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Abstract

We analyze the first 8 harmonics from the musical point of view and we remark that the 5th and 7th stand out as
special. We then relate these harmonics to regular polygons, and we view these polygons from the viewpoint of
symplectic geometry. Surprisingly, even in the symplectic setting, the regular pentagon and the regular heptagon,
which correspond to the 5th and 7th harmonic, behave very differently from the other polygons.

Introduction

Musical harmonics are positive integer multiples of a fixed frequency, which is called the fundamental fre-
quency. Harmonics can be produced in a variety of ways, with a variety of techniques and musical instru-
ments. But perhaps one of the most interesting techniques for producing harmonics is known as harmonic
or overtone singing, an ancient tradition that is still present in some countries, such as Tuva and Mongolia,
and is currently being rediscovered by several contemporary musicians.

In this article we focus our attention on the first 8 harmonics of a given fundamental frequency.

In the first section we remark that two of these harmonics, the 5th and the 7th, stand out as special
because their frequency is several Hertz too low to correspond to notes in our usual equal temperament
musical scale. Nevertheless the musical intervals that are created between the fundamental and each of these
harmonics have their distinctive melodic features that we describe. Following Laneri and Levarie-Levy,
for each integer k greater than 2, we consider the regular polygon having k edges, and we remark that the
distinctive melodic features of the kth harmonic relate to the symbolism of the corresponding polygon. This
relationship proves to be particularly interesting in the cases k = 5,7, where the corresponding polygons are
the regular pentagon and the regular heptagon (see Figure 3).

In the second section we consider the regular polygons from the perspective of symplectic geometry. The
Delzant Theorem, which yields, among other things, a well known correspondence between certain suitable
polygons and symplectic 4-manifolds, surprisingly fails exactly for the regular pentagon and the regular
heptagon. The reason for this failure is that these polygons are not rational. However, a generalization of the
Delzant Theorem proven by the author in [6] allows to associate to non—rational polygons such as the these
a so—called symplectic 4—quasifold. Quasifolds generalize manifolds and orbifolds and are wildly singular:
in general they may even not be Hausdorff topological spaces.

We conclude by remarking how the peculiar features of the 5th and 7th harmonic correspond to the
peculiar singularities of the symplectic quasifolds that are associated to the regular pentagon and to the
regular heptagon.

1 Harmonics and Regular Polygons

We begin by recalling some facts about harmonics. We start with any given note, say for example A2 of
frequency 110 Hertz. We multiply this frequency b}( 2 and we get 220 Hertz, which corresponds to A3,



the same note one octave above; this is the 2nd harmonic. We now multiply the original frequency by the
number 3 and we get 330 Hertz, which corresponds to E4, a perfect 5th two octaves above the original note;
this is the 3rd harmonic. If we continue this procedure we get the following table:

harmonic 1 2 3 4 6 7 8
frequency | 110 Hz | 220 Hz | 330 Hz | 440 Hz 660 Hz 770 Hz 880 Hz
note A2 A3 E4 A4 E5 almost G5 A5
interval | unison | octave | p.5th | octave p. Sth | harmonic 7th | octave

Of course the table could go on indefinitely, but we need to stop somewhere and 8 appears to be a rather
natural stopping point; a similar discussion applies to subsequent harmonics. The same procedure could be
repeated starting from any other note; naturally the notes involved will be different, but the intervals will
remain the same. So it is natural to attach to each integer the corresponding musical interval.

If we look at the table, the harmonics 5 and 7 immediately stand out as being different from the others.
The frequency of the S5th harmonic is lower than the equally—-tempered frequency 554.37 Hertz of the note
C#5, while the frequency of the 7th is lower than the equally—tempered frequency 783.99 Hertz of the note
G5. Therefore the interval that corresponds to the 5th harmonic, which we refer to as the pure major 3rd, is
flatter than its equally—tempered counterpart, the major 3rd. Similarly, the interval which corresponds to the
7th harmonic, which is known as the harmonic 7th, is flatter than its counterpart in equal temperament, the
minor 7th.

These two harmonics also stand out because of their special melodic features. The pure major 3rd is the
first truly melodic interval in the harmonic series (see Laneri [3, Chapter 6]). Perhaps one of the most striking
early examples of its use is the medieval northern European practice of singing in parallel 3rds, called gymel
or cantus gemellus. This interval is the heart of the pure major triad chord. The harmonic 7th, on the other
hand, is one of the blue notes of blues, popularly known as blues seven. It is also widely used in barbershop
and folk music and conveys a melancholic (blue) feeling. It can be achieved for example by vocal techniques,
by bending or slide guitar techniques, or with wind instruments such the sax. Adding the 7th harmonic to
the pure major triad chord yields the 7th harmonic chord, which blends the distinctive melodic features of
the 5th and 7th harmonic. According to both Mathieu [5, pp. 318-319] and Tartini [8] this chord functions
as a “’fully resolved” final chord, very much unlike its equally—tempered counterpart, the minor 7th.

Let us now associate to each integer greater than 2 the corresponding regular polygon, following Laneri
[3, Chapter 6] and Levarie-Levy [4, Chapters 2 and 3]. We therefore get a new table:

harmonic 1 2 3 4 6 7 8
polygon triangle | square hexagon heptagon octagon
interval | unison | octave | p. Sth | octave p. Sth | harmonic 7th | octave

Laneri and Levarie-Levy argue that each polygon symbolizes some of the characteristics of the correspond-
ing musical interval. One of their most striking examples is the case of the S5th harmonic. If we trace the
diagonals of the regular pentagon, we obtain the so—called pentagram (see Figure 1), which is known to be
a symbol of Ishtar, the Babylonian Venus, Goddess of Love (we refer the reader to [7] for a more detailed
discussion of the role of the pentagram both in mythology and symplectic geometry). The melodic char-
acter of the pure major 3rd indeed seems to correspond perfectly to this spiritual and sentimental value of
the pentagon. As a matter of fact, the heptagram, the seven-pointed star that is inscribed in the heptagon
(see Figure 1), is also known as the star of Venus. We could argue that the special character of the har-
monic 7th, compared to that of a pure major 3rd, conveys a different but equally important spiritual aspect of
Love. These two aspects appear to complement each other and manifest their unity in the beautiful musical
expression of the harmonic 7th chord.



Figure 1: The Pentagram and the Heptagram

2 Regular Polygons in Symplectic Geometry

Regular polygons are special examples of simple convex dimension 2 polytopes. In symplectic geometry, a
simple convex dimension n polytope that is rational and satisfies an additional integrality condition, corre-
sponds to a compact dimension 2n symplectic manifold that has very special symmetry. In fact it is invariant
under the effective Hamiltonian action of a dimension » torus, and the image of the corresponding moment
mapping is the given polytope. This is the content of the Delzant Theorem, whose details and proof can be
found in the original article [2]. If we specialize to n = 2 we expect the Delzant Theorem to allow us to
associate to each of our six regular polygons a suitable symplectic 4-manifold. As it turns out, this is only
possible for four of them: the equilateral triangle, the square, the regular hexagon and the regular octagon
(see Figure 2). Any symplectic geometer will be able to show you for example that the equilateral triangle

Figure 2: The Rational Regular Polygons: Triangle, Square, Hexagon and Octagon



corresponds to the Hopf quotient $°/S', and that the square corresponds to S> x S (S" denoting the standard
unit sphere in R"*!). What happens to the polygons corresponding to the integers 5 and 7, the regular pen-
tagon and the regular heptagon (Figure 3)? Why do they not correspond to a symplectic manifold? The basic
issue is that neither of them is a rational polytope, as can be easily verified, and being rational is a crucial
assumption underlying the connection between symplectic manifolds and convex polytopes. However, the
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Figure 3: The Non—Rational Regular Polygons: Pentagon and Heptagon

non-rationality here can be dealt with if we allow the symplectic space to be (not mildly but) wildly singular.
In fact an extension of the Delzant Theorem to general simple convex polytopes given by the author in [6]
allows to associate to each such polytope a so—called symplectic quasifold. Quasifolds generalize both man-
ifolds and orbifolds, and are locally modeled by open subsets of R modulo the action of a finitely generated,
but typically infinite, group; in general quasifolds may not even be Hausdorff topological spaces (we refer
the reader to [6] for the basic geometry of quasifolds and to the article [1] written in collaboration with F.
Battaglia, for an improved version of the original definition of quasifold). In conclusion, even if there is
no symplectic manifold corresponding to the regular pentagon and regular heptagon, there is a symplectic
quasifold corresponding to each. The article [6] contains an explicit computation in the case of the pentagon.

Conclusion

As we have seen in the two previous sections, amongst the regular polygons with at most 8 edges, the
pentagon and the heptagon play a distinctive role, whether we consider them from the point of view of music
or from the point of symplectic geometry. The distinctive character and melodic features of the pure major
3rd and of the harmonic 7th reflect into the singularity of the symplectic quasifold that maps respectively
to the pentagon and to the heptagon. Moreover, these musical intervals appear to stray from their tempered
counterparts in much the same way as symplectic quasifolds stray from ordinary symplectic manifolds.
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