The moment map and non-periodic tilings

Elisa Prato

Università degli Studi di Firenze

June 28th, 2012

joint work with Fiammetta Battaglia

Delzant theorem

Delzant theorem

$Delzant polytopes \iff symplectic toric manifolds$

Delzant theorem

$\mathsf{Delzant} \ \mathsf{polytopes} \Longleftrightarrow \mathsf{symplectic} \ \mathsf{toric} \ \mathsf{manifolds}$

Delzant polytope

Delzant theorem

Delzant polytopes \iff symplectic toric manifolds

Delzant polytope

a Delzant polytope is a simple convex polytope $\Delta \subset (\mathbb{R}^n)^*$ that is rational with respect to a lattice $L \subset \mathbb{R}^n$ and satisfies an additional "smoothness" condition

Delzant theorem

 $\mathsf{Delzant} \ \mathsf{polytopes} \Longleftrightarrow \mathsf{symplectic} \ \mathsf{toric} \ \mathsf{manifolds}$

Delzant polytope

a Delzant polytope is a simple convex polytope $\Delta \subset (\mathbb{R}^n)^*$ that is rational with respect to a lattice $L \subset \mathbb{R}^n$ and satisfies an additional "smoothness" condition

symplectic toric manifold

Delzant theorem

 $\mathsf{Delzant} \ \mathsf{polytopes} \Longleftrightarrow \mathsf{symplectic} \ \mathsf{toric} \ \mathsf{manifolds}$

Delzant polytope

a Delzant polytope is a simple convex polytope $\Delta \subset (\mathbb{R}^n)^*$ that is rational with respect to a lattice $L \subset \mathbb{R}^n$ and satisfies an additional "smoothness" condition

symplectic toric manifold

a symplectic toric manifold is a 2*n*-dimensional compact connected symplectic manifold *M* with an effective Hamiltonian action of the torus $T = \mathbb{R}^n/L$

Delzant theorem

 $\mathsf{Delzant} \ \mathsf{polytopes} \Longleftrightarrow \mathsf{symplectic} \ \mathsf{toric} \ \mathsf{manifolds}$

Delzant polytope

a Delzant polytope is a simple convex polytope $\Delta \subset (\mathbb{R}^n)^*$ that is rational with respect to a lattice $L \subset \mathbb{R}^n$ and satisfies an additional "smoothness" condition

symplectic toric manifold

a symplectic toric manifold is a 2*n*-dimensional compact connected symplectic manifold *M* with an effective Hamiltonian action of the torus $T = \mathbb{R}^n/L$

If Φ is the moment mapping of this action we have $\Phi(M) = \Delta$

Delzant construction

Delzant construction

$\Delta \Longrightarrow M$

explicit construction using symplectic reduction

Delzant construction

$\Delta \Longrightarrow M$

explicit construction using symplectic reduction

idea

Delzant construction

$\Delta \Longrightarrow M$

explicit construction using symplectic reduction

idea

• $\Delta \Longrightarrow N$, a subtorus of $T^d = \mathbb{R}^d / \mathbb{Z}^d$, d being the number of facets of Δ

Delzant construction

$\Delta \Longrightarrow M$

explicit construction using symplectic reduction

idea

- $\Delta \Longrightarrow N$, a subtorus of $T^d = \mathbb{R}^d / \mathbb{Z}^d$, d being the number of facets of Δ
- $M = \frac{\Psi^{-1}(0)}{N}$, where Ψ is a moment mapping for the induced action of N on \mathbb{C}^d

Delzant construction

$\Delta \Longrightarrow M$

explicit construction using symplectic reduction

idea

- $\Delta \Longrightarrow N$, a subtorus of $T^d = \mathbb{R}^d / \mathbb{Z}^d$, d being the number of facets of Δ
- $M = \frac{\Psi^{-1}(0)}{N}$, where Ψ is a moment mapping for the induced action of N on \mathbb{C}^d
- M inherits an action of T^d/N ≃ T = ℝⁿ/L from the standard action of T^d on ℂ^d

natural question

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $(\mathbb{R}^n)^*$?

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $(\mathbb{R}^n)^*$?

natural question

what if Δ is any (not necessarily rational) simple convex polytope in $(\mathbb{R}^n)^*$?

generalized Delzant construction

$$\Delta \Longrightarrow M$$

explicit construction using symplectic reduction

natural question what if Δ is any (not necessarily rational) simple convex polytope in $(\mathbb{R}^n)^*$?

generalized Delzant construction

$\Delta \Longrightarrow M$

explicit construction using symplectic reduction

formally, it works exactly like the Delzant construction but ...

the lattice L is replaced by a quasilattice Q

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality
- > N is a general subgroup of T^d , not necessarily a subtorus

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality
- > N is a general subgroup of T^d , not necessarily a subtorus
- M is a 2n-dimensional compact connected quasifold

- the lattice L is replaced by a quasilattice Q
- rationality is replaced by quasirationality
- > N is a general subgroup of T^d , not necessarily a subtorus
- M is a 2n-dimensional compact connected quasifold
- ▶ the torus is replaced by a quasitorus $T^d/N \simeq \mathbb{R}^n/Q$

quasilattice

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^n$, a quasilattice Q is the \mathbb{Z} -span of a set of spanning vectors, Y_1, \ldots, Y_d , of \mathbb{R}^n

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^n$, a quasilattice Q is the \mathbb{Z} -span of a set of spanning vectors, Y_1, \ldots, Y_d , of \mathbb{R}^n

quasifold

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^n$, a quasilattice Q is the \mathbb{Z} -span of a set of spanning vectors, Y_1, \ldots, Y_d , of \mathbb{R}^n

quasifold

a generalization of a manifold and a orbifold, a **quasifold** is locally modeled by an open subset of a k-dimensional manifold modulo the smooth action of a discrete group

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^n$, a quasilattice Q is the \mathbb{Z} -span of a set of spanning vectors, Y_1, \ldots, Y_d , of \mathbb{R}^n

quasifold

a generalization of a manifold and a orbifold, a **quasifold** is locally modeled by an open subset of a k-dimensional manifold modulo the smooth action of a discrete group

quasitorus

quasilattice

a generalization of a lattice $L \subset \mathbb{R}^n$, a quasilattice Q is the \mathbb{Z} -span of a set of spanning vectors, Y_1, \ldots, Y_d , of \mathbb{R}^n

quasifold

a generalization of a manifold and a orbifold, a **quasifold** is locally modeled by an open subset of a k-dimensional manifold modulo the smooth action of a discrete group

quasitorus

a generalization of a torus \mathbb{R}^n/L , a quasitorus is the quotient \mathbb{R}^n/Q , Q being a quasilattice

rationality vs quasirationality
given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

rational polytope

given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

rational polytope

we recall that $\Delta \subset (\mathbb{R}^n)^*$ is rational if there exists a lattice $L \subset \mathbb{R}^n$ such that the vectors X_1, \ldots, X_d can be chosen in L

given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

rational polytope

we recall that $\Delta \subset (\mathbb{R}^n)^*$ is rational if there exists a lattice $L \subset \mathbb{R}^n$ such that the vectors X_1, \ldots, X_d can be chosen in L

quasirational polytope

given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

rational polytope

we recall that $\Delta \subset (\mathbb{R}^n)^*$ is rational if there exists a lattice $L \subset \mathbb{R}^n$ such that the vectors X_1, \ldots, X_d can be chosen in L

quasirational polytope

we say that $\Delta \subset (\mathbb{R}^n)^*$ is quasirational with respect to a quasilattice $Q \subset \mathbb{R}^n$ if the vectors X_1, \ldots, X_d can be chosen in Q

given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

rational polytope

we recall that $\Delta \subset (\mathbb{R}^n)^*$ is rational if there exists a lattice $L \subset \mathbb{R}^n$ such that the vectors X_1, \ldots, X_d can be chosen in L

quasirational polytope

we say that $\Delta \subset (\mathbb{R}^n)^*$ is quasirational with respect to a quasilattice $Q \subset \mathbb{R}^n$ if the vectors X_1, \ldots, X_d can be chosen in Q

remark

given any convex polytope $\Delta \subset (\mathbb{R}^n)^*$, then there exist vectors $X_1, \ldots, X_d \in \mathbb{R}^n$ and real numbers $\lambda_1, \ldots, \lambda_d$ such that

$$\Delta = igcap_{j=1}^d \{ \ \mu \in (\mathbb{R}^n)^* \mid \langle \mu, X_j
angle \geq \lambda_j \ \}$$

rational polytope

we recall that $\Delta \subset (\mathbb{R}^n)^*$ is rational if there exists a lattice $L \subset \mathbb{R}^n$ such that the vectors X_1, \ldots, X_d can be chosen in L

quasirational polytope

we say that $\Delta \subset (\mathbb{R}^n)^*$ is quasirational with respect to a quasilattice $Q \subset \mathbb{R}^n$ if the vectors X_1, \ldots, X_d can be chosen in Q

remark

any given convex polytope is quasirational with respect to the quasilattice that is generated by the vectors X_1, \ldots, X_d

Penrose tilings

Penrose tilings

2 examples non-periodic tilings of the plane

Penrose tilings

2 examples non-periodic tilings of the plane

Figure: a rhombus tiling

Figure: a kite and dart tiling

figures by D. Austin, reprinted courtesy of the AMS

the thin rhombus

- the thin rhombus
- the thick rhombus

- the thin rhombus
- the thick rhombus

- the thin rhombus
- the thick rhombus
- the kite

- the thin rhombus
- the thick rhombus
- the kite

the tiles are obtained from a regular pentagon with a very simple geometric construction

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- > all angles of the tiles are multiples of $\frac{\pi}{5}$

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- > all angles of the tiles are multiples of $\frac{\pi}{5}$
- ▶ the following are all equal to the golden ratio $\phi = \frac{1+\sqrt{5}}{2} = 2\cos\frac{\pi}{5}$:

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- > all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio

$$\phi = \frac{1+\sqrt{5}}{2} = 2\cos\frac{\pi}{5}$$

▶ the ratio of the edge of the thin rhombus to its short diagonal

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- > all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio

$$\phi = \frac{1+\sqrt{5}}{2} = 2\cos\frac{\pi}{5}$$

- the ratio of the edge of the thin rhombus to its short diagonal
- the ratio of the long diagonal of the thick rhombus to its edge

- the tiles are obtained from a regular pentagon with a very simple geometric construction
- > all angles of the tiles are multiples of $\frac{\pi}{5}$
- the following are all equal to the golden ratio

$$\phi = \frac{1+\sqrt{5}}{2} = 2\cos\frac{\pi}{5}$$

- the ratio of the edge of the thin rhombus to its short diagonal
- the ratio of the long diagonal of the thick rhombus to its edge
- the ratio of the long edge of the kite to its short edge

the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice
- there exists no lattice with respect to which any kite is rational

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice
- there exists no lattice with respect to which any kite is rational

idea

- the rhombuses of a given tiling are not simultaneously rational with respect to a same lattice
- there exists no lattice with respect to which any kite is rational

idea

find an appropriate quasilattice

Let us consider the quasilattice $Q \subset \mathbb{R}^2$ generated by the vectors

$$\begin{array}{l} Y_0 = (1,0) \\ Y_1 = (\cos\frac{2\pi}{5}, \sin\frac{2\pi}{5}) = \frac{1}{2}(\frac{1}{\phi}, \sqrt{2+\phi}) \\ Y_2 = (\cos\frac{4\pi}{5}, \sin\frac{4\pi}{5}) = \frac{1}{2}(-\phi, \frac{1}{\phi}\sqrt{2+\phi}) \\ Y_3 = (\cos\frac{6\pi}{5}, \sin\frac{6\pi}{5}) = \frac{1}{2}(-\phi, -\frac{1}{\phi}\sqrt{2+\phi}) \\ Y_4 = (\cos\frac{8\pi}{5}, \sin\frac{8\pi}{5}) = \frac{1}{2}(\frac{1}{\phi}, -\sqrt{2+\phi}) \end{array}$$

Let us consider the quasilattice $Q \subset \mathbb{R}^2$ generated by the vectors

$$\begin{array}{l} Y_0 = (1,0) \\ Y_1 = (\cos\frac{2\pi}{5}, \sin\frac{2\pi}{5}) = \frac{1}{2}(\frac{1}{\phi}, \sqrt{2+\phi}) \\ Y_2 = (\cos\frac{4\pi}{5}, \sin\frac{4\pi}{5}) = \frac{1}{2}(-\phi, \frac{1}{\phi}\sqrt{2+\phi}) \\ Y_3 = (\cos\frac{6\pi}{5}, \sin\frac{6\pi}{5}) = \frac{1}{2}(-\phi, -\frac{1}{\phi}\sqrt{2+\phi}) \\ Y_4 = (\cos\frac{8\pi}{5}, \sin\frac{8\pi}{5}) = \frac{1}{2}(\frac{1}{\phi}, -\sqrt{2+\phi}) \end{array}$$

facts

facts

any rhombus, thick or thin, of a given rhombus tiling is quasirational with respect to Q

facts

- ► any rhombus, thick or thin, of a given rhombus tiling is quasirational with respect to Q
- any kite of a given kite and dart tiling is quasirational with respect to Q

symplectic geometry of the rhombus tiling
symplectic geometry of the rhombus tiling

we apply the generalized Delzant construction and we get

symplectic geometry of the rhombus tiling

we apply the generalized Delzant construction and we get

 $\implies M = \frac{S_r^2 \times S_r^2}{\Gamma}$

symplectic geometry of the rhombus tiling

we apply the generalized Delzant construction and we get

thin rhombus

thin rhombus

▶ symplectic reduction yields $M = \frac{S_t^3 \times S_t^3}{N}$, where $N = \{ \exp(s, s + h\phi, t, t + k\phi) \in T^4 | s, t \in \mathbb{R}, h, k \in \mathbb{Z} \}$ and $r = \left(\frac{1}{2\phi}\sqrt{2+\phi}\right)^{1/2}$

thin rhombus

- ▶ symplectic reduction yields $M = \frac{S_t^3 \times S_t^3}{N}$, where $N = \{ \exp(s, s + h\phi, t, t + k\phi) \in T^4 | s, t \in \mathbb{R}, h, k \in \mathbb{Z} \}$ and $r = \left(\frac{1}{2\phi}\sqrt{2+\phi}\right)^{1/2}$
- ► consider $S^1 \times S^1 = \{ \exp(s, s, t, t) \in T^4 \, | \, s, t \in \mathbb{R} \, \} \subset N$

thin rhombus

- ▶ symplectic reduction yields $M = \frac{S_t^3 \times S_t^3}{N}$, where $N = \{ \exp(s, s + h\phi, t, t + k\phi) \in T^4 | s, t \in \mathbb{R}, h, k \in \mathbb{Z} \}$ and $r = \left(\frac{1}{2\phi}\sqrt{2+\phi}\right)^{1/2}$
- ▶ consider $S^1 \times S^1 = \{ \exp(s, s, t, t) \in T^4 \, | \, s, t \in \mathbb{R} \, \} \subset N$
- then $M = \frac{S_r^2 \times S_r^2}{\Gamma}$, with $\Gamma = \frac{N}{S^1 \times S^1}$

thin rhombus

- ► symplectic reduction yields $M = \frac{S_t^3 \times S_t^3}{N}$, where $N = \{ \exp(s, s + h\phi, t, t + k\phi) \in T^4 | s, t \in \mathbb{R}, h, k \in \mathbb{Z} \}$ and $r = \left(\frac{1}{2\phi}\sqrt{2+\phi}\right)^{1/2}$
- ► consider $S^1 \times S^1 = \{ \exp(s, s, t, t) \in T^4 | s, t \in \mathbb{R} \} \subset N$
- then $M = \frac{S_r^2 \times S_r^2}{\Gamma}$, with $\Gamma = \frac{N}{S^1 \times S^1}$

thick rhombus

thin rhombus

- ▶ symplectic reduction yields $M = \frac{S_t^3 \times S_t^3}{N}$, where $N = \{ \exp(s, s + h\phi, t, t + k\phi) \in T^4 | s, t \in \mathbb{R}, h, k \in \mathbb{Z} \}$ and $r = \left(\frac{1}{2\phi}\sqrt{2+\phi}\right)^{1/2}$
- ► consider $S^1 \times S^1 = \{ \exp(s, s, t, t) \in T^4 \, | \, s, t \in \mathbb{R} \, \} \subset N$
- then $M = \frac{S_r^2 \times S_r^2}{\Gamma}$, with $\Gamma = \frac{N}{S^1 \times S^1}$

thick rhombus

▶ same, with
$$R = \left(\frac{1}{2}\sqrt{2+\phi}\right)^{1/2}$$
 instead of r

 $\implies M =$

remark

remark

one can show that M is not the global quotient of a manifold modulo the action of a discrete group

consider the open subset of \mathbb{C}^2 given by $\tilde{U} = \left\{ \left(z_1, z_2\right) \in \mathbb{C}^2 \mid |z_1|^2 + \frac{1}{\phi} |z_2|^2 < \frac{\sqrt{2+\phi}}{2}, \ -|z_1|^2 + |z_2|^2 < \frac{\sqrt{2+\phi}}{2\phi} \right\}$

consider the open subset of \mathbb{C}^2 given by $\tilde{U} = \begin{cases} (z_1, z_2) \in \mathbb{C}^2 ||z_1|^2 + \frac{1}{\phi}|z_2|^2 < \frac{\sqrt{2+\phi}}{2}, \ -|z_1|^2 + |z_2|^2 < \frac{\sqrt{2+\phi}}{2\phi} \end{cases}$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the *N*-orbits $\tilde{U} \qquad \stackrel{\tilde{\tau}}{\to} \{(z_1, z_2, z_3, z_4) \in \Psi^{-1}(0) \mid z_3 \neq 0, z_4 \neq 0\}$ $(z_1, z_2) \qquad \mapsto \left(z_1, z_2, \sqrt{\frac{\sqrt{2+\phi}}{2} - |z_1|^2 - \frac{1}{\phi}|z_2|^2}, \sqrt{\frac{\sqrt{2+\phi}}{2\phi^2} + \frac{|z_1|^2 - |z_2|^2}{\phi}}\right)$

consider the open subset of \mathbb{C}^2 given by $\tilde{U} = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + \frac{1}{\phi}|z_2|^2 < \frac{\sqrt{2+\phi}}{2}, -|z_1|^2 + |z_2|^2 < \frac{\sqrt{2+\phi}}{2\phi} \right\}$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the *N*-orbits $\tilde{U} \qquad \stackrel{\tilde{\tau}}{\rightarrow} \{ (z_1, z_2, z_3, z_4) \in \Psi^{-1}(0) \mid z_3 \neq 0, z_4 \neq 0 \}$ $(z_1, z_2) \qquad \mapsto \left(z_1, z_2, \sqrt{\frac{\sqrt{2+\phi}}{2} - |z_1|^2 - \frac{1}{\phi}|z_2|^2}, \sqrt{\frac{\sqrt{2+\phi}}{2\phi^2} + \frac{|z_1|^2 - |z_2|^2}{\phi}} \right)$ it induces the homeomorphism

$$egin{array}{ccc} ilde{U}/\Gamma & \stackrel{ au}{\longrightarrow} & U \ [(z_1,z_2)] & \longmapsto & [ilde{ au}(z_1,z_2)) \end{array}$$

consider the open subset of \mathbb{C}^2 given by $\tilde{U} = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + \frac{1}{\phi}|z_2|^2 < \frac{\sqrt{2+\phi}}{2}, -|z_1|^2 + |z_2|^2 < \frac{\sqrt{2+\phi}}{2\phi} \right\}$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the *N*-orbits $\tilde{U} \qquad \stackrel{\tilde{\tau}}{\rightarrow} \{ (z_1, z_2, z_3, z_4) \in \Psi^{-1}(0) \mid z_3 \neq 0, z_4 \neq 0 \}$ $(z_1, z_2) \qquad \mapsto \left(z_1, z_2, \sqrt{\frac{\sqrt{2+\phi}}{2} - |z_1|^2 - \frac{1}{\phi}|z_2|^2}, \sqrt{\frac{\sqrt{2+\phi}}{2\phi^2} + \frac{|z_1|^2 - |z_2|^2}{\phi}} \right)$ it induces the homeomorphism

it induces the nomeomorphism

$$egin{aligned} & \ddot{U}/\Gamma & \stackrel{ au}{\longrightarrow} & U \ & [(z_1,z_2)] & \longmapsto & [ilde{ au}(z_1,z_2)] \end{aligned}$$
 where $\Gamma = \Big\{ \, (e^{-2\pi i rac{1}{\phi}h}, e^{2\pi i rac{1}{\phi}(h+k)}) \in \, T^2 \mid h,k \in \mathbb{Z} \Big\}$

consider the open subset of \mathbb{C}^2 given by $\tilde{U} = \left\{ (z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + \frac{1}{\phi} |z_2|^2 < \frac{\sqrt{2+\phi}}{2\phi}, -|z_1|^2 + |z_2|^2 < \frac{\sqrt{2+\phi}}{2\phi} \right\}$ and the following slice of $\Psi^{-1}(0)$ that is transversal to the *N*-orbits $\tilde{U} \qquad \stackrel{\tilde{\tau}}{\rightarrow} \{ (z_1, z_2, z_3, z_4) \in \Psi^{-1}(0) \mid z_3 \neq 0, z_4 \neq 0 \}$ $(z_1, z_2) \qquad \mapsto \left(z_1, z_2, \sqrt{\frac{\sqrt{2+\phi}}{2} - |z_1|^2 - \frac{1}{\phi} |z_2|^2}, \sqrt{\frac{\sqrt{2+\phi}}{2\phi^2} + \frac{|z_1|^2 - |z_2|^2}{\phi}} \right)$ it induces the homeomorphism

$$egin{array}{ccc} ilde{U}/\Gamma & \stackrel{ au}{\longrightarrow} & U \ [(z_1,z_2)] & \longmapsto & [ilde{ au}(z_1,z_2)] \end{array}$$

where $\Gamma = \left\{ \left(e^{-2\pi i \frac{1}{\phi}h}, e^{2\pi i \frac{1}{\phi}(h+k)} \right) \in T^2 \mid h, k \in \mathbb{Z} \right\}$ and $U = \{ (z_1, z_2, z_3, z_4) \in \Psi^{-1}(0) \mid z_3 \neq 0, z_4 \neq 0 \} / N \subset M$

Ammann tilings

Ammann tilings

they are three-dimensional generalization of Penrose rhombus tilings

Ammann tilings

- they are three-dimensional generalization of Penrose rhombus tilings
- they provide a geometrical model for the physics of certain quasicrystals

Ammann tilings

- they are three-dimensional generalization of Penrose rhombus tilings
- they provide a geometrical model for the physics of certain quasicrystals
- their tiles are given by two types of rhombohedra

the oblate rhombohedron

- the oblate rhombohedron
- the prolate rhombohedron

- the oblate rhombohedron
- the prolate rhombohedron

the facets of these rhombohedra are so–called golden rhombuses: the ratio of their diagonals is equal to ϕ

let us consider the quasilattice $F \subset \mathbb{R}^3$ generated by the vectors

$$\begin{array}{l} U_1 = \frac{1}{\sqrt{2}}(1,\phi-1,\phi) \\ U_2 = \frac{1}{\sqrt{2}}(\phi,1,\phi-1) \\ U_3 = \frac{1}{\sqrt{2}}(\phi-1,\phi,1) \\ U_4 = \frac{1}{\sqrt{2}}(-1,\phi-1,\phi) \\ U_5 = \frac{1}{\sqrt{2}}(\phi,-1,\phi-1) \\ U_6 = \frac{1}{\sqrt{2}}(\phi-1,\phi,-1) \end{array}$$

let us consider the quasilattice $F \subset \mathbb{R}^3$ generated by the vectors

$$\begin{array}{l} U_1 = \frac{1}{\sqrt{2}}(1,\phi-1,\phi) \\ U_2 = \frac{1}{\sqrt{2}}(\phi,1,\phi-1) \\ U_3 = \frac{1}{\sqrt{2}}(\phi-1,\phi,1) \\ U_4 = \frac{1}{\sqrt{2}}(-1,\phi-1,\phi) \\ U_5 = \frac{1}{\sqrt{2}}(\phi,-1,\phi-1) \\ U_6 = \frac{1}{\sqrt{2}}(\phi-1,\phi,-1) \end{array}$$

the quasilattice F is known in the physics of quasicrystals as the face-centered lattice

let us consider the quasilattice $F \subset \mathbb{R}^3$ generated by the vectors

$$\begin{array}{l} U_1 = \frac{1}{\sqrt{2}}(1,\phi-1,\phi) \\ U_2 = \frac{1}{\sqrt{2}}(\phi,1,\phi-1) \\ U_3 = \frac{1}{\sqrt{2}}(\phi-1,\phi,1) \\ U_4 = \frac{1}{\sqrt{2}}(-1,\phi-1,\phi) \\ U_5 = \frac{1}{\sqrt{2}}(\phi,-1,\phi-1) \\ U_6 = \frac{1}{\sqrt{2}}(\phi-1,\phi,-1) \end{array}$$

the quasilattice F is known in the physics of quasicrystals as the face-centered lattice

fact

let us consider the quasilattice $F \subset \mathbb{R}^3$ generated by the vectors

$$\begin{array}{l} U_1 = \frac{1}{\sqrt{2}}(1,\phi-1,\phi) \\ U_2 = \frac{1}{\sqrt{2}}(\phi,1,\phi-1) \\ U_3 = \frac{1}{\sqrt{2}}(\phi-1,\phi,1) \\ U_4 = \frac{1}{\sqrt{2}}(-1,\phi-1,\phi) \\ U_5 = \frac{1}{\sqrt{2}}(\phi,-1,\phi-1) \\ U_6 = \frac{1}{\sqrt{2}}(\phi-1,\phi,-1) \end{array}$$

the quasilattice F is known in the physics of quasicrystals as the face-centered lattice

fact

any rhombohedron, oblate or prolate, of a given Ammann tiling is quasirational with respect to F
• the vectors U_i have norm equal to $\sqrt{2}$

- the vectors U_i have norm equal to $\sqrt{2}$
- there are exactly 30 vectors in F having the same norm

- the vectors U_i have norm equal to $\sqrt{2}$
- there are exactly 30 vectors in F having the same norm
- these 30 vectors point to the vertices of an icosidodecahedron

- the vectors U_i have norm equal to $\sqrt{2}$
- there are exactly 30 vectors in F having the same norm
- these 30 vectors point to the vertices of an icosidodecahedron

let us consider the quasilattice $P \subset (\mathbb{R}^3)^*$ generated by the vectors

$$\begin{aligned} \alpha_1 &= \frac{1}{\sqrt{2}} (\phi - 1, 1, 0) \\ \alpha_2 &= \frac{1}{\sqrt{2}} (0, \phi - 1, 1) \\ \alpha_3 &= \frac{1}{\sqrt{2}} (1, 0, \phi - 1) \\ \alpha_4 &= \frac{1}{\sqrt{2}} (1 - \phi, 1, 0) \\ \alpha_5 &= \frac{1}{\sqrt{2}} (0, 1 - \phi, 1) \\ \alpha_6 &= \frac{1}{\sqrt{2}} (1, 0, 1 - \phi) \end{aligned}$$

let us consider the quasilattice $P \subset (\mathbb{R}^3)^*$ generated by the vectors

$$\begin{aligned} \alpha_1 &= \frac{1}{\sqrt{2}} (\phi - 1, 1, 0) \\ \alpha_2 &= \frac{1}{\sqrt{2}} (0, \phi - 1, 1) \\ \alpha_3 &= \frac{1}{\sqrt{2}} (1, 0, \phi - 1) \\ \alpha_4 &= \frac{1}{\sqrt{2}} (1 - \phi, 1, 0) \\ \alpha_5 &= \frac{1}{\sqrt{2}} (0, 1 - \phi, 1) \\ \alpha_6 &= \frac{1}{\sqrt{2}} (1, 0, 1 - \phi) \end{aligned}$$

the quasilattice P is known in the physics of quasicrystals as the simple icosahedral lattice

let us consider the quasilattice $P \subset (\mathbb{R}^3)^*$ generated by the vectors

$$\begin{aligned} \alpha_1 &= \frac{1}{\sqrt{2}} (\phi - 1, 1, 0) \\ \alpha_2 &= \frac{1}{\sqrt{2}} (0, \phi - 1, 1) \\ \alpha_3 &= \frac{1}{\sqrt{2}} (1, 0, \phi - 1) \\ \alpha_4 &= \frac{1}{\sqrt{2}} (1 - \phi, 1, 0) \\ \alpha_5 &= \frac{1}{\sqrt{2}} (0, 1 - \phi, 1) \\ \alpha_6 &= \frac{1}{\sqrt{2}} (1, 0, 1 - \phi) \end{aligned}$$

the quasilattice P is known in the physics of quasicrystals as the simple icosahedral lattice

fact

let us consider the quasilattice $P \subset (\mathbb{R}^3)^*$ generated by the vectors

$$\begin{aligned} \alpha_1 &= \frac{1}{\sqrt{2}} (\phi - 1, 1, 0) \\ \alpha_2 &= \frac{1}{\sqrt{2}} (0, \phi - 1, 1) \\ \alpha_3 &= \frac{1}{\sqrt{2}} (1, 0, \phi - 1) \\ \alpha_4 &= \frac{1}{\sqrt{2}} (1 - \phi, 1, 0) \\ \alpha_5 &= \frac{1}{\sqrt{2}} (0, 1 - \phi, 1) \\ \alpha_6 &= \frac{1}{\sqrt{2}} (1, 0, 1 - \phi) \end{aligned}$$

the quasilattice P is known in the physics of quasicrystals as the simple icosahedral lattice

fact

up to a suitable rescaling, P has the property of containing all of the vertices of the Ammann tiling

▶ the vectors α_i have norm equal to $\sqrt{rac{3-\phi}{2}}$

- the vectors α_i have norm equal to $\sqrt{\frac{3-\phi}{2}}$
- there are exactly 12 vectors in P having the same norm

- the vectors α_i have norm equal to $\sqrt{\frac{3-\phi}{2}}$
- there are exactly 12 vectors in P having the same norm
- these 12 vectors point to the vertices of an icosahedron

- the vectors α_i have norm equal to $\sqrt{\frac{3-\phi}{2}}$
- there are exactly 12 vectors in P having the same norm
- these 12 vectors point to the vertices of an icosahedron

symplectic geometry of Ammann tiles

symplectic geometry of Ammann tiles

 $\implies M = \frac{S_r^2 \times S_r^2 \times S_r^2}{r}$

symplectic geometry of Ammann tiles

 $\implies M = \frac{S_r^2 \times S_r^2 \times S_r^2}{\Gamma}$

 $\implies M = \frac{S_R^2 \times S_R^2 \times S_R^2}{r}$

oblate rhombohedron

oblate rhombohedron

▶ symplectic reduction yields $M = \frac{S_r^3 \times S_r^3 \times S_r^3}{N}$, where $N \subset T^6$ is { exp $(p, p + \phi h, s, s + \phi k, t, t + \phi l, p, s, t) | p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}$ } and $r = \frac{1}{\sqrt{\phi} \sqrt[4]{2(3-\phi)}}$

oblate rhombohedron

- ▶ symplectic reduction yields $M = \frac{S_r^3 \times S_r^3 \times S_r^3}{N}$, where $N \subset T^6$ is { exp $(p, p + \phi h, s, s + \phi k, t, t + \phi l, p, s, t) | p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}$ } and $r = \frac{1}{\sqrt{\phi}\sqrt[4]{2(3-\phi)}}$
- consider

$$S^1 imes S^1 imes S^1 = \{ \exp\left(p, p, s, s, t, t
ight) \in T^6 \, | \, p, s, t \in \mathbb{R} \, \} \subset N$$

oblate rhombohedron

- ▶ symplectic reduction yields $M = \frac{S_r^3 \times S_r^3 \times S_r^3}{N}$, where $N \subset T^6$ is { exp $(p, p + \phi h, s, s + \phi k, t, t + \phi l, p, s, t) | p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}$ } and $r = \frac{1}{\sqrt{\phi}\sqrt[4]{2(3-\phi)}}$
- ► consider $S^1 \times S^1 \times S^1 = \{ \exp(p, p, s, s, t, t) \in T^6 | p, s, t \in \mathbb{R} \} \subset N$ ► then $M = \frac{S_r^2 \times S_r^2 \times S_r^2}{\Gamma}$, with $\Gamma = \frac{N}{S^1 \times S^1 \times S^1}$

oblate rhombohedron

- ▶ symplectic reduction yields $M = \frac{S_r^3 \times S_r^3 \times S_r^3}{N}$, where $N \subset T^6$ is { exp $(p, p + \phi h, s, s + \phi k, t, t + \phi l, p, s, t) | p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}$ } and $r = \frac{1}{\sqrt{\phi}\sqrt[4]{2(3-\phi)}}$
- consider S¹ × S¹ × S¹ = { exp (p, p, s, s, t, t) ∈ T⁶ | p, s, t ∈ ℝ } ⊂ N
 then M = $\frac{S_r^2 × S_r^2 × S_r^2}{\Gamma}$, with $\Gamma = \frac{N}{S^1 × S^1 × S^1}$

prolate rhombohedron

oblate rhombohedron

- ▶ symplectic reduction yields $M = \frac{S_r^3 \times S_r^3 \times S_r^3}{N}$, where $N \subset T^6$ is { exp $(p, p + \phi h, s, s + \phi k, t, t + \phi l, p, s, t) | p, s, t \in \mathbb{R}, h, k, l \in \mathbb{Z}$ } and $r = \frac{1}{\sqrt{\phi}\sqrt[4]{2(3-\phi)}}$
- consider S¹ × S¹ × S¹ = { exp (p, p, s, s, t, t) ∈ T⁶ | p, s, t ∈ ℝ } ⊂ N
 then M = $\frac{S_r^2 × S_r^2 × S_r^2}{\Gamma}$, with $\Gamma = \frac{N}{S^1 × S^1 × S^1}$

prolate rhombohedron

• same, with
$$R = \frac{1}{\sqrt[4]{2(3-\phi)}}$$
 instead of r

visual aids

all models are built using zometool[®]

- all models are built using zometool[®]
- all 3D pictures are drawn using zomecad

bibliography

E. Prato, Simple Non–Rational Convex Polytopes via Symplectic Geometry, *Topology* **40** (2001), 961–975.

 F. Battaglia, E. Prato, The Symplectic Geometry of Penrose Rhombus Tilings, J. Symplectic Geom. 6 (2008), 139–158.

 F. Battaglia, E. Prato, The Symplectic Penrose Kite, Comm. Math. Phys. 299 (2010), 577–601.

 F. Battaglia, E. Prato, Ammann Tilings in Symplectic Geometry, arXiv:1004.2471 [math.SG].