The moment map and non-periodic tilings

Elisa Prato

Università degli Studi di Firenze

June 28th, 2012
joint work with Fiammetta Battaglia

Delzant theorem

Delzant theorem

Delzant theorem

Delzant theorem

Delzant theorem

Delzant polytopes \Longleftrightarrow symplectic toric manifolds

Delzant theorem

Delzant theorem

Delzant polytopes \Longleftrightarrow symplectic toric manifolds

Delzant polytope

Delzant theorem

Delzant theorem

Delzant polytopes \Longleftrightarrow symplectic toric manifolds

Delzant polytope

a Delzant polytope is a simple convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ that is rational with respect to a lattice $L \subset \mathbb{R}^{n}$ and satisfies an additional "smoothness" condition

Delzant theorem

Delzant theorem

Delzant polytopes \Longleftrightarrow symplectic toric manifolds

Delzant polytope

a Delzant polytope is a simple convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ that is rational with respect to a lattice $L \subset \mathbb{R}^{n}$ and satisfies an additional "smoothness" condition

symplectic toric manifold

Delzant theorem

Delzant theorem

Delzant polytopes \Longleftrightarrow symplectic toric manifolds

Delzant polytope
a Delzant polytope is a simple convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ that is rational with respect to a lattice $L \subset \mathbb{R}^{n}$ and satisfies an additional "smoothness" condition

symplectic toric manifold

a symplectic toric manifold is a $2 n$-dimensional compact connected symplectic manifold M with an effective Hamiltonian action of the torus $T=\mathbb{R}^{n} / L$

Delzant theorem

Delzant theorem

Delzant polytopes \Longleftrightarrow symplectic toric manifolds

Delzant polytope
a Delzant polytope is a simple convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ that is rational with respect to a lattice $L \subset \mathbb{R}^{n}$ and satisfies an additional "smoothness" condition

symplectic toric manifold

a symplectic toric manifold is a $2 n$-dimensional compact connected symplectic manifold M with an effective Hamiltonian action of the torus $T=\mathbb{R}^{n} / L$
If Φ is the moment mapping of this action we have $\Phi(M)=\Delta$

Delzant construction

Delzant construction

Delzant construction

Delzant construction

Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction

Delzant construction

Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction

Delzant construction

Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction

idea

$\triangleright \Longrightarrow N$, a subtorus of $T^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}, d$ being the number of facets of Δ

Delzant construction

Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction

idea

$\Delta \Longrightarrow N$, a subtorus of $T^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}, d$ being the number of facets of Δ

- $M=\frac{\psi^{-1}(0)}{N}$, where Ψ is a moment mapping for the induced action of N on \mathbb{C}^{d}

Delzant construction

Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction

idea

$\triangle \triangle N$, a subtorus of $T^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}, d$ being the number of facets of Δ

- $M=\frac{\psi^{-1}(0)}{N}$, where Ψ is a moment mapping for the induced action of N on \mathbb{C}^{d}
$\vee M$ inherits an action of $T^{d} / N \simeq T=\mathbb{R}^{n} / L$ from the standard action of T^{d} on \mathbb{C}^{d}

generalized Delzant construction

generalized Delzant construction

natural question

generalized Delzant construction

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $\left(\mathbb{R}^{n}\right)^{*}$?

generalized Delzant construction

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $\left(\mathbb{R}^{n}\right)^{*}$?
generalized Delzant construction

generalized Delzant construction

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $\left(\mathbb{R}^{n}\right)^{*}$?
generalized Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction

generalized Delzant construction

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $\left(\mathbb{R}^{n}\right)^{*}$?
generalized Delzant construction

$$
\Delta \Longrightarrow M
$$

explicit construction using symplectic reduction
formally, it works exactly like the Delzant construction but ...

generalized Delzant construction

generalized Delzant construction

- the lattice L is replaced by a quasilattice Q

generalized Delzant construction

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality

generalized Delzant construction

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality
> N is a general subgroup of T^{d}, not necessarily a subtorus

generalized Delzant construction

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality
> N is a general subgroup of T^{d}, not necessarily a subtorus
- M is a $2 n$-dimensional compact connected quasifold

generalized Delzant construction

> the lattice L is replaced by a quasilattice Q

- rationality is replaced by quasirationality
- N is a general subgroup of T^{d}, not necessarily a subtorus
$\downarrow M$ is a $2 n$-dimensional compact connected quasifold
- the torus is replaced by a quasitorus $T^{d} / N \simeq \mathbb{R}^{n} / Q$

quasifold geometry

quasifold geometry

quasilattice

quasifold geometry

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^{n}$, a quasilattice Q is the \mathbb{Z}-span of a set of spanning vectors, Y_{1}, \ldots, Y_{d}, of \mathbb{R}^{n}

quasifold geometry

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^{n}$, a quasilattice Q is the \mathbb{Z}-span of a set of spanning vectors, Y_{1}, \ldots, Y_{d}, of \mathbb{R}^{n}

quasifold

quasifold geometry

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^{n}$, a quasilattice Q is the \mathbb{Z}-span of a set of spanning vectors, Y_{1}, \ldots, Y_{d}, of \mathbb{R}^{n}

quasifold

a generalization of a manifold and a orbifold, a quasifold is locally modeled by an open subset of a k-dimensional manifold modulo the smooth action of a discrete group

quasifold geometry

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^{n}$, a quasilattice Q is the \mathbb{Z}-span of a set of spanning vectors, Y_{1}, \ldots, Y_{d}, of \mathbb{R}^{n}

quasifold

a generalization of a manifold and a orbifold, a quasifold is locally modeled by an open subset of a k-dimensional manifold modulo the smooth action of a discrete group
quasitorus

quasifold geometry

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^{n}$, a quasilattice Q is the \mathbb{Z}-span of a set of spanning vectors, Y_{1}, \ldots, Y_{d}, of \mathbb{R}^{n}

quasifold

a generalization of a manifold and a orbifold, a quasifold is locally modeled by an open subset of a k-dimensional manifold modulo the smooth action of a discrete group

quasitorus

a generalization of a torus \mathbb{R}^{n} / L, a quasitorus is the quotient $\mathbb{R}^{n} / Q, Q$ being a quasilattice

rationality vs quasirationality

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rational polytope

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rational polytope

we recall that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is rational if there exists a lattice $L \subset \mathbb{R}^{n}$ such that the vectors X_{1}, \ldots, X_{d} can be chosen in L

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rational polytope

we recall that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is rational if there exists a lattice $L \subset \mathbb{R}^{n}$ such that the vectors X_{1}, \ldots, X_{d} can be chosen in L

quasirational polytope

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rational polytope

we recall that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is rational if there exists a lattice $L \subset \mathbb{R}^{n}$ such that the vectors X_{1}, \ldots, X_{d} can be chosen in L

quasirational polytope

we say that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is quasirational with respect to a quasilattice $Q \subset \mathbb{R}^{n}$ if the vectors X_{1}, \ldots, X_{d} can be chosen in Q

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rational polytope

we recall that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is rational if there exists a lattice $L \subset \mathbb{R}^{n}$ such that the vectors X_{1}, \ldots, X_{d} can be chosen in L

quasirational polytope

we say that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is quasirational with respect to a quasilattice $Q \subset \mathbb{R}^{n}$ if the vectors X_{1}, \ldots, X_{d} can be chosen in Q
remark

rationality vs quasirationality

given any convex polytope $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$, then there exist vectors $X_{1}, \ldots, X_{d} \in \mathbb{R}^{n}$ and real numbers $\lambda_{1}, \ldots, \lambda_{d}$ such that

$$
\Delta=\bigcap_{j=1}^{d}\left\{\mu \in\left(\mathbb{R}^{n}\right)^{*} \mid\left\langle\mu, X_{j}\right\rangle \geq \lambda_{j}\right\}
$$

rational polytope

we recall that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is rational if there exists a lattice $L \subset \mathbb{R}^{n}$ such that the vectors X_{1}, \ldots, X_{d} can be chosen in L
quasirational polytope
we say that $\Delta \subset\left(\mathbb{R}^{n}\right)^{*}$ is quasirational with respect to a quasilattice $Q \subset \mathbb{R}^{n}$ if the vectors X_{1}, \ldots, X_{d} can be chosen in Q

remark

any given convex polytope is quasirational with respect to the quasilattice that is generated by the vectors X_{1}, \ldots, X_{d}

Penrose tilings

Penrose tilings

2 examples non-periodic tilings of the plane

Penrose tilings

2 examples non-periodic tilings of the plane

Figure: a rhombus tiling

Figure: a kite and dart tiling
figures by D. Austin, reprinted courtesy of the AMS

convex Penrose tiles

convex Penrose tiles

- the thin rhombus

convex Penrose tiles

- the thin rhombus
> the thick rhombus

convex Penrose tiles

- the thin rhombus
- the thick rhombus

convex Penrose tiles

- the thin rhombus
$>$ the thick rhombus
- the kite

convex Penrose tiles

- the thin rhombus
$>$ the thick rhombus
- the kite

geometric properties of the tiles

geometric properties of the tiles

- the tiles are obtained from a regular pentagon with a very simple geometric construction

geometric properties of the tiles

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- all angles of the tiles are multiples of $\frac{\pi}{5}$

geometric properties of the tiles

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio $\phi=\frac{1+\sqrt{5}}{2}=2 \cos \frac{\pi}{5}$:

geometric properties of the tiles

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio
$\phi=\frac{1+\sqrt{5}}{2}=2 \cos \frac{\pi}{5}$:
- the ratio of the edge of the thin rhombus to its short diagonal

geometric properties of the tiles

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio $\phi=\frac{1+\sqrt{5}}{2}=2 \cos \frac{\pi}{5}$:
- the ratio of the edge of the thin rhombus to its short diagonal
- the ratio of the long diagonal of the thick rhombus to its edge

geometric properties of the tiles

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio $\phi=\frac{1+\sqrt{5}}{2}=2 \cos \frac{\pi}{5}$:
- the ratio of the edge of the thin rhombus to its short diagonal
- the ratio of the long diagonal of the thick rhombus to its edge
- the ratio of the long edge of the kite to its short edge

rationality issues

rationality issues

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice

rationality issues

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice
- there exists no lattice with respect to which any kite is rational

rationality issues

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice
- there exists no lattice with respect to which any kite is rational

rationality issues

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice
- there exists no lattice with respect to which any kite is rational

idea

find an appropriate quasilattice

choice of quasilattice for the Penrose tilings

choice of quasilattice for the Penrose tilings

Let us consider the quasilattice $Q \subset \mathbb{R}^{2}$ generated by the vectors

$$
\begin{aligned}
& Y_{0}=(1,0) \\
& Y_{1}=\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}\right)=\frac{1}{2}\left(\frac{1}{\phi}, \sqrt{2+\phi}\right) \\
& Y_{2}=\left(\cos \frac{4 \pi}{5}, \sin \frac{4 \pi}{5}\right)=\frac{1}{2}\left(-\phi, \frac{1}{\phi} \sqrt{2+\phi}\right) \\
& Y_{3}=\left(\cos \frac{6 \pi}{5}, \sin \frac{6 \pi}{5}\right)=\frac{1}{2}\left(-\phi,-\frac{1}{\phi} \sqrt{2+\phi}\right) \\
& Y_{4}=\left(\cos \frac{8 \pi}{5}, \sin \frac{8 \pi}{5}\right)=\frac{1}{2}\left(\frac{1}{\phi},-\sqrt{2+\phi}\right)
\end{aligned}
$$

choice of quasilattice for the Penrose tilings

Let us consider the quasilattice $Q \subset \mathbb{R}^{2}$ generated by the vectors

$$
\begin{aligned}
& Y_{0}=(1,0) \\
& Y_{1}=\left(\cos \frac{2 \pi}{5}, \sin \frac{2 \pi}{5}\right)=\frac{1}{2}\left(\frac{1}{\phi}, \sqrt{2+\phi}\right) \\
& Y_{2}=\left(\cos \frac{4 \pi}{5}, \sin \frac{4 \pi}{5}\right)=\frac{1}{2}\left(-\phi, \frac{1}{\phi} \sqrt{2+\phi}\right) \\
& Y_{3}=\left(\cos \frac{6 \pi}{5}, \sin \frac{6 \pi}{5}\right)=\frac{1}{2}\left(-\phi,-\frac{1}{\phi} \sqrt{2+\phi}\right) \\
& Y_{4}=\left(\cos \frac{8 \pi}{5}, \sin \frac{8 \pi}{5}\right)=\frac{1}{2}\left(\frac{1}{\phi},-\sqrt{2+\phi}\right)
\end{aligned}
$$

choice of quasilattice for the Penrose tilings

choice of quasilattice for the Penrose tilings

facts

choice of quasilattice for the Penrose tilings

facts

- any rhombus, thick or thin, of a given rhombus tiling is quasirational with respect to Q

choice of quasilattice for the Penrose tilings

facts

- any rhombus, thick or thin, of a given rhombus tiling is quasirational with respect to Q
> any kite of a given kite and dart tiling is quasirational with respect to Q

symplectic geometry of the rhombus tiling

symplectic geometry of the rhombus tiling

we apply the generalized Delzant construction and we get

symplectic geometry of the rhombus tiling

we apply the generalized Delzant construction and we get

$$
\Longrightarrow M=\frac{S_{r}^{2} \times S_{r}^{2}}{\Gamma}
$$

symplectic geometry of the rhombus tiling

we apply the generalized Delzant construction and we get

$$
\Longrightarrow M=\frac{S_{r}^{2} \times S_{r}^{2}}{\Gamma}
$$

$$
\Longrightarrow M=\frac{S_{R}^{2} \times S_{R}^{2}}{\Gamma}
$$

why? what are r, R and Γ ?
why? what are r, R and Γ ?
thin rhombus

why? what are r, R and Γ ?

thin rhombus

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3}}{N}$, where $N=\left\{\exp (s, s+h \phi, t, t+k \phi) \in T^{4} \mid s, t \in \mathbb{R}, h, k \in \mathbb{Z}\right\}$ and $r=\left(\frac{1}{2 \phi} \sqrt{2+\phi}\right)^{1 / 2}$

why? what are r, R and Γ ?

thin rhombus

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3}}{N}$, where $N=\left\{\exp (s, s+h \phi, t, t+k \phi) \in T^{4} \mid s, t \in \mathbb{R}, h, k \in \mathbb{Z}\right\}$ and $r=\left(\frac{1}{2 \phi} \sqrt{2+\phi}\right)^{1 / 2}$
- consider $S^{1} \times S^{1}=\left\{\exp (s, s, t, t) \in T^{4} \mid s, t \in \mathbb{R}\right\} \subset N$

why? what are r, R and Γ ?

thin rhombus

> symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3}}{N}$, where $N=\left\{\exp (s, s+h \phi, t, t+k \phi) \in T^{4} \mid s, t \in \mathbb{R}, h, k \in \mathbb{Z}\right\}$ and $r=\left(\frac{1}{2 \phi} \sqrt{2+\phi}\right)^{1 / 2}$

- consider $S^{1} \times S^{1}=\left\{\exp (s, s, t, t) \in T^{4} \mid s, t \in \mathbb{R}\right\} \subset N$
- then $M=\frac{S_{r}^{2} \times S_{r}^{2}}{\Gamma}$, with $\Gamma=\frac{N}{S^{1} \times S^{1}}$

why? what are r, R and Γ ?

thin rhombus

> symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3}}{N}$, where $N=\left\{\exp (s, s+h \phi, t, t+k \phi) \in T^{4} \mid s, t \in \mathbb{R}, h, k \in \mathbb{Z}\right\}$ and $r=\left(\frac{1}{2 \phi} \sqrt{2+\phi}\right)^{1 / 2}$

- consider $S^{1} \times S^{1}=\left\{\exp (s, s, t, t) \in T^{4} \mid s, t \in \mathbb{R}\right\} \subset N$
\triangleright then $M=\frac{S_{r}^{2} \times S_{r}^{2}}{\Gamma}$, with $\Gamma=\frac{N}{S^{1} \times S^{1}}$

thick rhombus

thin rhombus

> symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3}}{N}$, where $N=\left\{\exp (s, s+h \phi, t, t+k \phi) \in T^{4} \mid s, t \in \mathbb{R}, h, k \in \mathbb{Z}\right\}$ and $r=\left(\frac{1}{2 \phi} \sqrt{2+\phi}\right)^{1 / 2}$

- consider $S^{1} \times S^{1}=\left\{\exp (s, s, t, t) \in T^{4} \mid s, t \in \mathbb{R}\right\} \subset N$
- then $M=\frac{S_{r}^{2} \times S_{r}^{2}}{\Gamma}$, with $\Gamma=\frac{N}{S^{1} \times S^{1}}$

thick rhombus

same, with $R=\left(\frac{1}{2} \sqrt{2+\phi}\right)^{1 / 2}$ instead of r

symplectic geometry of the kite and dart tiling

symplectic geometry of the kite and dart tiling

$\Longrightarrow M=$

symplectic geometry of the kite and dart tiling

$\Longrightarrow M=$
$\frac{\left\{\left.\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\phi\left|z_{4}\right|^{2}=\frac{\sqrt{2+\phi}}{2 \phi}\right\}}{\left\{\exp (-s+\phi t, s, t,-t+\phi s) \in T^{4} \mid s, t \in \mathbb{R}\right\}}$

symplectic geometry of the kite and dart tiling

$\Longrightarrow M=$
$\frac{\left\{\left.\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\phi\left|z_{4}\right|^{2}=\frac{\sqrt{2+\phi}}{2 \phi}\right\}}{\left\{\exp (-s+\phi t, s, t,-t+\phi s) \in T^{4} \mid s, t \in \mathbb{R}\right\}}$ remark

symplectic geometry of the kite and dart tiling

$\Longrightarrow M=$
$\frac{\left\{\left.\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \mathbb{C}^{4}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=\frac{\sqrt{2+\phi}}{2},-\left|z_{z}\right|^{2}+\left|z_{2}\right|^{2}+\phi\left|z_{4}\right|^{2}=\frac{\sqrt{2+\phi}}{2 \phi}\right\}}{\left\{\exp (-s+\phi t, s, t,-t+\phi s) \in \mathbb{T}^{4} \mid s, t \in \mathbb{R}\right\}}$
remark
one can show that M is not the global quotient of a manifold modulo the action of a discrete group

an example of a chart

consider the open subset of \mathbb{C}^{2} given by $\tilde{U}=$
$\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2 \phi}\right\}$
consider the open subset of \mathbb{C}^{2} given by $\tilde{U}=$

$$
\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2 \phi}\right\}
$$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the N-orbits

$$
\begin{array}{ll}
\tilde{U} & \stackrel{\tilde{\tau}}{\rightarrow}\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \Psi^{-1}(0) \mid z_{3} \neq 0, z_{4} \neq 0\right\} \\
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}, z_{2}, \sqrt{\frac{\sqrt{2+\phi}}{2}-\left|z_{1}\right|^{2}-\frac{1}{\phi}\left|z_{2}\right|^{2}}, \sqrt{\frac{\sqrt{2+\phi}}{2 \phi^{2}}+\frac{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}}{\phi}}\right)
\end{array}
$$

consider the open subset of \mathbb{C}^{2} given by $\tilde{U}=$

$$
\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2 \phi}\right\}
$$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the N-orbits

$$
\begin{array}{ll}
\tilde{U} & \stackrel{\tilde{\tau}}{\rightarrow}\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \Psi^{-1}(0) \mid z_{3} \neq 0, z_{4} \neq 0\right\} \\
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}, z_{2}, \sqrt{\frac{\sqrt{2+\phi}}{2}-\left|z_{1}\right|^{2}-\frac{1}{\phi}\left|z_{2}\right|^{2}}, \sqrt{\frac{\sqrt{2+\phi}}{2 \phi^{2}}+\frac{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}}{\phi}}\right)
\end{array}
$$

it induces the homeomorphism

$$
\begin{array}{ccc}
\tilde{U} / \Gamma & \xrightarrow{\tau} & U \\
{\left[\left(z_{1}, z_{2}\right)\right]} & \longmapsto & {\left[\tilde{\tau}\left(z_{1}, z_{2}\right)\right]}
\end{array}
$$

consider the open subset of \mathbb{C}^{2} given by $\tilde{U}=$

$$
\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2 \phi}\right\}
$$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the N-orbits

$$
\begin{array}{ll}
\tilde{U} & \stackrel{\tilde{\tau}}{\rightarrow}\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \Psi^{-1}(0) \mid z_{3} \neq 0, z_{4} \neq 0\right\} \\
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}, z_{2}, \sqrt{\frac{\sqrt{2+\phi}}{2}-\left|z_{1}\right|^{2}-\frac{1}{\phi}\left|z_{2}\right|^{2}}, \sqrt{\frac{\sqrt{2+\phi}}{2 \phi^{2}}+\frac{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}}{\phi}}\right)
\end{array}
$$

it induces the homeomorphism

$$
\begin{array}{ccc}
\tilde{U} / \Gamma & \stackrel{\tau}{\longrightarrow} & U \\
{\left[\left(z_{1}, z_{2}\right)\right]} & \longmapsto & {\left[\tilde{\tau}\left(z_{1}, z_{2}\right)\right]}
\end{array}
$$

where $\Gamma=\left\{\left.\left(e^{-2 \pi i \frac{1}{\phi} h}, e^{2 \pi i \frac{1}{\phi}(h+k)}\right) \in T^{2} \right\rvert\, h, k \in \mathbb{Z}\right\}$
consider the open subset of \mathbb{C}^{2} given by $\tilde{U}=$

$$
\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\frac{1}{\phi}\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2},-\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{\sqrt{2+\phi}}{2 \phi}\right\}
$$

and the following slice of $\Psi^{-1}(0)$ that is transversal to the N-orbits

$$
\begin{array}{ll}
\tilde{U} & \stackrel{\tilde{\tau}}{\rightarrow}\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \Psi^{-1}(0) \mid z_{3} \neq 0, z_{4} \neq 0\right\} \\
\left(z_{1}, z_{2}\right) & \mapsto\left(z_{1}, z_{2}, \sqrt{\frac{\sqrt{2+\phi}}{2}-\left|z_{1}\right|^{2}-\frac{1}{\phi}\left|z_{2}\right|^{2}}, \sqrt{\frac{\sqrt{2+\phi}}{2 \phi^{2}}+\frac{\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}}{\phi}}\right)
\end{array}
$$

it induces the homeomorphism

$$
\begin{array}{ccc}
\tilde{U} / \Gamma & \xrightarrow{\tau} & U \\
{\left[\left(z_{1}, z_{2}\right)\right]} & \longmapsto & {\left[\tilde{\tau}\left(z_{1}, z_{2}\right)\right]}
\end{array}
$$

where $\Gamma=\left\{\left.\left(e^{-2 \pi i \frac{1}{\phi} h}, e^{2 \pi i \frac{1}{\phi}(h+k)}\right) \in T^{2} \right\rvert\, h, k \in \mathbb{Z}\right\}$ and $U=\left\{\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \in \Psi^{-1}(0) \mid z_{3} \neq 0, z_{4} \neq 0\right\} / N \subset M$

Ammann tilings

Ammann tilings

Ammann tilings

Ammann tilings

Ammann tilings

- they are three-dimensional generalization of Penrose rhombus tilings

Ammann tilings

Ammann tilings

- they are three-dimensional generalization of Penrose rhombus tilings
> they provide a geometrical model for the physics of certain quasicrystals

Ammann tilings

Ammann tilings

- they are three-dimensional generalization of Penrose rhombus tilings
> they provide a geometrical model for the physics of certain quasicrystals
- their tiles are given by two types of rhombohedra

Ammann tiles

Ammann tiles

- the oblate rhombohedron

Ammann tiles

- the oblate rhombohedron
> the prolate rhombohedron

Ammann tiles

- the oblate rhombohedron
- the prolate rhombohedron

Ammann tiles

the facets of these rhombohedra are so-called golden rhombuses: the ratio of their diagonals is equal to ϕ

choice of quasilattice for the Ammann tilings

choice of quasilattice for the Ammann tilings

let us consider the quasilattice $F \subset \mathbb{R}^{3}$ generated by the vectors

$$
\begin{aligned}
& U_{1}=\frac{1}{\sqrt{2}}(1, \phi-1, \phi) \\
& U_{2}=\frac{1}{\sqrt{2}}(\phi, 1, \phi-1) \\
& U_{3}=\frac{1}{\sqrt{2}}(\phi-1, \phi, 1) \\
& U_{4}=\frac{1}{\sqrt{2}}(-1, \phi-1, \phi) \\
& U_{5}=\frac{1}{\sqrt{2}}(\phi,-1, \phi-1) \\
& U_{6}=\frac{1}{\sqrt{2}}(\phi-1, \phi,-1)
\end{aligned}
$$

choice of quasilattice for the Ammann tilings

let us consider the quasilattice $F \subset \mathbb{R}^{3}$ generated by the vectors

$$
\begin{aligned}
& U_{1}=\frac{1}{\sqrt{2}}(1, \phi-1, \phi) \\
& U_{2}=\frac{1}{\sqrt{2}}(\phi, 1, \phi-1) \\
& U_{3}=\frac{1}{\sqrt{2}}(\phi-1, \phi, 1) \\
& U_{4}=\frac{1}{\sqrt{2}}(-1, \phi-1, \phi) \\
& U_{5}=\frac{1}{\sqrt{2}}(\phi,-1, \phi-1) \\
& U_{6}=\frac{1}{\sqrt{2}}(\phi-1, \phi,-1)
\end{aligned}
$$

the quasilattice F is known in the physics of quasicrystals as the

choice of quasilattice for the Ammann tilings

let us consider the quasilattice $F \subset \mathbb{R}^{3}$ generated by the vectors

$$
\begin{aligned}
& U_{1}=\frac{1}{\sqrt{2}}(1, \phi-1, \phi) \\
& U_{2}=\frac{1}{\sqrt{2}}(\phi, 1, \phi-1) \\
& U_{3}=\frac{1}{\sqrt{2}}(\phi-1, \phi, 1) \\
& U_{4}=\frac{1}{\sqrt{2}}(-1, \phi-1, \phi) \\
& U_{5}=\frac{1}{\sqrt{2}}(\phi,-1, \phi-1) \\
& U_{6}=\frac{1}{\sqrt{2}}(\phi-1, \phi,-1)
\end{aligned}
$$

the quasilattice F is known in the physics of quasicrystals as the face-centered lattice
fact

choice of quasilattice for the Ammann tilings

let us consider the quasilattice $F \subset \mathbb{R}^{3}$ generated by the vectors

$$
\begin{aligned}
& U_{1}=\frac{1}{\sqrt{2}}(1, \phi-1, \phi) \\
& U_{2}=\frac{1}{\sqrt{2}}(\phi, 1, \phi-1) \\
& U_{3}=\frac{1}{\sqrt{2}}(\phi-1, \phi, 1) \\
& U_{4}=\frac{1}{\sqrt{2}}(-1, \phi-1, \phi) \\
& U_{5}=\frac{1}{\sqrt{2}}(\phi,-1, \phi-1) \\
& U_{6}=\frac{1}{\sqrt{2}}(\phi-1, \phi,-1)
\end{aligned}
$$

the quasilattice F is known in the physics of quasicrystals as the
face-centered lattice
fact
> any rhombohedron, oblate or prolate, of a given Ammann tiling is quasirational with respect to F

the face-centered lattice

the face-centered lattice

- the vectors U_{i} have norm equal to $\sqrt{2}$

the face-centered lattice

- the vectors U_{i} have norm equal to $\sqrt{2}$
- there are exactly 30 vectors in F having the same norm

the face-centered lattice

- the vectors U_{i} have norm equal to $\sqrt{2}$
- there are exactly 30 vectors in F having the same norm
- these 30 vectors point to the vertices of an icosidodecahedron

the face-centered lattice

- the vectors U_{i} have norm equal to $\sqrt{2}$
- there are exactly 30 vectors in F having the same norm
- these 30 vectors point to the vertices of an icosidodecahedron

another important quasilattice in this setting

another important quasilattice in this setting

let us consider the quasilattice $P \subset\left(\mathbb{R}^{3}\right)^{*}$ generated by the vectors

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{2}}(\phi-1,1,0) \\
& \alpha_{2}=\frac{1}{\sqrt{2}}(0, \phi-1,1) \\
& \alpha_{3}=\frac{1}{\sqrt{2}}(1,0, \phi-1) \\
& \alpha_{4}=\frac{1}{\sqrt{2}}(1-\phi, 1,0) \\
& \alpha_{5}=\frac{1}{\sqrt{2}}(0,1-\phi, 1) \\
& \alpha_{6}=\frac{1}{\sqrt{2}}(1,0,1-\phi)
\end{aligned}
$$

another important quasilattice in this setting

let us consider the quasilattice $P \subset\left(\mathbb{R}^{3}\right)^{*}$ generated by the vectors

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{2}}(\phi-1,1,0) \\
& \alpha_{2}=\frac{1}{\sqrt{2}}(0, \phi-1,1) \\
& \alpha_{3}=\frac{1}{\sqrt{2}}(1,0, \phi-1) \\
& \alpha_{4}=\frac{1}{\sqrt{2}}(1-\phi, 1,0) \\
& \alpha_{5}=\frac{1}{\sqrt{2}}(0,1-\phi, 1) \\
& \alpha_{6}=\frac{1}{\sqrt{2}}(1,0,1-\phi)
\end{aligned}
$$

the quasilattice P is known in the physics of quasicrystals as the simple icosahedral lattice

another important quasilattice in this setting

let us consider the quasilattice $P \subset\left(\mathbb{R}^{3}\right)^{*}$ generated by the vectors

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{2}}(\phi-1,1,0) \\
& \alpha_{2}=\frac{1}{\sqrt{2}}(0, \phi-1,1) \\
& \alpha_{3}=\frac{1}{\sqrt{2}}(1,0, \phi-1) \\
& \alpha_{4}=\frac{1}{\sqrt{2}}(1-\phi, 1,0) \\
& \alpha_{5}=\frac{1}{\sqrt{2}}(0,1-\phi, 1) \\
& \alpha_{6}=\frac{1}{\sqrt{2}}(1,0,1-\phi)
\end{aligned}
$$

the quasilattice P is known in the physics of quasicrystals as the
simple icosahedral lattice
fact

another important quasilattice in this setting

let us consider the quasilattice $P \subset\left(\mathbb{R}^{3}\right)^{*}$ generated by the vectors

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{\sqrt{2}}(\phi-1,1,0) \\
& \alpha_{2}=\frac{1}{\sqrt{2}}(0, \phi-1,1) \\
& \alpha_{3}=\frac{1}{\sqrt{2}}(1,0, \phi-1) \\
& \alpha_{4}=\frac{1}{\sqrt{2}}(1-\phi, 1,0) \\
& \alpha_{5}=\frac{1}{\sqrt{2}}(0,1-\phi, 1) \\
& \alpha_{6}=\frac{1}{\sqrt{2}}(1,0,1-\phi)
\end{aligned}
$$

the quasilattice P is known in the physics of quasicrystals as the
simple icosahedral lattice
fact

- up to a suitable rescaling, P has the property of containing all of the vertices of the Ammann tiling

the simple icosahedral lattice

the simple icosahedral lattice

the vectors α_{i} have norm equal to $\sqrt{\frac{3-\phi}{2}}$

the simple icosahedral lattice

- the vectors α_{i} have norm equal to $\sqrt{\frac{3-\phi}{2}}$
- there are exactly 12 vectors in P having the same norm

the simple icosahedral lattice

the vectors α_{i} have norm equal to $\sqrt{\frac{3-\phi}{2}}$

- there are exactly 12 vectors in P having the same norm
- these 12 vectors point to the vertices of an icosahedron

the simple icosahedral lattice

> the vectors α_{i} have norm equal to $\sqrt{\frac{3-\phi}{2}}$

- there are exactly 12 vectors in P having the same norm
- these 12 vectors point to the vertices of an icosahedron

symplectic geometry of Ammann tiles

symplectic geometry of Ammann tiles

$$
\Longrightarrow M=\frac{S_{r}^{2} \times S_{r}^{2} \times S_{r}^{2}}{\Gamma}
$$

symplectic geometry of Ammann tiles

$$
\Longrightarrow M=\frac{S_{r}^{2} \times S_{r}^{2} \times S_{r}^{2}}{\Gamma}
$$

$$
\Longrightarrow M=\frac{S_{R}^{2} \times S_{R}^{2} \times S_{R}^{2}}{\Gamma}
$$

why? what are r, R and Γ ?
oblate rhombohedron

why? what are r, R and Γ ?

oblate rhombohedron

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3} \times S_{r}^{3}}{N}$, where $N \subset T^{6}$ is $\{\exp (p, p+\phi h, s, s+\phi k, t, t+\phi l, p, s, t) \mid p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}\}$ and $r=\frac{1}{\sqrt{\phi} \sqrt[4]{2(3-\phi)}}$

why? what are r, R and Γ ?

oblate rhombohedron

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3} \times S_{r}^{3}}{N}$, where $N \subset T^{6}$ is $\{\exp (p, p+\phi h, s, s+\phi k, t, t+\phi l, p, s, t) \mid p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}\}$ and $r=\frac{1}{\sqrt{\phi} \sqrt[4]{2(3-\phi)}}$
- consider

$$
S^{1} \times S^{1} \times S^{1}=\left\{\exp (p, p, s, s, t, t) \in T^{6} \mid p, s, t \in \mathbb{R}\right\} \subset N
$$

oblate rhombohedron

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3} \times S_{r}^{3}}{N}$, where $N \subset T^{6}$ is $\{\exp (p, p+\phi h, s, s+\phi k, t, t+\phi l, p, s, t) \mid p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}\}$ and $r=\frac{1}{\sqrt{\phi} \sqrt[4]{2(3-\phi)}}$
- consider

$$
S^{1} \times S^{1} \times S^{1}=\left\{\exp (p, p, s, s, t, t) \in T^{6} \mid p, s, t \in \mathbb{R}\right\} \subset N
$$

> then $M=\frac{S_{r}^{2} \times S_{r}^{2} \times S_{r}^{2}}{\Gamma}$, with $\Gamma=\frac{N}{S^{1} \times S^{1} \times S^{1}}$

oblate rhombohedron

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3} \times S_{r}^{3}}{N}$, where $N \subset T^{6}$ is $\{\exp (p, p+\phi h, s, s+\phi k, t, t+\phi l, p, s, t) \mid p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}\}$ and $r=\frac{1}{\sqrt{\phi} \sqrt[4]{2(3-\phi)}}$
- consider $S^{1} \times S^{1} \times S^{1}=\left\{\exp (p, p, s, s, t, t) \in T^{6} \mid p, s, t \in \mathbb{R}\right\} \subset N$
> then $M=\frac{S_{r}^{2} \times S_{r}^{2} \times S_{r}^{2}}{\Gamma}$, with $\Gamma=\frac{N}{S^{1} \times S^{1} \times S^{1}}$

prolate rhombohedron

oblate rhombohedron

- symplectic reduction yields $M=\frac{S_{r}^{3} \times S_{r}^{3} \times S_{r}^{3}}{N}$, where $N \subset T^{6}$ is $\{\exp (p, p+\phi h, s, s+\phi k, t, t+\phi l, p, s, t) \mid p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}\}$ and $r=\frac{1}{\sqrt{\phi} \sqrt[4]{2(3-\phi)}}$
- consider $S^{1} \times S^{1} \times S^{1}=\left\{\exp (p, p, s, s, t, t) \in T^{6} \mid p, s, t \in \mathbb{R}\right\} \subset N$
> then $M=\frac{S_{r}^{2} \times S_{r}^{2} \times S_{r}^{2}}{\Gamma}$, with $\Gamma=\frac{N}{S^{1} \times S^{1} \times S^{1}}$

prolate rhombohedron

> same, with $R=\frac{1}{\sqrt[4]{2(3-\phi)}}$ instead of r

visual aids

visual aids

- all models are built using zometool ${ }^{\circledR}$

visual aids

- all models are built using zometool ${ }^{\circledR}$
- all 3D pictures are drawn using zomecad

bibliography

- E. Prato,

Simple Non-Rational Convex Polytopes via Symplectic Geometry,
Topology 40 (2001), 961-975.

- F. Battaglia, E. Prato,

The Symplectic Geometry of Penrose Rhombus Tilings, J. Symplectic Geom. 6 (2008), 139-158.

- F. Battaglia, E. Prato,

The Symplectic Penrose Kite,
Comm. Math. Phys. 299 (2010), 577-601.

- F. Battaglia, E. Prato,

Ammann Tilings in Symplectic Geometry,
arXiv:1004.2471 [math.SG].

