Hadamard’s variational formulas for some functionals defined in the class of convex bodies

Andrea Colesanti
Università di Firenze

Shape optimization problems and spectral theory

CIRM – May 28th - June 1st, 2012
Convex bodies
Convex bodies

\[C := \{ K \subset \mathbb{R}^n : K \text{ compact, convex} \} = \{ \text{convex bodies} \} . \]
Convex bodies

\[C := \{ K \subset \mathbb{R}^n : K \text{ compact, convex} \} = \{ \text{convex bodies} \}. \]

\[K + L : = \{ x + y : x \in K, y \in L \}, \]
\[\alpha K : = \{ \alpha x : x \in K \} \ (\alpha \geq 0). \]

These are internal operations in \(C \).
Convex bodies

\[\mathcal{C} := \{ K \subset \mathbb{R}^n : K \text{ compact, convex} \} = \{ \text{convex bodies} \} . \]

\[K + L : = \{ x + y : x \in K, y \in L \} , \]
\[\alpha K : = \{ \alpha x : x \in K \} \quad (\alpha \geq 0). \]

These are internal operations in \(\mathcal{C} \).

Let

\[F : \mathcal{C} \rightarrow \mathbb{R} . \]
Convex bodies

\[C := \{ K \subset \mathbb{R}^n : K \text{ compact, convex} \} = \{ \text{convex bodies} \}. \]

\[K + L := \{ x + y : x \in K, \ y \in L \}, \]
\[\alpha K := \{ \alpha x : x \in K \} \quad (\alpha \geq 0). \]

These are internal operations in \(C \).

Let

\[F : C \rightarrow \mathbb{R}. \]

Problem: compute

\[
\lim_{\epsilon \to 0^+} \frac{F(K + \epsilon L) - F(K)}{\epsilon}.
\]
The volume functional

Let $F = V(n)$ dimensional Lebesgue measure.)

Easy case: assume that $L = B$ is the unit ball of \mathbb{R}^n:

$$B = \{ x \in \mathbb{R}^n : |x| \leq 1 \}.$$

Then $K + \epsilon B = \{ x \in \mathbb{R}^n : \text{dist}(x, K) \leq \epsilon \}$, i.e. is a parallel set of K. In this case $$\lim_{\epsilon \to 0} V(K + \epsilon B) - V(K) \epsilon = \text{perimeter of } A.$$

In the general case the limit can be computed in terms of K and L, once two notions have been introduced:

▶ the support function;
▶ the area measure.
The volume functional

Let

\[F = V \quad (n \text{ dimensional Lebesgue measure.}) \]
The volume functional

Let

\[F = V \] \((n \text{ dimensional Lebesgue measure.}) \)

Easy case: assume that \(L = B \) is the unit ball of \(\mathbb{R}^n \):

\[B = \{ x \in \mathbb{R}^n : |x| \leq 1 \} . \]
The volume functional

Let

\[F = V \quad (n \text{ dimensional Lebesgue measure.}) \]

Easy case: assume that \(L = B \) is the unit ball of \(\mathbb{R}^n \):

\[B = \{ x \in \mathbb{R}^n : |x| \leq 1 \} . \]

Then

\[K + \epsilon B = \{ x \in \mathbb{R}^n : \text{dist}(x, K) \leq \epsilon \} , \]

i.e. is a parallel set of \(K \). In this case

\[\lim_{\epsilon \to 0^+} \frac{V(K + \epsilon B) - V(K)}{\epsilon} = \text{perimeter of } A . \]
The volume functional

Let

\[F = V \quad (n \text{ dimensional Lebesgue measure}). \]

Easy case: assume that \(L = B \) is the unit ball of \(\mathbb{R}^n \):

\[B = \{ x \in \mathbb{R}^n : |x| \leq 1 \}. \]

Then

\[K + \epsilon B = \{ x \in \mathbb{R}^n : \text{dist}(x, K) \leq \epsilon \}, \]

i.e. is a parallel set of \(K \). In this case

\[
\lim_{\epsilon \to 0^+} \frac{V(K + \epsilon B) - V(K)}{\epsilon} = \text{perimeter of } A.
\]

In the general case the limit can be computed in terms of \(K \) and \(L \), once two notions have been introduced:

- the support function;
- the area measure.
The support function of a convex body

\[h_K(y) := \sup \{ (x, y) : x \in K \}, \quad \forall y \in \mathbb{R}^n. \]

\[h_K(y) = (y, N^{-1}K(y)) \text{ for } y \in S^{n-1}, \]

where \(N_K \) is the outer unit normal to \(K \).

a) \(h_K \) is 1–homogeneous;

b) \(h_K \) is convex in \(\mathbb{R}^n \).

Vice versa: if \(h : \mathbb{R}^n \to \mathbb{R} \) verifies a) and b), then \(\exists! K \in \mathbb{C} \) such that \(h = h_K \).

\{ convex bodies \} \rightleftharpoons \{ support functions \},

and this mapping is linear:

\[h_{\alpha K + \beta L} = \alpha h_K + \beta h_L \forall K, L, \alpha, \beta. \]
The support function of a convex body

Let $K \in \mathcal{C}$.

$$h_K(y) := \sup\{(x, y) : x \in K\}, \quad \forall y \in \mathbb{R}^n.$$
The support function of a convex body

Let $K \in C$.

$$h_K(y) := \sup\{(x, y) : x \in K\}, \quad \forall y \in \mathbb{R}^n.$$

$$h_K(y) = (y, N^{-1}_K(y)) \text{ for } y \in S^{n-1},$$

where N_K is the outer unit normal to K.

a) h_K is 1–homogeneous;

b) h_K is convex in \mathbb{R}^n.
The support function of a convex body

Let $K \in \mathcal{C}$.

$$h_K(y) := \sup\{(x, y) : x \in K\}, \quad \forall y \in \mathbb{R}^n.$$

$$h_K(y) = (y, N_K^{-1}(y)) \text{ for } y \in S^{n-1},$$

where N_K is the outer unit normal to K.

a) h_K is 1-homogeneous;

b) h_K is convex in \mathbb{R}^n.

Viceversa: if $h : \mathbb{R}^n \to \mathbb{R}$ verifies a) and b), then $\exists! K \in \mathcal{C}$ such that $h = h_K$.

\[\text{convex bodies} \leftrightarrow \text{support functions}, \]

and this mapping is linear:
The support function of a convex body

Let $K \in \mathcal{C}$.

$$h_K(y) := \sup\{(x, y) : x \in K\}, \quad \forall y \in \mathbb{R}^n.$$

$$h_K(y) = (y, N_K^{-1}(y)) \text{ for } y \in S^{n-1},$$

where N_K is the outer unit normal to K.

a) h_K is 1–homogeneous;

b) h_K is convex in \mathbb{R}^n.

Viceversa: if $h : \mathbb{R}^n \to \mathbb{R}$ verifies a) and b), then $\exists! K \in \mathcal{C}$ such that $h = h_K$.

$$\left\{ \text{convex bodies} \right\} \longleftrightarrow \left\{ \text{support functions} \right\},$$
The support function of a convex body

Let $K \in \mathcal{C}$.

$$h_K(y) := \sup\{(x, y) : x \in K\}, \quad \forall y \in \mathbb{R}^n.$$

$$h_K(y) = (y, N_K^{-1}(y)) \text{ for } y \in \mathbb{S}^{n-1},$$

where N_K is the outer unit normal to K.

a) h_K is 1–homogeneous;
b) h_K is convex in \mathbb{R}^n.

Viceversa: if $h : \mathbb{R}^n \to \mathbb{R}$ verifies a) and b), then $\exists! K \in \mathcal{C}$ such that $h = h_K$.

$$\{\text{convex bodies}\} \leftrightarrow \{\text{support functions}\},$$

and this mapping is linear:

$$h_{\alpha K + \beta L} = \alpha h_K + \beta h_L \quad \forall K, L, \alpha, \beta.$$
The area measure of a convex body

Let K be a convex body. For $\omega \subset S^{n-1}$ set:

$$N^{-1}K(\omega) = \{x \in \partial K : N_K(x) \text{ exists and } \in \omega\}$$

N_K is the outer unit normal to K.

Then $\sigma_K(\omega) := \mu^{n-1}(N^{-1}K(\omega))$.

σ_K is the push–forward of $\mu^{n-1}|_{\partial K}$ through N_K.
The area measure of a convex body

Let K be a convex body. For $\omega \subset \mathbb{S}^{n-1}$ set:

$$N_K^{-1}(\omega) = \{ x \in \partial K : N_K(x) \text{ exists and } x \in \omega \},$$

where $N_K = \text{outer unit normal to } K.$
The area measure of a convex body

Let K be a convex body. For $\omega \subset \mathbb{S}^{n-1}$ set:

$$N^{-1}_K(\omega) = \{ x \in \partial K : N_K(x) \text{ exists and } \in \omega \},$$

$N_K =$ outer unit normal to K. Then

$$\sigma_K(\omega) := \mathcal{H}^{n-1}(N^{-1}_K(\omega)).$$
The area measure of a convex body

Let K be a convex body. For $\omega \subset S^{n-1}$ set:

$$N_K^{-1}(\omega) = \{ x \in \partial K : N_K(x) \text{ exists and } \in \omega \},$$

N_K = outer unit normal to K. Then

$$\sigma_K(\omega) := \mathcal{H}^{n-1}(N_K^{-1}(\omega)).$$

σ_K is the push–forward of $\mathcal{H}^{n-1}_{\partial K}$ through N_K.
Two special cases

▶ If $K = P$ is a convex polyhedron, then

$$\sigma_P = \sum_{i=1}^{m} \alpha_i \delta_{N_i},$$

where N_1, \ldots, N_m are outer normals to the facets of P, and $\alpha_1, \ldots, \alpha_m$ are areas of the facets.

▶ If $K \in C^2_2$ (i.e. $\partial K \in C^2_2$ and Gauss curvature > 0), then

$$d\sigma_K(y) = G(N - K(y)) dH^{n-1}(y),$$

where G is Gauss curvature.
Two special cases

- If $K = P$ is a convex polyhedron, then

$$\sigma_P = \sum_{i=1}^{m} \alpha_i \delta_{N_i},$$

where $N_1, \ldots, N_m =$ outer normals to the facets of P, $\alpha_1, \ldots, \alpha_m =$ areas of the facets.
Two special cases

▶ If $K = P$ is a convex polyhedron, then

$$\sigma_P = \sum_{i=1}^{m} \alpha_i \delta_{N_i},$$

where $N_1, \ldots, N_m = \text{outer normals to the facets of } P,$
$\alpha_1, \ldots, \alpha_m = \text{areas of the facets}.$

▶ If $K \in C^2_+$ (i.e. $\partial K \in C^2$ and Gauss curvature > 0), then

$$d\sigma_K(y) = \frac{1}{G(N_K^{-1}(y))} d\mathcal{H}^{n-1}(y).$$

where $G = \text{Gauss curvature}.$
The variational formula for the volume

\[
\lim_{\epsilon \to 0} \epsilon \left(V(K + \epsilon L) - V(K) \right) = \int_{S} h \left(L(y) \right) \, d\sigma_{K}(y).
\]

Remark.

\[\text{r.h.s.} = \left(h \left(L \right), d\sigma_{K} \right) L_{2} \left(S, n-1 \right).\]

As \(h \left(L \right) \) is linear in \(L \), (1) suggests that \(\sigma_{K} \) is the first variation of \(V \) at \(K \).
The variational formula for the volume

For every $K, L \in \mathcal{C}$

$$\lim_{\epsilon \to 0^+} \frac{V(K + \epsilon L) - V(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) \, d\sigma_K(y).$$ \hspace{1cm} (1)

Remark. r.h.s. = \left(h_L, d\sigma_K \right) \mathcal{L}^2 (S^{n-1}).

as h_L is linear in L, (1) suggests that σ_K is the first variation of V at K.

The variational formula for the volume

For every $K, L \in \mathcal{C}$

$$\lim_{\epsilon \to 0^+} \frac{V(K + \epsilon L) - V(K)}{\epsilon} = \int_{\mathbb{S}^{n-1}} h_L(y) \, d\sigma_K(y). \quad (1)$$

Remark.

r.h.s. $= (h_L, d\sigma_K)_{L^2(\mathbb{S}^{n-1})}$.
The variational formula for the volume

For every \(K, L \in \mathcal{C} \)

\[
\lim_{\epsilon \to 0^+} \frac{V(K + \epsilon L) - V(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) \, d\sigma_K(y). \tag{1}
\]

- **Remark.**

\[
\text{r.h.s.} = (h_L, d\sigma_K)_{L^2(S^{n-1})}.
\]

as \(h_L \) is linear in \(L \), (1) suggests that \(\sigma_K \) is the first variation of \(V \) at \(K \).
A representation formula for the volume

\[\int_{\sigma} S_{n-1} h_K d\sigma_K = \lim_{\epsilon \to 0} + V(K + \epsilon) - V(K) \epsilon = \lim_{\epsilon \to 0} + V((1 + \epsilon)K) - V(K) \epsilon = V(K) \lim_{\epsilon \to 0} + (1 + \epsilon)^{n-1} \epsilon = n V(K). \]

Hence \(V(K) = \frac{1}{n} \int_{\sigma} S_{n-1} h_K d\sigma_K \).

Note: this formula admits an elementary independent proof and it can be used to show the variational formula for \(V \) (see the next page).
A representation formula for the volume

Chose $L = K$:

$$\int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K = \lim_{\epsilon \to 0^+} \frac{V(K + \epsilon K) - V(K)}{\epsilon}$$

Hence $V(K) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K$.

Note: this formula admits an elementary independent proof and it can be used to show the variational formula for V (see the next page).
A representation formula for the volume

Chose $L = K$:

\[
\int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K = \lim_{\epsilon \to 0^+} \frac{V(K + \epsilon K) - V(K)}{\epsilon}
\]

\[
= \lim_{\epsilon \to 0^+} \frac{V((1 + \epsilon)K) - V(K)}{\epsilon}
\]

Hence

\[
V(K) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K
\]

Note: this formula admits an elementary independent proof and it can be used to show the variational formula for V (see the next page).
A representation formula for the volume

Chose $L = K$:

\[
\int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K = \lim_{\epsilon \to 0^+} \frac{V(K + \epsilon K) - V(K)}{\epsilon} \\
= \lim_{\epsilon \to 0^+} \frac{V((1 + \epsilon)K) - V(K)}{\epsilon} \\
= V(K) \lim_{\epsilon \to 0^+} \frac{(1 + \epsilon)^n - 1}{\epsilon}
\]

Hence

\[
V(K) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K.
\]

Note: this formula admits an elementary independent proof and it can be used to show the variational formula for V. (See the next page.)
A representation formula for the volume

Chose $L = K$:

$$\int_{S^{n-1}} h_K \, d\sigma_K = \lim_{\epsilon \to 0^+} \frac{V(K + \epsilon K) - V(K)}{\epsilon}$$

$$= \lim_{\epsilon \to 0^+} \frac{V((1 + \epsilon)K) - V(K)}{\epsilon}$$

$$= V(K) \lim_{\epsilon \to 0^+} \frac{(1 + \epsilon)^n - 1}{\epsilon}$$

$$= n \, V(K).$$
A representation formula for the volume

Chose \(L = K \):

\[
\int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K = \lim_{\epsilon \to 0^+} \frac{V(K + \epsilon K) - V(K)}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{V((1 + \epsilon)K) - V(K)}{\epsilon} = V(K) \lim_{\epsilon \to 0^+} \frac{(1 + \epsilon)^n - 1}{\epsilon} = n \, V(K).
\]

Hence

\[
V(K) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_K(y) \, d\sigma_K(y).
\]
A representation formula for the volume

Chose $L = K$:

$$
\int_{\mathbb{S}^{n-1}} h_K \, d\sigma_K = \lim_{\epsilon \to 0^+} \frac{V(K + \epsilon K) - V(K)}{\epsilon}
$$

$$
= \lim_{\epsilon \to 0^+} \frac{V((1 + \epsilon)K) - V(K)}{\epsilon}
$$

$$
= V(K) \lim_{\epsilon \to 0^+} \frac{(1 + \epsilon)^n - 1}{\epsilon}
$$

$$
= n V(K).
$$

Hence

$$
V(K) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_K(y) \, d\sigma_K(y).
$$

Note: this formula admits an elementary independent proof and it can be used to show the variational formula for V (see the next page).
From the representation to the variational formula
From the representation to the variational formula

\[n = 2, \ K \in C_+^2. \]
From the representation to the variational formula

\[n = 2, \ K \in C^2_+ . \]

\[d\sigma_K(t) = (h_K(t) + h''_K(t))dt , \quad (S^1 \text{ is identified with } [0, 2\pi]). \]
From the representation to the variational formula

\(n = 2, \ K \in C_+^2. \)

\[
d\sigma_K(t) = (h_K(t) + h''_K(t))dt, \quad (S^1 \text{ is identified with } [0, 2\pi]).
\]

\[
V(K) = \frac{1}{2} \int_0^{2\pi} h_K(h_K + h''_K) \, dt
\]
From the representation to the variational formula

\[
n = 2, \ K \in C_+^2.
\]

\[
d\sigma_K(t) = (h_K(t) + h''_K(t))dt, \quad (S^1 \text{ is identified with } [0,2\pi]).
\]

\[
V(K) = \frac{1}{2} \int_0^{2\pi} h_K(h_K + h''_K) \, dt
\]

\[
V(K + \epsilon L) = \frac{1}{2} \int_0^{2\pi} (h_K + \epsilon h_L)(h_K + \epsilon h_L + (h''_K + \epsilon h''_L)) \, dt
\]
From the representation to the variational formula

\[n = 2, \ K \in C^2_+. \]

\[d\sigma_K(t) = (h_K(t) + h''_K(t))dt, \quad (\mathbb{S}^1 \text{ is identified with } [0, 2\pi]). \]

\[V(K) = \frac{1}{2} \int_0^{2\pi} h_K(h_K + h''_K) \, dt \]

\[V(K + \epsilon L) = \frac{1}{2} \int_0^{2\pi} (h_K + \epsilon h_L)(h_K + \epsilon h_L + (h''_K + \epsilon h''_L)) \, dt \]

\[\frac{d}{d\epsilon} V(K + \epsilon L)|_{\epsilon=0} = \frac{1}{2} \int_0^{2\pi} [h_L(h_K + h''_K) + h_K(h_L + h''_L)] \, dt \]
From the representation to the variational formula

\[n = 2, \; K \in C_2^2. \]

\[d\sigma_K(t) = (h_K(t) + h_K''(t))dt, \quad (S^1 \text{ is identified with } [0, 2\pi]). \]

\[
V(K) = \frac{1}{2} \int_0^{2\pi} h_K(h_K + h_K'') \, dt
\]

\[
V(K + \epsilon L) = \frac{1}{2} \int_0^{2\pi} (h_K + \epsilon h_L)(h_K + \epsilon h_L + (h_K'' + \epsilon h_L'')) \, dt
\]

\[
\frac{d}{d\epsilon} V(K + \epsilon L) \bigg|_{\epsilon=0} = \frac{1}{2} \int_0^{2\pi} [h_L(h_K + h_K'') + h_K(h_L + h_L'')] \, dt
\]

\[
= \int_0^{2\pi} h_L(h_K + h_K'') \, dt
\]
From the representation to the variational formula

\[n = 2, \ K \in C^2_+ . \]

\[d\sigma_K(t) = (h_K(t) + h''_K(t))\, dt , \quad (\mathbb{S}^1 \text{ is identified with } [0, 2\pi]). \]

\[
V(K) = \frac{1}{2} \int_0^{2\pi} h_K(h_K + h''_K) \, dt
\]

\[
V(K + \epsilon L) = \frac{1}{2} \int_0^{2\pi} (h_K + \epsilon h_L)(h_K + \epsilon h_L + (h''_K + \epsilon h''_L)) \, dt
\]

\[
\frac{d}{d\epsilon} V(K + \epsilon L)|_{\epsilon=0} = \frac{1}{2} \int_0^{2\pi} [h_L(h_K + h''_K) + h_K(h_L + h''_L)] \, dt
\]

\[
= \int_0^{2\pi} h_L(h_K + h''_K) \, dt = \int_{\mathbb{S}^1} h_L \, d\sigma_K .
\]
More examples

- Geometric functionals, other than the volume, like the perimeter, the intrinsic volumes (roughly speaking: integrals of elementary symmetric functions of the principal curvatures), etc.

- Functionals from the Calculus of Variations
 - First eigenvalue of $-\Delta$ with Dirichlet boundary conditions.
 - Torsional rigidity.
 - Capacity.
More examples

- Geometric functionals, other than the volume, like the perimeter, the intrinsic volumes (roughly speaking: integrals of elementary symmetric functions of the principal curvatures), etc.
More examples

- Geometric functionals, other than the volume, like the perimeter, the intrinsic volumes (roughly speaking: integrals of elementary symmetric functions of the principal curvatures), etc.

Functionals from the Calculus of Variations

- First eigenvalue of $-\Delta$ with Dirichlet boundary conditions.
More examples

- Geometric functionals, other than the volume, like the perimeter, the intrinsic volumes (roughly speaking: integrals of elementary symmetric functions of the principal curvatures), etc.

Functionals from the Calculus of Variations

- First eigenvalue of \(-\Delta\) with Dirichlet boundary conditions.
- Torsional rigidity.
More examples

- Geometric functionals, other than the volume, like the perimeter, the intrinsic volumes (roughly speaking: integrals of elementary symmetric functions of the principal curvatures), etc.

Functionals from the Calculus of Variations

- First eigenvalue of $-\Delta$ with Dirichlet boundary conditions.
- Torsional rigidity.
- Capacity.
More examples

- Geometric functionals, other than the volume, like the perimeter, the intrinsic volumes (roughly speaking: integrals of elementary symmetric functions of the principal curvatures), etc.

Functionals from the Calculus of Variations

- First eigenvalue of $-\Delta$ with Dirichlet boundary conditions.
- Torsional rigidity.
- Capacity.
The p–capacity of a convex body

Let $K \in \mathcal{C}$, $p \in (1, \infty)$.

$$C^p(K) = \inf \left\{ \int_{\mathbb{R}^n} |\nabla v|^p \, dx : v \in C^1_c(\mathbb{R}^n), v \geq \chi_K \right\}.$$

Equivalently

$$C^p(K) = \int_{\mathbb{R}^n \setminus K} |\nabla u|^p \, dx,$$

where

$$\begin{cases} \Delta_p u = 0 \text{ in } \mathbb{R}^n \setminus K, \\ u = 1 \text{ on } \partial K, \\ \lim_{|x| \to \infty} u(x) = 0. \end{cases}$$

u is called the p–equilibrium potential of K.
The p–capacity of a convex body

Let $K \in \mathcal{C}$, $p \in (1, n)$.

$$C_p(K) = \inf \left\{ \int_{\mathbb{R}^n} |\nabla v|^p \, dx : v \in C_c^1(\mathbb{R}^n), v \geq \chi_K \right\}.$$
The p–capacity of a convex body

Let $K \in \mathcal{C}$, $p \in (1, n)$.

$$C_p(K) = \inf \left\{ \int_{\mathbb{R}^n} |\nabla v|^p \, dx : v \in C^1_c(\mathbb{R}^n), v \geq \chi_K \right\}.$$

Equivalently

$$C_p(K) = \int_{\mathbb{R}^n \setminus K} |\nabla u|^p \, dx,$$

where

$$\begin{cases}
\Delta_p u = 0 & \text{in } \mathbb{R}^n \setminus K, \\
u = 1 & \text{on } \partial K, \\
\lim_{|x| \to \infty} u(x) = 0.
\end{cases}$$
The p–capacity of a convex body

Let $K \in \mathcal{C}$, $p \in (1, n)$.

$$C_p(K) = \inf \left\{ \int_{\mathbb{R}^n} |\nabla v|^p \, dx : v \in C^1_c(\mathbb{R}^n), v \geq \chi_K \right\}.$$

Equivalently

$$C_p(K) = \int_{\mathbb{R}^n \setminus K} |\nabla u|^p \, dx,$$

where

$$\begin{cases}
\Delta_p u = 0 & \text{in } \mathbb{R}^n \setminus K, \\
u = 1 & \text{on } \partial K, \\
\lim_{|x| \to \infty} u(x) = 0.
\end{cases}$$

u is called the p–equilibrium potential of K.
The variational formula for C_p

For $K, L \in C$ and $p \in (1, n)$
\[
\lim_{\epsilon \to 0} C_p(K + \epsilon L) - C_p(K) \epsilon = \int_{\partial K} \left| \nabla u(N - 1)K(y) \right|^p d\sigma(K(y)).
\]

\[\text{▶ The case } p = 2 \text{ was proved by Jerison in a paper of 1996. In this paper Jerison started a systematic study of Hadamard type formulas for classical functionals in the Calculus of Variations, modeled on the one for the volume, and corresponding Minkowski type problems.}\\
\[\text{▶ The general case } p \in (1, n) \text{ was proved in collaboration with: Lutwak, Nyström, Salani, Xiao, Yang, Zhang.}\]
The variational formula for C_p

Thm. For $K, L \in \mathcal{C}$ and $p \in (1, n)$

$$
\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y).
$$

\triangleright The case $p = 2$ was proved by Jerison in a paper of 1996. In this paper Jerson started a systematic study of Hadamard type formulas for classical functionals in the Calculus of Variations, modeled on the one for the volume, and corresponding Minkowski type problems.

\triangleright The general case $p \in (1, n)$ was proved in collaboration with: Lutwak, Nyström, Salani, Xiao, Yang, Zhang.
The variational formula for C_p

Thm. For $K, L \in \mathbb{C}$ and $p \in (1, n)$

$$\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) |\nabla u(N_{K}^{-1}(y))|^p \, d\sigma_K(y).$$

- The case $p = 2$ was proved by Jerison in a paper of 1996. In this paper Jerison started a systematic study of Hadamard type formulas for classical functionals in the Calculus of Variations, modeled on the one for the volume, and corresponding Minkowski type problems.
The variational formula for C_p

Thm. For $K, L \in \mathcal{C}$ and $p \in (1, n)$

$$\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) |\nabla u(N^{-1}_K(y))|^p \, d\sigma_K(y).$$

- The case $p = 2$ was proved by Jerison in a paper of 1996. In this paper Jersion started a systematic study of Hadamard type formulas for classical functionals in the Calculus of Variations, modeled on the one for the volume, and corresponding Minkowski type problems.

- The general case $p \in (1, n)$ was proved in collaboration with: Lutwak, Nyström, Salani, Xiao, Yang, Zhang.
The first variation of capacity
The first variation of capacity

\[
\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y).
\]
The first variation of capacity

$$\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{S^{n-1}} h_L(y) |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y).$$

For $K \in C$ define the measure μ_K^p via

$$d\mu_K^p(y) = |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y).$$
The first variation of capacity

\[
\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{\mathbb{S}^{n-1}} h_L(y) |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y).
\]

For \(K \in \mathcal{C} \) define the measure \(\mu^p_K \) via

\[
d\mu^p_K(y) = |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y).
\]

\(\mu^p_K \) is the push-forward of \(|\nabla u|^p \mathcal{H}^{n-1}_{\partial K} \) through \(N_K \).
The first variation of capacity

\[\lim_{\epsilon \to 0^+} \frac{C_p(K + \epsilon L) - C_p(K)}{\epsilon} = \int_{\mathbb{S}^{n-1}} h_L(y) |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y). \]

For \(K \in \mathcal{C} \) define the measure \(\mu_p^p \) via

\[d\mu_p^p(y) = |\nabla u(N_K^{-1}(y))|^p \, d\sigma_K(y). \]

\(\mu_p^p \) is the push-forward of \(|\nabla u|^p \mathcal{H}^{n-1}_{\partial K} \) through \(N_K \). Then, as in the case of volume

\[\text{r.h.s.} = (h_L, d\mu_p^p)_{L^2(\mathbb{S}^{n-1})}, \]

i.e. \(\mu_p^p \) represents the first variation of \(p \)-capacity at \(K \).
A representation formula

For $L = K$, using the $(n-p)$–homogeneity of C^p, we get

$$C^p(K) = 1 \frac{1}{n-p} \int_{S^{n-1}} h_K(y) \, d\mu_p K(y) \left(y = N_K(x) \right) = 1 \frac{1}{n-p} \int_{\partial K(x, N_K(x))} |\nabla u(x)|^p \, dH^{n-1}(x).$$

This formula admits an independent (but not so elementary) proof, based on the divergence theorem, when $K \in C^2 +$.

A representation formula

For \(L = K \), using the \((n - p)\)-homogeneity of \(C_p \), we get

\[
C_p(K) = \frac{1}{n - p} \int_{S^{n-1}} h_K(y) \, d\mu_K^p(y)
\]
A representation formula

For $L = K$, using the $(n - p)$–homogeneity of C_p, we get

$$C_p(K) = \frac{1}{n - p} \int_{S^{n-1}} h_K(y) \, d\mu^p_K(y) \quad (y = N_K(x))$$
A representation formula

For \(L = K \), using the \((n - p)\)–homogeneity of \(C_p \), we get

\[
C_p(K) = \frac{1}{n - p} \int_{\mathbb{S}^{n-1}} h_K(y) \, d\mu_K(y) \quad (y = N_K(x))
\]

\[
= \frac{1}{n - p} \int_{\partial K} (x, N_K(x)) |\nabla u(x)|^p \, d\mathcal{H}^{n-1}(x).
\]
A representation formula

For $L = K$, using the $(n - p)$–homogeneity of C_p, we get

$$C_p(K) = \frac{1}{n - p} \int_{S^{n-1}} h_K(y) \, d\mu_K^p(y) \quad (y = N_K(x))$$

$$= \frac{1}{n - p} \int_{\partial K} (x, N_K(x)) |\nabla u(x)|^p \, d\mathcal{H}^{n-1}(x).$$

This formula admits an independent (but not so elementary) proof, based on the divergence theorem, when $K \in C_+^2.$
Scheme of the proof of the variational formula for C_p

Prove the variational formula when K and L are of class C^2, using the representation formula.

Prove the general case by approximation (each convex body can be approximated by a sequence of C^2 convex bodies).

This step is particularly delicate: we used recent results by Lewis and Nyström on boundary behavior of p–harmonic functions in Lipschitz domains as crucial tools.

The general scheme of the proof is the same as the one used by Jerison for $p = 2$; but its implementation in the non–linear setting required many additional efforts.
Scheme of the proof of the variational formula for C_p

- Prove the variational formula when K and L are of class C_2^+, using the representation formula.
Scheme of the proof of the variational formula for C_p

- Prove the variational formula when K and L are of class C^2_+, using the representation formula.
- Prove the general case by approximation (each convex body can be approximated by a sequence of C^2_+ convex bodies). This step is particularly delicate: we used recent results by Lewis and Nyström on boundary behavior of p–harmonic functions in Lipschitz domains as crucial tools.
Scheme of the proof of the variational formula for C_p

- Prove the variational formula when K and L are of class C^2_+, using the representation formula.
- Prove the general case by approximation (each convex body can be approximated by a sequence of C^2_+ convex bodies). This step is particularly delicate: we used recent results by Lewis and Nyström on boundary behavior of p–harmonic functions in Lipschitz domains as crucial tools.

The general scheme of the proof is the same as the one used by Jerison for $p = 2$; but its implementation in the non–linear setting required many additional efforts.
The Minkowski problem
The Minkowski problem

Classical Minkowski problem. *Find a convex body with prescribed area measure.*
The Minkowski problem

Classical Minkowski problem. *Find a convex body with prescribed area measure.*
As special cases:

- **Discrete Minkowski problem.** *Find a convex polyhedron with prescribed outer normals to the facets, and prescribed areas of the facets.*
The Minkowski problem

Classical Minkowski problem. Find a convex body with prescribed area measure.

As special cases:

- **Discrete Minkowski problem.** Find a convex polyhedron with prescribed outer normals to the facets, and prescribed areas of the facets.

- **Smooth Minkowski problem.** Find a smooth convex body with prescribed Gauss curvature as a function of the outer unit normal.
Solution of the classical Minkowski problem

Thm.

Let σ be a Borel measure on S^2_{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of S^2_{n-1};

(B) $\int_{S^2_{n-1}} y \, d\sigma(y) = 0$.

Then there exists $K \in C^1$ such that $\sigma_K = \sigma$. K is unique up to translation. Moreover

$\begin{align*}
\text{If } \sigma \text{ is purely atomic then } K \text{ is a polyhedron;}
\end{align*}$

$\begin{align*}
\text{if } \sigma \text{ has a positive and smooth density, then } \partial K \text{ is smooth.}
\end{align*}$

Note: conditions (A) and (B) are necessary as well.
Solution of the classical Minkowski problem

Thm. Let σ be a Borel measure on S^{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of S^{n-1};
Solution of the classical Minkowski problem

Thm. Let σ be a Borel measure on \mathbb{S}^{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of \mathbb{S}^{n-1};

(B) \[\int_{\mathbb{S}^{n-1}} y \, d\sigma(y) = 0. \]
Thm. Let σ be a Borel measure on \mathbb{S}^{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of \mathbb{S}^{n-1};

(B) $\int_{\mathbb{S}^{n-1}} y \, d\sigma(y) = 0$.

Then there exists $K \in \mathcal{C}$ such that $\sigma_K = \sigma$. K is unique up to translation. Moreover
Theorem. Let σ be a Borel measure on \mathbb{S}^{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of \mathbb{S}^{n-1};

(B) $\int_{\mathbb{S}^{n-1}} y \, d\sigma(y) = 0$.

Then there exists $K \in \mathcal{C}$ such that $\sigma_K = \sigma$. K is unique up to translation. Moreover

- If σ is purely atomic then K is a polyhedron;
Thm. Let σ be a Borel measure on \mathbb{S}^{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of \mathbb{S}^{n-1};

(B) \[\int_{\mathbb{S}^{n-1}} y \, d\sigma(y) = 0. \]

Then there exists $K \in C$ such that $\sigma_K = \sigma$. K is unique up to translation. Moreover

- If σ is purely atomic then K is a polyhedron;
- if σ has a positive and smooth density, then ∂K is smooth.
Solution of the classical Minkowski problem

Thm. Let σ be a Borel measure on \mathbb{S}^{n-1} such that

(A) the support of σ is not contained in any great sub-sphere of \mathbb{S}^{n-1};

(B) $\int_{\mathbb{S}^{n-1}} y \, d\sigma(y) = 0$.

Then there exists $K \in \mathcal{C}$ such that $\sigma_K = \sigma$. K is unique up to translation. Moreover

- If σ is purely atomic then K is a polyhedron;
- if σ has a positive and smooth density, then ∂K is smooth.

Note: conditions (A) and (B) are necessary as well.
The Minkowski problem for capacity

Let $p \in (1, n)$ and let μ be a Borel measure on S^{n-1}, verifying conditions (A) and (B). Find a convex body K such that $\mu_K = \mu$.

For $p = 2$ this problem has been completely solved (existence, uniqueness, regularity) by Jerison (1996), also in collaboration with Caffarelli and Lieb (uniqueness issue).

Analogous problems have been considered when the capacity is replaced by the first eigenvalue of $-\Delta$, with Dirichlet boundary conditions (Jerison 1997, C. 2005), and by the torsional rigidity (C. & Fimiani 2009).
The Minkowski problem for capacity

Problem. Let $p \in (1, n)$ and let μ be a Borel measure on \mathbb{S}^{n-1}, verifying conditions (A) and (B). Find a convex body K such that $\mu^p_K = \mu$.

For $p = 2$ this problem has been completely solved (existence, uniqueness, regularity) by Jerison (1996), also in collaboration with Caffarelli and Lieb (uniqueness issue).

Analogous problems have been considered when the capacity is replaced by the first eigenvalue of $-\Delta$, with Dirichlet boundary conditions (Jerison 1997, C. 2005), and by the torsional rigidity (C. & Fimiani 2009).
The Minkowski problem for capacity

Problem. Let \(p \in (1, n) \) and let \(\mu \) be a Borel measure on \(\mathbb{S}^{n-1} \), verifying conditions (A) and (B). Find a convex body \(K \) such that \(\mu^p_K = \mu \).

- For \(p = 2 \) this problem has been completely solved (existence, uniqueness, regularity) by Jerison (1996), also in collaboration with Caffarelli and Lieb (uniqueness issue).
The Minkowski problem for capacity

Problem. Let $p \in (1, n)$ and let μ be a Borel measure on \mathbb{S}^{n-1}, verifying conditions (A) and (B). Find a convex body K such that $\mu^p_K = \mu$.

- For $p = 2$ this problem has been completely solved (existence, uniqueness, regularity) by Jerison (1996), also in collaboration with Caffarelli and Lieb (uniqueness issue).

- Analogous problems have been considered when the capacity is replaced by the first eigenvalue of $-\Delta$, with Dirichlet boundary conditions (Jerison 1997, C. 2005), and by the torsional rigidity (C. & Fimiani 2009).
The Minkowski problem for capacity, with $1 < p < 2$
The Minkowski problem for capacity, with $1 < p < 2$

Thm. (CLNSXYZ, 2012) Let $1 < p < 2$, and let μ be a non–atomic measure on \mathbb{S}^{n-1}, verifying conditions (A) and (B). Then there exists a convex body K such that $\mu^K_p = \mu$. K is unique up to translations, and if μ has a positive and smooth density, K has a correspondingly smooth boundary.