̃t. (100)

The parameters δvk and δdk are determined by the initial19

conditions of all vehicles j. λ̃ = λ − iω̃ are the so-called20

eigenvalues, whose real part λ describes an exponential21

growth (if λ > 0) or decay (if λ < 0), and whose imag-22

inary part ω̃ reflects oscillation frequencies. δd0 and δv023

denote oscillation amplitudes. Inserting this into (98) and24

dividing by ei2πjk/N+λ̃t, we finally obtain25

λ̃δv0 =
1
τ

(
dvo(de)

dd
δd0 − δv0

)
, (101)

λ̃δd0 = δv0e−i2πk/N − δv0 = δv0

(
e−i2πk/N − 1

)
. (102)

Multiplying equation (101) with λ̃ and inserting equa-26

tion (102) for λ̃ δd0 in the square brackets gives, after27

division by δv0, the characteristic polynomial in the eigen- 28

values λ̃, namely 29

λ̃2 +
1
τ

λ̃ − 1
τ

dvo(de)
dd

(
e−i2πk/N − 1

)
= 0. (103)

The solutions λ̃(de, k) of this polynomial are the eigenval- 30

ues. They read 31

λ̃±(de, k) = − 1
2τ

±
√

1
4τ2

+
1
τ

dvo(de)
dd

(
e−i2πk/N − 1

)
.

(104)
Again, the square root contains a complex number, which 32

makes it difficult to see the sign of the real value λ± of λ̃±. 33

However, considering e±iϕ = cos(ϕ)± i sin(ϕ) and defining 34

the real part 35

� =
1

4τ2
− 1

τ

dvo(de)
dd

[
1 − cos(2πk/N)

]
(105)

of the expression under the root and its imaginary part 36

� = − sin(2πk/N)
τ

dvo(de)
dd

, (106)

we can again apply the useful formula (16). From this we 37

can conclude that λ = Re(λ̃) = 0 if 38

1
16τ4

=
�

4τ2
+

�2

4
, (107)

see equation (21). Inserting equations (105) and (106), we 39

find 40

sin2(2πk/N)
4τ2

(
dvo(d)

dd

)2

=
1

4τ3

dvo(d)
dd

[
1 − cos(2πk/N)

]
,

(108)
which finally results in the condition 41

dvo(de)
dd

=
1 − cos(2πk/N)
τ sin2(2πk/N)

k→0=
1
2τ

. (109)

The limit 2πk/N → 0 follows from cos(ϕ) ≈ 1−ϕ2/2 and 42

sin(ϕ) ≈ ϕ in the limit of small wave numbers κ = 2πk/L, 43

i.e. large wave lengths 2π/κ = L/k. 44

It can be demonstrated by numerical analyses that 45

dvo(de)
dd

>
1
2τ

(110)

constitutes the instability condition of the optimal veloc- 46

ity model (53) [9]. In other words, if the velocity changes 47

too strongly with the distance, small variations of the vehi- 48

cle distance or speed will grow and finally cause emergent 49

waves, i.e. the formation of one or several traffic jams. 50

Since the origin of such a breakdown can be infinitesi- 51

mally small, these traffic jams seem to have no origin. 52

In such situations, one speaks of “phantom traffic jams”. 53

A closer analysis for realistic speed-distance relationships 54

vo(d) shows that traffic tends to be unstable at medium 55

densities ρ = 1/d, while it tends to be stable at small and 56

large densities (where the speed does not change much 57

with a variation in the distance). Only a sufficient reduc- 58

tion in the adaptation time τ can avoid an instability of 59

traffic flow, while large delays in the velocity adjustment 60

lead to growing perturbations of traffic flow. 61
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Appendix F: Correspondence of the optimal1

velocity model with the macroscopic Payne2

model3

As the Payne model has been claimed to be a macro-4

scopic approximation of the optimal velocity model (see5

Ref. [10] and citations therein), it is interesting to com-6

pare the instability conditions and characteristic speeds of7

both models. Therefore, let us make the identifications8

ρ =
1
d

, Ve(ρ) = vo

(
1
ρ

)
. (111)

Then, with the chain rule and the quotient rule of Calculus9

we can derive10

∣
∣
∣
∣
dVe(ρ)

dρ

∣
∣
∣
∣ = −dVe(ρ)

dρ
= −dvo(1/ρ)

dρ
= −dvo(d)

dd

dd

dρ

=
dvo(d)

dd
· 1
ρ2

. (112)

Inserting this into equation (40) gives11

ρe

∣
∣
∣∣
dVe

dρ

∣
∣
∣∣ =

1
ρe

dvo(d)
dd

>
1

2ρeτ
(113)

or12

dvo(de)
dd

>
1
2τ

and ρe

∣∣
∣
∣
dVe(ρe)

dρ

∣∣
∣
∣ = de

dvo(de)
dd

,

(114)
where de = 1/ρe. This shows the agreement of the insta-13

bility conditions (40) and (110) and of the characteristic14

speeds (41) and (57) at the instability threshold.15
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