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Abstract. Given a smooth prime Fano threefold X of genus 7, we
prove that the subset M`f

X (2, 0, 4) of vector bundles in the moduli space
MX(2, 0, 4) of rank 2 semistable sheaves on X with c1 = 0 and c2 =
4 is an open dense subset of the Brill-Noether locus W 1

2,4 of rank 2
stable sheaves with degree 4 with 2 sections, defined on the homologically
projectively dual curve Γ. This shows that M`f

X (2, 0, 4) is a smooth
irreducible 5-fold.

1. Introduction

In this paper we investigate the moduli spaces of rank 2 stable vector
bundles on a smooth prime Fano threefold, carrying on the work taken up
in [BF07] and [BF08a].

A smooth complex projective threefold X is called Fano if its anticanon-
ical divisor −KX is ample. A Fano threefold X is prime if its Picard group
is generated by the class of KX . These varieties are classified up to de-
formation, see for instance [IP99, Chapter IV]. The number of deformation
classes is 10, and they are characterized by the genus, which is the integer g
such that deg(X) = −K3

X = 2 g − 2. Recall that the genus of a prime Fano
threefold take values in {2, . . . , 10, 12}.

Let now X be a smooth prime Fano threefold. We are interested in the
Maruyama moduli scheme MX(2, c1, c2) of semistable sheaves F on X of
rank 2 with Chern classes c1, c2, and with c3 = 0. We will be particularly
interested in the subset of MX(2, c1, c2) consisting of arithmetically Cohen-
Macaulay (ACM) bundles, i.e. satisfying Hk(X, F (t)) = 0 for all t and for
k = 1, 2. Since the rank of F is 2, we can assume c1 ∈ {0, 1}. We denote by
M`f

X (2, c1, c2) the subset of locally free sheaves in MX(2, c1, c2).
The geometry of these moduli spaces has been mostly studied for c1 =

1, and many results in the literature concern specific values of c2. For
instance, if one asks whether the moduli space MX(2, 1, c2) is smooth and
irreducible, then the answer is known (most frequently in the affirmative
sense) only for low values of c2. Low here means close to mg = d(g + 2)/2e,
indeed MX(2, 1, c2) is empty for c2 < mg. For higher values of c2, the
space MX(2, 1, c2) is known to contain a reduced component of dimension
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2c2 − g − 2. We refer for more details to the papers [IM00b] (for genus 3),
[IM04a], [IM07], [BF07] (for genus 7), [IM07a], [IM00a] (for genus 8), [IR05]
[BF08b] (for genus 9), [AF06] (for genus 12), [BF08a] (for all genera). We
stress that MX(2, 1, c2) contains a component whose general element is a
stable ACM bundle if and only if mg ≤ c2 ≤ g + 3.

Much less has been said on the case of trivial determinant, i.e. when
c1 = 0. One sees easily that M`f

X (2, 0, c2) is empty unless c2 is even and
greater than 2, so the first case to study is M`f

X (2, 0, 4). On the other hand,
a sheaf in M`f

X (2, 0, c2) can be an ACM bundle if and only if c2 = 4.
The study of the space M`f

X (2, 0, 4) was first taken up by Iliev and Marku-
shevich in [IM00b, arXiv version] for genus 3. In this case they proved that
M`f

X (2, 0, 4) has two irreducible components. Assume now g ≥ 4. In view
of [BF08a], we know that M`f

X (2, 0, 4) contains a component of dimension 5,
for all smooth prime Fano threefolds of genus g. Again a general element of
this component is a stable ACM bundle.

In this paper we study the space M`f
X (2, 0, 4), where X is a smooth prime

Fano threefold of genus 7. We use the semiorthogonal decomposition of the
bounded derived category Db(X) obtained by Kuznetsov in [Kuz05]. More
precisely, we consider the homologically projectively dual curve Γ in the
sense of [Kuz06]. Recall that Γ is smooth non-hyperelliptic curve of genus
7, and that there is a natural integral functor Φ! : Db(X) → Db(Γ).

Here we first prove that, given any sheaf F in M`f
X (2, 0, 4), the sheaf F (1)

is mapped by Φ! to a complex concentrated in degree −1, so the shifted
complex F = Φ!(F (1))[−1] is in fact a locally free sheaf on Γ. The bundle
F then turns out to belong to the Brill-Noether variety W 1

2,4(Γ) of rank 2
stable bundles on Γ with degree 4 with at least 2 independent global sections.
Finally, we remark that any element in M`f

X (2, 0, 4) is an ACM bundle. This
leads to our main result:

Theorem. Let X be a smooth prime Fano threefold of genus 7 and let
M`f

X (2, 0, 4) be the subset of locally free sheaves in MX(2, 0, 4). Then the
map ϕ defined by:

M`f
X (2, 0, 4) → W 1

2,4(Γ)

F 7→ Φ!(F (1))[−1]

is an open immersion. In particular, the moduli space M`f
X (2, 0, 4) is a

smooth irreducible variety of dimension 5. Any element of this space is
a stable ACM bundle.

Here is the structure of our paper. In the next section we recall a few
preliminary notions, while in section 3 we prove some preparatory vanishing
results. Section 4 is devoted to the proof of our main theorem. Finally,
in section 5 we show that, if S is a general hyperplane section surface of
X, then the space M`f

X (2, 0, 4) is embedded in M`f
S (2, 0, 4) as a lagrangian

subvariety.
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2. Preliminaries

Given a smooth complex projective n-dimensional polarized variety
(X, HX) and a sheaf F on X, we write F (t) for F ⊗OX(tHX). Given
a pair of sheaves (F,E) on X, we will write extk

X(F,E) for the dimen-
sion of the Čech cohomology group Extk

X(F,E), and similarly hk(X, F ) =
dim Hk(X, F ). The Euler characteristic of (F,E) is defined as χ(F,E) =∑

k(−1)k extk
X(F,E) and χ(F ) is defined as χ(OX , F ). We denote by p(F, t)

the Hilbert polynomial χ(F (t)) of the sheaf F . The degree deg(L) of a di-
visor class L is defined as the degree of L ·Hn−1

X . The dualizing sheaf of X
is denoted by ωX .

If X is an smooth n-dimensional subvariety of Pm, whose coordinate ring
is Cohen-Macaulay, then X is said to be arithmetically Cohen-Macaulay
(ACM). A locally free sheaf F on an ACM variety X is said to be an ACM
bundle if it has no intermediate cohomology, i.e. if Hk(X, F (t)) = 0 for
all integer t and for any 0 < k < n. The corresponding module over the
coordinate ring of X is thus a maximal Cohen-Macaulay module.

Let us now recall a few well-known facts about semistable sheaves on
projective varieties. We refer to the book [HL97] for a more detailed account
of these notions. We recall that a torsionfree coherent sheaf F on X is
(Gieseker) semistable if for any coherent subsheaf E, with 0 < rk(E) <
rk(F ), one has p(E, t)/ rk(E) ≤ p(F, t)/ rk(F ) for t � 0. The sheaf F is
called stable if the inequality above is always strict.

The slope of a sheaf F of positive rank is defined as µ(F ) =
deg(c1(F ))/ rk(F ), where c1(F ) is the first Chern class of F . We recall
that a torsionfree coherent sheaf F is µ-semistable if for any coherent sub-
sheaf E, with 0 < rk(E) < rk(F ), one has µ(E) < µ(F ). The sheaf F is
called µ-stable if the above inequality is always strict. We recall that the
discriminant of a sheaf F is ∆(F ) = 2rc2(F ) − (r − 1)c1(F )2, where the
k-th Chern class ck(F ) of F lies in Hk,k(X). Bogomolov’s inequality, see for
instance [HL97, Theorem 3.4.1], states that if F is also µ-semistable, then
we have:

(2.1) ∆(F ) ·Hn−2
X ≥ 0.

Recall that by Maruyama’s theorem, see [Mar80], if dim(X) = n ≥ 2 and
F is a µ-semistable sheaf of rank r < n, then its restriction to a general
hypersurface of X is still µ-semistable.

We introduce here some notation concerning moduli spaces. We denote
by MX(r, c1, . . . , cn) the moduli space of S-equivalence classes of rank r
torsionfree semistable sheaves on X with Chern classes c1, . . . , cn. The Chern
class ck will be denoted by an integer as soon as Hk,k(X) has dimension 1.
We will drop the last values of the classes ck when they are zero. We denote
by M`f

X (r, c1, . . . , cn) the subset of MX(r, c1, . . . , cn) given by locally free
sheaves.

We will work with Brill-Noether varieties of vector bundles over a smooth
projective curve. We refer to [TiB91a] for some basic results. We will
need also some results from [TiB91b] and [Mer01]. By definition, the Brill-
Noether variety W s

r,c(Γ) is the scheme parameterizing rank r µ-stable bundles
of degree c on Γ having at least s + 1 independent global sections. It has
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expected dimension:

(2.2) ρ(r, c, s) = 6 r2 − (s + 1) (s + 1− c + 6 r) + 1.

Recall also that the Gieseker-Petri map associated to a sheaf F on Γ is
defined as the natural multiplication map:

(2.3) πF : H0(Γ,F)⊗H0(Γ,F∗⊗ωΓ) → H0(Γ,F ⊗F∗⊗ωΓ).

The map πF associated to a stable bundle F in MΓ(r, d) is injective if
and only if [F ] is a nonsingular point of a component of W s

r,d of dimension
ρ(r, d, s). Its transpose has the form:

(2.4) π>F : Ext1Γ(F ,F) → H0(Γ,F)∗⊗H1(Γ,F).

In fact, the tangent space T[F ]W
s
r,d is identified with the kernel of π>F .

2.1. Prime Fano threefolds of genus 7. We give a brief account of
Mukai’s description of a smooth prime Fano threefold of genus 7. For
more details on the material contained in this section, we refer to [Muk88],
[Muk89], [Muk95], [IM04a], [Kuz05], [IM07].

We consider thus a smooth prime Fano threefold of genus 7. which we
will denote throughout the paper by X. In particular, X has Picard number
1 and the anticanonical class satisfies −KX = HX , where HX is very ample
and its class generates Pic(X). The divisor class HX embeds X in P8 as an
ACM variety. Remark that Hk,k(X) is generated by the divisor class HX

(for k = 1), the class LX of a line contained in X (for k = 2), the class PX

of a closed point of X (for k = 3). Recall that H2
X = 12LX . This allows to

denote the Chern classes c1, c2, c3 of a sheaf F on X by integers.
We recall that X is obtained as a smooth linear section of the spinor

tenfold Σ+, sitting in P15. The dual space P̌15 contains the dual spinor
tenfold Σ−, and the corresponding orthogonal linear section is a smooth
projective canonical curve Γ of genus 7. The curve Γ can be identified
with the moduli space MX(2, 1, 5), and there exists a universal bundle E on
X × Γ which makes Γ into a fine moduli space. The curve Γ is called the
homologically projectively dual curve to X.

The spinor varieties Σ± can be seen as the two components of the orthog-
onal Grassmann variety of 4-dimensional projective subspaces contained in
a smooth quadric in P9. We denote by U± the restrictions to Σ± of the
tautological universal subbundle. By a result of Kuznetsov, we have the
following natural exact sequences on X × Γ:

0 → E ∗ → U− → G → 0,(2.5)

0 → G → U∗+ → E → 0,(2.6)

where U− and U+ are defined on X ×Γ using pull-backs via the projections
p : X × Γ → X and q : X × Γ → Γ. Here G is a vector bundle of rank 3
and E is the universal bundle mentioned above. Given a point y ∈ Γ (resp.
x ∈ X), and a sheaf F on X×Γ, we denote by Fy (resp. Fx) the restriction
of F to X×{y} (resp. to {x}×Γ). The Chern classes of these bundles are:

c1(E ) = HX + HΓ, c2(E ) =
7
12

HX HΓ + 5 LX + η, c3(E ) = 0,
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where η ∈ H3(X)⊗H1(Γ) satisfies η2 = 14, and:

c1(U+) = −2HX , c2(U+) = 24LX , c3(U+) = −14PX ,

c1(Gy) = HX , c2(Gy) = 7LX , c3(Gy) = 2PX .

Recall that the vector bundles U+ and Gy, for any y ∈ Γ, are stable by
[BF07, Lemma 2.5]. We will also consider the universal exact sequence:

(2.7) 0 → U+ → O10
X → U∗+ → 0.

Applying the theorem of Riemann-Roch to a sheaf F on X, of (generic)
rank r and with Chern classes c1, c2, c3, we obtain the following formulas:

χ(F ) = r + 3 c1 + 3 c2
1 −

1
2
c2 + 2 c3

1 −
1
2

c1 c2 +
1
2

c3,

χ(F, F ) = r2 − 1
2
∆(F ).

It is well known that a general hyperplane section S of X is a smooth K3
surface (i.e., S has trivial canonical bundle and irregularity zero) of Picard
number 1 (a generator is the restriction HS of HX to S), and sectional genus
7. We recall by [HL97, Part II, Chapter 6] that, given a stable sheaf F of
rank r on S, with Chern classes c1, c2, the dimension at [F ] of the moduli
space MS(r, c1, c2) is:

(2.8) ∆(F )− 2 (r2 − 1).

2.2. Derived categories. If Y is a smooth projective variety, we denote
by Db(Y ) its derived category, namely the derived category of complexes of
sheaves on Y with bounded coherent cohomology. We refer to [GM96] and
[Wei94] for definitions and notation.

Let now X be a smooth prime Fano threefold of genus 7, Γ the homolog-
ically projectively dual curve to X, and E the associated universal bundle
defined above. The bundle E is defined on X × Γ, and we denote by p
and q the projections of X × Γ to X and Γ. As an essential tool we will
use Kuznetsov’s semiorthogonal decomposition of Db(X), see [Kuz05]. This
takes the following form:

(2.9) Db(X) ∼= 〈OX ,U∗+,Φ(Db(Γ))〉,

where Φ is the integral functor associated to E defined by:

Φ : Db(Γ) → Db(X), Φ(−) = Rp∗(q∗(−)⊗E ).(2.10)

Recall that the functor Φ is fully faithful, and admits right and left adjoint
functors Φ! and Φ∗ defined by:

Φ! : Db(X) → Db(Γ), Φ!(−) = Rq∗(p∗(−)⊗E ∗(ωΓ))[1],(2.11)

Φ∗ : Db(X) → Db(Γ), Φ∗(−) = Rq∗(p∗(−)⊗E ∗(−HX))[3].(2.12)

The decomposition (2.9) provides a functorial exact triangle:

(2.13) Φ(Φ!(F )) → F → Ψ(Ψ∗(F )),
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where Ψ is the inclusion of the subcategory 〈OX ,U∗+〉 in Db(X) and Ψ∗ is
the left adjoint functor to Ψ. The k-th term of the complex Ψ(Ψ∗(F )) can
be written as follows:

(Ψ(Ψ∗(F )))k ∼= Ext−k
X (F,OX)∗⊗OX ⊕ Ext1−k

X (F,U+)∗⊗U∗+.

We will also use the following spectral sequences:

Ep,q
2 = Extp

X(H−q(a), A) ⇒ Extp+q
X (a,A),(2.14)

Ep,q
2 = Extp

X(B,Hq(b)) ⇒ Extp+q
X (B, b),(2.15)

where a, b are complexes of sheaves on X, and A,B are sheaves on X. Recall
that the maps in these spectral sequences are differentials:

dp,q
2 : Ep,q

2 → Ep+2,q−1
2 .

3. Some vanishing results

In this section, we prove some preliminary vanishing results and we prove
that any locally free sheaf in MX(2, 0, 4) is ACM. In all statements, X is a
smooth prime Fano threefold of genus 7, S is a general hyperplane section
surface of X, C is a general sectional curve of X and F is a locally free sheaf
in MX(2, 0, 4). We have the following exact sequences, defining respectively
S and C:

0 → OX(−1) → OX → OS → 0,(3.1)

0 → OS(−1) → OS → OC → 0.(3.2)

Lemma 3.1. The restrictions of U+ and Gy to S are stable vector bundles
for all y ∈ Γ.

Proof. We will deduce stability from Hoppe’s criterion, see [Hop84, Lemma
2.6], see also [AO94, Theorem 1.2]. We have thus to show the following
vanishing results:

H0(S, Gy(−1)) = 0, H0(S,∧2Gy(−1)) = 0,(3.3)

H0(S,U+) = 0, H0(S,U∗+(−1)) = 0(3.4)

H0(S,∧2U+) = 0, H0(S,∧2U∗+(−1)) = 0.(3.5)

Tensoring (3.1) by Gy(−1), we obtain H0(S, Gy(−1)) = 0 since Gy is stable
and H1(X, Gy(−2)) = 0, see [BF07, Lemma 2.5]. Note that ∧2Gy

∼= G ∗
y (1).

So, tensoring (3.1) by ∧2Gy(−1), we get (3.3), since Gy is stable and
H1(X, G ∗

y (−1)) = 0, see again [BF07, Lemma 2.5].
Applying the same argument to U+ and U∗+(−1), we get (3.4). Finally, in

view of the proof of [BF07, Lemma 2.5], in order to prove (3.5), it suffices to
show H1(X,∧2U+(−1)) = 0 and H1(X,∧2U∗+(−2)) = 0. This can be checked
via an easy application of Bott’s theorem on the homogeneous space Σ+. �

Lemma 3.2. For all y ∈ Γ, the restrictions FS and FC of F to the surface
S and to the curve C satisfy the following conditions:

H0(S, FS) = 0 H0(C,FC) = 0(3.6)

H0(S, FS ⊗ Gy(−t)) = 0 H0(C,FC ⊗ Gy(−t)) = 0 for t ≥ 1(3.7)

H0(S, FS ⊗ U∗+(−t)) = 0 H0(C,FC ⊗ U∗+(−t)) = 0 for t ≥ 1(3.8)
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Proof. Let us tensor the exact sequence (3.1) by F . Since H0(X, F ) = 0 by
stability and H1(X, F (−1)) ∼= H2(X, F )∗ = 0 by [BF08a, Lemma 4.3], we
get the first vanishing in (3.6).

In the proof of Lemma [BF08a, Lemma 4.3] we have also obtained
H1(S, FS(1)) = 0, which implies by Serre duality H1(S, FS(−1)) = 0. Then
by tensoring (3.2) by F , the second vanishing in (3.6) follows.

Recall that Gy(−1) is isomorphic to ∧2G ∗
y . Then, dualizing the sequence

(2.5) and restricting to X × {y}, we obtain ∧2G ∗
y ↪→ O10

X . Tensoring by FS

we get:
H0(S, FS ⊗ ∧2G ∗

y ) ⊆ H0(S, FS)10,

and by (3.6) we conclude that H0(S, FS ⊗ Gy(−1)) = 0. Obviously this
implies the first vanishing in (3.7) for all t ≥ 1. The second vanishing is
easily obtained replacing FS by FC in the above argument.

In order to prove the third part of the statement, it is enough to prove
that the groups H0(S, FS ⊗ Ey(−t)) and H0(C,FC ⊗ Ey(−t)) are both zero.
Indeed, in view of (3.7), the relations (3.8) will then easily follow making
use of the exact sequence (2.6).

Notice that E ∗
y
∼= Ey(−1), so from the sequence (2.5), restricted to X×{y},

we get Ey(−1) ↪→ O5
X . Tensoring by FS , (respectively by FC) and using

(3.6), we obtain H0(S, FS ⊗Ey(−t)) = 0 (respectively H0(C,FC ⊗Ey(−t)) =
0) for any t ≥ 1. This completes the proof. �

Lemma 3.3. For all y ∈ Γ we have:

Ext1X(F (1),Gy) = 0.

Proof. Let us first prove that the group Ext1S(FS(1),Gy) ∼= H1(S, FS ⊗
Gy(−1)) vanishes. Assume the contrary, and consider the nontrivial ex-
tension of the form:

0 → (Gy)S → F̃S → FS(1) → 0,

where F̃S is a torsionfree sheaf on S with rank 5 and Chern classes c1(F̃S) =
3, c2(F̃S) = 47.

Notice now that F̃S cannot be stable, since the space MS(5, 3, 47) is empty
by the dimension count (2.8). Then the Harder-Narasimhan filtration pro-
vides a maximal destabilizing stable quotient Q. Let K be the kernel of the
projection from F̃S onto Q. Notice that the sheaf K is reflexive by [Har80,
Proposition 1.1], since F̃S if locally free and Q is torsionfree.

Notice that the bundle FS(1) is stable by Maruyama’s theorem, while
(Gy)S is stable by Lemma 3.1. Thus, since µ(K) ≥ 3

5 and rk(K) ≤ 4, the
only possible values that the pair (rk(K), c1(K)) can assume are (2, 2) and
(3, 2). If the first case takes place, we have that K is a subbundle of F (1)
and, since K is reflexive and F (1) is locally free, we have K ∼= F (1). This
means that the extension is trivial, a contradiction.

Assume now that rk(K) = 3 and c1(K) = 2. Notice that K has to
be stable since there exist no other possible destabilizing subbundles for F̃ .
Hence by the dimension count (2.8) we have c2(K) ≥ 19. On the other hand
Q is stable with rk(Q) = 2 and c1(Q) = 1, thus by (2.8) we have c2(Q) ≥ 5.
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But we have 47 = c2(F̃ ) = c2(K) + c2(Q) + 24 ≥ 48, a contradiction. This
proves that H1(S, FS ⊗ Gy(−1)) = 0.

Tensoring by FS ⊗Gy(−t) the exact sequence (3.2), and using the second
equality in (3.7), one easily get that H1(S, FS ⊗ Gy(−t)) = 0, for any t ≥ 1.
Tensoring now by F ⊗ Gy(−t) the sequence (3.1), by the first vanishing in
(3.7), we obtain

H1(X, F ⊗ Gy(−t− 1)) ∼= H1(X, F ⊗ Gy(−t))

for any t ≥ 1. Since this groups vanish for t � 0, we conclude that
Ext1X(F (1),Gy) ∼= H1(X, F ⊗ Gy(−1)) = 0. �

Lemma 3.4. For all k 6= 3 we have:

Extk
X(F (1),U+) = 0.

Proof. For k = 0, the statement follows from the stability of F and U+.
Applying the functor HomX(F (1),−) to (2.7), we obtain

Ext1X(F (1),U+) ∼= HomX(F (1),U∗+), which vanishes by stability of F

and U∗+, and Ext2X(F (1),U+) ∼= Ext1X(F (1),U∗+). It remains to prove that
this last group is zero, too.

First we will prove:

(3.9) Ext1S(FS(1),U∗+) ∼= H1(S, FS ⊗ U∗+(−1)) = 0.

Assume by contradiction that there is a nontrivial extension of the form

0 → (U∗+)S → G → FS(1) → 0,

where G is a torsionfree sheaf on S with rank 7 and Chern classes c1(G) = 4,
c2(G) = 88. Notice that G cannot be stable, since the space MS(7, 4, 88) is
empty by the dimension count (2.8).

Then the Harder-Narasimhan filtration provides a maximal destabilizing
stable quotient Q. Let K be the kernel of the projection from G onto Q.
Notice that the sheaf K is reflexive by [Har80, Proposition 1.1].

Recall the bundle (U+)S is stable by Lemma 3.1, while FS(1) is stable by
Maruyama’s theorem. So, since µ(K) ≥ 4

7 and rk(K) ≤ 6, the only possible
values for the pair (rk(K), c1(K)) are (2, 2), (3, 2) and (5, 3).

If the first case takes place, we have that K ∼= F (1), hence the extension
splits, a contradiction.

Assume now that rk(K) = 3 and c1(K) = 2. Notice that K has to be
stable since there exist no other possible destabilizing subbundles for G.
Hence by (2.8) we have c2(K) ≥ 19. On the other hand Q is stable with
rk(Q) = 4 and c1(Q) = 2, thus by (2.8) we have c2(Q) ≥ 22. But we have
88 = c2(G) = c2(K) + c2(Q) + 48 ≥ 89, a contradiction.

Finally assume that rk(K) = 5 and c1(K) = 3. Notice that K has to
be stable since there exist no other possible destabilizing subbundles for G.
Hence by (2.8) we have c2(K) ≥ 48. On the other hand Q is stable with
rk(Q) = 2 and c1(Q) = 1, thus by (2.8) we have c2(Q) ≥ 5. But we have
88 = c2(G) = c2(K) + c2(Q) + 36 ≥ 89, a contradiction. This proves (3.9).

Now, using (3.2) and the second equality in (3.8), one easily gets
H1(S, FS ⊗ U∗+(−t)) = 0, for any t ≥ 1. In turn, using (3.1) and the first
vanishing in (3.8), we obtain:

H1(X, F ⊗ U∗+(−t− 1)) ∼= H1(X, F ⊗ U∗+(−t)).
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for any t ≥ 1. Since this groups vanishes for t � 0, we conclude that
Ext1X(F (1),U∗+) ∼= H1(X, F ⊗ U∗+(−1)) = 0. �

Proposition 3.5. Let X be a smooth prime Fano threefold of genus 7. Then
any locally free sheaf F in MX(2, 0, 4) is ACM.

Proof. We need to prove the following vanishing:

Hk(X, F (t)) = 0,

for all t and for k = 1, 2. Notice that by Serre duality it is enough to prove
only the case k = 1.

Fix a general hyperplane section surface S of X. By the first vanishing
in (3.6) and Serre duality, we easily get that H2(S, FS(t)) = 0 for all t ≥
0. Now, note that, by [BF08a, Lemma 4.3] and Riemann-Roch, we have
H2(X, F (−1)) = 0. Thus, tensoring (3.1) by F (t), we obtain:

H2(X, F (t)) = 0 for all t ≥ 0,

and by Serre duality it follows H1(X, F (t)) = 0 for all t ≤ −1.
We want to prove now that H1(X, F (t)) = 0 for all t ≥ 0. Fix a general

sectional curve C in X and remark that by the second vanishing in (3.6)
and by Serre duality we have:

h1(C,FC(t)) = h0(C,FC(−t + 1)) for all t ≥ 1.

Thus, tensoring (3.2) by FS(t) and using the vanishing H1(S, FS) = 0
(which holds by Riemann-Roch), we get H1(S, FS(t)) = 0 for any t ≥ 1.
Finally, using again the exact sequence (3.1) tensorized by F (t), since
H1(X, F ) = 0 we get H1(X, F (t)) = 0 for any t ≥ 1, as we wanted. �

Remark 3.6. The previous proposition holds in fact for any smooth prime
Fano threefold X of genus g ≥ 7. Indeed the same proof works, since [BF08a,
Lemma 4.3] can be applied to any locally free sheaf F in MX(2, 0, 4) as soon
as mg = d(g + 2)/2e > 4. In turn, this takes place for all g ≥ 7.

4. Proof of the main theorem

This section is devoted to the proof of our main theorem. Let us sketch
the plan of our argument. First of all, by [BF08a, Theorem 4.10] the moduli
space MX(2, 0, 4) contains a 5-dimensional reduced irreducible component.
Moreover any locally free sheaf in MX(2, 0, 4) is stable by [BF08a, Proposi-
tion 4.16] and ACM by Proposition 3.5. Then, Lemma 4.1 will prove that,
given a locally free sheaf F in MX(2, 0, 4), the image ϕ(F ) = Φ!(F (1))[−1]
is a locally free sheaf on Γ, with rank 2 and degree 4. Then by Corollary
(4.3) and Lemma (4.5) we will deduce that in fact ϕ(F ) is contained in the
Brill-Noether variety W 1

2,4(Γ). The fact that M`f
X (2, 0, 4) is a smooth fivefold

follows by Lemma 4.7. Moreover, it is an open dense subset of W 1
2,4(Γ) by

Lemma 4.8. Hence the irreducibility of M`f
X (2, 0, 4) will follow from that of

W 1
2,4(Γ), which in turn is proved in [Mer01, Théorème 4], see also [Mer99].

The result of Mercat holds for any non-hyperelliptic curve, and Γ is so in
view of [Muk95, Table 1]. The proof will thus be complete once we establish
the lemmas of this section.
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Lemma 4.1. Let X be a smooth prime Fano threefold of genus 7 and F a
locally free sheaf in MX(2, 0, 4). Then Φ!(F (1))[−1] is a rank 2 locally free
sheaf on Γ, with degree 4.

Proof. Consider the stalk over a point y ∈ Γ of the sheaf Hk(Φ!(F (1))). We
have:

(4.1) Hk(Φ!(F (1)))y
∼= Extk+1

X (Ey, F (1))⊗ωΓ,y.

We would like to prove that this group vanishes for all y ∈ Γ and for all
k 6= −1. This amounts to prove that Ext2−k

X (F (1),E ∗
y ) = 0 for k = 0, 1, 2.

The case k = 2 follows immediately from the stability of F and Ey.
Now let us apply the functor HomX(F (1),−) to the exact sequence (2.5)

restricted to X×{y}. Since HomX(F (1),OX) ∼= Hk(X, F (−1)) = 0 for any k

we have Extk+1
X (F (1),E ∗

y ) ∼= Extk(F (1),Gy). Hence in particular the group
Ext1X(F (1),E ∗

y ) is zero by the stability of F and Gy (see [BF07, Lemma 2.5]),
while the group Ext1X(F (1),E ∗

y ) vanishes by Lemma 3.3.
Finally, by Riemann-Roch we have χ(Ey, F (1)) = 2, so the rank of

Φ!(F (1)) is 2. Then we can apply the theorem of Grothendieck-Riemann-
Roch to calculate χ(Φ!(F (1))). It easily follows that deg(Φ!(F (1))) = 4. �

Notation. Let F be a sheaf in M`f
X (2, 0, 4). We set:

F = Φ!(F (1))[−1].

We set also AF = HomX(U+, F ).

Lemma 4.2. Let F be a sheaf in M`f
X (2, 0, 4). Then the following relations

hold:

H0(Φ(F)) ∼= AF ⊗ U∗+,(4.2)

H1(Φ(F)) ∼= F (1),(4.3)

and AF has dimension 2.

Proof. In order to use the decomposition (2.9), we need to com-
pute the groups Extk

X(F (1),OX) and Extk
X(F (1),U+). Recall that

Extk
X(F (1),OX) = 0 for all k. On the other hand, by Lemma 3.4 we

know that Extk
X(F (1),U+) = 0 for all k 6= 3. By Riemann-Roch it fol-

lows ext3X(F (1),U+) = 2. Then the exact triangle (2.13) provides thus the
isomorphisms (4.2) and (4.3). �

Corollary 4.3. The sheaf F has two independent global sections, and
H0(Γ,F) is naturally identified with AF .

Proof. By [Kuz05, Lemma 5.6] we have Φ∗(U∗+) ∼= OΓ and thus:

H0(Γ,F) ∼= HomΓ(OΓ,F) ∼= HomX(U∗+,Φ(F)).

By (4.2) it follows that HomX(U∗+,Φ(F)) ∼= HomX(U∗+,U∗+ ⊗AF ) ∼= AF ,
hence we have h0(Γ,F) = 2. �

Lemma 4.4. The vector bundle F is simple.
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Proof. We have:

HomΓ(F ,F) ∼= HomX(Φ(F), F (1)[−1]) ∼= HomX(F (1), F (1)).

where the last isomorphism follows immediately by the spectral sequence
since (2.14), setting A = F (1) and a = Φ(F). The claim thus follows from
the stability of F . �

In fact, the bundle F is not only simple, see the next lemma.

Lemma 4.5. The vector bundle F is stable.

Proof. Assume by contradiction that F is not stable. Then there exists a
destabilizing exact sequence on Γ of the form:

(4.4) 0 → L → F →M→ 0,

where L, M are line bundles, ` = deg(L) ≥ 2 and m = deg(M) = 4− `.
From (4.2) it follows that for any x ∈ X, h0(Γ,F ⊗ Ex) = 10. Then

tensoring (4.4) by Ex, we have also h0(Γ,L⊗Ex) ≤ 10. From Riemann-Roch
it follows that χ(L ⊗ Ex) = 2 ` ≤ 10 and thus ` ≤ 5.

If ` = 5, we have:

H0(Φ(L)) ∼= H0(Φ(F)) ∼= H−1(Φ(Φ!(F (1)))) ∼= U∗ ⊗AF ,

H1(Φ(M)) ∼= H1(Φ(F)) ∼= H0(Φ(Φ!(F (1)))) ∼= F (1),

Hk(Φ(L)) = Hk+1(Φ(M)) = 0, for all k 6= 0.

Therefore, since the functor Φ is fully faithful, we obtain:

Ext1Γ(M,L) ∼= Ext1X(Φ(M),Φ(L)) ∼= Hom(F (1),U∗+ ⊗AF ),

and the last group vanishes by stability of F and U+. This contradicts
Lemma 4.4.

If 3 ≤ ` ≤ 4, we have h0(Γ,L) ≤ 1 by [Muk95, Table 1]. This easily
implies h0(Γ,L) = h0(Γ,M) = 1. In particular the line bundle M is either
trivial either of the form OΓ(y), where y is a point in Γ. Applying the functor
Φ to (4.4) and taking cohomology we get a projection from H1(Φ(F)) ∼=
F (1) to H1(Φ(M)), hence rk(H1(Φ(M))) ≤ 2. But if M ∼= OΓ we have
H1(Φ(M)) ∼= U+(1) which has rank 5, a contradiction. On the other hand,
if M∼= OΓ(y), we can see from the exact sequence:

(4.5) 0 → OΓ →M→ Oy → 0,

that rk(H1(Φ(M))) ≥ 3, again a contradiction.
Finally, assume ` = 2. Again we have h0(Γ,L) = h0(Γ,M) = 1, so the

line bundle M is isomorphic to OΓ(Z) where Z is an effective divisor in Γ
of degree 2. We would like to prove:

(4.6) H1(Φ(M)) ∼= IC(1),

where IC is the ideal sheaf of a conic C ⊂ X, so that, applying Φ to (4.4)
we obtain a surjection F (1) → IC(1), and F would be strictly semistable.
Recall by [Kuz05, Theorem 5.3] that OZ is isomorphic to Φ!(OC), for some
conic C ⊂ X, and thus Φ(OZ) is concentrated in degree zero. Moreover,
dualizing the exact sequence (9) in [Kuz05], one gets:

0 → (Φ(OZ))∗(1) → U+(1) → IC(1) → 0.
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On the other hand, applying the functor Φ to the exact sequence:

0 → OΓ →M→ OZ → 0,

we obtain an exact sequence:

Φ(OZ) → U+(1) → H1(Φ(M)) → 0.

We get thus (4.6) by the natural isomorphism (Φ(OZ))∗(1) ∼= Φ(OZ), pro-
vided by Grothendieck duality, see [BF07, Lemma 2.6], see also [Har66] for
general reference. �

Lemma 4.6. Let F be a sheaf in M`f
X (2, 0, 4). Then we have:

(4.7) Hk(X,U+⊗F (1)) = 0, for k = 2, 3.

Proof. Recall that in Lemma 4.2 we have proved Hk(X,U∗+⊗F ) = 0 for
k 6= 0, so tensoring (2.7) by F we get Hk(X,U+⊗F ) = 0 for k 6= 1. In turn,
tensoring (3.1) by U+⊗F (1) and making use of stability of (U+)S and FS

we get H2(S,U+⊗F (1)) = 0. We have thus proved our statement. �

Lemma 4.7. For any pair of sheaves F, F ′ in M`f
X (2, 0, 4), we have:

Ext2X(F ′, F ) = 0,

H1(X,U+⊗F (1)) = 0.

Proof. Recall the notation F = Φ!(F (1))[−1] and set F ′ = Φ!(F ′(1))[−1].
We have, for all k ∈ Z:

Extk
Γ(F ′,F) ∼= Extk−1

X (Φ(F ′), F (1)),

and by (2.14), we have the spectral sequence:

(4.8) Ep,q
2 = Extp

X(H−q(Φ(F ′)), F (1)) ⇒ Extp+q
X (Φ(F ′), F (1)).

By Lemma 4.2, we have H0(Φ(F ′)) ∼= AF ′ ⊗ U∗+, and H1(Φ(F ′)) ∼= F ′(1).
Using (4.7), the spectral sequence (4.8) becomes:

(4.9) A∗
F ′ ⊗HomX(U∗

+, F (1))

d
0,0
2

++XXXXXXXXXXXXXXXXXXXXXXXXXX
A∗

F ′ ⊗Ext1X(U∗
+, F (1))

d
1,0
2

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0 0

HomX(F ′, F ) Ext1X(F ′, F ) Ext2X(F ′, F ) 0

Since the map d1,0
2 is zero, we get:

(4.10) A∗
F ′ ⊗Ext1X(U∗+, F (1))⊕ Ext2X(F ′, F ) ∼= Ext2Γ(F ′,F).

Note that the group Extk
Γ(F ′,F) vanishes for k ≥ 2 since F and F ′ are

coherent sheaves on a curve. We obtain that both groups H1(X,U+⊗F (1))
and Ext2X(F ′, F ) are zero. This proves the lemma. �

Note that the previous Lemma holds even if we take F ′ = F . In particular,
for all F in M`f

X (2, 0, 4), we have proved:

Ext2X(F, F ) = 0.

Lemma 4.8. Let F be a sheaf in M`f
X (2, 0, 4) and F = Φ!(F (1))[−1]. Then

the two tangent spaces T[F ]W
1
2,4(Γ) and T[F ]MX(2, 0, 4) are naturally identi-

fied.
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Proof. Recall first that T[F ]MX(2, 0, 4) is canonically identified with
Ext1X(F, F ). This space has dimension 5 by Lemma 4.7 and by Riemann-
Roch.

On the other hand, the space T[F ]W
1
2,4(Γ) is canonically identified with the

kernel of the transpose π>F of the Petri map, see (2.4). Recall by Corollary
4.3 that AF

∼= H0(Γ,F) and consider the natural evaluation map:

ev : AF ⊗OΓ → F ,

and note that the map π>F equals Ext1X(ev,F). By definition of F and since
Φ! is right adjoint to Φ, this map thus equals:

HomX(Φ(ev), F (1)) : HomX(Φ(F), F (1)) → A∗
F ⊗HomX(Φ(OΓ), F (1)).

So this map induces a map of spectral sequences from (4.9) to:

A∗
F ⊗HomX(U∗

+, F (1))

++WWWWWWWWWWWWWWWWWWW 0

++WWWWWWWWWWWWWWWWWWWWWWWW 0 0

A∗
F ⊗HomX(U+(1), F (1)) 0 0 0

Here, the zeros in the first line are given by Lemma 4.7 and those of the
second line follow from Lemma 3.4. Thus the kernel of HomX(Φ(ev), F (1))
is identified with Ext1X(F, F ). So the two tangent spaces are naturally iden-
tified. �

Remark 4.9. The fact that the variety W 1
2,4(Γ) is irreducible (and nonsin-

gular) relies on its explicit description, obtained in [Mer01, Théorème 4],
and [Mer99, Chapitre 3, Théorème A.1]. Indeed, an element F of W 1

2,4(Γ)
fits into an exact sequence:

0 → O2
Γ → F → T → 0,

where T is a torsion sheaf of degree 4 on Γ. Thus the space W 1
2,4(Γ) is

birational to a P1-bundle over the symmetric power Γ(4).

5. Restricting to a hyperplane section surface

Let again X be a smooth prime Fano threefold of genus 7, and consider the
restriction FS of a sheaf F in the moduli space M`f

X (2, 0, 4) to a hyperplane
section surface S of X. For general S, the sheaf FS thus belongs to the mod-
uli space M`f

S (2, 0, 4). Recall by [Muk84] that the moduli space M`f
S (2, 0, 4)

is a symplectic manifold. Following an idea of Tyurin, we prove here that
the restriction mapping is injective, hence that M`f

X (2, 0, 4) is lagrangian in
M`f

S (2, 0, 4).

Proposition 5.1. Let S be a smooth hyperplane section surface of X with
Pic(S) ∼= 〈HS〉. Then the restriction map:

ρ : M`f
X (2, 0, 4) → M`f

S (2, 0, 4)
F 7→ FS

is a closed embedding, and Im(ρ) is a lagrangian submanifold of M`f
S (2, 0, 4).
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Proof. The image of the restriction map ρ is a lagrangian submanifold by
[Tyu04]. Thus we need only prove that ρ is well-defined and injective every-
where.

Let thus F be a sheaf in M`f
X (2, 0, 4) and FS be its restriction to S. First

note that the sheaf FS is a stable vector bundle. Indeed the first vanishing
in (3.6) takes place for any hyperplane section surface S, and this implies
stability by Hoppe’s criterion since Pic(S) ∼= 〈HS〉. Therefore ρ is well-
defined.

In order to prove that ρ is injective, we let F ′ be a sheaf in M`f
X (2, 0, 4),

not isomorphic to F and we set F ′
S for its restriction to S. Let us see that

the existence of an isomorphism α : FS → F ′
S leads to a contradiction.

Tensoring (3.1) with F ′ provides a surjective map F → F ′
S . We want to

prove that this map lifts to a map α̃ : F → F ′, and we note that this is the
case if the obstruction group Ext1X(F, F ′(−1)) vanishes. But this group is
dual to Ext1X(F ′, F ), which vanishes by Lemma 4.7. Therefore we have the
map α̃, and, by stability of F and F ′, the map α̃ must be an isomorphism.
This is a contradiction. �
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