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Abstract. This contribution presents a derivation of the steady-state distribution of velocities and distances
of driven particles on a onedimensional periodic ring, using a Fokker-Planck formalism. We will compare
two different situations: (i) symmetrical interaction forces fulfilling Newton’s law of “actio = reactio”
and (ii) asymmetric, forwardly directed interactions as, for example in vehicular traffic. Surprisingly, the
steady-state velocity and distance distributions for asymmetric interactions and driving terms agree with
the equilibrium distributions of classical many-particle systems with symmetrical interactions, if the system
is large enough. This analytical result is confirmed by computer simulations and establishes the possibility
of approximating the steady state statistics in driven many-particle systems by Hamiltonian systems. Our
finding is also useful to understand the various departure time distributions of queueing systems as a
possible effect of interactions among the elements in the respective queue [Physica A 363, 62 (2006)].

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.10.Gg
Stochastic analysis methods – 47.70.-n Reactive and radiative flows – 89.40.-a Transportation

1 Introduction

Classical many-particle systems such as ideal gases are
characterized by the applicability of Newton’s laws of me-
chanics, which particularly includes the law of “actio =
reactio”. With these basic laws, many fundamental prop-
erties can be derived, like the conservation of momen-
tum and energy. Such many-particle systems are known
as Hamiltonian systems. Even statistical physics and ther-
modynamics are based on these relationships.

But what would happen if the law of “actio = reac-
tio” would not hold and the particle interactions would
not fulfil momentum and energy conservation? Examples
of such a system include granular flows [1] and driven
Brownian particles, where many results for stationary dis-
tributions are available. However, interactions are taken
into account only implicitely by a nonlinear friction func-
tion [2], or by a symmetric interaction potential [3]. In
other systems such as vehicular traffic one would like to
model the non-symmetric interactions between the par-
ticles (vehicles) explicitely. Would it still be possible to
find (analytical) formulas for the stationary distributions
of velocities and distances? In fact, although a statistical
physics formalism for driven systems would be very desire-
able to have, there are still not many results available. The

a e-mail: dhelbing@ethz.ch

existing results mainly concern the study of traffic-jam
related condensation phenomena by means of the mas-
ter equation [4] or the Fokker-Planck equation [5]. The
related considerations have assumed certain arrival and
departure rates to or from any forming vehicle clusters,
but they have not explicitly represented the acceleration
or deceleration dynamics of interacting vehicles in space
and time, which is typically described in terms of micro-
scopic traffic models [6]. In the following, we will take this
dynamics of interacting particles into account.

In fact, we are seeking for a method to treat dissi-
pative driven many-particle systems in a similar way as
Hamiltonian systems. The idea is that the dissipation in
the system would be balanced by the effect of the driving
force, at least in a closed (circular) system and in the limit
of large particle numbers. This idea has been used to eval-
uate the vehicle interaction potential [7–9], but questioned
to be applicable to systems with asymmetric interactions.
Moreover, the method has been restricted to a very limited
number of potentials U(s), as the normalization factor of
the distance distribution could, in general, not be analyt-
ically determined.

For onedimensional classical Hamiltonian gases, many
results have been previously derived in the framework of
Random Matrix Theory [10,11]. According to this, if cou-
pled to a thermal bath, the velocity distribution of gas
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particles is Gaussian and the distance distribution g(s)
can be written as

g(s) ∝ e−[U(s)/θ+Bs], (1)

where U(s) is the interaction potential, θ is the veloc-
ity variance (i.e. proportional to the temperature), and B
depends on the particle density. It would be very de-
sireable to have a similar result for driven many-particle
systems, as this would allow one to determine the inter-
action potential and interaction force among driven par-
ticles in the presence of fluctuations. Our hope is that,
in the stationary state, the dissipative interactions and
the driving term would somehow cancel out on aver-
age, so that the behavior would actually correspond to
a Hamiltonian-like system [12–14], as it was presupposed
in references [8,9,11,15,16].

In fact, in this paper we will show that this idea is cor-
rect for onedimensional systems in the limit of large par-
ticle numbers. Even forwardly directed dissipative driven
many-particle systems behave in a Hamiltonian-like way,
if they are far enough away from dynamic instabilities.

Our paper is structured as follows: In the next section,
we lay out the theoretical basis and derive the form of
the onedimensional Hamiltonian as well as the conditions,
under which it provides a correct description. In Section 3
we formulate the predictions in a form that can be tested
by simulating representative many-particle systems. The
actual simulations and their results are presented in Sec-
tion 4, after which we conclude with a discussion.

2 Driven many-particle model with dissipative
interactions

In the onedimensional driven-many particle system we dis-
cuss, point-like particles i change their location xi(t) in
time t according to the equation of motion

dxi

dt
= vi(t), (2)

and their temporal velocity change dvi/dt is assumed to
be given by the following stochastic acceleration equation:

dvi

dt
=

v0 − vi

τ
+ f(si) − γf(si+1) + ξi(t). (3)

Here, v0 denotes the “free” or “desired” velocity and ξi(t)
represents a white noise fluctuation term satisfying

〈ξi(t)〉 = 0,

〈ξi(t)ξj(t′)〉 = Dδijδ(t − t′), (4)

where D is a velocity-diffusion constant. The particle mass
mi has been set to 1, and f(si) ≤ 0 describes a repulsive
interaction force, which depends on the particle distance
si(t) = xi−1(t)−xi(t) where the particle index i increases
in upstream direction. The term γf(si+1) with 0 ≤ γ ≤ 1

allows to study different cases: γ = 1 corresponds to the
classical case of symmetrical interactions in forward and
backward direction, fulfilling the physical law of “actio =
reactio”. γ = 0 corresponds to the case of forwardly di-
rected interactions only, which is, for example, applicable
to vehicles.

2.1 Fokker-Planck equation for velocities and distances

In this section, we will determine the statistical distri-
butions of the velocities and distances of the N parti-
cles i. Rather than describing the dynamics by the above
stochastic differential equation (Langevin equation), we
will delineate it by an equivalent Fokker-Planck equa-
tion [17]. With the definitions

s = (s1, . . . , sN ) , v = (v1, . . . , vN ), (5)

W (si, si+1) = v0 + τ [f(si) − γf(si+1)],

and

P = P (s1, . . . , sN , v1, . . . , vN , t) = P (s,v, t), (6)

the Fokker-Planck equation reads [17]

∂P

∂t
=

N∑

i=1

{
− ∂

∂si
[(vi−1 − vi)︸ ︷︷ ︸

=dsi/dt

P ]

− ∂

∂vi

[(
W (si, si+1) − vi

τ

)

︸ ︷︷ ︸
=dvi/dt−ξi

P

]
+

D

2
∂2P

∂vi
2

}
, (7)

where we assume periodic boundary conditions vk+N (t) =
vk(t) and sk+N (t) = sk(t) for a onedimensional ring of
length L with N particles on it. In the following, we will
show that the ansatz

P (s,v) = P (s1, . . . , sN , v1, . . . , vN )

= N exp
[
−
∑
j

(
U(sj)

θ + Bsj + (vj−V )2

2θ

) ] (8)

is a stationary solution of the above Fokker-Planck equa-
tion, if the parameters V and θ are properly chosen, and
if the so-called interaction potential U is defined by

U(si) =
1 + γ

2

si∫

0

ds f(s). (9)

In equation (8),

N =

⎡

⎣
∞∫

0

dNs

∞∫

−∞
dNv P (s,v)

⎤

⎦
−1

(10)
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is the normalization constant, and the Lagrange parame-
ter B is required to meet the constraint

∑
i si = L deter-

mining the actual particle density. Moreover,

V (t) = 〈vi〉 =

∞∫

0

dNs

∞∫

−∞
dNv viP (s,v, t) (11)

is the average velocity and

θ(t) = 〈(vi − V )2〉 =

∞∫

0

dNs

∞∫

−∞
dNv (vi − V )2P (s,v, t)

(12)
the velocity variance. Notice that the stochastic model (3)
and the corresponding Fokker-Planck equation (7) do not
exclude negative velocities which is reflected by the in-
tegration limits in equations (11), (10), and (12). For all
practical cases, however, the condition θ � V 2 is valid
which practically is compatible with non-negative veloci-
ties, cf. ansatz (8).

In the following, we will restrict our investigation to
the stationary case with dV/dt = 0 and dθ/dt = 0, which
presupposes that the deterministic part of equation (3)
fulfils the linear stability condition

(1 − γ)2
df(L/N)

ds
<

1 + γ

2τ2
(13)

(see Ref. [18] and the appendix for the method to de-
termine this formula). Otherwise, dynamic patterns such
as stop-and-go waves may emerge from the dissipative
interactions of driven particles [6]. Notice that in the
Hamiltonian case, γ = 1, the stability condition is always
satisfied. Furthermore, the factorization assumption (8)
requires that all variables si and vi are statistically in-
dependent from each other. According to numerical sim-
ulation results, this is only the case if (1 − γ)2df/ds is
considerably smaller than the right-hand side of (13), i.e.,
the system is far from the instability point.

With the ansatz (8), the three terms of the Fokker-
Planck equation (7) can be written as

−
∑

i

∂

∂si
[(vi−1−vi)P ] =

∑

i

(vi−1−vi)
[
1
θ

dU(si)
dsi

+B

]
P

=
∑

i

(vi−1 − vi)
[
(1 + γ)f(si)

2θ
+ B

]
P, (14)

−
∑

i

∂

∂vi

(
W (si, si+1) − vi

τ
P

)
=

∑

i

P

τ
−
∑

i

W (si, si+1) − vi

τ

[
− (vi − V )

θ

]
P, (15)

and

∑

i

D

2
∂2P

∂vi
2

=
D

2

∑

i

[
−1

θ
+
(
−vi − V

θ

)2
]

P. (16)

We will now use the fact that
∑

i

gi±1P =
∑

i

giP (17)

for any i-dependent variable gi, i.e. indices can be shifted
because of the assumed periodic boundary conditions. In
this way we find

∂P

∂t
=

1
θ

∑

i

1 + γ

2
(vi−1 − vi)f(si)P + N

(
P

τ
− DP

2θ

)

+
1
θ

∑

i

[
v0 − vi

τ
+ f(si) − γf(si+1)

]
(vi − V )P

+
D

2θ2

∑

i

(vi − V )2P. (18)

Remarkably, this equation does not depend on the
Lagrange parameter B anymore, which is needed to adjust
to the particle density.

Note that ansatz (8) can only be a stationary solution
with ∂P/∂t = 0, if

1
θ

=
2

Dτ
. (19)

This relationship corresponds to the fluctuation-
dissipation theorem of equilibrium thermodynamics.
We point to the fact that this analogy breaks down
if the factorization assumption (8) is no longer valid.
Later on, we will show that this is the case if the
system is not sufficiently far away from the regime of
linear instability. Applying relation (19) also to the
last term of equation (18) and using the decompositions
(vi−1−vi) = (vi−1−V )−(vi−V ) and (v0−vi) = (v0−V )−
(vi − V ), we find

∂P

∂t
=
∑

i

1 − γ

2θ
(vi−1 + vi − 2V )f(si)P

+
1
θ

∑

i

(v0 − V )(vi − V )
τ

P, (20)

and, with the factorization assumption (8) and shifting
indices again according to (17), we obtain

∂P

∂t
=

1 − γ

θ

∑

i

[
f(si) +

v0 − V

τ

] (
vi − V

)
P. (21)

We will distinguish the following cases:

1. In the case of a classical many-particle system with
momentum conservation (γ = 1) and energy conserva-
tion, i.e. no dissipation (τ → ∞), we find ∂P/∂t = 0,
i.e. ansatz (8) is an exact stationary solution of the
Fokker-Planck equation (7).
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2. In the case of forwardly directed interactions as in ve-
hicle traffic (γ = 0) and of vanishing correlations, we
have

lim
N→∞

1
N

∑

i

(vi − V )
[
f(si) +

v0 − V

τ

]
=

[
lim

N→∞
1
N

∑

i

(vi − V )

]

×
{

lim
N→∞

1
N

∑

i

[
f(si) +

v0 − V

τ

]}
. (22)

The first factor vanishes because of

V = lim
N→∞

1
N

∑

i

vi , (23)

but the second factor disappears as well: dividing equa-
tion (3) by N and summing up over i gives

1
N

∑

i

dvi

dt
=

1
N

∑

i

v0 − vi

τ
+

1
N

∑

i

f(si)

+
1
N

∑

i

ξi(t). (24)

In the limit N → ∞ of large enough particle numbers
N , the left-hand side converges to dV/dt, while the
last term on the right-hand side converges to 0. In the
assumed stationary case with dV/dt = 0 and using
v0 − vi = (v0 − V ) − (vi − V ), this implies

0 = lim
N→∞

1
N

∑

i

[
v0 − vi

τ
+ f(si)

]

= lim
N→∞

1
N

∑

i

[
v0 − V

τ
+ f(si)

]
(25)

because of limN→∞ 1
N

∑
i vi = V = 1

N

∑
i V .

We conclude that the factorisation ansatz (8) satisfies the
Fokker-Planck equation (7) if either the momentum is con-
served (γ = 1), or if the single-particle gaps and velocities
are independent from each other. Note that, in order to
arrive at this conclusion, the special form (9) for the in-
teraction potential, particularly the prefactor (1+γ)/2, is
required.

2.2 Hamiltonian description

An alternative approach is the Hamiltonian description.
For this purpose, let us investigate the quasi-Hamiltonian

H = T + V =
∑

i

(vi − V )2

2
+
∑

i

U(si), (26)

where vi is fluctuating according to equation (3), so that
H is fluctuating as well. Nevertheless, one can derive the
following relations:

dH
dt

=
dT
dt

+
dV
dt

=
∑

i

(vi − V )
dvi

dt
+
∑

i

dU(si)
dsi

×
(

dsi

dxi

dxi

dt
+

dsi

dxi−1

dxi−1

dt

)

=
∑

i

(vi − V )
dvi

dt
+
∑

i

1 + γ

2
f(si)(vi−1 − vi)

=
∑

i

(vi − V )
(

v0 − vi

τ
+ f(si) − γf(si+1) + ξi(t)

)

+
∑

i

1 + γ

2
f(si)(vi−1 − vi)

=
∑

i

1 − γ

2
(vi + vi−1 − 2V )f(si)

+
∑

i

(v0 − V )(vi − V )
τ

−
∑

i

(vi − V )2

τ
+
∑

i

(vi − V )ξi(t). (27)

Notice that multiplicative stochastic expressions such as
vi(t)ξ(t) must be be understood according to the the
Stratonovich interpretation, which allows to apply the
normal rules of calculus [17]. Comparing the above ex-
pression with equation (20) shows that

∂P

∂t
=

P

θ

dH
dt

+
1
θ

∑

i

[
(vi − V )2

τ
− (vi − V )ξi(t)

]
P. (28)

Correspondingly, if the distribution P is stationary
(∂P/∂t = 0), we have

dH
dt

=
∑

i

[
(vi − V )ξi(t) −

(vi − V )2

τ

]

=
∑

i

(vi − V )
(

ξi(t) −
vi − V

τ

)
. (29)

In order to investigate under which conditions the
Hamiltonian is conserved in the statistical average, we will
calculate

〈
dH
dt

〉
for two different cases (where 〈...〉 denotes

the average over infinitely many realisations of the system
dynamics):

1. In a conservative system with no fluctuations (ξi(t) =
0 = D) and no dissipation (τ → ∞), we have dH/dt =
0, independently of whether the interactions are sym-
metric or forwardly directed.
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2. For many-particle systems with fluctuation terms and
dissipation, one can show

〈ξi(vi − V )〉 =
〈

1
2

d(vi − V )2

dt

〉
− v0 − V

τ
〈vi − V 〉

+
1
τ
〈(vi − V )2〉

−〈[f(si) − γf(si+1)](vi − V )〉

=
1
2

dθ

dt
− v0 − V

τ
(〈vi〉 − V ) +

θ

τ

−〈f(si) − γf(si+1)〉(〈vi〉 − V ). (30)

This can be found by multiplication of equation (3)
with (vi − V ) and calculation of the ensemble aver-
age, assuming the factorization ansatz (8). The first
term on the right-hand side vanishes in the stationary
state. The second and the fourth term vanish because
of 〈vi〉 = V . Therefore,

〈ξi(vi − V )〉 =
θ

τ
, (31)

and, together with equation (29), we arrive at
〈

dH
dt

〉
=

1
τ

(
Nθ −

∑

i

(vi − V )2
)

= 0 . (32)

That is, in the statistical average we have dH/dt = 0.
The same is expected for the average Hamiltonian per
particle, H1 = H/n of systems with many particles. In
fact, simulations show that H1 fluctuates with ampli-
tudes ∝ 1/

√
N , while the Hamiltonian H itself fluc-

tuates with amplitudes ∝
√

N , which is consistent
with equilibrium hydrodynamic systems. As a conse-
quence, stationary driven dissipative systems behave
Hamilton-like, even if the interactions are forwardly
directed and Newton’s law “actio = reactio” is vio-
lated. This is, why the Hamiltonian statistics

P (s,v) = N e−H/θ (33)

(the canonical distribution) is an approximate station-
ary solution of our driven dissipative many-particle
system. (It is approximate, because the factorization
assumption (8) holds only, if the system is far enough
away from instability points, i.e. if τ is sufficiently
small.) Note that the contribution

∑
i Bsi = BL in

equation (8) gives just a constant prefactor and can
be absorbed into the normalization factor.

In conclusion, the equilibrium solution (8) of conservative
many-particle systems is also a good approximation for
the steady-state solutions (∂P/∂t = 0) of driven many-
particle systems of kind (3) with asymmetrical interac-
tions, driving and dissipation effects, if the system is large
enough, i.e. N 
 1, and if correlations between gaps, be-
tween velocities, and between velocities and gaps are not
significant. (In the regime of linear instability and close
to it, correlations may be considerable, as is known from
stop-and-go waves. Furthermore, we expect that fluctua-
tions become essential for small systems).

3 Application to stochastic traffic models

In this section, we will formulate the results of the previous
section in a way that can be tested by means of simulating
specific models on a computer.

3.1 Single-particle distributions

The factorization (8) can be written in the form

P (s1, . . . , sN , v1, . . . , vN ) =
N∏

i=1

g(si)
N∏

j=1

h(vj), (34)

i.e., the statistics of the particles can be described by the
single-particle gap distribution function

g(s) = Ae−[U(s)/θ+Bs], (35)

and the single-particle velocity distribution

h(v) =
1√
2πθ

e−(v−V )2/(2θ). (36)

Here, A is a normalization constant, B a Lagrangian pa-
rameter ensuring the density constraint, V the average
velocity, and θ the velocity variance. With the exception
of θ, all quantities are dependent on the particle density ρ.

3.2 Gap distribution

The two constants A and B of the gap distribution (35)
are determined by the normalization condition

∞∫

0

ds g(s) = 1, (37)

and the constraint that the average gap is equal to the
inverse of the global density:

∞∫

0

ds s g(s) =
1
ρ
. (38)

Defining the integrals

I0(B) =

∞∫

0

ds exp
[
−
(

U(s)
θ

+ Bs

)]
,

I1(B) =

∞∫

0

ds s exp
[
−
(

U(s)
θ

+ Bs

)]
,

I2(B) =

∞∫

0

ds s2 exp
[
−
(

U(s)
θ

+ Bs

)]
,

we get

A =
1

I0(B)
. (39)
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For B, we find the transcendental equation

AI1(B) =
I1(B)
I0(B)

=
1
ρ
. (40)

Using Newton’s method with the initial guess B0 = ρ +
1/σs with σs defined in equation (44), one obtains for the
k-th iteration

Bk+1 = Bk +
I0(I1ρ − I0)
ρ(I2I0 − I2

1 )
, (41)

where the integrals on the right-hand side are evaluated at
B = Bk. It turns out that this method converges within
very few iterations, unless U(se) = U(1/ρ) 
 θ. In this
case, however, the second derivative U ′′(se) of the effective
potential (9) typically satisfies the condition

|U ′′(se)|
θ

=
(1 + γ)|f ′(se)|

Dτ

 ρ2 , (42)

allowing an asymptotic expansion of (35) that eventually
leads to a Gaussian gap distribution

g̃(s)|U ′′(se)|�ρ2 =
1√

2πσs

e(s−se)2/(2σ2
s) (43)

with
σ2

s =
Dτ

(1 + γ)f ′(se)
. (44)

According to numerical results, the ranges of applicability
of (41) and (43) (generally) overlap, allowing a fast and
robust solution.

3.3 Velocity distribution and kinetic energy

Equation (36) states that, regardless of the density, of the
potential, and of the directions of the interactions, the
single-particle velocity distribution is Gaussian. The ex-
pectation value is equal to the stationary velocity with-
out fluctuating terms. Furthermore, the velocity variance
satisfies an analog of the fluctuation-dissipation theorem
(19), i.e., the energy of the velocity fluctuations around
the stationary value V is given by

T =
1
2
〈
(vi − V )2

〉
=

Dτ

4
. (45)

We finally note that all the results of this section are valid
only under the condition that the factorisation ansatz (8)
holds sufficiently well. In the next chapter, we will show
that this requires the system to be far enough away from
instabilities (otherwise spatio-temporal patterns such as
stop-and-go waves may appear).

4 Results

In this section, we will show by means of computer sim-
ulations, that the main predictions (35), (36), and (45)

Table 1. Parameter values used in the simulations for the
stochastic OVM given by the equations (3), (47), and (48).

Parameter Value
Desired velocity v0 30m/s
Velocity relaxation time τ 0.2 s
Interaction length lint 20m
Shape parameter β 0.5
Symmetry parameter γ 0 and 1
Fluctuating force D 20m2/s3

Density ρ 12 /km and 30 /km

are valid if the system is in a regime that is far enough
away from any collective instability. In order to quantify
this condition, we conclude from (13) that the system be-
comes linearly unstable if the relaxation time τ exceeds
some critical value τc. Thus, τ controls the stability prop-
erties, which allows us to define the dimensionless reduced
control parameter

r =
τ

τc
. (46)

Note that r = 0 denotes maximum stability (no external
driving force or infinitely fast relaxation), while the linear
threshold is characterized by r = 1. In particular, in the
momentum-conserving case γ = 1, we have always r = 0.
The condition “far away from the instability point” can
be quantified by the condition r � 1.

4.1 Selected models

In order to obtain a specific model, the interaction force
of the stochastic differential equation (3) has to be speci-
fied. We will simulate two types of interaction forces that
are based on (i) the optimal-velocity model, and (ii) on a
power law.

4.1.1 Stochastic optimal-velocity model (sOVM)

In the stochastic optimal-velocity model (sOVM), the in-
teraction force f is given by [9]

fsOVM(s) =
VOVM(s) − v0

τ
, (47)

where we assume the optimal-velocity function

VOVM(s) =
v0

[
tanh

(
s

lint
− β

)
+ tanh(β)

]

1 + tanh(β)
. (48)

Table 1 summarizes the meaning of the model parameters
and the values used in the simulations. Notice that the
conventional optimal-velocity model of Bando et al. [19]
is obtained for the special case γ = 0 and D = 0 in the
equations (3) and (4), respectively.

The sOVM has the following properties: the expecta-
tion value of the velocity for stationary conditions is given
by

VsOVM(s) = v0 + (1 − γ)VOVM(s). (49)
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Furthermore, the effective potential (9) can be calculated
analytically, resulting in

UsOVM(s) = U0 ln
{

1 + exp
[
−2
(

s

lint
− β

)]}
, (50)

where the prefactor is given by

U0 =
(1 + γ)v0lint

2τ (1 + tanhβ)
. (51)

The dynamics of this model becomes linearly unstable if
the relaxation time exceeds the critical value τc given by

τc(ρ) =
1 + γ

2(1 − γ)2V ′
OVM(1/ρ)

, (52)

see equation (13). For the parameters specified in Table 1,
γ = 0, and ρ = 30/km, the critical value is given by
τc(γ = 0) = 1/(2V ′

OVM(1/ρ)) = 1.51 s. This corresponds
to r = 0.132, when the parameters of Table 1 are assumed.

4.1.2 Stochastic power law model (sPLM)

An alternative, more physics-oriented model assumes that
the interaction forces obey a power law [7,8]:

fsPLM(s) = −a0

(
lint

s

)δ

, (53)

which, together with (2) and (3), results in the stochastic
power-law model (sPLM). The associated effective poten-
tial (9) is given by

UsPLM(s) =
(1 + γ)a0l

δ
int

(δ − 1)sδ−1
, (54)

and the expectation value for the velocity is equal to

VsPLM(s) = v0 − (1 − γ)τa0

(
lint

s

)δ

. (55)

This model differs qualitatively from the stochastic OVM
in the following aspects:

– If γ < 1, the stationary velocity becomes zero for a
finite average gap se(V = 0) = [(1 − γ)τa0/v0]1/δ. In
contrast, the stationary velocity of the sOVM for any
γ > 0 is nonzero, even at maximum density, se = 0.

– The potential (54) of the stochastic power-law model
diverges for s → 0, while the potential (50) of the
sOVM remains finite. For the chosen parameters and
γ = 0, we have UsOVM(0) = U0 ln(2) = 1347 m2/s2.
Consequently, any car approaching a standing vehi-
cle with a velocity exceeding

√
2UsOVM(0) = 52m/s

will lead to a rear-end collision. This velocity decreases
with increasing values of τ , reaching 18.9 m/s at the
limit of linear stability. In contrast, no such collisions
are possible in the stochastic power-law model. Nev-
ertheless, this model can become linearly unstable as
well.

4.2 Computer simulations

We have simulated a closed ring road of length L = 9 km
for the sOVM, and L = 40 km for the sPLM. We have also
simulated larger systems resulting in no significant differ-
ences. We have started the simulations with deterministic
initial conditions si = 1/ρ, and vi = V (si), corresponding
to a single-particle distribution function

P1(s, v, 0) = δ

(
v − V

(1
ρ

))
δ

(
s − 1

ρ

)
, (56)

where δ(.) represents Dirac’s delta function. Since this ini-
tial condition does not correspond to a stationary solu-
tion, we have run the simulations for a transient time of
72 000 s, before recording the results for further 36 000 s.

For the numerical update, we have applied the explicit
scheme

vi(t + Δt) = vi(t) + ai(t)Δt + zt

√
DΔt, (57)

xi(t + Δt) = xi(t) +
[
vi(t) + vi(t + Δt)

2

]
Δt, (58)

where ai(t) denotes the deterministic part of the right-
hand side of equation (3), and zt ∼ N(0, 1) are indepen-
dent realizations of a Gaussian distributed quantity with
zero mean and unit variance.

The velocity update (57) corresponds to decomposing
the deterministic and stochastic parts of the accelerations.
While the deterministic part corresponds to an Euler up-
date, the stochastic part is a result of explicitely solving
the stochastic differential equation

dv
(s)
i

dt′
= ξi(t′)

for the initial conditions v
(s)
i (t) = 0 at time t′ = t. The so-

lutions v
(s)
i (t+Δt) =

√
DΔt zt are realizations of random-

walk trajectories, which are Gaussian distributed with ex-
pectation value zero, and variance DΔt.

Notice that, for sufficiently small update times, this
update scheme should converge (in the statistical sense)
to the true solutions of (2) and (3). In the simulations,
we have set Δt = 0.04 s. To verify the convergence, we
have also run some simulations with lower values of the
time step (down to Δt = 0.001 s) and found less than 1%
deviation.

4.3 Gap distribution

Figure 1 shows the simulated gap distributions for the
stochastic OVM for two densities and two values of the
symmetry parameter γ. For comparatively low densities
(Fig. 1a), both the predicted and the observed distribu-
tions are markedly asymmetric. Furthermore, the direc-
tion of interaction plays a role as well. For the limiting case
of a car-following model (γ = 0), the gap distribution is
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Fig. 1. (Color online) Stationary gap distributions for the
stochastic optimal velocity model (sOVM) with the parame-
ters specified in Table 1 on a ring road and densities (a) of
ρ = 12 veh km, and (b) of ρ = 30 veh km. Plotted are the sim-
ulated data (symbols), the theoretical distribution (35) (thick
solid line), and, for the higher density, the Gaussian approxi-
mations (43) (thin lines).

wider than in the symmetric (momentum-conserving) case
γ = 1. Generally, there is a good agreement between the
theoretical expressions and the data. The only exception is
the large-gap tail for symmetric forces at the lower density.
In contrast, for the car-following case γ = 0, even the tails
are reproduced correctly (within statistical fluctuations).
The same agreement has been found for the higher den-
sity, irrespective of the value of γ. This is remarkable since
additional assumptions have been necessary in Section 2
to derive the theoretical distributions for the car-following
case. Consequently, one would expect larger errors com-
pared to the isotropic case.

Now we investigate the influence of the densities on
the form of the gap distribution. Comparing Figure 1a
with Figure 1b, one may conclude that, when increas-
ing the density, the distributions become more and more
symmetric. Further simulations showed that the distri-
bution becomes significantly asymmetric if the single-
particle kinetic energy T = Dτ/4 exceeds the effective
potential energy U(1/ρ) by at last one order of magni-
tude. Specifically, for the situation of Figure 1, we have
T = 1 m2/s2 for all values of ρ and γ, while the effec-
tive potential energy corresponding to plot (a) is given

Table 2. Parameter values used in the simulations for the
stochastic power-law model (3) and (53).

Parameter Value
Desired velocity v0 30 m/s
Velocity relaxation time τ 2 s
Interaction distance lint 20 m
Acceleration a0 2m/s2

Interaction exponent δ 2
Symmetry parameter γ 0 and 1
Fluctuating force D 0.2 m2/s3

Density ρ 10 /km
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Fig. 2. (Color online) Stationary gap distributions for the
stochastic power-law model (sPLM) with the parameter and
simulation settings specified in Table 2.

by UsOVM = (1 + γ) 0.127 m2/s2 and that of plot (b) by
UsOVM = (1 + γ) 95.0 m2/s2.

For sufficiently high densities, when the standard devi-
ation of the gap distribution is much smaller than the aver-
age gap 1/ρ, the Gaussian assumption (43) should become
valid. To determine the range of validity, we plotted the
Gaussian approximation in the relevant Figure 1b, in ad-
dition to the general distribution (35). For the case γ = 1
corresponding to σ2

s = 1.21 m2, the Gaussian approx-
imation agrees nearly perfectly with the full theoretical
curve (the curves overlap with no visible difference). For
γ = 0 (σ2

s = 2.42 m2), however, a significant difference is
found, but the distribution (35) already displays a signif-
icant skewness for this case. Further simulations showed
that the Gaussian approximation is applicable whenever
the full distribution (35) is sufficiently symmetric.

In order to evaluate the robustness of the predictions
with respect to different model types, we have simulated
the gap distributions for the stochastic power-law model
as well. The results are shown in Figure 2. Apart from mi-
nor deviations at the large-gap tails, we found a remark-
able agreement between theory and simulation. Moreover,
the predicted distributions for the car-following case γ = 0
and the symmetric case γ = 1 are significantly different
both with respect to variance and shape. This supports
the particular specification (9) of the effective potential.
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Fig. 3. (Color online) Relaxation of the (initially δ-shaped)
gap distribution to its stationary distribution for the stochastic
power-law model with the parameters specified in Table 2. The
figure compares simulation results at different points in time
(symbols) with the theoretical stationary distribution (solid
line).

Finally, we looked closer at the relaxation dynamics of
the initially δ-correlated distributions, see equation (56),
towards the stationary distributions. A very slow relax-
ation could be a possible reason for the deviations found
sometimes at the large-distance tails of the gap distribu-
tions. In Figure 3, we display snapshots of the evolution of
the distribution for different simulation times. The results
show that the relaxation time is considerable, particularly
for low densities. Moreover, the relaxation process is par-
ticularly slow at the tails, so it may be a plausible reason
for the remaining deviations.

4.4 Velocity distribution

In contrast to the gap distributions, the predicted veloc-
ity distributions are always Gaussian. Moreover, the ve-
locity variance should satisfy the fluctuation-dissipation
theorem (19). As a consequence, the variance may neither
depend on the density nor on the direction of the interact-
ing forces. Figure 4 shows simulated velocity distributions
for the stochastic OVM at the higher density correspond-
ing to Figure 1b. One observes that, with the exception of
small but systematic deviations from the Gaussian shape
for the car-following case γ = 1, all theoretical predictions
are fulfilled. For the lower density ρ = 12 /km (not shown),
the agreement was nearly perfect for all values of γ.

In contrast to the gap distributions, the agreement of
the velocity distributions improves when going from the
car-following to the conservative case and when decreasing
the density. This can possibly be explained by the distance
from the instability point, see equation (13). For the den-
sities ρ = 12 /km and 30/km, the dimensionless distances
r = τc/τ from the instability point are given by r = 0.001
and 0.132, respectively, while we have r = 0 for the conser-
vative case. Obviously, the agreement increases with the
degree to which the requirement r � 1 is satisfied.
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Fig. 4. (Color online) Stationary velocity distribution for the
stochastic OVM with the parameters specified in Table 1.
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Fig. 5. (Color online) Stationary velocity distributions for
the stochastic power-law model with the parameters specified
in Table 2. The velocity distributions have been normalized
with respect to the theoretical expectation value V , see equa-
tion (55), and the variance (19).

In Figure 5, we have plotted the simulated distribu-
tions for the stochastic power-law model for different val-
ues of the density and the symmetry parameter γ. In each
simulation, we have normalized the distribution to the the-
oretical expectation value (55) and variance (19), so we
expect that all curves should collapse onto each other in
the ideal case. This collapse is, in fact, observed, thanks
to values of r below 0.12 for all cases.

Finally, we investigate the relaxation process from the
δ-correlated initial velocity distribution to the stationary
distribution. Figure 6 shows that there is a significant scale
separation for the relaxation times: while the typical ve-
locity relaxation time scale is of the order of seconds, it is
of the order of a hundred seconds for the gap distribution.
After 1 000 s, even the tails of the velocity distribution
are perfectly equilibrated, while for the gaps, this takes
longer by a factor of more than one hundred.

We conclude that, in contrast to the case of gap dis-
tributions, long relaxation times cannot explain possible
differences between the theoretical and simulated velocity
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Fig. 6. (Color online) Relaxation of the velocity distribution to
the Gaussian stationary distribution for the stochastic power-
law model with the parameters specified in Table 2. Initially,
all particles had the same gaps si = 1/ρ, and all velocities were
equal to the expectation value. The figure compares simulation
results at different points in time (symbols) with the theoretical
stationary distribution (solid line).

distributions, as noticeable in Figure 4. These will be ex-
plained in the following.

4.5 Kinetic energy and correlations

One of the crucial assumption in the derivation of the gap
and velocity distributions of Section 2 is the assumption
of zero correlations, which requires that the system is far
from any instability, i.e. r � 1. In classical thermody-
namic systems, it is well known and theoretically under-
stood [20] that the energy contained in the fluctuations
increases near a phase transition, resulting in “critical
opalescence” and other observable phenomena. The same
has been found in driven thermodynamic systems such as
Rayleigh-Bénard convection or electrohydrodynamic con-
vection [21] below the deterministic threshold, which will
be further discussed in Section 5.

It is therefore very interesting to investigate the
stochastic properties of our driven particle-systems as a
function of the distance from threshold, i.e., varying the
relaxation time from τ = 0 to τ = τc or, equivalently, the
control parameter from r = 0 to r = 1.

Figure 7 shows the single-particle kinetic energy of the
fluctuations as a function of the relaxation time for sev-
eral values of the directional parameter γ. The kinetic
energy has been normalized to the value (45) resulting
from the fluctuation-dissipation theorem (19). As in the
physical systems mentioned above, we found significantly
increased, so-called “critical fluctuations” near the linear
threshold, which is located at τc = 1.51 s for γ = 0 and
at τc = 2.83 s for γ = 0.2 while no such threshold exists
for γ = 1.

Finally, we compared the observed increase factor of
the fluctuation energy with the function (1 − r)−0.5 of
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Fig. 7. (Color online) Average kinetic energy per particle for
different values of the relaxation time and three values of the
anisotropy parameter γ. The amplification of the velocity vari-
ance with growing values of τ reflects critical fluctuations close
to the instability point, see equation (13). The energy has
been plotted relative to the theoretical value corresponding to
the fluctuation-dissipation theorem (symbols). The solid curves
display the function 1/

√
1 − r of the reduced control parame-

ter r, see (46), and the thin vertical lines give the asymptotics
for τ → τc (r → 1).

the scaled distance to the threshold (scaled control pa-
rameter). The form is motivated by the observation that
in many onedimensional physical systems, the scaling ex-
ponent of velocity fluctuations near threshold is equal to
δ = −1/2. The agreement was astonishing for all investi-
gated values of r and γ, cf. Figure 7.

5 Conclusion

In this contribution, we have investigated the statistical
properties of onedimensional dissipative driven many-par-
ticle systems violating the law “actio = reactio”. Such
systems can represent, for example, vehicular traffic or
queuing systems with interactions.

In the theoretical derivation, we have shown that
such systems show a Hamilton-like statistics when inter-
particle correlations play no significant role. The theoret-
ical predictions were confirmed by simulations: without
a single free parameter to fit, we quantitatively obtained
the typical characteristic properties of Hamiltonian sys-
tems such as velocity and gap statistics corresponding to
a canonical ensemble ∝ e−H/θ when the Hamiltonian H
contains the usual contributions of kinetic and potential
energy as in physical Hamiltonian systems. Furthermore,
the velocity variance satisfied the fluctuation-dissipation
theorem. As only prerequisite, we have found that the sys-
tem must be far away from any instability point. This is
consistent with the theoretical requirement of vanishing
correlations, since collective instabilities such as stop-and-
go traffic correspond to highly correlated particles.

In the first moment, these results appear to be quite
surprising. For example, in traffic systems neither energy
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nor momentum are conserved during vehicle interactions,
and the driving force keeps the system permanently far
from equilibrium. While conservative systems conserve
momentum and energy in each single interaction, in the
driven dissipative systems studied by us, the additional
relaxation term (v0 − vi)/τ causes the average velocity V
to relax to the “free” or “desired” speed v0.

However, even systems violating the law “ac-
tio=reactio” may be mapped to effectively conservative
systems by a Galilei transformation. Defining velocities
ui = vi − V relative to the stationary velocity V , equa-
tion (3) becomes

dui

dt
= −ui

τ
+ f(si)− f(1/ρ)+γ [f(si−1) − f(1/ρ)] . (59)

One sees that the constant terms −f(1/ρ) and γf(1/ρ) re-
sulting from the driving force and the relaxation dynamics
supplement the interaction forces by counteracting forces
– irrespective of the value of γ – such as in momentum-
conserving systems.

One big difference of system not conserving momen-
tum, however, remains when compared to conservative
system: the conservative many-particle system always be-
haves dynamically stable, while the dissipative system po-
tentially produces stop-and-go waves, when the linear sta-
bility condition (13) is not fulfilled. According to computer
simulations, close to the instability point, the driven dissi-
pative many-particle system tends to produce correlations
between distances and velocities, and between successive
particles [22].

This corresponds to pattern formation phenomena
that would not occur in conservative systems. Such
kinds of pattern formation phenomena have, for exam-
ple, been investigated in fluid systems driven by thermal
gradients (Rayleigh-Bénard convection), coriolis forces
(Taylor-Couette flow), electrical fields (electroconvection),
or concentration gradients (binary-mixture convection),
see reference [21] for a review. Moreover, the increase of
thermal fluctuations when approaching a linear stability
threshold from below has been investigated theoretically
and experimentally for the above systems [23–26]. Near
the threshold, but in the regime of linear response, the
fluctuations should increase according to a power law,
where the scaling exponents depend on the dimension-
ality and symmetry classes of the systems [27]. Specifi-
cally, if the fluid systems are quasi-onedimensional, their
fluctuations typically increase proportional to (1− r)−1/2

where the reduced control parameter r is defined in anal-
ogy to equation (46), with τ replaced by a suitable driving
force such as voltage or a temperature gradient. Near the
threshold, however, deviations have been observed empir-
ically [28].

It appears that in our case the fluctuations scale pro-
portionally to 1/

√
1 − r as well. A theoretical founda-

tion and a closer investigation of the above Fokker-Planck
equation near the instability point and beyond will be
subject of our future studies.

Appendix A: Derivation of the linear stability
criterion (13)

The starting point of a linear stability analysis is the de-
terministic version of equations (2) and (3). For a given
global density ρ = 1/se, its homogeneous-stationary solu-
tion is determined by

xj(t) = jse + Wet, (60)

vj(t) = We = W (se, se) = v0 + τ(1 − γ)f(se). (61)

We expand equations (2) and (3) around this solution by
introducing linear perturbations yj and uj via xj+1−xj =
se + yj and vj = We + uj. Linearizing the resulting equa-
tions gives

dyj

dt
= uj+1 − uj, (62)

duj

dt
=

−uj

τ
+ f ′(se)(yj − γyj−1). (63)

Decomposing the linear perturbations into Fourier modes
yj = ỹeijk+λt and uj = ũeijk+λt leads to a homogeneous
linear system of equations for the amplitudes ỹ and ũ. It
is nontrivially solvable if the linear growth rate λ satis-
fies a characteristic quadratic equation. Its roots can be
written as

λ
(1,2)
k = − 1

2τ

[
1 ±

√
1 − 4ab(1 − cos k) − 4ia sin k

]
,

(64)
where i is the imaginary unit, and

a = τ2f ′(se)(1 − γ), (65)

b =
1 + γ

1 − γ
. (66)

The system is linearly stable (“string stable”), if the real
parts of the growth rates satisfy Re (λ(1,2)

k ) < 1 for all
wave numbers k ∈]0, π] that are allowed by the system.
After some intermediate steps (see Ref. [29]), this leads to
the condition

a sin2 k ≤ b(1 − cos k), (67)

which is equivalent to a < b/2. Inserting the defini-
tions (65) and (66) finally leads to the linear stability
condition (13) in the main text.
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