Corso di Laurea in Matematica

Prova scritta di ALGEBRA I 9 giugno 2014

Esercizio 1. (6 punti) 1. Siano A, B, C insiemi non vuoti e $f: A \to B$ una applicazione fissata. Si definisca quindi $\Phi: C^B \to C^A$, ponendo, per ogni $g \in C^B$, $\Phi(g) = g \circ f$. Si provi che se f è iniettiva allora Φ è suriettiva.

Esercizio 2. (10 punti) Sia $A = \mathbb{N} \setminus \{0,1,2\}$. Dati $x,y \in A$ si scriva $x = 2^a b, y = 2^c d$ con $a,c,b,d \in \mathbb{N}$ e b,d dispari; poniamo $x \triangleleft y$ se

$$\begin{cases} a \neq c & e \ a | c \\ \text{oppure} \\ a = c & e \ b \le d \end{cases}$$

- 1. Si provi che \triangleleft definisce una relazione d'ordine su A.
- 2. Si determinino eventuali elementi massimali/minimali, massimi/minimi di (A, \triangleleft) .
- 3. Posto B il sotto
insieme di A costituito dai numeri pari, si determini, se esiste,
 $\sup_A(B).$

Esercizio 3. (10 punti) Dato p un numero primo, si pong
a $\mathbb{Z}_p=\mathbb{Z}/p\mathbb{Z}$ e si consideri

$$A_p = \left\{ \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right) \middle| a, b \in \mathbb{Z}_p \right\}.$$

- 1. Si provi che A_p è un sottoanello di $M(2 \times 2, \mathbb{Z}_p)$.
- 2. Si provi che l'applicazione $\beta: \mathbb{Z}_p[x]/(x^2+1) \to A_p$ data da

$$\beta(a+bx+(x^2+1)) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

è ben definita e isomorfismo di anelli.

- 3. Si provi che A_7 è un campo.
- 4. Si dica se A_5 è un dominio d'integrità e, in caso contrario, se ne determinio i divisori dello zero.

Esercizio 4. Si determinino tutti gli ideali di $\mathbb{Q}[x]$ che contengono entrambi i seguenti polinomi:

$$f_1 = x^5 - 2x^4 + x^3 + x^2 - 2x + 1$$
, $f_2 = x^4 - x^3 - 7x^2 + 13x - 6$.