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Abstract. We calculate the integers d such that a general surface Xd
in P3 of degree d contains an arithmetically Gorenstein set of points
with a linear syzygy matrix of size 2α+ 1. This condition is equivalent
to Xd being defined by the pfaffian of a skew-symmetric matrix whose
entries are linear except possibly a row and a column.

We prove that this takes place for all d ≥ α+1 if α ≤ 10. Conversely,
for α ≥ 11, we show that the condition holds if and only if d is contained
in the interval [α+ 1, 15].

1. Introduction

Let Xd be an integral hypersurface of degree d in Pn, defined by a homone-
neous polynomial F , with n ≥ 3. Given an integer r, one can ask when is
the polynomial F r defined by the determinant of a matrix M whose entries
are homogeneous polynomials of a given degree.

It is well understood that this condition is equivalent to the existence of
a locally Cohen-Macaulay sheaf E of rank r, with a numerically determined
resolution, on a scheme supported at Xd, which satisfies:

(1.1) ⊕m Hi(Xd,E (m)) = 0 for i 6= 0, n− 1,

that is, the sheaf E is without intermediate cohomology. These sheaves are
called arithmetically Cohen-Macaulay (aCM).

Assume now the hypersurface Xd to be general, i.e. outside a subset
of positive codimension of |OPn(d)|. Assume also the sheaf E to be not
isomorphic to a direct sum of line bundles of the form OXd(t). For d ≥ 4,
Lefschetz’s theorem implies r ≥ 2. Hence the first case corresponds to rank
2 sheaves, and the matrix M must be skew-symmetric. The determinant of
M is then the square of a polynomial called the pfaffian Pf(M) of M . In this
case, arithmetically Gorenstein codimension 3 subschemes of Pn enter the
picture (see below for the definition). Indeed, if Z is one of these subschemes,
according to [BE77] it has a skew-symmetric syzygy matrix NZ . Now, if the
hypersurface Xd is the pfaffian of a matrix M , then Xd contains a subscheme
Z ⊂ Pn of codimension 3 and NZ is obtained by M deleting one column and
one row.

For n = 4, the problem is settled in [Kle78], [CM00], [CM04], [CM05],
[MKRR07a], [MKRR07b]. The answer is that, for d ≥ 6, no indecomposable
rank 2 aCM sheaf is defined on a general hypersurface Xd ⊂ Pn of degree d,
and so Xd is not pfaffian. It follows that for higher n the same statement
holds too. Moreover, a classification is available for d ≤ 5. For n = 5,
only the case d = 2 survives, (the spinor bundles on a smooth quadric, see
[Knö87], see also [Ott88]). For n ≥ 6, there is no such sheaf at all.
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It remains to take care of the case n = 3. An effort in this direction is the
classification of aCM bundles of rank 2 in case d ≤ 5, see [Fae08a], [CF08].
The result is that for d = 3 (resp. d = 4, d = 5) a general surface Xd ⊂ P3

of degree d can be written as 3 different types (resp. 8 types, 14 types) of
pfaffians.

A different approach is to fix, for each index (i, j), the degree di,j of the
polynomial sitting on the i-th row and j-th column of the matrix M .

For instance we may set di,j = 1 for all i, j ≥ 1; we speak thus of a linear
pfaffian. In [Bea00], it is proved (among many other things) that a general
surface Xd is a linear pfaffian iff d ≤ 15. In [Fae08b], the same result is
proved assuming di,j = 2 for all i, j ≥ 2.

In this paper, we study for which integers d, a general surface Xd in P3

of degree d is defined by the pfaffian of an almost linear skew-symmetric
matrix M of size 2α+2, i.e. where at most one row and column have degree
different from 1. In this case we say that Xd is an almost linear pfaffian of
type α. In terms of Hilbert schemes, we note that, once we fix an integer
α ≥ 1, Xd is an almost linear pfaffian of type α if and only if it contains
a zero-dimensional subscheme Z ⊂ P3 whose syzygy matrix NZ has only
linear entries and size 2α+ 1.

Since every surface contains some points and any single point defines
a zero-dimensional subscheme Z ⊂ P3 whose syzygy matrix NZ has only
linear entries, then any surface is defined by the pfaffian of an almost linear
skew-symmetric matrix (of type α = 1).

However, we want to discuss to which extent one can describe a general
surface of degree d as the pfaffian of an almost linear skew-symmetric matrix
M , where M has a preassigned type α.

What we find is the following, somehow surprising result:

Theorem. A general surface Xd is an almost linear pfaffian of type α for
all d ≥ α+ 1 if α ≤ 10. Conversely, for α ≥ 11, the surface Xd is an almost
linear pfaffian if and only if d is contained in the interval [α+ 1, 15].

Notice that one can consider the previous result in the general setting of
surfaces containing fixed types of zero-dimensional subschemes of P3. This
amounts to fixing a component T of the Hilbert scheme of subschemes of P3,
and ask whether general surface Xd in P3 of degree d contains a subscheme
Z ∈ T . If this happens for all d ≥ d0, we will say that T is asymptotic (see
definition 3.10).

The previous result thus proves that the Hilbert scheme of zero-dimension
subschemes, with linear syzygy matrix of size 2α + 1, is asymptotic if and
only if α ≤ 10.

It should be noted that, like in Schreyer’s appendix of [Bea00], our proof
that a general surface Xd is defined by a pfaffian with fixed degree set di,j ,
when d lies in a certain range, relies on a computation done with the package
Macaulay2, see [GS].

After recalling some basic notions, in the next section we introduce homo-
geneous subschemes and show how they are related to surfaces defined by an
almost homogeneous pfaffian. In section 4 we prove our main results, while
the appendix is devoted to the Macaulay2 scripts used in our computations.
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1.1. Notation and preliminary notions. We will work over an alge-
braically closed field k. Given a scheme Y , embedded in Pn by the very
ample line bundle OY (1), we denote by RY the coordinate ring of Y , namely
the quotient ring of R = k[x0, . . . , xn] by the ideal IY defining Y . The sym-
bol IZ,Y will stand for the ideal sheaf of a subscheme Z of Y (the letter Y
will be frequently dropped).

In this paper, the word resolution of a sheaf F over Pn will mean the
sheafified minimal graded free resolution of the R-module ⊕m H0(Pn,F ).
Minimal here means that there are no nonzero constants in the differentials
appearing in the resolution.

We will consider the Hilbert function hY (t) and its first and second dif-
ference function gY (t) and τY (t), defined by:

hY (t) = dimk(RY (t)),(1.2)

gY (t) = hY (t)− hY (t− 1)(1.3)

τY (t) = gY (t)− gY (t− 1).(1.4)

A subscheme Y ⊂ Pn is called arithmetically Gorenstein (aG) if RY is a
Gorenstein ring. Given a zero-dimensional subscheme Z ⊂ Pn, we denote by
iZ its index, namely the highest integer i such that hZ(i) < len(Z) (where
len(Z) denotes the length of Z). Recall that the difference Hilbert function
of an aG subscheme Z satisfies gZ(t) = gZ(iZ − t), for all integers t. Thus
the function gZ is symmetric around the integer jZ = b iZ2 c. The integer
iZ − 1 is called the socle degree of Z.

Recall that, by the structure theorem of [BE77], the ideal sheaf of an aG
zero-dimensional subscheme Z ⊂ P3 has a resolution of the following form:

(1.5) 0→ OP3(−c)→
2b+1⊕
j=1

OP3(rj − c)
NZ−−→

2b+1⊕
i=1

OP3(−ri)→ IZ,P3 → 0,

and we have the equalities:

iZ = c− 3, c =

∑2b+1
j=1 rj

b
.

The map NZ is represented by a matrix with polynomial entries, which
we still denote by NZ . This matrix is skew-symmetric, and the ideal IZ is
defined by all pfaffians of order 2b of the matrix NZ .

2. Pfaffian representations of surfaces and aG subschemes

The existence of aG subschemes in a degree d surfaceXd ⊂ P3 is important
inasmuch as it yields the existence of rank 2 bundles with no intermediate
cohomology on Xd, i.e. aCM bundles (satisfying (1.1)). Equivalently, it
determines a pfaffian representation of Xd, as pointed out by Beauville in
[Bea00], see in particular Theorem B. The following theorem makes more
precise the relationship between the existence of such a bundle over Xd and
the existence of aG subscheme of Xd with specified resolution.

Theorem 2.1. Let Xd = V(F ) be a smooth surface of degree d in P3. Then
the following conditions are equivalent:
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i) the surface Xd contains an aG subscheme Z, whose ideal sheaf has
resolution

(2.1) 0→P2 →P1
NZ−−→P0 → IZ,P3 → 0,

where there are non-negative integers c, r1, . . . , r2b+1, b ≥ 1 with c =
(
∑2a+1

i=1 ri)/b and:

P0 =
2b+1⊕
i=1

OP3(−ri), P1 =
2b+1⊕
j=1

OP3(rj − c), P2 = OP3(−c).

ii) the form F is the pfaffian of a skew symmetric (2b + 2) × (2b + 2)
matrix of forms M =

(
mij

)
, such that deg(m11) = 2d− c, deg(m1j) =

deg(mj1) = d − rj−1 for j > 1, and deg(mij) = c − rj−1 − ri−1 for
i, j > 1;

iii) on the surface Xd there exists a rank 2 bundle E satisfying (1.1), with
a resolution of the form:

(2.2) 0→ Q1
M−→ Q0 → E → 0,

with:

Q1 = OP3(c− 2d)⊕
2b+1⊕
j=1

OP3(rj − d),

Q0 = OP3 ⊕
2b+1⊕
i=1

OP3(−ri + c− d),

and where the matrix representing the map M is skew-symmetric. More-
over Z is the zero locus of a section of E , and the Chern classes of E
are c1(E ) = c− d, c2(E ) = len(Z).

Proof. We prove the equivalence of (i) and (iii). An aG subscheme Z is a
0-dimensional subscheme of P3 which is locally complete intersection, and
the resolution of the ideal sheaf IZ is of type (2.1).

One sees easily that the resolution (2.1) determines an element ξ of the
group:

Ext2P3(IZ ,OP3(−c)) ∼= H1(P3,IZ(c− 4))∗,
where the above isomorphism is given by by Serre duality. Notice that ξ
comes from the map OP3 → E xt2P3(IZ ,OP3(−c)) which is locally surjective,
for Z is locally complete intersection.

The exact sequence:

0→ OP3(−d)→ IZ → IZ,Xd → 0,

(where OP3(−d) = IXd) gives the isomorphism H1(P3,IZ(c − 4)) ∼=
H1(P3,IZ,Xd(c− 4)). By Serre duality again, this time on Xd, we get that
ξ determines an element ξXd of Ext1Xd(IZ,Xd ,OXd(d − c)) which is a local
generator of the sheaf E xt1Xd(IZ,Xd ,OXd(d − c)). Thus the element ξXd
yields an exact sequence:

0→ OXd → E → IZ,Xd(c− d)→ 0

where E is locally free on Xd, since we are assuming that Xd is smooth.
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Now, since ξ and ξS are corresponding elements, these two sequences
patch together giving an exact diagram:

0

��

0

��

OP3(−d)

��

OP3(−d)

��

P2
// P1

��

// P0

��

// IZ

��

// 0

0 // OXd(d− c) // E (d− c) // IZ,Xd

��

// 0

0
The mapping cone now determines a resolution:

0→ OP3(−d)⊕P1 → O(d− c)⊕P0 → E (d− c)→ 0,

and twisting by OP3(c− d) we get (2.2). We have thus proved (i)⇒ (iii).
Conversely, assume E is a rank 2 bundle on S, with a resolution as in

(2.2) and recall the exact sequence:

0→ OP3(−d)→ OP3 → OXd → 0,

We get a commutative diagram:

(2.3) 0

��

0

��

0

��

0 // OP3(−d)

��

// OP3

��

// OXd

��

// 0

0 // Q1

��

// Q0

��

// E

��

// 0

0 // OP3(c− 2d) // IZ(c− d) // IZ,Xd(c− d)

��

// 0

0

This diagram, by the mapping cone again, after twisting by OP3(c − d)
determines a resolution of the form:

0→ OP3(−c)→ OP3(d− c)⊕Q1(d− c) N ′
Z−−→ OP3(−d)⊕Q0(d− c)→ IZ → 0.

We may decompose the matrix N ′Z into blocks according to the splitting
of the bundle Q0(d−c) (respectively, of Q1(d−c)) into the three summands



6 LUCA CHIANTINI AND DANIELE FAENZI

OP3(−d), OP3(d− c) and
⊕

OP3(−rj) (respectively, according to the duality
Q1
∼= Q∗0(c− 2d)).

We get a decomposition of the form:

(2.4) N ′Z =

 0 λ 0
−λ 0 n
0 −n> NZ

 ,

where the matrix NZ has the expression given in the exact sequence (2.1),
and the block n corresponds to the mapping

⊕
OP3(rj − c) → OP3(d − c).

Indeed, the mapping OP3(d − c) ↪→ OP3(−d) ⊕ Q0(d − c) is given by the
embedding OP3 ↪→ Q0, and we can choose a basis of Q0 where this takes the
form (λ, 0, . . . , 0). In particular, the scalar λ corresponding to the mapping
OP3(d− c)→ OP3(d− c) is nonzero.

In view of the decomposition (2.4), and since Z is contained in Xd =
V(Pf(M)), the ideal generated by the pfaffians of order 2a+2 of N ′Z coincides
with the ideal generated by the pfaffians of order 2a of NZ . We have thus
obtained (2.1), and we note that NZ is minimal as soon as MZ is so. Observe
that the subscheme Z is locally complete intersection, since it is the 0-locus
of a section of a rank 2 bundle on S. This implies that Z is aG.

Finally, (iii) implies (ii), for the map M can be represented as a skew-
symmetric matrix whose entries have the required degree. The converse is
proved in [Bea00, Corollary 2.4] �

3. Homogeneous subschemes and almost homogeneous pfaffian
surfaces

3.1. Homogeneous subschemes. A particularly interesting class of aG
subschemes of P3 is that of homogeneous subschemes. Namely, it consists
of those subschemes Z ⊂ P3 whose syzygy matrix NZ in the resolution (1.5)
has entries which are homogeneous polynomials of the same degree.

Definition 3.1. Given two integers α, β ≥ 1, we say that an aG subscheme
Z ⊂ P3 is homogeneous of degree β and order α if the sheafified minimal
graded free resolution of IZ takes the form:

(3.1) 0→ OP3(−(2α+ 1)β)→ OP3(−(α+ 1)β)2α+1 NZ−−→ OP3(−αβ)2α+1 → IZ,P3 → 0.

With the notation of (1.5), this amounts to require that the matrix NZ has
size (2α + 1) × (2α + 1) and all of its entries have the same degree β. If
moreover β = 1, we will say that Z is linearly homogeneous of order α.

It is clear, from the definition, that the easiest example of homogeneous
aG scheme is given by a single point (here α = β = 1).

It follows from the definition that the length and the index of a homoge-
neous aG subscheme of degree β and order α are:

len(Z) = `βα =
αβ3(2α2 + 3α+ 1)

6
,(3.2)

iZ = iβα = (2α+ 1)β − 3.(3.3)

It is easy to calculate the first and second difference functions of a homo-
geneous subscheme.



ON GENERAL SURFACES DEFINED BY AN ALMOST LINEAR PFAFFIAN 7

Lemma 3.2. Let Z ⊂ P3 be homogeneous of degree β and order α. When
β ≥ 2, then the second difference function of Z takes the form:

(3.4) τZ = τβα (t) =
{
t+ 1, for 0 ≤ t ≤ αβ − 1,
max{αβ − 2α(t− αβ + 1), 0}, for αβ ≤ t ≤ αβ + β−1

2 .

The first difference function of a linearly homogeneous subscheme Z takes
the form:

(3.5) gZ = g1
α(t) =

{ (
t+2
2

)
for 0 ≤ t ≤ α− 1,(

2α−t
2

)
for α ≤ t ≤ 2α− 2.

Proof. Note that value of gZ(t) agrees with that of gP3(t), for all t ≤ αβ −
1, indeed for any such t we have H0(P3,IZ(t)) = 0. This is enough to
determine gZ in case β = 1, 2 and in particular (3.5) follows.

For (3.4), one has to consider that the resolution of the ideal of Z implies
moreover hZ(t) = hP3(t)− (2α+1) hP3(t−αβ) from t = αβ to t = αβ+ β−1

2 ,
and this is again enough to determine the second difference of the Hilbert
function anywhere. �

Now we consider the Hilbert scheme containing homogeneous subschemes.
Its dimension is well known, let us recall it in the next lemma.

Lemma 3.3. Given two integers α, β ≥ 1, there is a unique irreducible
component G α

β of the Hilbert scheme of subschemes of P3 which contains all
homogeneous subschemes of degree β and order α. We have:

(3.6) dim(G α
β ) =

1
6

(2α+ 1)
(
αβ3 + 6αβ2 + 11αβ − 6α− 6

)
.

A subscheme corresponding to a general point in G α
β is homogeneous of

degree β and order α.

Proof. The set of zero-dimensional subschemes of P3 which have the same
Hilbert function is an irreducible variety, see [Die96]. Since all aG homoge-
neous subschemes, of degree β and order α, have the same Hilbert function,
they are contained in a unique irreducible variety, over which the Hilbert
function is constant. We define G α

β to be this variety.
Several formulas are then available to compute the dimension of G α

β , see
for instance [Kle98]. In order to use these formulas, one first has to compute
the resolution of a general element in G α

β . This can be done as in [Die96]
(but see also the book [IK99], section 5). For given α, β, using the formulas
of lemma 3.2 and the formulas of [IK99], one obtains that the ideal sheaf of
a general element in G α

β has exactly the resolution described in 3.1. Hence
it is homogeneous of order α and degree β. Then we use the formulas of
[Kle98], and the claim on the dimension of G α

β follows. �

Remark 3.4. Another quick way to obtain that the dimension of G α
β is the

one given in (3.6), is the following. Recall that any subscheme Z ⊂ P3 of the
required form is determined by a skew-symmetric matrix NZ of order 2α+1.
The entries of the matrix NZ are homogeneous forms on P3 of degree β. The
set of such matrices is in bijection with ∧2W ⊗Symβ V , where V and W are
vector spaces respectively of dimension 4, 2α+ 1. Note that GL(W ) acts on
this set, and the stabilizer of a general point is trivial. The dimension of this
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space thus equals (3.6). Clearly, all matrices lying in the same GL(W )-orbit
correspond to the same subscheme, hence an open dense subset of G α

β (t) is
in bijection with ∧2W ⊗Symβ V/GL(W ). Thus, the dimension of this set
equals dim(G α

β ).

3.2. Almost homogeneous pfaffian surfaces. Assume that a degree d
surface Xd ⊂ P3 is defined as the pfaffian of a matrix M . Then we know
that Xd contains some aG subscheme Z ⊂ P3.

The case that Z is homogeneous corresponds to the case that M is a
matrix of homogeneous polynomials of the same degree, except at most one
row and one column.

Definition 3.5. Let α, β ≥ 1 and γ be integers. Consider a skew-symmetric
injective map:

(3.7) OP3(−β − 2γ)⊕ OP3(−β − γ)2α+1 M−→ OP3 ⊕ OP3(−γ)2α+1.

We denote again by M the matrix representing this map, and we assume
that M is minimal, i.e. that every constant entry of M is zero. We denote
by Pfk(M) the ideal generated by pfaffians of M of order k, while Pf(M)
denotes the pfaffian of maximal order 2α+ 2 of M . A form F which equals
Pf(M), for some matrix M of this form, is said to be an almost homoge-
neous pfaffian of type (α, β, γ). The matrix M itself is called an almost
homogeneous map of type (α, β, γ). We have:

(3.8) deg(Pf(M)) = αβ + β + γ.

Note that, since M is minimal, if Pf(M) is not zero we must have:

β + γ ≥ 1, so: deg(Pf(M)) ≥ αβ + 1.

If β = 1, we say that Pf(M) is an almost linear pfaffian of type (α, γ), or
simply of order α. When γ = 0, and consequently deg(Pf(M)) = αβ+β, we
will say that M is a homogeneous map of type (α, β) and Pf(M) is called
a homogeneous pfaffian of type (α, β). If furthermore β = 1, we say that
Pf(M) is a linear pfaffian of order α.

Remark 3.6. With the notation of Theorem 2.1, the following conditions
are equivalent:

i) the form F is the pfaffian of a skew symmetric homogeneous map f of
type (α, β, γ), and Pf2α−2(f) is not contained in (F ).

ii) on the surface Xd it is defined a rank 2 aCM bundle E with c1(E ) =
αβ − γ, admitting a skew-symmetric resolution of the form:

0→ OP3(−β − 2γ)⊕ OP3(−β − γ)2α+1 → OP3 ⊕ OP3(−γ)2α+1 → E → 0.

iii) the surface Xd has degree αβ + β + γ and contains a homogeneous aG
subscheme Z of type (α, β);

So we will consider from now on almost homogeneous pfaffian surfaces.
Since every surface contains some points, it is clear that any surface is almost
homogeneous.

However, one point determines a 4×4 almost linear pfaffian representation
of the surface in which the non-linear row (and column) has degrees (2d −
3, d− 1, d− 1, d− 1).
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We will show in the next sections that, except for few cases, one cannot
find almost homogeneous pfaffian representations of general surfaces of high
degree, where the size of the matrix is arbitrary.

3.3. Asymptotic subschemes. Given a family of subschemes of P3, it is
reasonable to ask whether a general element of the linear system |OP3(d)|
contains an element of the family. In particular, given integers (α, β, γ),
one can ask whether a general surface Xd ⊂ P3 of degree d is an almost
homogeneous pfaffian of type (α, β, γ). Accordingly, one can ask whether
this is the case for big enough d. For instance, we have the following results.

Remark 3.7. Every surface Xd of degree d is defined by an almost linear
pfaffian of type (1, d − 2). Indeed Xd contains one point Z, which is a
homogeneous aG subscheme with resolution of the form:

0→ OP3(−3)→ OP3(−2)3 NZ−−→ OP3(−1)3 → IZ → 0.

On the other hand, it is much harder to get surfaces which are defined
by homogeneous pfaffians. This is illustrated by the results of Beauville-
Schreyer and the second author:

Theorem 3.8. Let Xd ⊂ P3 be a general surface of degree d.
i) Let d = α+ 1. Then Xd is defined by a linear pfaffian of order α if and

only if α ≤ 14, i.e. iff d ≤ 15.
ii) Let d = 2α + 2. Then Xd is defined by a homogeneous pfaffian of type

(α, 2) if and only if α ≤ 6 i.e. d ≤ 14.

Proof. For the first assertion, see [Bea00], in particular see Schreyer’s ap-
pendix for the “if” implication. The second statement is the content of
[Fae08b]. �

We recall here the definition given in the introduction.

Definition 3.9. A subscheme T of the Hilbert scheme of P3 is called degree-
asymptotic (or simply asymptotic) if there exists an integer d0 such that for
all d ≥ d0, a general surface Xd in P3 of degree d contains a subscheme
Z ∈ T .

We will be mainly interested in the case where T parametrizes aG sub-
schemes. In particular, we will consider the case in which T is the component
of the Hilbert scheme parametrizing 0-dimensional sets Z ⊂ P3 with fixed
Hilbert function. This depends only on the Hilbert function itself, or equiv-
alently on the first difference function. We give thus the following definition.

Definition 3.10. A function g : N → N is called degree-asymptotic (or
just asymptotic) if the subscheme T of the Hilbert scheme parametrizing
0-dimensional schemes Z having gZ = g, is degree-asymptotic.

In other words, g : N → N is degree-asymptotic if there exists an integer
d0 such that for all d ≥ d0, a general surface Xd in P3 of degree d contains a
subscheme Z ⊂ P3 with gZ = g. A subscheme Z ⊂ P3 is degree-asymptotic
if and only if its first difference function gZ is degree-asymptotic.

The following proposition follows a heuristic argument of M. Noether.
Despite its rather simple proof, it often turns out to be useful.
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Proposition 3.11. Let hZ and gZ be respectively the Hilbert function and
the first difference function of an aG subscheme Z ⊂ P3, and let G be the
component of the Hilbert scheme of subschemes of P3 which contains [Z].

Assume that a general surface Xd ⊂ P3 of degree d contains a subscheme
lying in G. Then we have:

(3.9) hZ(d) ≤ dim(G).

In particular, the function g is degree-asymptotic only if:

(3.10) len(Z) =
∞∑
i=0

gZ(i) ≤ dim(G).

Proof. Consider the incidence variety:

G(d) = {(Xd, [Z]) | Z ⊂ Xd ⊂ P3} ⊂ |OP3(d)| ×G,

and the projections qd : G(d)→ G and pd : G(d)→ |OP3(d)|.
Looking at the qd-fibre over a homogeneous subscheme [Z], we note that

it consists of the projectivized space P(H0(P3,IZ(d))), hence its dimension
equals h0(P3,OP3(d))−hZ(d)−1. Assuming now the map pd to be dominant,
we should have:

h0(P3,OP3(d))− 1 = dim |OP3(d)| ≤ dim(G(d)) ≤
≤ dim(G) + dim(q−1

d ([Z])),

and this implies at once (3.9). To prove (3.10), just note that hZ(m) =∑m
i=0 gZ(i) = len(Z) for m� 0. �

We will see below that the previous implication in general cannot be
reversed, see Remark 4.6.

4. General surfaces as almost homogeneous pfaffians

This section contains our main results. Namely, we study the problem of
whether a general surface of degree d is an (almost) homogeneous pfaffian
of fixed type, with special attention to the linear almost homogeneous case.

4.1. Almost homogeneous pfaffian surfaces. Let us start with a result
on homogeneous pfaffians of degree higher than one.

Theorem 4.1. Let β ≥ 2 be an integer. For α ≥ 8, a general surface of
degree d = αβ + β + γ is not defined by an almost homogeneous pfaffian of
type (α, β, γ), for any γ ∈ Z.

Proof. The proof is essentially an application of Proposition 3.11. Namely,
a homogeneous aG subscheme Z of type (α, β) has a resolution of the form
(3.1). Recall that, by the minimality of the matrix M appearing in our
definition of an almost homogeneous pfaffian (Definition 3.5), we have β +
γ ≥ 1. Since the degree d of the surface satisfies d = αβ + β + γ, we have:

(4.1) hZ(d) = hZ(αβ + β + γ) ≥ hZ(αβ + 1).

In view of Proposition 3.11, it suffices to prove that the difference:

hZ(αβ + β + γ)− dim(G α
β )
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is strictly positive, in the given range for α, β and for any γ. So by (4.1) it
suffices to prove that the function:

ϕ(α, β) = hZ(αβ + 1)− dim(G α
β )

is strictly positive, in the given range for α, β.
Now we use the argument of Lemma 3.2, to prove:

hZ(αβ + 1) = hP3(αβ + 1)− 4(2α+ 1) =
(
αβ + 4

3

)
− 4(2α+ 1).

Indeed, twisting (3.1) by OP3(αβ + 1) and taking global sections, we obtain
4(2α+ 1) independent elements in H0(P3,IZ,P3(αβ+ 1)), and (since β ≥ 2)
no syzygies. Therefore, using (3.6) we can calculate the function ϕ(α, β)
and find out:

ϕ(α, β) =
1

6

`
α3β3 − 2α2β3 − 3α2β2 − αβ3 − 22α2β − 6αβ2 + 12α2 + 15αβ − 30α+ 6

´
.

Deriving twice ϕ with respect to α one finds:
1
3
(
3αβ3 − 2β3 − 3β2 − 22β + 12

)
,

so ∂ϕ/∂α is increasing in α for α ≥ α0 with:

α0 =
2
3

+
1
β

+
22
3β2
− 4
β3
.

Note that, since β ≥ 2, we have α0 ≤ 3 so ∂ϕ/∂α is increasing in α in our
range. Now we compute ϕ(8, β) and ∂ϕ/∂α(8, β). Computing the second
derivative in β of these functions one sees that they are both convex for
β ≥ 2. Likewise, one checks that they are both increasing at β = 2 and
finally that they are both positive again at β = 2. Thus ϕ(α, β) is positive
for α ≥ 8 and β ≥ 2, and the theorem is proved. �

4.2. Almost linear pfaffian surfaces: the non-asymptotic region. In
the remaining part of this section, we describe the linear almost homoge-
neous case, i.e. the case β = 1. Namely, we determine all the values of α, γ
for which a general surface of degree d = α+ γ + 1 is defined by an almost
homogeneous pfaffian of type (α, 1, γ). We start with the following, easy
result.

Lemma 4.2. A surface of degree d is not defined by an almost linear pfaffian
of order α, for α ≥ d.

Proof. Assume that a surface X ⊂ P3 of degree d is defined by an almost
linear pfaffian of order α. Then, according to Definition 3.5, there must be
a minimal matrix M of the form 3.7 such that X is defined by Pf(M). Since
Pf(M) 6= 0, minimality of M easily implies that β + γ ≥ 1, which means
γ ≥ 0 since β = 1. Recall that the degree d of X satisfies d = αβ + β + γ =
α+ γ + 1. We have thus proved that d ≥ α+ 1. �

The next proposition establishes our main result for α ≥ 16.

Proposition 4.3. Fix an integer α ≥ 16. Then, for any integer d, a general
surface of degree d is not defined by an almost linear pfaffian of order α. It
follows that, when α ≥ 16, homogeneous subschemes Z of type (α, 1) are not
asymptotic.
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Proof. In view of the previous Lemma, we must simply exclude the case
d ≥ α + 1. Looking back at the proof of Proposition 3.11, we consider the
following function of (d, α)

hZ(d)− dim(G α
1 ),

and we prove that it is strictly positive in our range. Note that dim(G α
1 ) =

4α2 − 1 by (3.6). It is easy to see that the function of α

hZ(α+ 1)− dim(G α
1 )

is positive for α ≥ 16. Then a general surface of degree α + 1 contains
no homogeneous subschemes of type (α, 1). The result follows now by the
obvious consideration that hZ(d) − dim(G α

1 ) ≥ hZ(α + 1) − dim(G α
1 ) when

d > α+ 1. �

4.3. Almost linear pfaffian surfaces: the asymptotic region. We turn
now our attention to the asymptotic case α ≤ 10. The proof of the following
proposition relies on the degeneration lemma of [CF08] and on a computa-
tion done with the package Macaulay2, see [GS]. We postpone the latter
part to the appendix.

Proposition 4.4. For α ≤ 10 and d ≥ α+ 1, a general surface of degree d
contains a linearly homogeneous subscheme Z of order α.

Thus, for α ≤ 10, a general surface of degree d ≥ α + 1 is defined by
an almost linear pfaffian of type (α, d − 1 − α). In particular, a linearly
homogeneous subscheme Z of order α is asymptotic for α ≤ 10.

Proof. In view Remark 3.6, it suffices to check that a general surface Xd of
degree d contains a linearly homogeneous subscheme of order α.

Moreover, by [CF08, Lemma 3.2], we need only check that a general
surface Xd of degree d contains a linearly homogeneous subscheme of order
α for d in the range α + 1, . . . , 2α − 2. Recall also that, for α ≤ 3, the
statement is well known, see [CF08]. Therefore, we must only prove that a
general surface Xd of degree d contains a linearly homogeneous subscheme
of order α for 4 ≤ α ≤ 10, and d on the boundary line d = 2α − 2, and for
the values summarized in the following table (including the boundary line
d = 2α− 2):

(4.2)

α d
4 5 6
5 6 7 8
6 7 8 9 10
7 8 9 10 11 12
8 9 10 11 12 13 14
9 10 11 12 13 14 15 16
10 11 12 13 14 15 16 17 18

This is a finite number of verifications that can be performed by the
package Macaulay2. We refer to the appendix for the outline of the algo-
rithm. �
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4.4. Almost linear pfaffian surfaces: the remaining non-asymptotic
cases. We first work out the case α = 15, essentially due to Beauville. Its
behavior is rather intriguing.

Proposition 4.5. Fix α = 15. Then for any d, a general surface of degree
d contains no linearly homogeneous subscheme of order α, equivalently it is
not defined by an almost homogeneous pfaffian of type (15, 1, d− 16).

In particular, homogeneous subschemes of type (15, 1) are not asymptotic.

Proof. As in the proof of Proposition 4.3, we may consider only the case
d ≥ α+ 1 = 16 and look at the function

(4.3) ψ(d) = hZ(d)− dim(G α
1 ).

Recall that dim(G α
1 ) = 4α2 − 1 so setting α = 15 we get dim(G 15

1 ) =
899. On the other hand, in order to calculate hZ(d), again we twist the
resolution (3.1) by OP3(d) and take global sections whereby computing
h0(P3,IZ,P3(d)). Using that, for t ∈ N, one has

(
t
3

)
−
(
t−1
3

)
=
(
t−1
2

)
, we

get:

h0(P3,IZ,P3(d)) = (2α+ 1)
(
d− α+ 2

2

)
+
(
d− 2α+ 2

3

)
,(4.4)

and since d ≥ α+ 1 we have:

h0(P3,IZ,P3(d)) ≤ 1
2

(2α+ 1)(d− α+ 2)(d− α+ 1),

so that:

hZ(d) ≥
(
d+ 3

3

)
− 1

2
(2α+ 1)(d− α+ 2)(d− α+ 1).(4.5)

Setting α = 15 in the above formulas, we have:

ψ(d) ≥ 1
6
(
d3 − 87d2 + 2522d− 22314

)
.

It is immediate to show that ψ(d) is positive for all integers d ≥ 17, so our
statement follows for all d ≥ 17. On the other hand, ψ(16) is negative, so
numerically one would expect the existence of a homogeneous subscheme of
type (15, 1) on a general surface S of degree 16. But it is proved in [Bea00,
Proposition 7.6], that such a subscheme Z cannot exists. This finishes the
proof. �

Remark 4.6. What is so surprising in the previous example? Let us go
back to the notation introduced in Proposition 3.11. If G is the com-
ponent G 15

1 of the Hilbert scheme which parametrizes linearly homoge-
neous subscheme of order 15, and G(16) is the corresponding incidence
variety, G(16) = {(X16, [Z]) | Z ⊂ X16 ⊂ P3}, then ψ(16) < 0 implies
that dim(G(16)) > dim(|OP3(16)|) and one expects that the projection map
p16 : G(16)→ |OP3(16)| is dominant.

In fact, Beauville proves that the map does not dominate. A reason is
that, in view of Theorem 2.1, the existence of Z on a general surface X of
degree d would imply the existence on X of a rank 2 bundle E , without
intermediate cohomology (i.e. satisfying (1.1)), with an exact sequence:

0→ OX → E → IZ,X(15)→ 0.
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On the other hand, from the resolution it follows that h0(X,IZ,X(15)) = 31,
so that h0(X,E ) = 32 and a general global section of E determines on X a
deformation of Z. Thus the map p16 of Proposition 3.11 has general fibers of
dimension at least 31, and this fact, numerically, implies that it cannot dom-
inate. Indeed one computes that dim(G(16)) = dim(G)+h0(P3,IZ,P3(16))−
1 = 899 + 92 = 991, while dim(|OP3(16)|) = 968, so one expects that the
image of p16 has codimension 8 in |OP3(16)|. By applying Schreyer’s algo-
rithm described in the appendix of [Bea00], one finds that the codimension
is indeed 8 (consequently, a general fiber of p16 has dimension exactly equal
to 31).

We have, thus, a counterexample to the näıve conjecture that the map pd
of Proposition 3.11 is always of maximal rank, whatever the family G is.

Problem. Although the previous example shows that one cannot expect
that the map pd of Proposition 3.11 is always of maximal rank, there are
possible restrictions on G for which this maximal rank condition could be
conjectured.

For instance, we know no examples of families G of complete intersection
zero-dimensional schemes in P3 for which the map pd fails to be of maximal
rank. See also [CCG] for a discussion on this subject.

It remains to consider the situation for 11 ≤ α ≤ 14. For these values
of α, it turns out that there exist only a finite set of degrees d such that a
general surface of degree d contains a homogeneous aG subscheme of type
(α, 1). The following statements summarize the situation.

Proposition 4.7. Set 11 ≤ α ≤ 14. Then a general surface of degree d
contains a linearly homogeneous subscheme of order α if and only if α+1 ≤
d ≤ 15.

In particular, linearly homogeneous subschemes of order α are not as-
ymptotic and a general surface of degree d > 15 is not defined by an almost
homogeneous pfaffian of type (α, 1, d− 16), with α ≥ 11.

Proof. We first use the same argument of Proposition 4.5. Namely, in order
to check that a general surface in P3 of degree d does not contain a linearly
homogeneous subscheme of order α, for each α in the given range, we first
note that dmust satisfy d ≥ α+1. Then we introduce the function ψ(d) given
in (4.3). Formulas (4.4) and (4.5) still hold here, and it is straightforward
to deduce that, for each α in the given range, the function ψ(d) is strictly
positive for all integers d ≥ 16. This settles the non-existence part.

On the other hand, we have to show that a general surface in P3 of
degree d does contain a linearly homogeneous subscheme of order α, for
d = α+ 1, . . . , 15. Namely, we have to check the statement for all values of
(α, d) appearing in the table:

(4.6)

α d
11 12 13 14 15
12 13 14 15
13 12 15
14 15
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This is done with the aid of Macaulay2, using the same algorithm of
Proposition 4.4, which we sketch in the appendix. �

Appendix. Almost linear pfaffian surfaces

This appendix contains a description of the Macaulay2 routines that we
used in order to prove that a general surface Xd ⊂ P3 of degree d contains
a homogeneous subscheme of type (α, 1) (i.e. a linearly homogeneous sub-
scheme of order α) for the values of (α, d) appearing in Table 4.2 and in
Table 4.6.

It relies on a slight modification of Schreyer’s algorithm appearing in the
appendix to [Bea00], based on Adler’s method, see [AR96]. For general refer-
ence on the package Macaulay2 one can consult the on-line documentation,
see [GS].

isPrime(31991)
kk=ZZ/31991 -- this is a field
S = kk[x_0..x_3]
stringModule = (a,b)->(

--- given a string of integers a=(a_0,...,a_k)
--- and given an integer b,
--- returns the graded coefficient modules
--- of a matrix P^*(-b) -> P
--- with generators P of the form
--- P = R(a_0) \oplus \cdots \oplus R(a_k)
--- and where P^* is the dual of P
P = prune module ideal(0_S);
for j from 0 to (length(a)-1) do

(for h from (j+1) to (length(a)-1) do
P = (P ++ S^{a_(j)+a_(h)-b}));
P);

stringSkewMatrix = (a,b)->(
--- given a string of integers a=(a_0,...,a_k)
--- and given an integer b,
--- returns a random skew symmetric matrix
--- P^*(-b) -> P
--- with P = R(a_0) \oplus \cdots \oplus R(a_k)
PP := stringModule(a,b);
T := kk[t_0..t_((binomial(length(a),2))-1)];
B := genericSkewMatrix(T,t_0,length(a));
substitute (B,transpose random(PP,S^{0}))
);

stringRandomMatrix :=(d,e)->(
--- given two integers e and d,
--- returns a random skew-symmetric matrix
--- of the form P^*(-2e-1) -> P
--- with P = R + R^{2d-2e-1}(-e)
a:={0};
for k from 1 to 2*d-2*e-1 do a = append(a,-e);
stringSkewMatrix(a,-2*e-1)
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);

Pfaffians = (M)->(
--- given a skew-symmetric matrix M of order r
--- computes the ideal JJ generated by the (submaximal) pfaffians
--- of order r-2 of all submatrices P obtained from M
--- removing a row i and the corresponding column i from M
i := 0;
S := ring M;
r := rank source M;
JJ := ideal 0_S;
for i from 0 to r-1 do(

ai := (toList (0..i-1)|toList (i+1..r-1));
P := submatrix(M,ai,ai);
pf := (res image P).dd_1;
if (rank source pf) == 1

then JJ = JJ + (ideal(flatten pf))
else JJ = JJ + pfaffians(r-2,P));

JJ);

isDominant = (d,e)->(
--- given two integers d and e,
--- returns true if the polynomial ring in degree d
--- equals the degree d part of the ideal generated by
--- the subpfaffians of submaximal order
--- of a random skew-symmetric matric M
--- of the form M : P^*(-2e-1) -> P,
--- with P = R + R^{2d-2e-1}
M := stringRandomMatrix(d,e);
PF := Pfaffians(M);
(0 == hilbertFunction(d,S/PF))
);

The variables (d, e) used in the above algorithm are changed into the
variables (α, d) used in Section 4 by the formula:

e = d− α− 1.

One checks that the function isDominant above returns the value true for
all the values of (d, e) that correspond (under the equation e = d−α−1) to
the values of (α, d) appearing in Table (4.2) and Table (4.6). This concludes
the proof.

To perform the previous computations, on the server 3dom0 of Diparti-
mento di Matematica Ulisse Dini (Firenze), the time required was in any
case shorter than 40 minutes.
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