SYMPLECTIC SMALL DEFORMATIONS OF SPECIAL INSTANTON BUNDLE ON \mathbb{P}^{2n+1}

CARLA DIONISI

ABSTRACT. Let $MI_{\mathrm{Simp},\mathbb{P}^{2n+1}}(k)$ be the moduli space of stable symplectic instanton bundles on \mathbb{P}^{2n+1} with second Chern class $c_2=k$ (it is a closed subscheme of the moduli space $MI_{\mathbb{P}^{2n+1}}(k)$)

We prove that the dimension of its Zariski tangent space at a special (symplectic) instanton bundle is $2k(5n-1)+4n^2-10n+3$, $k \ge 2$.

Introduction

Symplectic instanton bundles on \mathbb{P}^{2n+1} are holomorphic bundles of rank 2n (see [1],[4] and [6]) that correspond to the self-dual solutions of Yang-Mills equations on $\mathbb{P}^n(\mathbb{H})$. They are given by some monads (see section 2 for precise definitions) and their only topological invariant is $c_2 = k$.

At present the dimension of their moduli space $MI_{\text{Simp},\mathbb{P}^{2n+1}}(k)$ is not known except in the cases n=1, where the dimension is 8k-3 (see [3]), and in few other cases corresponding to small values of k.

 $MI_{\text{Simp},\mathbb{P}^{2n+1}}(k)$ is a closed subscheme of $MI_{\mathbb{P}^{2n+1}}(k)$ and this last scheme parametrizes stable instanton bundles with structural group GL(2n).

The class of special instanton bundles was introduced in [8].

Let $E \in MI_{\mathbb{P}^{2n+1}}(k)$ be a special symplectic instanton bundle. The tangent dimension $h^1(End(E))$ was computed in [7] and it is equal to 4(3n-1)k + (2n-5)(2n-1).

The Zariski tangent space of $MI_{\text{Simp},\mathbb{P}^{2n+1}}(k)$ at E is isomorphic to $H^1(S^2E)$ and in this paper we prove that

(1)
$$h^{2}(S^{2}E) = \begin{pmatrix} k-2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2n-1 \\ 2 \end{pmatrix} \qquad \forall \ k \geq 2$$

By the Hirzebruch-Riemann-Roch formula , since $h^0(S^2E)=0$ and $h^i(S^2E)=0$ \forall $i\geq 3$, it follows that:

$$\chi(S^{2}E) = h^{2}(S^{2}E) - h^{1}(S^{2}E) = 2n^{2} + n + \frac{1}{2} \left[k^{2} \begin{pmatrix} 2n - 1 \\ 2 \end{pmatrix} - k(10n^{2} - 5n - 1) \right]$$

and

Theorem 0.1. Let E be a special symplectic instanton bundle. Then

$$h^{1}(S^{2}E) = 2k(5n-1) + 4n^{2} - 10n + 3$$
 , $k \ge 2$

(for n = 1 it is well known that $h^1(S^2E) = 8k - 3$ and, in the real case, for n = 2 the dimension 18k - 1 has been found in [5] by different techniques).

Now, since by the Kuranishi map $H^2(S^2E)$ is the space of obstructions to the smoothness at E of $MI_{\operatorname{Simp},\mathbb{P}^{2n+1}}(k)$, we obtain

Corollary 0.2. $\forall k \geq 2$ the dimension of any irreducible component of $MI_{Simp,\mathbb{P}^{2n+1}}(k)$, containing a special symplectic instanton bundle is bounded by the value

$$2k(5n-1) + 4n^2 - 10n + 3$$
 (linear in k)

Corollary 0.3. $\forall n \ MI_{Simp,\mathbb{P}^{2n+1}}(3)$ is smooth at a special instanton bundle E, and the dimension of any irreducible component containing E is $4n^2 + 20n - 3$.

The main remark of this paper is that it is easier to compute $H^2(S^2E)$ and $H^2(\stackrel{?}{\wedge} E)$ together as SL(2)-modules (although this second cohomology space has a geometrical meaning only for orthogonal bundles) than to compute $H^2(S^2E)$ alone.

1. Preliminaries

Throughout this paper \mathbb{K} denotes an algebraically closed field of characteristic zero. U denotes a 2-dimensional \mathbb{K} vector space (U=< s,t>), $S_n=S^nU$ its n-th symmetric power $(S_n=< s^n,s^{n-1}t,\ldots,t^n>)$, $V_n=U\otimes S_n$ $(V_n=< s\otimes s^n,s\otimes s^{n-1}t,\ldots s\otimes t,\ldots t\otimes t^n>)$ and $\mathbb{P}^{2n+1}=\mathbb{P}(V_n)$.

Definition 1.1. A vector bundle E on \mathbb{P}^{2n+1} of rank 2n is called an instanton bundle of quantum number k if:

- E has Chern polinomial $c_t(E) = (1-t^2)^{-k}$;
- E(q) has natural cohomology in the range $-(2n+1) \le q \le 0$, that is $H^i(E(q)) \ne 0$ for at most one i = i(q).

By [6], [2], the Definition 1.1 is equivalent to:

i)E is the cohomology bundle of a monad:

$$0 \to O(-1)^k \to \Omega^1(1)^k \to O^{2n(k-1)} \to 0$$

or ii) E is the cohomology bundle of a monad:

$$0 \to O(-1)^k \xrightarrow{A} O^{2n+2k} \xrightarrow{B^t} O(1)^k \to 0$$

(where, after we have fixed a coordinate system, A and B can be identified with matrices in the space $Mat(k, 2n + 2k, S_1)$)

Definition 1.2. An instanton bundle E is called **symplectic** if there is an isomorphism $\varphi: E \to E^{\vee}$ satisfying $\varphi = -\varphi^{\vee}$.

Definition 1.3. An instanton bundle is called **special** if it arises from a monad where the morfism B^t is defined in some system of homogeneous coordinates $x_0, \dots, x_n, y_0, \dots, y_n$ on \mathbb{P}^{2n+1} by the trasposed of the matrix:

The following lemma is well known (and easy to prove)

Lemma 1.4.

$$\begin{split} H^0(O(1)) &\cong V^{\vee} \\ H^0(\Omega^1(2)) &\cong \stackrel{?}{\wedge} V^{\vee} \\ H^i(\mathbb{P}^n, S^2\Omega^1(1)) &= \left\{ \begin{array}{ll} 0 & se \ i \neq 1 \\ \stackrel{?}{\wedge} V^{\vee} & se \ i = 1 \end{array} \right. \end{split}$$

2. Existence of a special symplectic instanton bundle

There is a natural exact sequence of GL(U)-equivariant maps for any $k, n \ge 1$ (Clebsch-Gordan sequence):

$$(2) 0 \to \bigwedge^{2} U \otimes S_{k-1} \otimes V_{n-1} \xrightarrow{\beta} S_{k} \otimes V_{n} \xrightarrow{\mu} V_{k+n} \to 0$$

where μ is the multiplication map and β is defined by $(s \land t) \otimes f \otimes g \rightarrow$ $(sf \otimes tg - tf \otimes sg)$

We can define (see [7]) the morphism

we can define (see [1]) the morphism
$$\tilde{b}: S_{k-1}^{\vee} \otimes \Omega^{1}(1) \to^{2} U^{\vee} \otimes S_{k-2}^{\vee} \otimes V_{n-1}^{\vee} \otimes O$$
 and it is induced the complex

$$(3) A \otimes O(-1) \xrightarrow{\tilde{a}} S_{k-1}^{\vee} \otimes \Omega^{1}(1) \xrightarrow{\tilde{b}} {}^{2} U^{\vee} \otimes S_{k-2}^{\vee} \otimes V_{n-1}^{\vee} \otimes O$$

where A is a k-dimensional subspace of $S_{2n+k-1}^{\vee} \otimes \stackrel{?}{\wedge} U^{\vee}$ such that (3) is a monad and the cohomology bundle E is a special symplectic instanton bundle. It was proved in [7] that

$$H^2(EndE) \cong Ker(\Phi^{\vee})^{\vee}$$

where
$$\Phi^\vee: S_{k-2}^{\otimes 2} \otimes V_{n-1}^{\otimes 2} \to S_{k-1}^{\otimes 2} \otimes \overset{2}{\wedge} V_n$$
 and there is an isomorphism of SL(2)-representations

$$\varepsilon: S_{k-3}^\vee \otimes S_{k-3}^\vee \otimes S^2 V_{n-2}^\vee \to Ker(\Phi^\vee)$$

3. How to identify
$$H^2(S^2E)$$
 and $H^2(\stackrel{2}{\wedge}E)$

Proposition 3.1. Let E be special symplectic instanton bundle ,cohomology of monad (3) and $N = Ker\tilde{b}$. Then

(i):
$$H^2(S^2E) \cong H^2(S^2N)$$

(ii):
$$H^2(\stackrel{2}{\wedge} E) \cong H^2(\stackrel{2}{\wedge} N)$$

Proof. We denote $B:=S_{k-1}^{\vee}$ and $C:=\stackrel{2}{\wedge} U^{\vee}\otimes S_{k-2}^{\vee}\otimes V_{n-1}^{\vee}$ The result follows from the two exact sequences given by monad (3):

$$(4) 0 \to N \to B \otimes \Omega^1(1) \to C \otimes O \to 0$$

$$(5) 0 \to A \otimes O(-1) \to N \to E \to 0$$

In fact, by performing the second symetric and alternating power of sequence (4), we have

(6)

where $\tilde{A}:=S^2(B\otimes\Omega^1(1))=(S^2B\otimes S^2(\Omega^1(1)))\oplus(\overset{2}{\wedge}B\otimes\Omega^2(2))$ and $0\to \overset{2}{\wedge}N\to \overline{A}\to B\otimes C\otimes\Omega^1(1)\to O\otimes S^2C\to 0$

(7)

where
$$\overline{A} := \stackrel{2}{\wedge} (B \otimes \Omega^1(1)) = (\stackrel{2}{\wedge} B \otimes S^2(\Omega^1(1))) \oplus (S^2B \otimes \Omega^2(2))$$

3.1. **Identifying** $H^2(S^2N)$ **and** $H^2(\stackrel{?}{\wedge} N)$. i) Diagram (6) gives the following two exact sequences:

$$(8) O \to H^{0}(M^{1}) \to H^{1}(S^{2}N) \to H^{1}(\tilde{A}) \to H^{1}(M^{1}) \to H^{2}(S^{2}(N)) \to H^{2}(\tilde{A}) \to \cdots$$

$$O \to H^{0}(M^{1}) \to B \otimes C \otimes H^{0}(\Omega^{1}(1)) \to \stackrel{2}{\wedge} C \to H^{1}(M^{1}) \to B \otimes C \otimes H^{1}(\Omega^{1}(1)) \to \cdots$$

$$\parallel \qquad \qquad \parallel$$

(9) Sequence (9) implies:

$$H^0(M^1) = 0$$
 and $H^1(M^1) \cong \stackrel{?}{\wedge} C$

Then, by using the two formulas:

$$H^1(\tilde{A})=(S^2B\otimes H^1(S^2\Omega^1(1)))\oplus (\stackrel{?}{\wedge} B\otimes H^1(\Omega^2(2))=S^2B\otimes \stackrel{?}{\wedge} V^\vee$$
 and:

$$H^2(\tilde{A}) = (S^2B \otimes H^2(S^2\Omega^1(1))) \oplus (\stackrel{2}{\wedge} B \otimes H^2(\Omega^2(2))) = 0$$
 sequence (8) becomes:

$$0 \rightarrow H^1(S^2N) \rightarrow H^1(\tilde{A}) \rightarrow H^1(M^1) \rightarrow H^2(S^2(N)) \rightarrow 0$$

i.e.

$$0 \to H^1(S^2N) \to S^2B \otimes \overset{2}{\wedge} V^{\vee} \xrightarrow{\tilde{\Phi}} \overset{2}{\wedge} C \to H^2(S^2N) \to 0$$

$$\Longrightarrow \qquad H^2(S^2N) \cong \operatorname{Coker}(\tilde{\Phi}) = (\operatorname{Ker}(\tilde{\Phi}^{\vee}))^{\vee}$$

Then:

$$H^2(S^2N)^{\vee} = \operatorname{Ker} \left[\stackrel{2}{\wedge} (S_{k-2} \otimes V_{n-1}) \xrightarrow{\tilde{\Phi}^{\vee}} S^2(S_{k-1}) \otimes \stackrel{2}{\wedge} V_n \right]$$

ii)

Diagram (7) gives the following two exact sequences:

(10)

$$O \to H^{0}(M) \to H^{1}(\overset{2}{\wedge} N) \to H^{1}(\overline{A}) \to H^{1}(M) \to H^{2}(\overset{2}{\wedge} N) \to H^{2}(\overline{A}) \to \cdots$$

$$O \to H^{0}(M) \to B \otimes C \otimes H^{0}(\Omega^{1}(1)) \to S^{2}C \otimes H^{0}(O) \to H^{1}(M) \to 0 \to \cdots$$

$$\parallel \qquad \parallel$$

$$0 \qquad S^{2}C$$

(11)

and, from sequence (11), we get

$$H^0(M) = 0$$
 and $H^1(M) \simeq S^2C$

Then, since:

$$H^1(\overline{A}) = (H^1(S^2(\Omega^1(1)) \otimes \stackrel{?}{\wedge} B) \oplus (S^2B \otimes H^1(\Omega^2(2))) = \stackrel{?}{\wedge} B \otimes \stackrel{?}{\wedge} V^\vee \text{ and } H^2(\overline{A}) = 0$$

sequence (10) becomes:

$$O \to H^0(M) \to H^1(\stackrel{?}{\wedge} N) \to H^1(\overline{A}) \to H^1(M) \to H^2(\stackrel{?}{\wedge} N) \to 0$$

$$\parallel$$

$$0$$

i.e.
$$0 \to H^1({\stackrel{2}{\wedge}} N) \to {\stackrel{2}{\wedge}} B \otimes {\stackrel{2}{\wedge}} V^{\vee} \xrightarrow{\overline{\Phi}} S^2C \to H^2({\stackrel{2}{\wedge}} N) \to 0$$

$$\implies H^2(\stackrel{?}{\wedge} N) \cong \operatorname{Coker}(\overline{\Phi}) = (\operatorname{Ker}(\overline{\Phi}^{\vee}))^{\vee}$$

Then we obtain:

$$(H^2(\stackrel{?}{\wedge} N))^{\vee} = \operatorname{Ker} \left[S^2(S_{k-2} \otimes V_{n-1}) \xrightarrow{\overline{\Phi}^{\vee}} \stackrel{?}{\wedge} S_{k-1} \otimes \stackrel{?}{\wedge} V_n \right]$$

3.2. **Identifying** $H^2(S^2E)$. We have

$$H^2(S^2E)^\vee \cong \operatorname{Ker} \, \tilde{\Phi}^\vee$$

where $\tilde{\Phi}^{\vee}: \stackrel{?}{\wedge} (S_{k-2} \otimes V_{n-1}) \to S^2 S_{k-1} \otimes \stackrel{?}{\wedge} V_n$ is explicitly given by $\tilde{\Phi}^{\vee}((g \otimes v) \wedge (g^1 \otimes v^1)) = sg \cdot sg^1 \otimes (tv \wedge tv^1) - sg \cdot tg^1 \otimes (tv \wedge sv^1) + -tg \cdot sg^1 \otimes (sv \wedge tv^1) + tg \cdot tg^1 \otimes (sv \wedge sv^1)$

i.e.
$$\tilde{\Phi}^{\vee} = \tilde{p} \circ (\stackrel{?}{\wedge} \beta)$$
where $\beta : \stackrel{?}{\wedge} U \otimes S_{V}$

where $\beta: \stackrel{2}{\wedge} U \otimes S_{k-2} \otimes V_{n-1} \to S_{k-1} \otimes V_n$ is such that

$$(s \wedge t) \otimes (g \otimes v) \mapsto (sg \otimes tv) - (tg \otimes sv)$$

and

$$\tilde{p} : \overset{2}{\wedge} (S_{k-1} \otimes V_n) \to S^2 S_{k-1} \otimes \overset{2}{\wedge} V_n \\
\parallel \\
(\overset{2}{\wedge} S_{k-1} \otimes S^2 V_n) \oplus (S^2 S_{k-1} \otimes \overset{2}{\wedge} V_n)$$

is such that

$$(f \otimes u) \wedge (f' \otimes u^1) \mapsto f \cdot f' \otimes u \wedge u^1.$$

Now, we consider the SL(2)-equivariant morphism:

$$\tilde{\varepsilon}^1 : \overset{2}{\wedge} (S_{k-3} \otimes V_{n-2}) \to \overset{2}{\wedge} (S_{k-2} \otimes V_{n-1})$$

where, up to the order of factors, the map $\tilde{\varepsilon}^1 := \beta^1 \wedge \beta^1$ and $\beta^1 : S_{k-3} \otimes V_{n-2} \to S_{k-2} \otimes V_{n-1}$ is defined as β . Hence, $\tilde{\varepsilon}^1$ is injective.

Finally, we define

$$\tilde{\varepsilon}: \overset{2}{\wedge} S_{k-3} \otimes S^2 V_{n-2} \to \overset{2}{\wedge} (S_{k-2} \otimes V_{n-1})$$

as $\tilde{\varepsilon} = \tilde{\varepsilon}^1 \circ \tilde{i}$, where

$$\tilde{i}: \stackrel{?}{\wedge} S_{k-3} \otimes S^2 V_{n-2} \rightarrow \stackrel{?}{\wedge} (S_{k-3} \otimes V_{n-2})$$
 such that $f \wedge f' \otimes u \cdot u^1 \longmapsto (f \otimes u) \wedge (f' \otimes u^1) + (f \otimes u^1) \wedge (f' \otimes u)$

is an injective map. Then, also $\tilde{\varepsilon}$ is injective.

Lemma 3.2. Im $\tilde{\varepsilon} \subset Ker \ \tilde{\Phi}^{\vee}$

Proof. Straightforward computation.

3.3. **Identifying** $H^2(\stackrel{2}{\wedge} E)$. We have

$$H^2(\stackrel{2}{\wedge} E)^{\vee} \cong \operatorname{Ker} \overline{\Phi}^{\vee}$$

where $\overline{\Phi}^\vee: S^2(S_{k-2}\otimes V_{n-1})\to \stackrel{2}{\wedge} S_{k-1}\otimes \stackrel{2}{\wedge} V_n$ is explicity given by

$$\overline{\Phi}^{\vee}((g \otimes v) \cdot (g^1 \otimes v^1)) = sg \wedge sg^1 \otimes (tv \wedge tv^1) - sg \wedge tg^1 \otimes (tv \wedge sv^1) - tg \wedge sg^1 \otimes (sv \wedge tv^1) + (tg \wedge tg^1) \otimes (sv \wedge sv^1)$$

i.e.
$$\overline{\Phi}^{\vee} = \overline{p} \circ (S^2 \beta)$$
 where

$$\overline{p}: S^2(S_{k-1} \otimes V_n) \to \stackrel{?}{\wedge} S_{k-1} \otimes \stackrel{?}{\wedge} V_n$$

$$(\overset{\circ}{\wedge}\overset{\circ}{S_{k-1}}\otimes\overset{\circ}{\wedge}V_n)\oplus(S^2S_{k-1}\otimes S^2V_n)$$

is such that

$$\overline{p}((f \otimes u) \cdot (f' \otimes u^1)) = f \wedge f' \otimes u \wedge u^1$$

We consider the SL(2)-equivariant morphism:

$$\overline{\varepsilon}^1 : S^2(S_{k-3} \otimes V_{n-2}) \to S^2(S_{k-2} \otimes V_{n-1})$$

such that:

$$\overline{\varepsilon}^1((f\otimes u)\cdot (f'\otimes u^1)) = (sf\otimes tu)\cdot (sf'\otimes tu^1) - (sf\otimes su)\cdot (tf'\otimes tu^1) + \\ -(tf\otimes tu)\cdot (sf'\otimes su^1) + (sf\otimes tu)\cdot (sf'\otimes tu^1)$$

 $(\overline{\varepsilon}^1=S^2\beta^1$ hence $\overline{\varepsilon}^1$ is injective). Finally, we define

$$\overline{\varepsilon}: S^2S_{k-3}\otimes S^2V_{n-2}\to S^2(S_{k-2}\otimes V_{n-1})$$

as $\overline{\varepsilon} = \overline{\varepsilon}^1 \circ \overline{i}$ where

$$\overline{i}: S^2S_{k-3}\otimes S^2V_{n-2}\to S^2(S_{k-3}\otimes V_{n-2})$$
 such that $f\cdot f'\otimes uu^1\mapsto (f\otimes u)(f'\otimes u^1)+(f\otimes u^1)(f'\otimes u)$

is an injective map. Then, also $\overline{\varepsilon}$ is injective

Lemma 3.3. $Im \ \overline{\varepsilon} \subset Ker \ \overline{\Phi}^{\vee}$

Proof. Straightforward computation.

Theorem 3.4. For any special symplectic instanton bundle E

$$H^2(S^2E) \simeq \stackrel{?}{\wedge} (S_{k-3})^{\vee} \otimes S^2(V_{n-2})^{\vee}$$

Proof. By lemma 3.2 and 3.3 we have the following diagram with exact rows and columns:

It was shown in [7] that: $H^2(EndE) \simeq Ker \; \Phi^\vee = H^2(N \otimes N)^\vee \simeq S_{k-3}^{\otimes 2} \otimes S^2 V_{n-2}$ We have proved that there are two injective maps:

$$\tilde{\varepsilon}: \overset{2}{\wedge} (S_{k-3}) \otimes S^2 V_{n-2} \to \operatorname{Ker} \tilde{\Phi}^{\vee} \simeq H^2 (S^2 N)^{\vee} \simeq H^2 (S^2 E)^{\vee}$$

$$\overline{\varepsilon} : S^2(S_{k-3}) \otimes S^2V_{n-2} \to \operatorname{Ker} \overline{\Phi}^{\vee} \simeq H^2(\stackrel{2}{\wedge} N)^{\vee} \simeq H^2(\stackrel{2}{\wedge} E)^{\vee}$$

Then, we can consider the following diagram:

$$0 \downarrow 0 \downarrow 0 \downarrow 0$$

$$\downarrow 0 \rightarrow S^{2}S_{k-3} \otimes S^{2}V_{n-2} \rightarrow S_{k-3}^{\otimes 2} \otimes S^{2}V_{n-2} \rightarrow \overset{2}{\wedge} S_{k-3} \otimes S^{2}V_{n-2} \rightarrow 0$$

$$\downarrow \overline{\varepsilon} \qquad \downarrow \varepsilon \qquad \downarrow \tilde{\varepsilon}$$

$$0 \rightarrow H^{2}(\overset{2}{\wedge} E)^{\vee} \rightarrow H^{2}(EndE)^{\vee} \rightarrow H^{2}(S^{2}E)^{\vee} \rightarrow 0$$

$$\downarrow 0$$

and by the **Snake-Lemma** there is the exact sequence:

 \Rightarrow Coker $\overline{\varepsilon} = 0 \Rightarrow \overline{\varepsilon}$ is an isomorphism $\Rightarrow \tilde{\varepsilon}$ is an isomorphism. Thus:

$$H^2(S^2E)^{\vee} \cong \stackrel{2}{\wedge} (S_{k-3}) \otimes S^2(V_{n-2})$$

i.e.
$$H^2(S^2E) \simeq \bigwedge^2 (S_{k-3})^{\vee} \otimes S^2(V_{n-2})^{\vee}$$
 as we wanted.

Remark 3.5. By this theorem formula 1 and theorem 0.1 are easily proved.

REFERENCES

- [1] V.Ancona, I fibrati istantoni sugli spazi proiettivi ,quaderno INDAM Roma (1996)
- [2] V. Ancona, G. Ottaviani, Stability of special instanton bundles on \mathbb{P}^{2n+1} , Trans. Amer. Math. Soc. Vol. 341, n.2 677-693 (1994)
- [3] A. Hirschowitz, M.S. Narasimhan Fibrés de't Hooft spéciaux et applications (Proc. Nice Conf 1981) 143-163, Birkhäuser Basel and Boston, 1982.
- [4] M. Mamone Capria ,S.M. Salamon ,Yang Mills fields on quaternionic spaces, Nonlinearity 1 517-530 (1988)
- [5] M. Mamone Capria, Teoria di Yang Mills e strutture Geometriche, Doctoral thesis (1990)
- [6] C. Okonek, H. Spindler, Mathematical instanton bundles on \mathbb{P}^{2n+1} , J. Reine Angew. Math. 364, 35-60 (1986)
- [7] G. Ottaviani, G. Trautmann, The Tangent space at a special symplectic instanton bundle on \mathbb{P}^{2n+1} , Manuscripta Math. 85, 97-107 (1994)
- [8] H. Spindler, G. Trautmann, Special instanton bundles on \mathbb{P}^{2n+1} , their geometry and their moduli, Math. Ann. 286, 559-592 (1990)

Carla Dionisi

Dipartimento di Matematica ed Applicazioni "R.Caccioppoli"

Università di Napoli Federico II

via Cintia (loc. Monte S.Angelo)

I-80138 Napoli, Italy

E-mail address: dionisi@matna3.dma.unina.it