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Introduction

Cayley [Cay48] in 1848 found an explicit invariant of a given 2 X 2 X 2 matrix
which generalizes the usual determinant of a square matrix; for that invariant he
proposed the name of hyperdeterminant. This notion was forgotten for many
years; until recently Gelfand, Kapranov and Zelevinski rediscovered Cayley’s
results and gave a modern account of the whole subject (see the book [GKZ94]
for a detailed story of this topic).

The hyperdeterminant of a multidimensional matrix A € V, ® ... ® V,, with
dimV; = k; + 1 exists if and only if k; < Z#j k; for all j = 0,...,p (theorem
1.1.2) and A is called of boundary format if kg = > k;.

We are interested in multidimensional matrices because, in the case of boun—
dary format and nondegenerate, they correspond to a class of vector bundles on
a product of projective spaces which are called Steiner bundles (theorem 1.2.4).
This class is interesting even when the base space is given by a single projective
space.

Ancona and Ottaviani in [AO99] began a study of multidimensional matrices
of boundary format A € V; ® ... ® V,, under the action of the reductive group
SL(Vy) x...x SL(V,) from the point of view of Mumford’s Geometric Invariant

Theory.



The action of SL(Vp) x ... x SL(V,) on such matrices translates to an action
on the moduli space of the corresponding Steiner bundles, the invariants coincide
and the stable points of both actions correspond under that translation. By
investigating the properties and the invariants of the above actions, they proved
that for p < 2 the stabilizer of a multidimensional matrix is contained in SL(U)
where U is a 2-dimensional vector space. The main result of the first chapter of
the thesis is the proof that the assumption p < 2 can be dropped; it holds for
every p (theorem 1.3.13).

We emphasize that SL(Vp) x ... x SL(V,) is a "big” group, so it is quite
surprising that the stabilizer found lies always in the 3-dimensional group SL(U)
without any dependence on p and on dimV;.

The maximal stabilizer is obtained by the " most symmetric” class of matrices
corresponding to the identity matrix. Under the identifications V; = S*U the

identity is given by the natural map
SFU®...® U — SPU

which is defined under the assumption ky = > k;. This explains again why the
condition of boundary format is so important.
When the base is a single projective space P(V3) (p = 2), Steiner bundles S

are defined by the following exact sequence
0= Vi®Opayy(—1) = Vo ® Opppy = S = 0 (1)

They are stable, they give smooth points in the moduli space of all stable bun-
dles with the same rank and Chern classes, and they belong to an irreducible
component of dimension (kK —1)(n—1)(n+ k+ 1) where k = k; + 1 and n = ks
([AO94)). 4



This class of bundles was first studied by Schwarzenberger in 1961 [Sch61]
who defined a particular class of bundles (called Schwarzenberger bundles) which
corresponds, under the above correspondence, to the identity matrix. Since they
have a “big” group of symmetry, their cohomological behavior is expected to be
quite special.

In the section 1.4 we prove that if 8 is a Schwarzenberger bundle on P"

h(S?87) =n(n+2k—2) and h3(S°8") = ("7 ) 2) (Z)

In the second chapter of this thesis we restrict the base space to be P2, but

we focus on a larger class of bundles €, i.e. these bundles having free resolution

k r+k
0— @ Op2(—a;) — @ Op2(—b;) = &€ = 0. (2)
i=1 j=1

(By (1), Steiner bundles are a particular case).

Since Horrocks theorem [Hor64| asserts that any torsion-free sheaf ¥ on P
has homological dimension at most n— 1, thus on P? any bundle has homological
dimension 1, that is, has a free resolution of the type (2). Hence, the aim of
the second chapter becomes to investigate stable vector bundles on the complex
projective plane P? by means of their minimal free resolution.

Bohnhorst and Spindler, in the paper [BS92|, develop interesting techniques
for the study of minimal free resolution of rank-n stable vector bundles on P"
having homological dimension 1. We partially adapt their results to the case
of rank-r vector bundles on P? with » > 2. In particular in proposition 2.2.4
we translate the condition of minimality of the resolution to a condition of

admissibility of the pair (a, b), where a = (a1,...,ax) and b = (b, ..., bgir).
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As Bohnhorst and Spindler observe, admissible pairs (a, b) define a stratifi-
cation of the moduli space Mp2(2, ¢1, ¢2) by constructible subsets. In the section
2.2.1 (lemma 2.2.19) we estimate the codimension of such strata and we char-
acterize the pair of the general element of the moduli space. As a corollary, a
quite easy proof of the irreducibility of 9Mp2(2, ¢, ¢y) follows (theorem 2.2.21)
and some bounds about the regularity and the cohomology of its elements are
found in 2.2.24 and 2.2.25.

All proofs work for rank-r vector bundles on P? having strongly admissible
pairs (see definition 2.2.17). The moduli space Mp2(r, ¢1, ¢o) is irreducible for any
r (the proofs with different techniques can be found in [Bar77a], [E1183]), [HL93],
[Pot79], [Mar78]) moreover we don’t have examples of rank r- stable vector
bundles on P? which are not strongly admissible, so we give this conjecture:
“the strong admaissibility for the pairs of a holomorphic vector bundle € on the
projective space is a necessary condition for the stability of 7.

A proof of this conjecture would give as corollary also the irreducibility of
Mp2(r, ¢1, c2) for any rank r, by applying the same arguments of the proof of
2.2.20.

Finally, in the section 2.4, using the computer algebra system MACAULAY2
and an algorithm to compute admissible pair written in the Scheme dialect of
Lisp, we give, in the cases r = 2, ¢; = —1 and ¢y < 6, a positive answer to the
open problem of the explicit description of the filtration in constructible open
subsets of moduli spaces Mp2(r; ¢1, c2) and the results are summarized in a series
of tables at the end of the thesis.

Many of the results from the second chapter are obtained in collaboration

with Marco Maggesi.
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Chapter 1

Stabilizers for nondegenerate
matrices of boundary format and

Steiner bundles

1.1 Hyperdeterminants

1.1.1 Definition and basic properties

By an (p + 1)-dimensional matrix we shall means an array A = (aj,,..;,) of
complex numbers, where each index ranges over some finite set.

It is possible to define an analog of determinant of square n X n matrices also
for some multidimensional matrices, called hyperdeterminant. Its study was
initiated by Cayley [Cay48] and Schlifli [Sch52] but was largely abandoned for

150 years. Recently it is undertaken by Gelfand, Kapranov, Zelevinsky and



Weyman in [GKZ94], [GKZ92|, [Wey94], [WZ96] and in this section we remind
their results.

Let p > 1 be an integer and 0 < 4; < k; then A = (a,,. ;) is called (p + 1)-

sl
complex matrix of format (kg+1) - - - x (k,+1) and let M = Clho+1)x=x(kp+1) he
the spaces of these matrices. With greater generality we can fix (p+ 1) complex
vector spaces V; fori =0, ..., p of dimension k;+1 and denote M = V,®---®V,
(the context allows to avoid any ambiguity with the previous definition of M).
The definition of the hyperdeterminant of A can be stated in geometric, analytic
and algebraic terms ([GKZ94]).

Geometrically, consider the product X = P* x ... x Pk of several projec-
tive spaces in Segre enbedding into the projective space Pko+1)-(ko+1)=1 (if Pkj jg
the projectivization of the complex vector space V;* then the ambient projective
space is POV ®---® V). Let XV be the projective dual variety of X consisting
of all hyperplanes in Pkot+D-(kp+1)=1 tangent to X at some point. If XV is a

(ko+1)..(kp+1)=1% then its defining equation, which is a homoge-

hypersurface in P
neous polynomial function on Vi ® --- ® V* is called the hyperdeterminant of
format (ko 4+ 1) x --- x (k, + 1) and denoted by Det. As usual, if XV is not an
hypersurface, we set Det equal to 1, and refer to this case as trivial. If Vj is
equipped which a basis then the element f € 1, ® --- ® V}, is represented by a
matrix A = (a;,,.4,) as above, and so DetA is a polynomial function of matrix
entries. It is determined uniquely up to the sign by the requirement that the
Det(A) has integer coefficients and is irreducible over Z.

Analytically, the hyperplane f = 0 belongs to X" if and only if f vanishes at

some point of X with all first derivatives. If we consider the coordinate system



) = (x(()j), ... ,x,(fj) on each V* then f € Vy®---®, is represented after

restriction on X by a multilinear form

0
F(Az):= f(x(o), e ,af:(p)) = Z Gio,...,i,,ﬂ?( )@ ® xz(.f:) (1.1)

10
(20,.-+yip)

In more invariant terms, we can think of A as an element of Vi ® ---® V', or
more geometrically, as a section of the vector bundle O(1, ..., 1) on the product
of projective spaces X = Pk x ... x P*». There is a natural left action of the
group G = GL(V;) x -+ x GL(V,) on Vi x - -+ x V, and a right action of G on
M such that

F(Ag,z) =F(A,gz) (Ae M,z €Vyx---xV,)

Therefore, the condition Det(A) = 0 means that the system of equations

_ 0f(z)
o am(j)

2

f(=)

=0 (1.2)

(for all 4,7) has a solution z = (z(@,... 2(®)) with all 2(9) # 0. We say that a
multilinear form f (or a matrix A) satisfying this condition is degenerate.

Algebraically, the degeneracy of a form f can be easily characterized as

follows. We denote by K(f) (or K(A)) the set of points
z= (20 .. zP)e X =P x...x Pt

such that

f(x(o), . _’x(j_l)’y’ x(]"’l)’ . ,./I/‘(p) — 0

for every j = 1,...,p and y € V*. We shall sometimes call X(A) the kernel.

For a bilinear form f(z,y) there is a notion of left and right kernels

le(f) = {.’L‘ : f(x,y) = Oav?/}: Jcr(f) = {y : f(xay) = O,V.Q?}

10



and K(f) = XK, (f) x K.(f).

1.1.1 Proposition. [GKZ9/] A form f is degenerate if and only if K(f) is

nonempty

Proof. Computing the differential of f we see that K(f) is exactly the set of

solution of (1.2) O

In particular, if p = 1 and so f is a bilinear form with a matrix A, the
degeneracy of f just defined coincides with the usual notion of degeneracy and
means that A is not of maximal rank. Obviously, this condition is of codimension
1 if and only if A is a square matrix, and in this case Det(A) coincides with the
ordinary determinant det(A).

The fist natural question about hyperdeterminants is to describe all matrix
for which Det(A) is non-trivial, i.e. XV is a hypersurface, or in other words, the
degeneracy of A is a codimension one condition. The matrices of such formats

can be viewed as multidimensional generalizations of ordinary square matrices.

1.1.2 Theorem. [GKZ94] The hyperdeterminant of format (ko+1)x- - -Xx (k,+1)

exists if and only if

kj < Zkz (1.3)
for all j=0,..., p ((1.8) is called “polygon inequality”)

Assuming that (1.3) holds, i.e. the hyperdeterminant of a matrix A is non-

trivial, then the next property of Det follows at once from any of the definitions.

11



1.1.3 Theorem. /GKZ9/] The hyperdeterminant is relative invariant under the
action of the group GL(Vy) x --- x GL(V,) (and so invariant under the action
of SL(Vy) x -+ x SL(Vy)).

We shall identify the set of matrix (multi-)indices I = {(io, . ..,%,) :
0 <i; < k;} of a matrix A with the set of vertices of the product A% x .. x Ak»
of (p + 1) standard simplices, thus the submatrix of A correspond to the faces
of Ao x ... x Ak» By a slice in the j-direction we mean the subset of all indices
in I with the fixed j-th component, and also the corresponding submatrix of A.

Two slice in the same direction are called parallel.

1.1.4 Corollary. [GKZ9/]

(a) Interchanging two parallel slices leaves the hyperdeterminant invariant up to
sign (which may equal 1);
(b) the hyperdeterminant is a homogeneous polynomial in the entries of each

slice. The degree of homogeneity is the same for parallel slices;

(c) the hyperdeterminant does not change if we add to some slice a scalar multiple

of a parallel slice;
(d) the gyperdeterminant of a matriz having two parallel slices proportional to

each other is equal to 0. In particular, Det(A) = 0 if A has a zero slice.

1.1.5 Example. Now we will give an explicit form for the hyperdeterminant of
the minimal 3-dimensional format 2 x 2 x 2 (in this case the hyperdetermiant

was already known to A.Cayley [Cay45]).
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Let A = (a;jx) be a matrix with (4,7, =0, 1) then

2 2 2 9 2 9 )
Det(A) = (agpoai1y + ago10710 + Go19070; + %11%00)
— 2( 0000011100111 + G00000100101G111 + B000G01101000111+ (1.4)
1.

+ 00100100101 @110 + G001001101100100 + Co10G01101010100)+
+ 4(@000@011G101G110 + G001Q01001000111)-

Now we give a multidimensional generalization of the fact that the deter-
minant is preserved by transposition of a matrix. For a matrix A = (aj,...i,)
of format (ko + 1) x --- x (k, + 1) and a permutation ¢ of indices 0,...,p we
denotes by o(A) the matrix of format (k,-1) + 1) x -+ X (kg-1(p) + 1), whose
(4o, J1s- - -» Jp)-th entry is equal to Qjy (0o~ L 1€ fOllowing result is an imme-

diate consequence of definitions.

1.1.6 Proposition. [GKZ9/] If A is degenerate then o(A) is degenerate for
every permutation o. If Det(A) exists then Det(o(A)) also exists and it is equal
to Det(A).

Given A as above and B = (bj,,... ;,) of format (lp+1) x---x (l;+1), if k, = Iy
we may define the convolution (or product) A B of A and B as the (p+q—1)-
dimensional matrix C of format (ko +1) x -+ X (kp—1 +1)(l; +1) x -+ x ({; +1)
with entries

kp
CiO:"'ﬂ’p—lﬂjlr"ajq = Z a'iO""yip—lahbh”jlr":jq'
h=0

Similarly, we can define the convolution Ax, ;B with respect to a pair of indices

r, s such that k., = ;.

13



1.1.7 Proposition. /[GKZ94] If A, B are degenerate then A x B is also degen-
erate. In particular there exist polynomials P(A, B) and Q(A, B) in entries of
A and B such that

Det(A x B) = P(A, B)Det(A) + Q(A, B)Det(B)

Fix p > 2 and let N(ky,...,k,) be the degree of the hyperdeterminant of
format ky x --- x k,) (if this hyperdeterminant is not defined we make the
convention N (ko,...,k,) =0).

1.1.8 Theorem. [GKZ9/] The generating function for the degree N(ko, ..., kp)

18 given by

p _
S Niko, kel e = (1= ez ) © )
=1

kQseeskp>0

where e;(2, - - ., %) s the i-th elementary symmetric polynomial.

1.1.2 Hyperdeterminant of boundary format and its ap-
plications

1.1.9 Definition. A (p + 1)-dimensional matrix A = (a;,,. ;,) of format (ko +

1) x --- x (k, + 1) is called boundary format if

P
ko= ki
i=1
(interior format if ky < Y 7| k;)

In this case, the hyperdeterminant exists (by theorem 1.1.2) and its degree

can be explicitly evaluate by following formula (|[GKZ94]):

m+~-+@>_(%+1y

= Mow ) 1.6
k.. k, kol k) (1.6)

N(k:o,...,kp):(k1+---+kp+1)(

14



Note that for p = 1 the boundary is just that of ordinary square matrices and
(1.6) expresses the fact that the (ordinary) determinant of a (k+ 1) x (k + 1)
matrix has degree £ + 1.

In [GKZ94] Gelfand, Kapranov and Zelevinsky showed that if A is a bound-
ary format matrix Det(A) can be interpreted as the resultant of the system of
multilinear forms, and so they gave a number of explicit formulas for Det(A)
similar to the classical Sylvester formula for the resultant of two binary forms.
We consider p groups of variables z = (209,...,z,) for 1 < j < p. Let
S(my,...,my) := S™V; ® --- ® S™V,, denote the space of all polynomials in
z = (zW,...,2®) which are homogeneous of degree m; in the variables of each
group 2V). We shall view a matrix A as a collection of (kg + 1) multilinear
forms fo, fi,..., fx, € S(1,1,...,1) corresponding to the slices of A in the 0-th

direction:

fig = Z io, i1, z’pxil(l)"'ivip(p)- (1.7)

1.1.10 Theorem. [GKZ9/] The hyperdeterminant Det(A) of the matriz of the
boundary format is equal to the resultant of the system of multilinear forms
fo, f1, -+, fro-In other words, A is degenerate if and only if the system of mul-

tilinear equations
folz) = fi(z) =--- = fr(z) =0 (1.8)

has non trivial solution.

Analyzing the conditions of degeneracy, theorem 1.1.10 admits following easy

generalization to the case when kg > k1 +--- +k,

15



1.1.11 Theorem. [GKZ9/4] Suppose that kg > ki + - -- + k,. Then A is degen-
erate if and only if the system (1.8) has a non-trivial solution. The subvariety of

degenerate matrices has codimension ko — (k1 + -+ + kp) + 1.

Now, assuming that A is boundary format and
mj =ki+ko+---+kj_q, j=1...,p (1.9)
(with the convection m; = 0, we associate to our matrix A the linear operator)
O : S(mi,ma, ..., mp)™ T — S(1+my,14+my,...,1+m,)

given by 04(go, - - -, Gke) = 1% fiGi

1.1.12 Example. In the case p =2, A Vo @V, @ V5
8A . V;:)V ® Skl‘/Q — V'l ® Sk1+1V'2

1.1.18 Remark. We remark that since A € 1, ® ... ® V, can be regarded as a
map Vy' = Vi ®---® V), taken the dual map V)Y ®...® V)" — V4 (that we call
also A), the theorem 1.1.10 asserts that

A is degenerate if and only if for all 4 # 0 there exist non zero vectors v; € V"
such that A(v; ® ...Qv,) = 0.

Moreover, the map J4 is obtained by tensoring A by S™V; ® ... ® S™V,
(and by projecting on S™ 1V, ® ... ® S™ TV, in the natural way).

1.1.14 Proposition. [GKZ9}] Each of the spaces S(my, my,...,my)* and

_ (ko+1)!
= ik

S(1+mq,1+my,...,my) has the same dimension N

Proof. This follows at once from the standard fact that dim(S™(CF+1)) = (kzm)

O

16



Let us choose in each of the space S(my, ma,...,m,)*¥*! and
S(1+my,14+may,...,m,+1) the basis consisting of monomials. We will denote
by the same symbol 04 the matrix of the operator 04 in these bases, that by

above proposition is square.

1.1.15 Lemma. [GKZ94] The polynomial det(04) is non-zero, and it is irre-

ducible over Z

1.1.16 Theorem. [GKZ94] We have Det(A) = det(d4)

1.1.3 Singularities of hyperdeterminants

Let Y = (Vo —{0}) x -+ x (V, = {0}). We say that z € W is a critical point of a
matrix A € M if (1.2) is verified for all 4, j (by definition A € M is degenerate if
it has at least one critical point in W). In more geometric way there is a natural

()

projection pr: Y — X (Y =Pk x ... x P*), so the coordinates z;”’ of a point
y € Y are the homogeneous coordinates of pr(y) € X. This projection makes Y’
a principal fiber bundle over X with the structure group (C*)P. It is clear that
for every A € M the set of critical points of A in Y is a union of fibers of the
projection pr : Y — X. We shall say that a point x € X is a critical point of
A if the fiber pr~*(z) C Y consists of critical points of A. Now we consider the

incidence variety
Z ={(A,z) € M x X : z is a critical point ofA}

Then the variety A := XV C M of degenerate matrices is the image prq(2),

where pry is the projection (A, x) — A. This description implies at once that A

17



is irreducible(the irreducibility of A follows from that of Z, and Z is irreducible,
since it is a vector bundle over an irreducible variety X). We know that A is a
hypersurface in M if and only if the matrix format satisfies the polygon inequal-
ity (1.3) and the equation of A is the hyperdeterminant. Assuming that this
holds Weyman and Zelevinsky in [WZ96] describe the irreducible components
of the singular locus Ay, of the hypersurface A. They prove that for matrices
of dimension > 3 and format different from 2 x 2 x 2, Ay, has codimension 1
in A and as shown in [GKZ92], this gives a complete description of the matrix
formats for which the hyperdeterminant can be computed by Schliafli’s meth-
ods of iterating discriminants [Sch52]. Moreover they classify the irreducible

components of Ag;,, for all matrix format.

1.1.17 Remark. The ordinary square matrices have a natural stratification ac-
cording to their rank, the set A is the largest closed stratum of this stratification,
and the next closed stratum (that is, the set of matrices of corank > 2)is exactly

the singular locus Agip,-

In particular, in [WZ96] is proved that for boundary format matrices the
singular locus Ay, is always an irreducible hypersurface in A. This is a sharp
contrast with the case of interior format, in fact in this case Ay, has two
irreducible components, both of codimension 1 in A. The origin of this difference
between the interior and boundary formats lies in the fact that for boundary
format the hyperdeterminant can be interpreted as the resultant of a system of

multilinear forms (1.1.10).

18



1.1.4 Multidimensional diagonal matrices and Vander-

monde matrix

1.1.18 Definition. [AO99] A (p + 1)-dimensional matrix of boundary format
A e Vy®---®YV, is called triangulable if one of the following equivalent

conditions holds:
i) there exist bases in Vj such that a;, . ;, =0 for ig > Z€:1 1

ii) there exist a vector space U of dimension 2, a subgroup C* C SL(U) and iso-
morphisms V; ~ S*iU such that if V,®- - ‘®Vp = @,z Wh is the decomposition

into direct sum of eigenspaces of induced representation, we have A € @, <, Wh,

proof of the equivalence between i) and i)
Let z,y be a basis of U such that ¢ € C* acts on z and y as tz and ¢ 'y. Set
eg) = a:’“yki_k(’jg) € SkU for j > 0 and e,(co) = x’“o_kyk(’jf) € S*U so that
egg) ®...® egf ) is a basis of S¥*U ® ... ® S*U which diagonalizes the action of
C*. The weight of ¢{) ® ... ® el is 2 (320, i — io), hence ii) implies i). The

10 1 t=1

converse is trivial.

1.1.19 Definition. [AO99] A (p + 1)-dimensional matrix of boundary format
AeVy®---®YV, is called diagonalizable if one of the following equivalent

conditions holds:
i) there exist bases in V; such that a;,,. ;, = 0 for iy # S i

ii) there exist a vector space U of dimension 2, a subgroup C* C SL(U) and
isomorphisms V; ~ S*¥ U such that A is a fixed point of the induced action of
(C*

19



1.1.20 Definition. [AO99] A (p + 1)-dimensional matrix of boundary format
AeVy®---®YV, is an identity if one of the following equivalent conditions
holds:

i) there exist bases in V such that
0 for do# >0 4

1 for 7:0 = Z?:l it

Wiy ,.oip —

ii) there exist a vector space U of dimension 2 and isomorphisms V; ~ S*U
such that A belongs to the unique one dimensional SL(U)-invariant subspace of

ShU Q.- @ SkU

The equivalence between i) and ii) follows easily from the following remark:
the matrix A satisfies the condition ii) if and only if it corresponds to the natural
multiplication map S*U ® ... ® S»U — S*kU (after a suitable isomorphism
U ~ U* has been fixed).

The above definitions agrees with some in [WZ96] where a (p + 1)-complex

matrix A = (a4, ) of format (ko + 1) x --- x (k, + 1) is called diagonal if

Uig,...i, = 0 unless ¢ = (i, ...,1,) is a diagonal multi-index for k = (ko, ..., k)
i.e. if 4 and (k — 7) satisfy the “polygon” inequality (1.3).
We shall see that a generic diagonal matrix A is nondegenerate as proved in

[WZ96]. This is a consequence of the following statement: there exists an ex-

treme monomial

T «* (1.10)

i=(i0,--1ip)

appearing in Det(A) such that d(i,k) > 0 if and only if ¢ is diagonal for k.

(Recall that a monomial is eztreme if it corresponds to a vertex of the Newton

20



polytope of Det(A)). To construct such a monomial we recall that in [GKZ94|
and [GKZ92| is shown that any coefficient of the degree N(ky,...,k,) in the
formula (1.6) has a combinatorial expression as a sum of positive summands;
furthermore, a combinatorial argument shows that N(ky,...,k,) > 0 exactly
when k = (ky, ..., kp) is diagonal.

Now consider the square root of the generating function (1.6), i.e., the series
p ~1
Z M (ko, ... ky)zlo - = (1 - Ziei(zo, cee zp)) (1.11)
i=1
For any two non-negative integer vectors i = (i, ..., i),k = (Ko, - .., kp) we set
d(i, k) = Mg, . ..,ip)M(ko —ig, . .., kyp — i) (1.12)

1.1.21 Theorem. [WZ96] For every interior or boundary matriz format, the
monomial (1.10) with the exponent given by (1.12) is an extreme monomial in
Det(A) appearing with the coefficient £1. The exponent d(i, k) is positive if and

only if © 1s diagonal for k.

This theorem proves that the diagonal matrices are nondegenerate and since
the hyperdeterminant was defined only up to the sign, then it gives a natural
choice of the sign, by requiring that the monomial given by (1.10),(1.12) occurs

in Det(A) with coefficient 1.

1.1.22 Remark. If the matrix format is boundary, then the determinantal for-
mula Det(A) given by (1.1.16), implies that the hyperdeterminant of diagonal
matrix is just the monomial (1.10). This is no longer true for interior format.

Using computer algebra system MACAULAY, Weyman and Zelevinsky found
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that the hyperdeterminant of a diagonal 3 x 3 x 3 matrix is given by

Det(A) :(@000%22)8((1110&101 ap11 a112a121a211)2 (aﬁooaﬁlaéﬁ

2
+ 8ago0@111 @222 (A000@1120121A211 + +G22201100101G011) )+

(1.13)
+ 16(agoo@1120121 G211 )% + 16(a922a1100101 G011 ) >+

— 32a00001100101 G011 G112 01210211 0222)
Here the diagonal monomial is the only one occurring with coefficient 1.
There are two other extreme monomials occurring in (1.13): both of them have

coefficient 16 and not contain the variable a;1;. It follows that there exists a

nondegenerate diagonal matrix having a;1; = 0.

Now we assume that the matrix format is boundary.We shall construct an-
other special class of matrices analogs of the classical Vandermonde matrix.
Let A = (Xij)o<i<koi<j<p De a (ko + 1) X (p) complex matrix. We define
Vandermonde-type matrix A = A(A) of format (ko + 1) x -+ x (kp, + 1)
by the formula

. . = i i2 “ e ip
a’Zo,Zl,---,’Lp - AZ;IAZ;Z Azap

(1.14)

If p=1,ky = k; = k then A = A(A) is the usual (k+1) x (k+ 1) Vandermonde

matrix
(1 % 22 ... A
1 A A2 L A
\L M A2

1.1.23 Proposition. The matriz A(A) is nondegenerate if and only if for each

J=2,...,p the numbers Ao, A1 j,.-., Ak, are mutually distinct.
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1.2 Geometric invariant theory and nondegen-
erate matrices of boundary format

We consider the natural action of SL(Vj) x ... x SL(V,) on P(V; ® ... ® V).
We may suppose p > 2. The definitions of triangulable, diagonalizable and
identity boundary format matrix, given in the last section, apply to elements of
PV ®...®V,) as well. In particular all identity matrices fill a distinguished
orbit in P(V®...Q®V,). Moreover, we know that the hyperdeterminant of multi-
dimensional matrices is a homogeneous polynomial function over V, ® ... ®V,,
then the condition Det A # 0 is meaningful for A € P(V;®...®V}). The function
Det is SL(Vy) % ... x SL(V,)-invariant (see theorem (1.1.3)), in particular if
Det A # 0 then A is semistable for the action of SL(V;) x ... x SL(V,). We
denote by Stab (A) C SL(Vy) x ... x SL(V},) the stabilizer subgroup of A and
by Stab (A)° its connected component containing the identity.
We remember that if e(()j), e e,(é) is a basis in Vj so that every A € Vj®- - -®V,
has coordinate form
A= Z aio,,,_,ipez(g) ®: - Q® egj) (1.15)
and if x(()j ), e ,x,(fj ) are the coordinates in Vj, then A has the following different

descriptions:

1. A multilinear form

2. For any fixed j # 0 an ordinary matrix M4 = (miji,) of size (kj + 1) x
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(ko + 1) whose entries are multilinear forms

My = Z aio,...,i,,m(l) Q& mgf) Q& 7P (1.16)

71 ip

(81 yeej ennnip)

3. For any fixed j # 0 a sheaf morphism f4) on the product X = P¥ x

...X]P’ij...x]P’kp

Ox®Vy = O0x(1,...,1)®V; (1.17)

1.2.1 Theorem. Let A be a matrixz of boundary format, let fjf) be a surjective

map and S* = kerflgl) a vector bundle then
RO(S* (k1 k1 + Koy oy ki+ ..+ kp 1) =0 (1.18)

Proof. We have that S* is a vector bundle on X = P*2 x --. x P¥ of rank equal

to dimX = kg — k1 and detS* = Ox(—k; —1,...,—k; — 1), hence
S*(k1, ki+ko, ... kit . Ahp1) 2 AROTFITIG( 1 ko—1, L kythgt - k1 —1)

The result follows from the (ko —k; —1)-power of the sequence dual to (1.17):

0— SR MVY @O(—ky — - —kp,,—ks — - —kp, ..., —hp) = ..

o V@SRV @ O(—ky — oo — Ky — 1, kg — =y — 1,k — 1) = .
e AR @ O(— 1k — 1, ket ks Ry — 1) =

o ARG ke — 1, kot ko — 1) =0

(1.19)
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1.2.2 Theorem. The following properties are equivalent
i) The system fo(z) =--- = fx,(x) has only trivial solution on

ii) fa is surjective and S* = Kerfﬁll) is a vector bundle on X = P*2 x - .- x Pk»

of rank ko — k1

iii) det(04) # 0.

Proof.
i) = ii) It follows obviously by definition of f;.

ii) = iii) By proposition 1.1.14 d,4 is a map between finite vector spaces hav-

(ko+1)!

pATSIaE If f4 is surjective the kernel of 04 is equal to

ing same dimension
H°(S*(k1, k1 +ko, ..., ki+---+k, 1)) which vanishes by the above lemma, then

04 is an injective map and det(04) # 0.
iii) = i) If the system has non trivial solution then there exist nonzero vectors
v; € V;Y,i=1,...psuch that A(v; ® --- ® v,) = 0 and the nonzero tensor

®(m1+1)

®(ma+1
o ® vs ( )

® - - ® 1,2™*+) maps to zero, hence det(0) = 0. O

1.2.3 Remark. Above theorem suggests to give as definition of hyperdeterminant
of a matrix A the usual determinant of the square matrix 0y4.
More in general, given an opportune order on the integers k; in the similar

way of (1.9), theorem 1.1.10 easily translates into:

1.2.4 Theorem. The following properties are equivalent

i) DetA # 0;
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ii) for all j # 0 the matriz M 49 has constant rank ki +1 on

X = P* x ... Pk X - e X Py

iii) for all j # 0 the morphism fA(j) is surjective so that S* 4% = KerfA(j) s a

vector bundle of rank ko — k;

In the particular case p = 2 the (dual) vector bundle S, lives on the
projective space P",n = ko and is a Steiner bundle as defined in [DK93] (this
case has been investigate in [AO99]). We can keep to S4 the name Steiner also
for p > 3.

Moreover, the action of SL(Vp) x -+ x SL(V,) on A translates for all j to
an action on the corresponding bundle S$* 49 in two steps: first the action of
SL(Vy) x SL(V;) leaves the bundle in the same isomorphism class, then SL(V;) x
e X Sf(vj) X -+ x SL(V,) acts on the classes, i.e. on the moduli space of

Steiner bundles. It follows that the invariants of the matrices for the action of

SL(Vy) x --- x SL(V,) coincide with the invariants of the action of SL(V;) x
e X ST(VJ) X ---x SL(V,) on the moduli space of the corresponding bundles
and the stable points of both actions correspond to each other. In particular,

investigating the properties and the invariant of both the above action, Ancona

and Ottaviani in [AO99], proved the following main results.

1.2.5 Theorem. [A099] Let A € P(Vu ®...QV,) of boundary format such that
Det A#0. Then

A is triangulable <= A is not stable for the action of SL(Vy) x ... x SL(V,)

1.2.6 Theorem. [A099] Let A € P(V,®...®V},) of boundary format such that
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Det A #0. Then
A is diagonalizable <= C* C Stab(A)

In the case p = 2 in the following proposition we give an alternative simple

proof of this result.

1.2.7 Proposition. Let A € P(V, ® Vi ® V2) of boundary format such that
Det A #0. If C* C GL(Vy) x GL(Vh) x GL(V3) stabilizes A then A is diago-

nalizable.

Proof. For all i=0,1,2 we choose a basis of V; such that

a'inZO if Z#] and Vlsz‘i‘l

and we put
(87 S o S ako
Bo=>--2> P
Yo =2 Yk

the weights of the action of C* respectively on V;,V; and V5, hence we have a
region on left-up of the matrix M, corresponding to maximal weight.
Claim: oy < a1 and Gy > (4.

Assume, as a contradiction, that there exist two integers s > 1 and ¢t > 1

such that
ao e as
(1.20)
Po=--= B
Since C* C Stab(A), then (1.20) implies also that vy = - -+ = 7, and in the left-
up minor of My of order (¢t + 1) x (s+ 1) we have only the variables zy, ...,z
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where zg, ..., xy, is the coordinate system of P(V;). Moreover, in the right-up
minor of order (t+1) x (ko — s) we have only the variables z;1,. .., T,, the left
down minor of order (k; —t) X (s+ 1) is the zero matrix and in the last minor,
that we call A’, we have all the variables z;.

If s < t the left-up minor has rank less than (¢t41), hence, the first (t+1)-rows
of M, are linearly dependent by putting x; = 0 for + > s+ 1. This contradicts,
by theorem 1.2.4, the hypothesis DetA # 0.

If s = t, since s,t < 1, by calculating the zero of the determinant of the
left-up minor, we get a point of P(V3) where the first s rows are dependent as
in the above case.

If s > t the transposed matrix of A’ gives on P*? the sheaf morphism

08t — Of 2 (1)

whose rank drops on a subvariety of codimension < ko — s — ki +t+1 < ky =
dim P(V3), then we get, as contradiction, that A is degenerate. So, (1.20) cannot
occur.

Now, we suppose that k; = 1 then for all ¢ = 0,..,ks +1 m1; = @;1,;1%i1
i.e. A is diagonal. In fact, by comparing:
the weights of m,; with the weight of mg; we get a;1; = 0;
the weights of m,; we get a;; =0 Vj>i+42;
the weights of m,; with the weights of mg; , we get a;1311) = 0if ¢ > 7 and
an; =0Vj<i—2ift <.

Also in the case k; > 1, the same comparisons gives that m;, = 0 for all

j > 0. The minor obtained by cutting-out the first rows and the first column has
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maximal rank (since A is nondegenerate), is boundary format and it is stabilized

by C*, then, by induction on £k, it is diagonal. Hence, also A is diagonal. [

1.2.8 Theorem. [A099] Let A € P(Vo ® V1 ® V3) of boundary format such
that Det A # 0. Then there exists a 2-dimensional vector space U such that
SL(U) acts over V; ~ S*¥U and according to this action on Vo @V, ® Vy we have

Stab (A)° C SL(U). Moreover the following cases are possible

)

0
C
Stab (A)° ~ ¢
((:*

SL(2) (this case occurs if and only if A is an identity)

\

1.2.9 Remark. When A is an identity then Stab (A) ~ SL(2).

In the next section we extend the first part of this result to the case p > 2 and
using jumping hyperplane we characterize Schwarzenberger bundles on product

of projective spaces.

1.3 Jumping hyperplanes, Steiner bundles and
stabilizers

Let p = 2 and S := S' be the Steiner bundle on P(V;) defined by a matrix
A € V5 ® Vi ® V3 boundary format, an hyperplane A € P(V,") is an instable
hyperplane of S if h°(S},) # 0 (see [AO99]).
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In particular, H°(S*(¢)) identifies the spaces of (kg + 1) x 1-column vectors
v with entries in S*V; such that Av = 0, and an hyperplane h is instable for S
if and only if there are nonzero vectors vy of size (ko + 1) x 1 and (k1 +1) x 1

both with constant coefficients such that
A’U() = Ulh. (121)

(the tensor H = vg®w; is called instable (or jumping) hyperplane for the matrix
A)
For p > 3 there are at least two ways to define a jumping hyperplane. We

will them weak and strongly jumping hyperplanes.

1.3.1 Definition. H =v,®v; € Vi ® V] is a (j)-weak jumping hyperplane

for A if 3 vy, wy, ..., wyg, basis of Vj such that
ko

szwaw®h+§:wﬂyn (1.22)
i=1

where h € Vi ®---®V;®---®V, is an hyperplane for P* X x PRI - x Phe
PVi@ - QV;®@--®V,).

1.3.2 Remark. The expression (1.22) means, as in the case p = 2, that
HO(Ker fa})) # 0.
If H =vy®wv, is a (j)-weak jumping hyperplane for A then the map:
Vo@ @V = (Vo/ <o) @+ @ (Vj/<coy>) @@V,
A A
gives an elementary transformation [Mar82]
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1.3.3 Remark. A'; is again of boundary format

1.3.4 Theorem. If A'; is defined as above
DetA # 0= DetA'; #0

Proof. If X :=PF x--- Pk x - - - x P* and  is the hyperplane defined in (1.3.1)
associated to H, the map O, — SA*|(£) induces a surjective map Sz(j) — Oy and
an exact sequence:

where by definitions $'¥ = S Y (). Since codimh = 1 then it is locally free
[Ser65] and by theorem (1.2.4) the result follows. O

1.8.5 Remark. An element g € SL(Vp) x SL(V;) preserves h and it induces
9 € SL(Vo/<gtwo)>) X SL(Vj/<gw,;)>) such that g - A projects to gA'; and the

elementary transformation is well behaved with respect the action of g.

1.3.6 Definition. H = vy ® v1 ® --- ® v, is a strong jumping hyperplane

for A if Jvg, wy, . .., wy, basis of V; such that
ko
A=v0®vl®---®vp+2wi®...
i=1

1.3.7 Remark. If 3 is a strong jumping hyperplane then ¥ is a (j)-weak jump-
ing hyperplane for all j =1,...,p.
In particular for a strong jumping hyperplane there are many elementary trans-

formations.
1.3.8 Remark. For p = 2 the notation of strong jumping hyperplane coincides

to weak jumping hyperplane (see [AO99])
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1.3.9 Example. (the identity) The identity matrix is represented by

I:: Z egg)®...®e(p)

ip
io=i1+-+ip
0<;<k;

Let to, ..., tx, be any distinct complex numbers. Let w be the (kg +1) x (kg+1)

)

Vandermonde matrix whose (i,7) entry is tg-i_l , so acting with w over 1 we

have:
Then substituting

I= Y &live--ee?

ip

10=11+-+1p
SZO,...]CO
ko k1 kp
_E:—o Z(l)il Zpi
- es®( € ts)®®( ez’ptsp)
5=0 i1=0 ip=0

Thus, since t; have no restrictions, I has infinitely many strong jumping
hyperplane.
We call Schwarzenberger bundle the vector bundle associated to I (in fact in the

case p = 2 it is exactly the same introduced by Schwarzenberger in [Sch61])(see

also ([AO99])

1.3.10 Proposition. Let A be boundary format matriz with DetA # 0. If A

has N > ko + 3 strong jumping hyperplanes then it is an identity.

Proof. In the case p = 2 the statement is prove in [AO99] (theorem 5.13).
Chosen Vj and other two vector spaces among Vi,...,V, (say Vi and V3), one

may perform several elementary transformations whit 1, and all the others so
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that we get A’ € V'y ® V1 ® V5 boundary format matrix with DetA’ # 0 and
N'" > k'y + 3 strong jumping hyperplanes, then A’ is an identity.

(Hence in P(V}) and P(V3) there are rational normal curves because Sy is a
Schwarzenberger bundle).

As in the above example, one can change the hyperplane giving the elementary
transformation, so that for all NV strong jumping hyperplanes we get ¢1,...,tx

distinct complex numbers and corresponding suitable basis of V; and V5 :

(1 (1
oD

—(2 (2
o

such that the hyperplanes are given by

kl k2
Y&t and Y &Pt forj=1,...N
i=0 i=0

Now, changing V; and V; with the pairs Vi,V (j =1,...p ) we get

ko k1 kp
A=) e e/t 8 () )
s=0 i1=0 ip=0
showing that A is an identity. O

1.3.11 Proposition. Let A be boundary format matriz with DetA # 0. If A
has ko + 2 strong jumping hyperplanes then it is uniquely determined by these

hyperplanes.

Proof. In the case p = 2 the statement is prove in [AO99] (theorem 5.3). Chosen
Vo and other two vector spaces among Vi,...,V, (say Vi and V%), one may
perform several elementary transformations whit V) and all the others so that we

get A" € Vi@V, ®V, boundary format matrix with DetA’ # 0 and N’ = k'y+2
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strong jumping hyperplanes, then A’ is uniquely determined. Now, changing V;
and V, with the pairs V3 and V; (j = 2,...,p) we detect all the 3-dimensional

submatrix of A which are all uniquely determined, then also A is. O

1.3.12 Remark. In the case p = 2 we know that ky+ 2 jumping hyperplanes give
an existence condition for the bundle Sy (it is a logarithmic bundle, see [AO99])
but in the case p > 3 there is not analog existence result. Moreover, by defini-
tions, there exists a unique matrix A with ky + 1 strong jumping hyperplanes

given.

1.3.13 Theorem. Let A be boundary format matriz with DetA # 0.

Then there exists a 2-dimensional vector space U such that SL(U) acts over
Vi ~ S%U and according to this action on Vo ® --- ® V,, we have Stab(A)° C
SL(U).

Proof. We proceed by induction on ky. If kg =2 thenp=2and V@V, @V, ~
C* @ C* ® C? and a Steiner bundle on the line P! is Schwarzenberger (4 = I),
then the result follows. We may suppose that Stab(A)° has dimension > 1 then
by theorem 1.2.5 the matrix A is triangulable and this implies that there exists
a strong jumping hyperplane J.

We may, also, suppose that the number of jumping hyperplanes is finite oth-
erwise A is an identity (proposition 1.3.10), hence H is Stab(A)°- invariant.
Let A the image of A by the elementary transformation associated to the weak
jumping hyperplane vy ® vy defined by H (we choose j = 1 to have simpler nota-
tions). The matrix A; belongs to Vj@V/®@V,®---®V, where Vj = Vj/<y,> and

Vi = V1/< vy >, it is nondegenerate and of boundary format then, by induction,
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there exists a 2-dimensional vector space U such that
Vg~ Sk HU), V] ~SMYU) and V;=SH(U) forall i>2

and Stab(A})? C SL(U). (By using essentially the same argument we could
work in GL(Vp % --- x GL(V},))

Since A! is obtained from the matrix A after the choice of two directions,
any element which stabilizes A also stabilizes A}, so Stab(A)° C Stab(A')°.

Moreover, we remark that the above considered elementary transformation
gives the decomposition V=V @ C and V; =V} @ C.

Since no other morphism of SL(U) in SL(Vy) x SL(V}) x SL(S*U) x --- x
SL(S*U) can give S 1U®SH1U®SHU®...@S*U as an invariant summand
of Vo ® Vi ® S¥2U ® S*»U, then the inclusion

Hom(V§,V/ ® Vo ®-+-®V,) C Hom(Vp, Vi® Vo ®...V})
identifies to the SL(U)-invariant inclusion
Skl @ SH-lUe SRU ... SPU c SPU@ SMU® SHU® ... ® SPU

according to the natural actions, hence also Vy = S¥U and V; = Sk U. O
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1.4 Cohomology of Schwarzenberger bundles
In [AO94] it was proved that a Steiner bundles S on P" defined by the sequences
02IQ0(-1)>WR0—=5—0

where I and W are vector spaces of dimension k& and k + n respectively, are
stable, give smooth points in the moduli space of all stable bundles with the
same rank and Chern classes and they belong to an irreducible component of
dimension (k —1)(n — 1)(n+k + 1).
Moreover, in [AO99|, it was proved that for a Steiner bundle S as above,
RO9(S*(t)) = 0 if and only if t < k — 1.

In the class of Steiner bundle we want to give a cohomological character-
ization of Schwarzenberger bundles, hence, we calculate the dimension of the
cohomology of their second symmetric power.

Throughout this section K denotes an algebraically closed field of character-
istic zero. U denotes a 2-dimensional K vector space (U =< s,t >), S, = S"U
its n-th symmetric power (S, =< s, s" !, ..., t" >) and P* = P(S,).

First, we prove the existance of a special Steiner bundles (or Schwarzenberger

bundle) 8§ on P" defined by the following exact sequence

058 =5, 8055  ©0(1)—0 (1.23)
where
" Sn—lt . Stn_l n
B =
" Sn—lt . Stn—l tn
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and second we calculate its cohomology.
There is a natural exact sequence of GL(U)-equivariant maps for any £ >

2,n > 1 (Clebsch-Gordan sequence):
2
0 AU ® Sp_o®S,_1 i) Sp_1® S, LN Skan—1 — 0 (1.24)

where p is the multiplication map and £ is defined by (sAt) ® f® g — (sf ®

tg—tf ® sg).

1.4.1 Lemma. Let B,C be vector spaces of dimension k and 2n(k — 1).
A linear map B® S,/ 5 C induces a sheaf homomorphism

BeO'(1) % Ceo
Proof. By the dual Euler sequence:
0—-Q1)—-0®S —=0(1)—=0

we obtain

05 02(2) 500 AS —  01)®SY = 0(2) =0

~ S
Q'(2) (1.25)
2N
0 0

i.e the following two exact sequences:
2 2w foo
0-0(2) 20N S, —Q(2)—>0 (1.26)

0—0'2) L 01)®S) —0(2) =0 (1.27)
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Then b is defined by the composition:
tdo(_ i
0B %" Bes 00 ceo (1.28)
ieb=(b®idg)o(g® ido(—1y) where g ® idg(_1) is an injective map. O

1.4.2 Remark. It is true also the conversely of the previous lemma. In fact,
given the homomorphism b the linear map b can be defined as b = H(bV)V
where 0¥ : CV ® O — BY ® Tpn(—1). By Euler sequence we get:
0—H(O®S,) — H(Tpa(—1)) = 0
= H°(3Y) : H(C¥ ® 9) — H%(BY ® Tpn(—1))
with : H(CV® 0) ~CV ® C

H(BY®T(-1)~B"®C®V,
Then dualizing it is induced the map:

b:B® S, - C

Now, if we denote
B:=S5/, and C =AUV ® Sy, ®Sy_, (1.29)
then, by previous lemma we can define the morphism
b:SY , @0 (1) SAUY Sl ,®8 1 ®0
where b = ¥ and f is defined in (1.24).

1.4.3 Lemma. b is a surjective map.

38



Proof. We consider the following exact commutative diagram:

0 0
| ! ~

0 — N s S e0(1) s AUY®SY ,88Y,®0
| /| |

\ 2
0 — SV 1 ®0 25 SV @SV 00 L5 AUYRSY ,85) 80 — 0

ol 0|

SY ®01) —— SY,®0(1)

|

0
(1.30)

where ¢ := go Y and N = Kere Kerb
In fact, if z € Kerb = b(z) = 8Y(f(z)) = 0 = f(z) € Kerp¥ = Imp”
= Jda € §)/,,_1 ® O such that f(z) = pY(a) € Imf = Kerg
g(pY(a)) =0=a € Kerp.

then we can define the morphism

® :Kerb — Kery defined by

TH—a

Claim: & is an isomorphism.

Obviously @ is surjective by definition. Moreover, since f and p" are injective
maps, if 7 # o' and O(x) # O(«') then f(z) = 1" (B(x)) # 4 (B(")) = ()
(absurde) then @ is also injective.

Now, by Snake lemma applied to exact diagram (1.30) it sufficient to prove that
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 is surjective, but this follows immediately observing that the map
\
0 S 1®0(-1) 2585, 185,005 S, 1®0 (1.31)
is represented by the k& x (k + n) matrix:

Py Snflt Stnfl tn

g Sn_lt Stn—l "

which has maximal rank.

0

1.4.4 Remark. The bundle N in the previous lemma is exactly the Schwarzen-

berger bundle §* that we wanted.

Now, by diagram (1.30) and identifications (1.29) the Schwarzenberger bun-
dle 8* verifies:

058 —=BN(1)-C®0O—0 (1.32)

By using the same technique of [Dio98|, we perform its second symmetric and

its alternating power and we get
~ 2
0528 —>A—>BCQ1) >ACRO =0

NS
MI
7N
0 0

(1.33)
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where A:= S2(B® Q'(1)) = (S°B  S2(2'(1))) & (A B® 22(2))

and
05A8 A 5 BoCRQ(1) = 06 S2C =0

NS
M

7N
0 0

(1.34)

where 4 :=A (B® Q(1)) = (A B® S2(2'(1))) ® (S?B ® 22(2))

Diagram (1.33) gives the following two exact sequences:

O — H(M') — H'(S%8*) — H'(A) — H'(M') — H?*(S?(8")) — H%(A) — - --
(1.35)

0 = H(M') = Bo C @ H(Q'(1)) =A C — H'(M') = B® C @ H(Q (1)) = -

I |
0 0

(1.36)
Sequence (1.36) implies: H*(M') =0 and H'(M’) ~A O

Then, by using the two formulas:

~ 2 2
H'(4) = ($’B @ H'(S?Q(1))) ® (A B® H'(Q%(2)) = S?B® A S)/
and: H?(A) = ($?B ® H2(52Q'(1))) ® (/2\ B®H*(Q2%(2)) =0
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sequence (1.35) becomes:
0 — H'(S%8*) — H'(A) — H'(M') — H*(S%(8*)) = 0
ie.
0 = HL(S?8%) — S?B® A SY —23A € — H2(S28%) — 0
== H%(5?8*) = Coker(®) = (Ker(®"))"
Then:

H2(528")" = Ker | A (Sk_2 ® Sn_1) o S2(Sk_1)® A Sy

Moreover, diagram (1.34) gives the following two exact sequences:

O — H(M) — HY(A 8%) — H'(A) — H'(M) — H2(A §*) — H2(A) — ---

(1.37)

O—H' (M) = B®CeH(Q'(1)) - S2CoH°(0) - H' (M) =0 — - -

I I
0 S2C

(1.38)
from sequence (1.38), we get

H°(M)=0 and H'(M)~SC

Then, since :

H(A) = (H(S?(Q'(1))® A B) @ (S2B @ H'(Q(2))) =A B® A 5V
and H?(A) = 0 sequence (1.37) becomes:
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O — H(M) — HY(A 8*)— HY(A) — H' (M) — H2(A 8*) = 0
I ie. 0— Hl(/?\
0

") A B A SY % 520 — H2(A 8%) = 0
—  H%(AS) = Coker(d) = (Ker(d"))"
Then we obtain :
5,2 ) 3V 2 2
(H (/\ S*))V = Ker |S (S}c_g X Sn—l) —A Sk_1® N Sn

Same reasonings of [Dio98] can be repeated in this case and we get that there

are two injective SL(2)-equivariant morphisms
L2 ) 2
€ 1 NSp_3®5°S, 2 =A (Sk72 &® Snfl)

g : SQSk_g X SQSn_Q — 52(Sk_2 ® Sn_1)

such that: Imé C Ker ®¥ and Imé C Ker ®Y

Moreover, analogously to [OT94](page 202) we get
H*(8* ® 8*) = Ker(®Y)Y

where
2
DV : 5%, ® 5% —» SO A S,

and there is an isomorphism of SL(2)-representations

£:5) 308 ;05287 , — Ker(®V)
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1.4.5 Theorem. For any special Steiner bundle &*
H2(528%) = A (Sk_3)" ® 52(Sn )
and  HEAS) = S%(Sp_3)'® A (Su_s)"

Proof. We can consider the following diagram with exact rows and columns:

0 0 0 0
4 { { {

0 = H2(A 8%)Y = S2(Sk_2 ® Sn_1) 25A Sp_1® A S, — HI(A 8)Y = 0
4 { 4 {

0 H2(8* ®8)" — 5%, ® 552, % 582 @ A 5, — HI(8* @ §°)
{ ! { !

0 = H2(S?8")Y A (Sk_s ® Sn1) 5 S25,_1® A S, — HL(528)Y = 0
{ ! { !
0 0 0 0

Then, we can consider the following diagram:

0 0 0
l { \
0 — 525k 3 ® 525 — S¥2, ® S2Su_5 —A Sp_3® S2Su_ — 0
L& Le Lé
0 — H2(A 8*)Y — H2(8* ® 8*)¥ — H2(S28")" — 0
1
0
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and by the Snake-Lemma there is the exact sequence :

0 — Ker £ — Ker ¢ - Ker § — Coker € — Coker ¢ — Coker € — 0

| I | I
0 0 0 0

= Coker € = 0 = ¢ is an isomorphism = £ is an isomorphism.

Thus:
2
H2(SQS*)V = A (Sk3)® SQ(Sn,z)

2

and  H2(A 8% = 52(Sp 5)® A (Su )

as we wanted.

By above results we get:

h2(S28") = (k ) 2) (Z) and  h2(A§) = (k ) 1) <”;1> (1.39)

Now, by performing second symmetric power of first column of diagram (1.30)

we obtain:
0 828" = 828, ,®O0 =S¥, ,®S), ®0(1) A 8L, ®0(2) — 0
then the Euler-Poincaré characteristic of S?8* is
(578%) = (” N '; * 1) + (';) (” ; 2) k(4 k) (n+1)

Moreover, since for Steiner bundles h%(8*) = 0 (see [AO99] proposition 3.4),

then H°(S%8*) = 0 and after calculation we get
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1.4.6 Theorem. Any Schwarzenberger bundle 8* verifies:

h1(S28%) = h2(S28*) — x(S28%) = n(n + 2k — 2)
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Chapter 2

Minimal resolution of general

stable vector bundles on P~

2.1 Generalities and notations

Let us write a free resolution ¥, —+ € — 0 of a vector bundle € in the form
cee @ B, ®c O(—q) — @Bo,q ®c O(—q) —» € —0, (2.1)
e/ q€Z
where the complex vector spaces B, , are zero but a finite number. Then, we
denote by b, ,(€) := dim Tor, (&, C), the Betti numbers of £ and with b, ,(F,) :=
dim B, , the Betti numbers of the resolution (2.1). We recall that, if F, is
minimal, then b, ,(F,) = b, ,(&) for all p, ¢.
A coherent sheaf F on P is said m-regular if HY(P", F(m — ¢q)) = 0 for all

qg > 0.

2.1.1 Theorem (Castelnuovo-Mumford). /[Mum66] An m-reqular sheaf is
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(m + 1)-regular.

The regularity of a sheaf is defined as the minimum integer r for which F
is r-regular. By the previous theorem and the semicontinuity of cohomology
groups, the regularity is a upper semicontinuous function on the related moduli

space.

2.1.2 Theorem ([Gre89]). For all coherent sheaves F on P,

reg(F) = max{g —p | by,(F)#0}. (2.2)

Another parameter that measures the “complexity” of a resolution is its
length: we say that 0 - A, = .-+ — Ay — F — 0 is a resolution of F of length
n. The homological dimension hd(F) of a sheaf F is the length of its minimal
free resolution. One fundamental tool to control the homological dimension is
the following result that can be regarded as a refined version of the Hilbert

syzygy theorem:

2.1.3 Theorem (Horrocks [Hor64]). A torsion-free sheaf F on P" has ho-

mological dimension at most n — 1.

2.2 Admissible pairs and resolutions

Let & be a rank r vector bundle on P?. By Horrocks theorem [Hor64], & has

homological dimension at most 1, that is, it has a free resolution of the form

k r+k
P
0 — P Op2(—a;) = EP Op2(—b;) = € — 0. (2.3)
i=1 j=1
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We do not assume that the resolution (2.3) is minimal. Vector bundles of ho-
mological dimension 0, i.e., splitting vector bundles, are a special case in which
either k£ = 0 or the resolution (2.3) is not minimal; however, they are of marginal
interest to us since they are not stable.

We suppose that the two sequences a; and b; are indexed in nondecreasing

order

a; < ag < - < ay, (2.4)
2.

by by <o <bp <-or by
We call (a,b) = ((a1,---,ax), (b1,---,br1x)) the associated pair to the resolu-
tion (2.3). If the resolution (2.3) is minimal, we call (a,b) the pair associated
to the bundle €. Notice that the associated pair and the Betti numbers of a
resolution encode exactly the same information; in particular max(ay — 1, by1%)

is the Castelnuovo-Mumford regularity of €.

The Chern classes c;, ¢y of € are determined by a; and b; with the formulas

k k+r
C1 = Zai — sz, (25)
i=1 i=1

k+r

k
2c) — & = Zaf - be (2.6)
i=1 i=1
2.2.1 Definition. The pair (a,b) is said to be admissible if
a; > by, foralli=1,...,k (2.7)

For brevity we say that the resolution (2.3) is admissible if the associated pair

(a,b) is.
2.2.2 Example. By Euler sequence
0— 0 — 01)% = Tp: — 0,
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the tangent bundle of P? has associated pair ((0), (—1,—1,—1)) which is admis-
sible.

2.2.8 Example. The resolution
0= 0—=0(-1)®0(1)% = Tp @ O9(—1) =0,
is not admissible. Remark that Tp2 @ O(—1) is not a stable bundle.

More generally, we can consider the associated pair (a, b) to any vector bundle
of homological dimension 1 on P" with n > 2. In that case, we say that (a, b) is

admissible if a; > b, 4; for i = 1,... k, as in [BS92].

2.2.4 Proposition. If r > 2, resolution (2.3) is minimal if and only if it is

admissible and every constant entry of the matriz (¢; ;) is zero.

Proof. Obviously, if the pair is admissible and every constant entry of the matrix
(¢i;) is zero then (2.3) is minimal. Conversely, for r = 2 the statement was
proved by Bohnhorst and Spindler ([BS92] proposition 2.3). Now suppose that
r > 2 and (2.3) is minimal. Since £(b, ) is globally generated, Bertini’s theorem
ensures that a generic map f: O(—b,4x) — & is injective. Then in the following

commutative diagram columns and rows are exact and £ is locally free:

0 0 0
0 —— 0 — s O(=byk) —% O(=bryk) —— 0
0 —— @F ,0(-a;)) —— @FfOo(-b) —— & —— 0 (28
Id
0 — ®F,0(-a;) —— & F10(-b;) — & —— 0




The minimality of the middle row yields the minimality of the last row. Using
induction on r, we may assume that the last row is admissible. Then the middle

row is also admissible. O

2.2.5 Theorem. Let r = 2 and suppose that the resolution (2.3) is admissible.
Let ¢y = Y a; — Y b; be the first Chern class and p be the slope of €. Then &

is semistable (respectively stable) if and only if
b1 > —p (resp. by > —pu). (2.9)

Proof. This is theorem 2.7 of [BS92] in the case of rank-2 vector bundles on

P2, U

For the case of higher rank, we have no chances to extend the above arith-
metical characterization since stable and unstable vector bundles may have the

same associated pair.

2.2.6 Proposition. If resolution (2.3) is admissible (in particular if it is min-
imal) and & is semistable (resp. stable) then the associated pair (a,b) verifies

b1 > —p (resp. bi > —p).

Proof. If € is semistable (resp. stable), then
H(E(m)) =0  Vm< —u(€) (resp. Ym < —u(€)) (2.10)

but, from the exact sequence

k r+k
0= @ O(—a; + b)) = @ O(=b; +b1) = E(b1) — 0, (2.11)
i=1 j=1
we have H(€(by)) # 0 then by > —u(&) (resp. by > —u(€)). O
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2.2.7 Lemma. If resolution (2.3) is admissible and € is semistable, then
b’r+k < Q.

Proof. 1f b,y > ay then € split as € = O(—byy,) ® €" and by admissibility

r+k—1 2 k r+k—1
Za, Z bi=—> b+ Y (ai—buri) = b
=1 =1 i=k+3

(2.12)
> 2k + k— (1 — 3)brin

> (1 — T)b7-+k

then we have p(€") > —b, 1 = u(O(—b,4x)) which contradicts the semistability

We denote by J the set of all admissible pairs (a,b) associated to rank 7-
vector bundles on P? with Chern classes c;, ¢, satisfying the conditions
by > —pu = (- a; — > b;)/r and b4y < ay. Proposition 2.2.6 shows that the
set J contains the set of all possible associated pair to a stable vector bundle in
Mp=(r, c1, c2) and coincides exactly with it for 7 = 2. Then
Mp2(r, c1, C2) H M(a,b) (2.13)
(a,b)€T
where 9(a,b) will be the subset (possibly empty) of IMp2(r,c1,c) of vector

bundles with associated pair (a,b).

2.2.8 Remark. Let us fix a pair (a,b) € J and define Fy = EBHTO( b;), Fi =
®F ,0(—a;). We consider the linear subspace V of Hom(Fy, Fy)) consisting of

those homomorphisms ¢ : F; — Fj such that every constant entry of the matrix

52



(¢i ;) is zero and The set X = {¢ € V|¢ is injective, coker¢ is locally free} is a

Zariski open subspace of V. The cokernel of the universal homomorphism
O :priFy — priFy on X x P?

induces a morphism

7: X =M

By definition 9M(a,b) = 7(X). Especially 9MM(a,b) is a constructible subset of
M.

The following result was stated and proved by Bohnhorst and Spindler [BS92]
for rank-n vector bundles on P" with homological dimension 1, but their proof

works on P2 for vector bundles of any rank without modifications.

2.2.9 Theorem. For all (a,b) € 3, the closed set M(a,b) is an irreducible

algebraic subset of Mp2(r, c1,¢) of dimension:

dim 9M(a, b) = dim Hom(Fy, Fy) + dim Hom(Fy, Fy) 014
— dimEnd(F;) — dim End(Fy) + 1 — #{(¢,7) : a; = b;}, -
where Fy = @fi{(‘)(—bj), F=&f  0(—a).
We introduce a partial order on J, namely

(a,b) < (a,b) = 3 ay,---,a € Z such that up to order
a= (ala"' y A, Oy 0 = 7at)

and Z~)=(b1,"' ,bk+m041;"' aat)

2.2.10 Lemma. If (a,b), (@,b) € J then

(@,b) < (a,b) = M' (@, b) C M'(a,b)
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In the following lemma we find an upper bound on the regularity of semistable

vector bundles on P? of rank 2. A lower bound is given in corollary 2.2.24.
2.2.11 Theorem. A normalized semistable rank 2 bundle € on P? is co-regular.

Proof. For brevity’s sake, we set & := a; — b;yo and t; := b; 19 — by. Obviously,

& > 1 and t; > 0. We rewrite (2.5) as

k 2
&= bi+a (2.15)
=1 1=1

and by (2.6), using inequalities (2.4), (2.7), (2.9) we get

2 k k
i—1 i—1 =1
k k
> 2by Z&' + Z(2ti + &) (2.16)
i—1 =1
2 k
= (2b+ 1) bi+a)+2> t
i—1 i—1

If we suppose that by + Zle t; > co + 1, then

Zb2+2b2—cl (2by + 1) Zb +¢) > 2.

i=1

Since the left side is non increasing with respect to by, we may restrict ourselves
to the case by = —c;. But 3.7, b7 + 2by — (2by + 1)(327, b;) > 2 it easily seen

to be impossible. Then Zz’:l t; must be at most co — by and in particular
bk+2 = bg + tk S b2 + th S Co. (217)

Now, we must show that ay < ¢y + 1. We rewrite (2.5) as Zf;ll ;= Z?:l b; +
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bk_|_2 —ar +C and by (26)

k—1 k—1

2
Y oAb b —ar 20— =) (a —b,) =) &2+ 2+ &) >
=1

=1 i=1

k—1 k—1 2
> 2> G+ Y &> (20 + 1)) b+ bpo —ar+ 1) (2.18)
=1 =1 =1
that can be put in the form

2

2
be — (26, + 1)(Zbi +c)+2c—c >
=1 i=1 (2.19)

> (ak — bk+2)(ak -+ bk+2 — 2by — 1).
Suppose that ay > ¢y +2. By (2.17) we have ay — bgyo > co+2 — ¢y = 2 and we
observe also that ay + bg1o —2by —1 > ¢, — by + 1. Substituting and simplifying,

(2.19) becomes

2 2
Do — @+ 1)) bita)—d>2+c] (2.20)
i=1 i=1

As before, we can restrict ourselves to the case by = —c; obtaining

2 2
Db (b 1)) b >2
=2 i=2
that do not have solution for b; positive. Then a; < ¢y + 1. ]

2.2.12 Remark. The above theorem is sharp in the sense that the admissible pairs
((e2 +1),(0,1,¢2)) and ((co + 1), (1,1, cq)) are associated to rank 2 semistable
bundles of Chern classes ¢, co that have regularity c,.

2.2.18 Remark. Tt is also possible to prove that a semistable rank 2 bundle on
P? is ¢, regular if ¢; = 0 and (cy + 1)-regular if ¢; = —1 using the bounds on
dimension of cohomology groups proved by Elencwajg and Forster (proposition

2.18 [EF80]) and Grauert-Miilich theorem.
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2.2.14 Remark. From (2.15) and the thesis of previous theorem, the value k in
(2.3) is bounded by:

k 2

E<) &= b+ <20+0 (2.21)

=1 =1

Hence, for fixed Chern classes ci, co, there are only a finite number of admissible
pair of rank 2 vector bundles and we can write an algorithm to enumerate such
pairs restricting the search to a finite domain and to list them with the help of

a computer.

2.2.15 Example. Associated admissible pairs for some Chern classes

1. Each bundle € € Mp2(2; —1,2) has a resolution of the form:
0—0(=3) = 0(-1)®0(-2)" =& —0

and ((3), (1, 1,2)) is the associated pair. This is the only admissible pair in

this case. In the section 2.3 we will describe explicitly this moduli space.

2. Admissible pairs associated to € € Mp2(2; —1,5):

a_i b_j Codim.
(3 4) (2 222) )
(33 4) (22223) | 2
(4 4) (1 233) | 2
(3 5) (122 4) | 4
(6) (1 15) | 6
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3. Admissible pairs associated to Mp2(2; —1,9)

a_i b_j Codim.

(44444 (33333331 0

(4 4 5) (2 3333) 1
(4 4 45) (233334 | 4
(5 5) (223 4) | 4
(56 5 5) (13444 | 6
(4 5 5) (22344 | 6
(4 4 6) (2 2335) | 6
4 7) (2 226) | 8
(3 6) (2224 | 8
(6) (13 3) | 8
(3 5 6) (22245) | 9
(347) (22236) I 9
(5 6) (1 335) I 9
(4 6) (1334) I 9
(3 38) (22227 [ 10
(447 (13336) | 10
(4 5 6) (13345) | 10
(6 6) (1 25 05) | 10
(4 8) 1237 [ 11
(5 7) (1246e6) [ 11
(3 9) (1228) [ 12
(10) 119 | 14
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2.2.1 Natural pairs and general vector bundles

We say that (a,b) = ((a1,---,ax), (b1,--.,brik)) is & natural pair if it is admis-
sible and

b'r—Hc < ai, ar < by + 2. (222)

The above inequalities imply a; # b; for all 7 and j.
We observe that natural pairs are parametrized by three integers s, k, o such
that

k>1 and —k+1<a<k+r (2.23)

as follows: the pair (a,b)sxq corresponding to the triple (s, k, ) is the pair

associated to a resolution of the form
0= 0(-s—1)fF 5 0(-s)*@09(—s+1)"F*5 €0 (2.24)
if @ > 0, or of the form
0= 0(—s -0 0(=s)™ = O0(-s+1)""* 5 € =0 (2.25)

if < 0. We have excluded the case @« = —k so that s is the regularity of the
pair, i.e. s = max(ay — 1, br1x)-
Through this section we are going to show that resolutions of general vector

bundles have natural pairs.

2.2.16 Theorem. Ifr =2, one has codim9M(a,b) = 0 if and only if (a,b) is a

natural pair.

As a remarkable consequence we will derive a quite simple proof of the irre-
ducibility of moduli spaces of stable vector bundles on P? and we will compute

the regularity and the cohomology of their general elements.
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We recall that, since dim Ext?(F,F) = 0 for any stable vector bundle F on

P2, the relative moduli 9Mp>(r, 1, c2) space is smooth of dimension
dim Ext'(F,F) = 2rcy — (r — 1)c? —r? + 1. (2.26)

Let us consider the function A(t) := h*(O(t)) and the finite differences of first
and second order (A,A)(t) := A(t + u) — A(t) and (A,ALA)(t) = (ALA)(t +
v) = (AuA)(?)-

2.2.17 Definition. The pair (a, b) is said to be strongly admissible if
a; >b.y;  foralli=1,...,k (2.27)

For r = 2 strongly admissibility and admissibilility coincide.
2.2.18 Example. The map ® in (2.3) can be expressed by a (r + k) x k matrix
of forms (¢; ;) of degree deg(¢;;) = (bi — a;). If (a,b) is a strongly admissible

pair and wy . . . w, are linear forms in general position on P", then the (r+k) x k

matrix _ -
wgl_bl 0
wgk*bk
(¢ij) = (2.28)
w?l—br+1
0 wak_br+k
« .. T
defines a minimal free resolution and € := coker ® is a vector bundle with

associated pair (a, b).
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2.2.19 Lemma. If a strongly admissible pair (a,b) is associated to a stable

vector bundle & on P?, Then

codim M (a, b) = Zhl )+ #{(,7) : ai = b;}

+ Z (Abi+r_aiAbj+r_aj A) (a’i - bj-H“)

ij=1
Proof. Let

0—>F—>F—E—0

be the minimal resolution of & where

k+r k

Fo = @ O(—bj), F1 = @O(—CLZ)

(2.29)

(2.30)

(2.31)

The stability of € ensures the vanishing dim(Ext?(€,&)) = h2(E&*® ) =0

so that h?(Fy* ® &) = h*(F1* ® €). Then from (2.30) we easily find the following

data:
(R ® &) =h(F ® Fy) — h(F* @ F),
(R ®E) =1 e R) - (F" e F),
dim(Ext'(€,€)) =h'(E*®E) =
=h(Fy*®&) - h(F"® &)+
+h (@& -h(FRe8)+1

and from (2.14) we have

codim M (a, b) = dim(Ext' (€, €)) — dim M(a, b) =

= h' (Fy* ® &) — h' (F* ® &) + #{(i,7) : a; = b;}
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Now, by splitting Fy as O(—b;) @ --® O(—b, 1) ® Fy with Fp := @17 0(=b;),

the above formula becomes

codim M(a, b) = Zh )+ #{(,7) : a; = b;}
(2.34)

+h(F) @8 —h' (FI*®¢&).
Since h2(Fy ® Fy) = h2(Fy ® Fy) and h2(F,* @ Fy) = h*(Fy* @ Fp) so
R (Fy ®8)—h (F*®&) = h*F, @F)—h(F @ F)
— (P @ FR)+h(FRQ k) =
=h(Fy, @ Fy) — h*(Fy ® F)
—R(FQF) +h(F®FR) =

= Z [h2 bitr — a;)) — W (O(bigr — bjsr))

1,j=1

— hZ(O(ai —aj)) + hZ(O(az’ —bjtr))

(2.35)
Finally the equation (2.34) becomes
codimM(a,b) = Y " h'(E(b:)) + #{(i,J) : a; = b;}
= (2.36)
+ Z (Abi+r_ai Abj+r_aj A) (ai - bj-l-r)
ij=1
U

Proof of theorem 2.2.16. 1t can be verified by direct computation from theo-

rem 2.2.9 that, if & has natural pair, then the codimension of 9 (a,b) is zero.
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Conversely, let u, v be two non-negative integers. Since all finite difference

(AL A)(t) :== A(t + u) — A(t) are non decreasing functions of ¢, then

(AyA,A)(t) >0 (2.37)
and by the previous lemma
- 2
codim M (a,b) > > A (E(B:)) + #{ (4, 5) : @ = b;}. (2.38)
i=1

If codim M (a, b) = 0, we have ay < by + 2 and #{(4,7) : a; = b;} = 0, since
hY(E(by)) = 0 implies A%(Fy(by)) = 0. This forces (a, b) to be a natural pair. [J

2.2.20 Proposition. Let Mp2(2, ¢1, ca) be nonempty and
s:=max{p €Z:2p* +2cip—2p < 2, — & +¢; — 1}, (2.39)
or, equivalently,
s:=min{p € Z:2p> +2c1p+2p>2co — ¢ — 1 }. (2.39bis)
If o and k are defined by

o= 2cy — c% +2—25% — 2¢1 s,
(2.40)
k:=2s+c —2+]a|)/2,

then (a,b)s ko is the only natural pair of Mp2(2, ¢4, ¢3).

Proof. This is a verification; we outline the main steps of the computation. In
the first place, one must ensure that the natural pair (a, b), o is actually asso-

ciated to vector bundles in Mp2(7, 1, ¢2). This amount to show that, according
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with equations (2.5) and (2.6), the pair (a,b)s o has the appropriate Chern
classes and that conditions (2.23) hold.

From theorem 2.2.16, any pair (a,b) such that dim9(a, b) = 0 is a natural
pair of the form (a,b)s k. From resolutions (2.24) and (2.25) with r = 2 we
find that «, k£ must satisfy (2.40). Then it remains to verify that s is uniquely

determined from ¢, ¢ and satisfy (2.39). By substitution, the inequalities

—k < a < k+ 2 turn into
25 +2¢15 — ¢ — 25+ 1< 265 — & < 25% 4+ 2¢15 + 1 + 2s. (2.41)

Since the intervals [2s® 4+ 2c;s —c; —25+1,  25*+2¢15+ ¢; + 25] are disjoint for
s varying in Z, then equations (2.39) and (2.39bis) give the only suitable value
for s. ]

2.2.21 Theorem. Moduli spaces of stable rank 2 vector bundles on P? are ir-

reducible.

Proof. Moduli spaces of stable rank 2 vector bundles on P? are smooth. By the

previous proposition they can have only one connected component. O

2.2.22 Corollary. The general element of Mp2(2, ¢1, c2) has natural cohomol-

0qgy.

The above corollary justify the terminology “natural pair”. A different proof
for it, working also for higher rank, can be found in [HL93], by using sophisti-

cated techniques of stacks theory.

2.2.23 Example. If r = 2 and ¢; = —1, in the following table we put the natural
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pairs for ¢y < 15.

c2  ali b_j

11 (@ 111)

2 1 (3 112

3 1 33 (1222

4 | (333 (22222)

5 | (34 (2222

6 | (44 (2223)

701 (444 (22333)

8 | (4444 (233333)

9 | (44444 (3333333)
10 | (4445) (333333)
11 | (45 5) (333323)
12 | (55 5) (33334
13 | (555 5) (333444)
14 | (555 55) (3344444
15 | (655555) (34444444

Now, we are going to give some inequalities on the regularity and the coho-
mology of stable vector bundles using proposition 2.2.20. In particular, for rank
2 vector bundles, the next two corollaries give respectively a refined version of

corollary 5.4 in [Bru80] and proposition 7.1 in [Har78].
2.2.24 Corollary. A general vector bundle € in Mp2(2, c1,co) has reqularity
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reg(€) = s, where s is given by (2.39).

2.2.25 Corollary. Let [€] be a vector bundle in M = Mp2(2, 1, c2) and s defined
by (2.39). Then H°(E(t)) # 0 if

t>s when 282+2018+2s:262—0f—01,
t>s—1 otherwise.

The above inequality is sharp, in the sense that, if € is general, it gives a neces-

sary and sufficient condition.

Proof. Let ((a1,...,ax), (b1,-..,bg+2)) be the admissible pair associated to a
vector bundle € in 9. Then one has H(E(¢)) # 0 if and only if + — b; > 0.
By semicontinuity of cohomology groups and theorem 2.2.21, it is enough to
restrict ourselves to the case where € is general. So, by (2.24) and (2.25) one

has H°(€(t)) # 0 if and only if

t>s when a=k+2

t>s—1 otherwise

and the condition oo = k 4 2 is equivalent to 25 + 2¢;5 + 25 = 2¢y — c% —c by

(2.40). 0

2.2.26 Remark. 1t is known that the moduli space 9 = Mp2(r, 1, o) is irre-
ducible for any rank r (various proofs of this result can be found in [Bar77al,
[E1183]), [HL93], [Pot79], [Mar78]). If (a,b) is a strongly admissible natural pair
and there exists a rank r -vector bundle & € 9(a,b) then M(a,b) = 0 hence,

by irreducibility of 9, as in the proof of proposition 2.2.20, we get that (a,b) is
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uniquely determinated, i.e. (a,b) = (a,b)s ko Where
si=max{p €Z:1p*+2c1p—1p<2cy —c+c; — 1}, (2.42)

and

o= 2¢y — cf +r—rs’— 2c1 s,
(2.43)
k:=(rs+c —r+|al)/2

Some remarks about strong admissibility

Let r=3,a=(2,2,4,4,4) and b= (1,1,1,1, 3, 3,3, 3).

Coherent sheaves on P? of type (a,b) form an irreducible family and the general
sheaf in the family is a vector bundle because (a,b) is admissible. Moreover,
the family contains sheaves of the form Ip & Ig @ I; where P, () are point in P?
and Z is a general set of six point of P2. These sheaves are semistable because
they are ideal sheaves and because direct sums of semistable sheaves of same
slope are semistable [OSS80]. By openness of semistability, the general sheaf of
type (a,b) is a semistable vector bundle, with (a,b) admissible but not strongly
admissible (by Hoppe criterion it is not stable).

So far we did not succeed in finding stable vector bundles with admissible
pairs not strongly admissible. This fact and the above remark suggest to for-
mulate following conjecture:
7If € is a stable rank r-vector bundle on the projective space then its minimal
resolution s strongly admissible”.

A proof of this conjecture would give as corollary also the irreducibility of

Mp2(r, c1, c2) by applyng the same arguments of the proof of 2.2.20.
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2.3 The sheaves F(r, f1, fo)

Now we turn our attention on a specific example. We want to give an explicit
description of the moduli space of rank-2 stable vector bundles on P? with Chern
classes ¢; = —1, ¢c3 = 2 in the spirit of the previous sections. With this aim we

are going to introduce the class of sheaves F(r, fi, f2).

2.3.1 Lemma. Any stable rank-2 vector bundle & on P? with Chern classes

c1 = —1, cg = 2 is presented by a minimal resolution of the form
0— O0(=3) = 0(=2)® O(-1)®* = & = 0. (2.44)

Proof. After few tries, with the aid of theorem 2.2.11, one sees that ((3), (1,1, 2))

is the only admissible pair with the prescribed rank and Chern classes. O

Let U be a complex vector space of dimension 3 and let P> = P(U) be
the projective space equipped with the SL¢(3) = SL¢(U) action. An element
(r, f1, f2) € HY(O(1) ® O(2)®?) defines a morphism O(—3) — O(—2) ® O(—1)®2
of sheaves on P2. We suppose 7 # 0 to avoid uninteresting pathologies and we

denote by F(r, f1, f2) the sheaf defined by the following exact sequence:
0 — 0(=3) " 9(_2) & O(=1)%2 = F(r, f1, f2) — 0. (2.45)

The rank 2 sheaf F(r, f1, fo) has Chern classes ¢;(F) = —1 and c(F) = 2. In
this section we are going to study some properties of the sheaves F(r, f1, fa)-

The matrix

B=lw ay apl; (2.46)

’

Wo Qg1 G229

’
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where ), o j are constants and w;, ws linear forms on P2, defines an isomorphism

of exact sequences (of sheaves)

0 ——=0(=3) —— 0(=2)80(-1)* — F(.f.fz) — 0

lld lB l¢B
0 —— O(-3) o 0(-2) ® O(-1)* —— F(s,91,92) —— 0
5,91,92
(2.47)

and, in particular, a morphism ¢ between F(r, fi, fo) and F(s, g1, g2) where s,

g1, g9 satisfy:
t(8591592) = B't(ra fl)fQ)- (248)

Conversely, every morphism between sheaves ¢: F(r, f1, fa) = F(s,91,92) is
induced by a morphism of corresponding exact sequences i.e. ¢ = ¢p for a

suitable matrix B.

2.3.2 Lemma. Two sheaves F(r, f1, f2), F(s, g1, 92) are isomorphic if and only
if (r, f1, f2) and (s, g1, 92) satisfy
§=Ar
gL =wir+o1fi +aaf (2.49)
g2 = wol + a1 f1 + a2 fo
where \, «;; are constants and w; linear forms on P? such that
Adet(v ;) # 0. (2.50)

Proof. The map ¢p is an isomorphism if and only if B has maximal rank. [

Let & be the sheaf F = F(r, fi1, f2). We denote by V(f) the zeros set of a

form f on P2, by X(r) the net of degenerated conics containing V(r) and by

68



Y (r, f1, f2) the linear system of conics of the form V(wr + oy fi + asfs) where
w is a linear form and «;, s are scalars. By the previous lemma, V (r) and
Y (r, f1, f2) are intrinsically determined by F. Note that the pencil generated by
V(f1) and V (f2) is not uniquely individuated, but its dimension is an invariant

canonically associated to F.

2.3.3 Lemma. Let us fir a system of homogeneous coordinates xy, 1, To on
P2. Up to the action of SLc(3) every sheaf F(r, fi, fo) (with v not identically

zero) is isomorphic to one of the following sheaves:
(i) F(wo, 2%, 23),
(11) F(xo, x122,73),
(11i) F(xo, 122, T112),
(iv) F(xo, 7, 27),
(v) F(xg, x122,0),
(vi) F(zo,2%,0),
(vii) F(xg,0,0).

Proof. We can choose an homogeneous coordinate system such that » = zy. The
linear system X(r, f1, f2) is given by the conics V (Boz2+ Bi1xox1 + BaZoTa+ iy f1+
asfy) depending on 5 and «. Without loss of generality, we may assume that
the monomials x3, zoz;, Tozo do not appear in fi e fo i.e. V(f;) are conics of
rank 2 with a singularity in (1,0, 0). We are going to study the sheaf F(r, f1, f2)
in dependence of the dimension d(r, f1, f2) of X(r, f1, f2)-
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If d(r, f1, fo) = 5, the dimension of the linear system is maximal and the
conics T3, ToT1, ToTz, fi, fo are in general position. In this case the pencil of
conics generated by V(f1) and V (f2) contains two (distinct or not) rank 1 conics,
i.e. double line through (1,0, 0). If the two conics are distinct, we can assume, up
to change of coordinates, that they are defined by the equations 22 = 0, 23 = 0.
This corresponds to the case (i) of the lemma. When the two conics coincide,
Y (r, f1, f2) has a base point on the line V(r) (case (ii)). If d(r, f1, f2) = 4, either
f1 and fy are coincident (cases (iii) and (iv)) or distinct (cases (v) and (vi)). By
looking at the base locus of X(r, fi, fa) we can distinguish case (iii) from case
(iv) and case (v) from (vi). Finally, if d(r, f1, f2) = 3 both conics V(f1), V(f2)

are in 3(r) and we get case (vii). O
2.3.4 Remark. In the classification of the last lemma we observe that

e case (i) is the unique locally free sheaf and, in particular, it is stable

(Hoppe’s criterion),
e case (ii) is stable because one can show that its dual is the bundle TP?(—1),

e cases (iii) and (iv) are not stable, in fact, if V/(f1), V (f2) coincide, we may

assume f; = fy and give explicitly a destabilizing subsheaf [7:

0 — O(=3) —— 0(-2)®O0(-1)"2 —— F(r, f1,fo) —— 0

(r,f1,f1)
1 0
[ o I
01
0 —— 0(-3) m 0(-2)0(-1) —— J — 0

(2.51)
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e case (v) and (vi) are not stable and now a destabilizer subsheaf is the
following J:

0 —— O(-3) —— O(-2)dO(-1)® —— F(r, fi,fo) —— 0

(r,f1,0)
10
[ o I
00
0 — O0(-3) — 0O(-2)®0(-1) — J — 0

(r,f1)

e case (vii) is not torsion free sheaf.
As a consequence, we get the following

2.3.5 Lemma. F(r, f1, fo) is a stable sheaf if and only if X(r, f1, f2) has dimen-

ston 5.

2.3.1 Jumping lines of F(zg, %, 23)

In this section we are going to study the jumping lines of first and second kind
of a locally free sheaf F= F(r, f1, f2). After lemma 2.3.3, it is enough for us to
consider the case of F= F(xg, 22, 13).

Jumping lines of second kind were introduced by Hulek in [Hul79] where it

is also proved that they are a powerful tool for the classification of rank-2 vector

bundles on P? with odd first Chern class.
2.3.6 Proposition. Let F be the sheaf F(xq, z7,x3).

1. The line {xy = 0} is the unique jumping line of F.
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2. The jumping lines of second kind of F are only the lines through the points
(0,1,0), (0,0,1).

Proof. The canonical isomorphism of 2-dimensional vector spaces V ~ V* ®
det V' give the isomorphism of vector bundles F ~ F*(—1). Then F has the

following injective free resolution:
05F 5080012502 -0 (2.53)
where ¢ is given by the matrix (zg, z?,23). For a jumping line /, the map:
H(¢e(-1)) : H(Op © O(—1)%) — O(1)

is not injective and this is true if and only if £ is the line {zo = 0}. Moreover, ¢

is a jumping line of second kind if and only if the map:
H'(¢2) : H(0p(1) ® Op2) — H*(0p2(2))

has not maximal rank ad by calculating this is verified is and only if / is a line

through (0, 1,0) or (0,0,1). O

2.3.2 The moduli space Mghearr2(—1,2)

Let Mgpearp2(—1,2) be the moduli space of stable rank 2 sheaves on P? with
Chern classes ¢; = —1, co = 2 and let 9° C Mgpearp2(—1,2) be the open set
which appears in a minimal resolution same as (2.45). Since the first Chern
class is odd, semistable sheaves are stable.

Let M be the incidence variety:
M = {((P,,P,),t) € S’P* xP* | P,Pet; (CP}. (2.54)

72



where S?P? is the space parameterizing all pairs of points of P2. If P® denotes
the space of non zero symmetric matrices 3 x 3, since S?P?" is isomorphic to the

space of degenerated (non zero) conics on P?,
M~ {(z,A) e P> xP°: detA=0, Az=0}. (2.55)
2.3.7 Theorem. The varieties IM° and M are isomorphic.

Proof. By lemma 2.3.5 every point of 9° is a class of sheaves of type F(r, fi, f2)
where the linear system Y(r, f1, fo) has dimension 5. The pencil of conics gen-
erated by V(f1) and V (fz) contains two conics (possibly coincident) tangent to

V(r) in the points Py, P,. Then we get the map

o: me — M
[F(r, fr, faab 1 (Pr, P, V(7))
The map ¢ is bijective since, given a conic g; (not divisible by r) tangent at
V(r) in P; (or P,), every other conic tangent at V(r) in P; (or Py) is V(wr+ g1)

with an appropriate w. O

2.3.8 Corollary. The moduli space of vector bundles Mp2(—1,2) is isomorphic
to S?P? \ A where A is the diagonal of S*P2.

Proof. By lemma 2.3.1, the space Mp2(—1,2) consists precisely of locally free
sheaf of type F(r, f1, fo) that is elements of 9° corresponding to points (Py, Py, 1)

of M where P, and P, are distinct. O

2.3.9 Remark. The same description of 9Mp2(—1,2) obtained with a different

approach can be found in [OSS80] page 344.
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2.8.10 Remark. With the the isomorphism of the previous theorem, toric sheaves
in 9M° admit the following characterization. The action of the torus T? :=
C* x C* on IP?, which in coordinates is given by:
a: T? x P? — P2
((t1,t2), (zo, 21, 22)) = (w0, t171,T272)

has fixed points (1,0,0), (0,1,0), (0,0, 1) and fixed lines zy = 0, ; = 0, 25 = 0.

The induced action on M is given by

Aty ity (Pla PQ’ T)) = (atl,tz (Pl)’ Oty 1ty (PQ)a Oty to (T)) (256)

A point (P, Py,r) € M corresponds at a toric sheaf [F] € 9° if and only if
P, and P, are fixed points and r is a fixed line. In conclusion we have 3 toric
bundles presented by

?(.T,',:L?,.Ti) i, 7, k distinct

and 6 toric (not locally free) sheaves presented by

F (i, x 28, T2 1, j, k distinct.
j k
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2.4 Monads of stable rank-2 bundles on P?

For stable rank-2 vector bundles on P? with fixed Chern classes ¢, ¢, theorem
2.2.5 and equations (2.5), (2.6) give sufficient conditions to find relative admis-
sible pairs. Remark 2.2.14 ensures the finiteness of J and permit to write an
algorithm to enumerate such pairs by restricting the search to a finite domain.
The sets M(a, b) for all pairs (a,b) varying in J give a partition of the moduli
space M := Mp2(2, ¢1, c2) in constructible subsets. The structure of this par-
tition is in general not known. In fact we ignore which numerical conditions
must be fulfilled by two admissible pairs (a,b) and (a,") for MM (a,b) to be in
the closure of M(d', b').
Theorem 2.2.10 provides some information in this regard and in the previous
section we found the admissible pair of general bundle (i.e., the pair of the open
dense subset of the moduli space), but, even in the simpler cases, these results
are too weak to complete the analysis of 90T (see examples 2.2.15).

Even if the general problem still remains open, some more help in this investi-

gation comes from the following application of Beilinson theorem (see [OSS80]).

2.4.1 Proposition. A normalized r-bundle € over P? is the cohomology of a

monad

00 HRO(-1) S K002 Leo(1)—0 (2.57)

where H = H'(P?,€(-2)), K = H'(P?, € ® Q') and L = H'(P?, &(-1)).

Hence, for fixed Chern classes, different admissible pairs correspond to dif-

ferent maps (or matrices) A and B of the “same” monad. This allows us
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to construct vector bundles on P? starting from a suitable surjective maps
B: K® 0 — L®0(1) with the following steps:
(i) find a generic element A of the algebraic set of maps
(T H® O(-1) = L® O | BT =0} ;
(ii) test if A is injective (otherwise choose a new B);
(iii) take the cohomology of the monad (2.57).
We denote by £(B) a vector bundle obtained with this method.

For ¢; = —1 and some values of ¢y we can describe the structure of the
moduli space completely by writing explicitly the matrices A and B of some
deformation of vector bundles.

For now, we don’t have a unique method to write all the possible deforma-
tions. In the next section we give an explicit description of the moduli space in
the case resumed in the following figure. (We restrict our attention at the case
c¢1 = —1 since for odd first Chern class the notions of semistability and stability
coincide).

All matrices are found using computer algebra system MACAULAY2 and
the algorithm to compute admissible pairs and their ”codimension” is written

in the Scheme dialect of lisp and available in [Mag99].
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e a b codim
2 (3) (112 0
3 (33) (1222) 0
(4) (113) 2
4 1(333) (22222) 0
(4) (122 1
(34) (1223) 2
(5) (114) 4
5 (34) (2222) 0
(334) (22223) 2
(44) (1233) 2
(35) (1224) 4
(6) (115) 6
6 (44) (2223) 0
(344) (22233) 2
(444) (13333) 3
(335) (22224) 4
(5) (123) 4
(45) (1234) 5
(36) (1225) 6
(1) (116) 8

Admissible pair of 9Mp2(2; —1, ¢3)
The cases co = 2, 3 are obvious.
2.4.1 mpz(2; —1, 4)

A vector bundle € in 9Mp2(2; —1,4) is the cohomology of a monad

0— 0(-1) 25 0° -2 4
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Let B! be the matrix

0 0 z29 z1 z= 0 0O O O
0 0 0 0 rg IT1 T2 0 0
0 0 0 0 0 0 =z x1 =

With the aid of a computer algebra system one easily find that the vector bundle
&' = &(B) belongs to to the stratum 9y = M((5), (1,1,4)).

Analogously, the matrix

xo 1 2o &€ 0 0 0 0 O
0 0 rg I1 X2 0 0 0 0
0 0 0 0 rg IT1 I2 0 0

0 0 0 0 0 0 =z z1 =z

defines an element E(Bg) in My := M((3,4),(1,2,2,3)) for any sufficiently
generic linear form £. By choosing & = e(x¢ + 1 + 22) we find a family of vector

bundles &% := S(Bf( for a generic ¢ € C*. Since for ¢ = 0 we have

$0+z1+$2))

B2 = B!, then &2 is a family of vector bundles having limit in 90", that is,
My C M.
One can show that 9% C 93 similarly by taking the limit of the family

€ = &(B of vector bundles in 903 := M((4), (1,2,2)) defined by

€ mo+z1+zz))

rg IT1 X2 f 0 0 0 0 0
0 0 rg I1 X2 6 0 0 0
0 0 0 0 rg IT1 T2 0 0

0 0 0 0 0 0 = z1 =
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Moreover, by lemma 2.2.10, we have 9, C 93 and all the previous subset
are on the boundary of 931((3, 3,3), (2,2,2,2,2)) which is the stratum of the

general element.

2.4.2 Mp2(2;—1,5)
For the moduli space Mp2(2; —1,5) the monad (2.57) take the form
0— 0(-1)* 5 0" £, 001)° =0

We are going to consider the following family of matrices depending on two

linear forms &, n on P2:

$0$1$2§0000000\
0 0 29 2t 2o n 0 O O O O

0 o 0 Zo 0 0 1 X9 0

0 z¢ 0 g 0 0 =x1 =z9

S o o 3
o

000$00$000$1$2)

Then one may easly verify with a computer algebra system that when & and
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n are null E(Bj,) and &(B} ;) belong to M((6), (1,1,5)). For generic £ one has

E(Bé,o) belongs to m((sa 5)a (1: 2a 2, 4)),
E(Bé,f) belongs to 97{((4, 4),(1,2,3, 3)),

8(B§2-,£) belongs to MM ((3,3,4), (2,2,2,2,3)).

It follows, by taking the limit for ¢ — 0 in the matrices B o, B; . and BZ .

that

M((6), (1,1,5)) C M((3,5),(1,2,2,4)),
M((3,5), (1,2,2,4)) € M((4,4), (1,2,3,3)),

M((3,5),(1,2,2,4)) € M((3,3,4),(2,2,2,2,3)).

Moreover, all the strata are in the closure of the 0-codimensional stratum 901((3, 4), (2,2, 2, 2))
while the closures of 9ﬁ((4,4), (1,2, 3,3)) and 9)2((3, 3,4),(2,2,2,2, 3)) are dis-
joint since they have the same dimension. This complete the description of the

strata in 9Mp2(2; —1,5).

2.4.3  Mp2(2; —1,6)

Let us suppose that € be a vector bundle in 9Mp2(2; —1,6) and apply prop 2.4.1
to both € and €(1). Then one obtain € and €(1) respectively as cohomology of

monads

0— 0(=1)° H0" £, 0(1)° = 0, (2.58)
0— 0(=1)* 250" £, 0(1)° - 0. (2.59)
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This give us more freedom to describe € since upon twist of & we can start the
construction of the previous sections from a matrix B that fits in (2.58) or in

(2.59). For brevity we denote the eight strata according to the following list

oM, = M((7) 1,1,6) M = M((3,3,5), (22,2, 2,4)),
M, = M((3,6), (1,2,2,5)), M = M((4,4,4),(1,3,3,3,3)),
My = M((4, 1234)) :932(344 (2,2,2,3,3)),
My = M((5), (1,2,3)), Mg = M((4,4),(2,2,2,3)).

We begin by using (2.59). Let & = (&1, &2, 3,84, &5) and 1 = (11, 92, 03, N, M5)

be vectors of linear form on P? and consider the matrix

Zo 0 fl 0 0 0 m X1 X2 0 0 0 0
0 ) 0 62 0 0 0 2 T1 I 0 0 0
Bip=| 0 0 2 0 & 0 0 0 n3 2 2o 0 0

000$00§4000774$13720

\0000350055000775951@

As in the previous sections, one may play with various possibilities for £ and
n with a computer algebra program. We call £(Bg ) the resulting vector bundles
in Mp2(2; —1,6). It turns out that for generic forms o; and B; with 4,5 =1...5

one has
e for £ =0 and 1 = 0 the vector bundle E(By) belongs to 9y;

[ J S(B(O...O,a{,),O) and E(BO,(,Bl,O...O)) belong to mg,
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8(B(al;a2,070’0)7(/311ﬂ2;070;0)) belongs tO m:i?

E(B(ay as,03,0,a5),0) belongs to My;

[} 8(B(070,07a17a2)’(0’0,0’ﬂ1”32)) belongs to 93?5.

E(B(alaa2;a3;a450);o) and 8(B(al;a2;a3505a5)5(1315/82505050)) be]ong to mﬁ;

o E(B(aya2,03,04,0),(81,82,0,0,0)) aNd E(B(0,05,0,a4,a5),(0,0,0,84,85)) belong to M.

Moreover for general linear forms w the matrix

o 0 0 0 0 w 0 21 z2 0 O O
0 zp 0 0 0 O O O =z z2 0 O

B2:00x0000000$1$20

oS o o o©o

0 0 0 =z 0 0 0 O O 0 = =

0 0 0 0 % 0 a5 0 0 0 O =z =2

gives the vector bundle &(B?) belongs to 9. Then

e 9, is contained in the closure of any other constructible subsets;
e I, is contained in Mz, M5, M, M7 and M;

o M3 C My, My C My, M C My and M5 C My

e I, and 95 so they are unrelated each other.
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Now, let us look a the monad (2.58). If

o 1 22 n 0O O O O O O O O O \
0 0 z 1 z2 & 0 0 O O O O O
Bgm _ 0 0 0 0 z9p z1 z2 & 0O O O O O
0 0 0 0 0 0 = 1 z2 & 0 0 O
0 0 0 0 0 0 0 0 zp 21 22 & O
0 0 0 0 O 0 0 0 0 zp z1 =2
and
( zg 0 n 0 0 O =z zo 0O O O O O \
0O o 0 n». 0 0 O 2 z2 0 0 0 O
Bg’,n _ 0 0 zp 0 & 0 O 0 2z 2z2 0 0 O
0 0 0 zp 0 ¢ O 0O O z 22 0 O
0 0 0 0 zp O ¢ 0 O 0 =z z2 O
000 0 0 0 m 0 & 0 0 0 z1 a )

then, for a generic linear form w on P? and € € C* one has

[S(BZ,O)] € mQ’ [S(Bi,sw)] € mﬁl:

[E(BS0)] € M5, [E(B;

w,EW

)] € M.
It follows 9ty C My and M5 C M;. Also remember that M5 C M, by 2.2.10.
In general, by semicontinuity of the the dimension of the cohomology groups
he, if X and Y are constructible subsets of Mps(ci,cp) and YV € X, then
hi(E(t)) > hi(F(t)) forallt € Z, E€ Y, F € X.
If & € Mg then h'(E(4)) = 3 and A'(E(5)) = 0, while if F € My then
h'(F(4)) = 2 and h'(E(5)) = 1 hence M and M5 are not related.

So far, it remains unclear if 903 is in the closure of 9> or not.
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2.4.4 Tables

The results of the above section can be resumed in the following pictures

Filtration of Mp2(2; —1,4)

Mm((5),(1,1,4))

Mm((3,4),(1,2,2,3))

Mm((4),(1,2,2))

Mm((3,3,3),(2,2,2,2,2))

Filtration of Mp2(2; —1,5)

m((6),(1,1,5))

Mm((3,5),(1,2,2,4))

N

Mm((3,3,4),((2,2,2,2,3)) M((4,4),(1,2,3,3))

~._

M((3,4),(2,2,2,2))
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Filtration of Mp2(2; —1,6)

m((7), (1,1,6))

M((3,6),(1,2,2,5))

Mm((5),(1,2,3)) M((3,3,5);(2,2,2,2,4))

M(4,4,4),

(1,3,3,3,3))

M((3,4,4),(2,2,2,3,3))

M((4,4),(2,2,2,3))
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