Corso di Laurea in Matematica

Prova scritta di ALGEBRA I 8 settembre 2014

Esercizio 1. (5 punti) 1. Siano C, D insiemi e $f: C \to D$ una applicazione.

- 1. Si dimostri che, per ogni $Y \subseteq C$, si ha $Y \subseteq f^{-1}(f(Y))$.
- 2. Si definisca l'applicazione $f^*:\mathcal{P}(C)\to\mathcal{P}(C)$ ponendo, per ogni $Y\subseteq C,$

$$f^*(Y) = f^{-1}(f(Y))$$
.

Si dimostri che f^* è iniettiva se e solo se f^* è l'applicazione identica su $\mathcal{P}(C)$.

Esercizio 2. (9 punti) Sull'insieme $A = \mathbb{N} \setminus \{0, 1\}$ si definisca la relazione \leq ponendo, per $a, b \in A$, con $a = p_1 p_2 \cdots p_n$ e $b = q_1 q_2 \cdots q_m$ fattorizzazioni in primi,

$$a \le b$$
 se $n < m$ oppure
$$\begin{cases} n = m \\ a \le b \end{cases}$$

- 1. Si provi che \leq è una relazione d'ordine su A.
- 2. Si determinino eventuali elementi massimali, minimali, massimo e minimo di A.
- 3. Si determinino (se esistono) l'estremo superiore e l'estremo inferiore in A dell'insieme P degli interi primi positivi.

Esercizio 3. (7 punti) Sia I l'ideale di $\mathbb{Z}[i]$ generato da $\alpha = 6 + 2i$ e $\beta = 8 + 4i$.

- 1. Si determinino gli ideali dell'anello quoziente $A = \mathbb{Z}[i]/I$.
- 2. Si dica se A è un dominio di integrità.

Esercizio 4. (9 punti) Dato un numero primo p, siano

$$A = \left\{ \frac{n}{p^m} \in \mathbb{Q} \ : \ n \in \mathbb{Z}, m \in \mathbb{N} \right\} \in B = \left\{ \frac{n}{b} \in \mathbb{Q} \ : \ n, b \in \mathbb{Z}, p \nmid b \right\}.$$

- 1. Si provi che A e B sono sottoanelli di \mathbb{Q} (e quindi anelli).
- 2. Si determinino la caratteristica e gli elementi invertibili dell'anello $A\times B.$
- 3. Si provi che non esiste alcun omomorfismo $\mathbb{Q} \to A \times B$.