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Delzant theorem

Delzant polytopes ⇐⇒ symplectic toric manifolds

Delzant polytope

a Delzant polytope is a simple convex polytope ∆ ⊂ (Rn)∗ that is
rational with respect to a lattice L ⊂ R

n and satisfies an additional
”smoothness” condition

symplectic toric manifold

a symplectic toric manifold is a 2n–dimensional compact connected
symplectic manifold M with an effective Hamiltonian action of the
torus T = R

n/L

If Φ is the moment mapping of this action we have Φ(M) = ∆
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Delzant construction

∆ =⇒ M

explicit construction using symplectic reduction

idea

◮ ∆ =⇒ N, a subtorus of T d = R
d/Zd , d being the number of

facets of ∆

◮ M = Ψ−1(0)
N

, where Ψ is a moment mapping for the induced
action of N on C

d

◮ M inherits an action of T d/N ≃ T = R
n/L from the standard

action of T d on C
d
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generalized Delzant construction

natural question

what if ∆ is any (not necessarily rational) simple convex polytope
in (Rn)∗?

generalized Delzant construction

∆ =⇒ M

explicit construction using symplectic reduction

formally, it works exactly like the Delzant construction but ...
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generalized Delzant construction

◮ the lattice L is replaced by a quasilattice Q

◮ rationality is replaced by quasirationality

◮ N is a general subgroup of T d , not necessarily a subtorus

◮ M is a 2n–dimensional compact connected quasifold

◮ the torus is replaced by a quasitorus T d/N ≃ R
n/Q
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quasifold geometry

quasilattice

a generalization of a lattice L ⊂ R
n, a quasilattice Q is the Z–span

of a set of spanning vectors, Y1, . . . ,Yd , of R
n

quasifold

a generalization of a manifold and a orbifold, a quasifold is locally
modeled by an open subset of a k–dimensional manifold modulo
the smooth action of a discrete group

quasitorus

a generalization of a torus Rn/L, a quasitorus is the quotient
R
n/Q, Q being a quasilattice
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given any convex polytope ∆ ⊂ (Rn)∗, then there exist vectors
X1, . . . ,Xd ∈ R

n and real numbers λ1, . . . , λd such that

∆ =
d
⋂

j=1

{ µ ∈ (Rn)∗ | 〈µ,Xj〉 ≥ λj }

rational polytope

we recall that ∆ ⊂ (Rn)∗ is rational if there exists a lattice L ⊂ R
n

such that the vectors X1, . . . ,Xd can be chosen in L

quasirational polytope

we say that ∆ ⊂ (Rn)∗ is quasirational with respect to a
quasilattice Q ⊂ R

n if the vectors X1, . . . ,Xd can be chosen in Q

remark
any given convex polytope is quasirational with respect to the
quasilattice that is generated by the vectors X1, . . . ,Xd



Penrose tilings



Penrose tilings

2 examples non-periodic tilings of the plane



Penrose tilings

2 examples non-periodic tilings of the plane

Figure: a rhombus tiling Figure: a kite and dart tiling

figures by D. Austin, reprinted courtesy of the AMS
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geometric properties of the tiles

◮ the tiles are obtained from a regular pentagon with a very
simple geometric construction

◮ all angles of the tiles are multiples of π
5

◮ the following are all equal to the golden ratio

φ = 1+
√
5

2 = 2cos π
5 :

◮ the ratio of the edge of the thin rhombus to its short diagonal
◮ the ratio of the long diagonal of the thick rhombus to its edge
◮ the ratio of the long edge of the kite to its short edge
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rationality issues

◮ the rhombuses of a given tiling are not simultaneously rational
with respect to a same lattice

◮ there exists no lattice with respect to which any kite is rational

idea
find an appropriate quasilattice



choice of quasilattice for the Penrose tilings



choice of quasilattice for the Penrose tilings

Let us consider the quasilattice Q ⊂ R
2 generated by the vectors

Y0 = (1, 0)

Y1 = (cos 2π
5 , sin 2π

5 ) = 1
2(

1
φ ,

√
2 + φ)

Y2 = (cos 4π
5 , sin 4π

5 ) = 1
2(−φ, 1

φ

√
2 + φ)

Y3 = (cos 6π
5 , sin 6π

5 ) = 1
2(−φ,− 1

φ

√
2 + φ)

Y4 = (cos 8π
5 , sin 8π

5 ) = 1
2(

1
φ ,−

√
2 + φ)



choice of quasilattice for the Penrose tilings

Let us consider the quasilattice Q ⊂ R
2 generated by the vectors

Y0 = (1, 0)

Y1 = (cos 2π
5 , sin 2π

5 ) = 1
2(

1
φ ,

√
2 + φ)

Y2 = (cos 4π
5 , sin 4π

5 ) = 1
2(−φ, 1

φ

√
2 + φ)

Y3 = (cos 6π
5 , sin 6π

5 ) = 1
2(−φ,− 1

φ

√
2 + φ)

Y4 = (cos 8π
5 , sin 8π

5 ) = 1
2(

1
φ ,−

√
2 + φ)



choice of quasilattice for the Penrose tilings



choice of quasilattice for the Penrose tilings

facts



choice of quasilattice for the Penrose tilings

facts

◮ any rhombus, thick or thin, of a given rhombus tiling is
quasirational with respect to Q



choice of quasilattice for the Penrose tilings

facts

◮ any rhombus, thick or thin, of a given rhombus tiling is
quasirational with respect to Q

◮ any kite of a given kite and dart tiling is quasirational with
respect to Q
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we apply the generalized Delzant construction and we get

=⇒ M = S2
r ×S2

r

Γ

=⇒ M =
S2
R
×S2

R

Γ
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why? what are r , R and Γ?

thin rhombus

◮ symplectic reduction yields M = S3
r ×S3

r

N
, where

N =
{

exp (s, s + hφ, t, t + kφ) ∈ T 4 | s, t ∈ R, h, k ∈ Z
}

and

r =
(

1
2φ

√
2 + φ

)1/2

◮ consider S1 × S1 = { exp (s, s, t, t) ∈ T 4 | s, t ∈ R } ⊂ N

◮ then M = S2
r ×S2

r

Γ , with Γ = N
S1×S1

thick rhombus

◮ same, with R =
(

1
2

√
2 + φ

)1/2
instead of r
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=⇒ M =

{

(z1,z2,z3,z4)∈C4 | | z1|2+ 1
φ
|z2|2+|z3|2=

√

2+φ

2
,−|z1|2+|z2|2+φ|z4|2=

√

2+φ

2φ

}

{ exp(−s+φt,s,t,−t+φs)∈T 4 | s,t∈R }

remark
one can show that M is not the global quotient of a manifold
modulo the action of a discrete group
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Ũ/Γ
τ−→ U

[(z1, z2)] 7−→ [τ̃(z1, z2)]



an example of a chart

consider the open subset of C2 given by Ũ =
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an example of a chart

consider the open subset of C2 given by Ũ =
{

(z1, z2) ∈ C
2 | |z1|2 + 1

φ |z2|2 <
√
2+φ
2 , −|z1|2 + |z2|2 <

√
2+φ
2φ

}

and the following slice of Ψ−1(0) that is transversal to the N–orbits

Ũ
τ̃→ {(z1, z2, z3, z4) ∈ Ψ−1(0) | z3 6= 0, z4 6= 0}

(z1, z2) 7→
(

z1, z2,
√√

2+φ
2 − |z1|2 − 1

φ |z2|2,
√√

2+φ
2φ2 + |z1|2−|z2|2

φ

)

it induces the homeomorphism

Ũ/Γ
τ−→ U

[(z1, z2)] 7−→ [τ̃(z1, z2)]

where Γ =
{

(e
−2πi 1

φ
h
, e

2πi 1
φ
(h+k)

) ∈ T 2 | h, k ∈ Z

}

and

U = {(z1, z2, z3, z4) ∈ Ψ−1(0) | z3 6= 0, z4 6= 0}/N ⊂ M
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Ammann tilings

◮ they are three–dimensional generalization of Penrose rhombus
tilings

◮ they provide a geometrical model for the physics of certain
quasicrystals

◮ their tiles are given by two types of rhombohedra
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Ammann tiles

the facets of these rhombohedra are so–called golden rhombuses:
the ratio of their diagonals is equal to φ
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the quasilattice F is known in the physics of quasicrystals as the
face–centered lattice

fact

◮ any rhombohedron, oblate or prolate, of a given Ammann
tiling is quasirational with respect to F
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2
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α6 =
1√
2
(1, 0, 1 − φ)

the quasilattice P is known in the physics of quasicrystals as the
simple icosahedral lattice

fact

◮ up to a suitable rescaling, P has the property of containing all
of the vertices of the Ammann tiling
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◮ consider
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◮ then M = S2
r ×S2

r ×S2
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Γ , with Γ = N
S1×S1×S1

prolate rhombohedron

◮ same, with R = 1
4
√

2(3−φ)
instead of r
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visual aids

◮ all models are built using zometool R©

◮ all 3D pictures are drawn using zomecad
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