Corso di Laurea in Matematica

I compito di ALGEBRA I 10 gennaio 2012

Esercizio 1. Sia A un insieme finito. Su $\mathcal{P}(A)$ si definisca una relazione ω ponendo, per ogni $X, Y \in \mathcal{P}(A)$,

$$X\omega Y \Leftrightarrow |X\Delta Y|$$
è pari

- 1. Si provi che ω è una relazione d'equivalenza su $\mathcal{P}(A)$ [sugg. usare il fatto che Δ è un'operazione associativa su $\mathcal{P}(A)$].
- 2. Si provi che $|\mathcal{P}(A)/\omega| = 2$.

Esercizio 2. Sia $A = \mathbb{N}^{\mathbb{N}}$ l'insieme di tutte le applicazioni $f : \mathbb{N} \to \mathbb{N}$. Su A si definisca la relazione \leq ponendo, per ogni $f, g \in A$,

$$f \leq g$$

se esiste $n \in \mathbb{N}$ tale che $0 \le g(x) - f(x) \le n$ per ogni $x \in \mathbb{N}$.

- 1. Si provi che \leq è una relazione d'ordine su A.
- 2. Si provi che (A, \preceq) non ha minimo e che la funzione costante $x \mapsto 0$ è il suo unico elemento minimale.

Esercizio 3. Si dica per quali $x, y \in \mathbb{Z}$ si ha:

$$\begin{cases} x^{512} - 512y \equiv 0 \pmod{7} \\ (xy)^{512} \equiv 1024 \pmod{7} \end{cases}$$

Esercizio 4. Siano $n, m \in \mathbb{N}$ con $n \geq 2$, $m \geq 2$, e sia d = (n, m). Si provi che porre, per ogni $a + n\mathbb{Z}$,

$$\phi(a+n\mathbb{Z}) = a\frac{m}{d} + m\mathbb{Z}$$

dà una buona definizione di un'applicazione $\phi: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$.