
Abstract

We prove that a general surface of degree d is the Pfaffian of a square matrix with (almost) quadratic entries if and only if $d \leq 15$.

A Remark on Pfaffian Surfaces and aCM Bundles

Daniele Faenzi

Contents

1. Introduction (3).
2. Quadratic Pfaffian Surfaces (4).

1. Introduction

Given a sheaf \mathscr{E} on a projective variety Y polarized by $\mathscr{O}_{Y}(1)$, we consider the cohomology modules:

$$
\mathrm{H}_{*}^{p}(Y, \mathscr{E})=\bigoplus_{t \in \mathbb{Z}} \mathrm{H}^{p}\left(Y, \mathscr{E} \otimes \mathscr{O}_{Y}(t)\right)
$$

Here we will focus on those sheaves \mathscr{E} that satisfy $\mathrm{H}_{*}^{p}(Y, \mathscr{E})=0$ for all $0<$ $p<\operatorname{dim}(Y)$. These are called aCM sheaves, standing for arithmetically CohenMacaulay, indeed $\mathrm{H}_{*}^{0}(Y, \mathscr{E})$ is a Cohen-Macaulay module over the coordinate ring of Y iff \mathscr{E} is an aCM sheaf.

It is possible to classify all aCM bundles on projective spaces, (Horrocks, Hor64), quadrics (Knörrer, Knö87]) and few other varieties, see [BGS87] and EH88. On the other hand, a detailed study of the families aCM bundles of low rank has been carried out in some cases, for instance some Fano threefolds (see e.g. Mad02, AC00, AF06]) and Grassmannians, AG99. An even richer literature is devoted to aCM bundles of rank 2 on hypersurfaces Y_{d} of degree d in \mathbb{P}^{n}. If $n \geq 4$, and Y_{d} is general, the classification is complete, as it results from the papers Kle78, CM00, CM04, CM05, KRR05, KRR06.

On the other hand, for $n=3$, the classification has been completed only up to $d \leq 5$, see Fae05, CF06, while only partial results are available for higher d. One of them is due to Beauville and Schreyer ($(\mathrm{Bea00})$, and states that Y_{d} can be written as a linear Pfaffian if and only if Y_{d} supports a certain aCM 2-bundle \mathscr{E} with $\operatorname{det}(\mathscr{E}) \cong \mathscr{O}_{Y_{d}}(d-1)$, and this happens for general Y_{d} if and only if $d \leq 15$,

In this short note we prove that a general surface Y_{d} of degree d in \mathbb{P}^{3} supports an aCM bundle \mathscr{E} of rank 2 with $\operatorname{det}(\mathscr{E}) \cong \mathscr{O}_{Y_{d}}(d-2)$ if and only if $d \leq 15$. This amounts to writing the equation of Y_{d} as the Pfaffian of a certain skew-symmetric matrix. Part of the proof relies on a computation done with the computer algebra package Macaulay 2 .

Aknowledgements. I would like to thank Luca Chiantini for several interesting discussions on these topics.

2. Quadratic Pfaffian Surfaces

We will assume that the underlying field \mathbf{k} is algebraically closed of characteristic zero. Recall that a torsionfree sheaf \mathscr{E} on a polarized variety Y is called initialized if $\mathrm{H}^{0}(Y, \mathscr{E}) \neq 0$, and $\mathrm{H}^{0}(Y, \mathscr{E}(-1))=0$.

Let us introduce some notation. Given a projective variety $Y \subset \mathbb{P}^{n}$, polarized by $\mathscr{O}_{Y}(1)$, we write h_{Y} for the Hilbert function of Y, and $R(Y)$ for the coordinate ring of Y, so that $h_{Y}(t)=\operatorname{dim}_{\mathbf{k}}\left(R(Y)_{t}\right)$. We will write R for the coordinate ring of \mathbb{P}^{3}.

Given a smooth projective surface Y, polarized by $H_{Y}=c_{1}\left(\mathscr{O}_{Y}(1)\right)$, and given an integer r and the Chern classes $\left(c_{1}, c_{2}\right)$, we denote by $\mathrm{M}_{Y}\left(r, c_{1}, c_{2}\right)$ the moduli space of Gieseker-semistable sheaves with respect to H_{Y}, of rank r with Chern classes c_{1}, c_{2}. We will often denote the Chern classes by a pair integers: this stands for c_{1} times H_{Y} and c_{2} times the class of a point in Y.

Recall that the vanishing locus Z of a nonzero global section of a rank 2 initialized bundle \mathscr{E} on a surface Y is arithmetically Gorenstein (i.e. R_{Z} is a Gorenstein ring) if and only if \mathscr{E} is aCM. The index i_{Z} of a zero-dimensional aG subscheme Z is the largest integer c such that $h_{Z}(c)<\operatorname{len}(Z)$.

For basic material on aCM bundles and aG subschemes we refer to IK99, [Die96], Kle98. In particular we recall the notation $\mathscr{G}_{h}(i, m, d)$, see CF06, Section 3]. We will make use of the computer algebra package Macaulay 2, see GS.

We will prove that a general surface Y_{d} of degree d is the Pfaffian of a skewsymmetric matrix with quadratic entries if and only if $d \leq 15$. This sentence makes sense only if d is an even number, so we will look for almost quadratic matrices. Namely, we consider a matrix of the form:

$$
\begin{equation*}
\mathscr{O}_{\mathbb{P}}(-2)^{d} \oplus \mathscr{O}_{\mathbb{P}}(-1)^{\epsilon} \rightarrow \mathscr{O}_{\mathbb{P}}^{d} \oplus \mathscr{O}_{\mathbb{P}}(-1)^{\epsilon} \tag{2.1}
\end{equation*}
$$

where ϵ is the remainder of the divison of d by 2 . A surface Y_{d} can be written as an (almost) quadratic Pfaffian if and only if there is an aCM initialized rank 2 bundle \mathscr{E} on Y_{d} with $c_{1}(\mathscr{E})=d-2$.

By CF06, Proposition 4.1], we always have $c_{1}(\mathscr{E}) \leq d-1$. The case $c_{1}(\mathscr{E})=$ $d-1$ corresponds to matrices of size $2 d$ whose entries are linear forms. This
case was addressed by Beauville and Schreyer, who proved a general surface Y_{d} is the Pfaffian of a matrix of this form if and only if $d \leq 15$.

Recall by [CF06, Proposition 4.1] that $c_{2}(\mathscr{E})=d-2$ implies $c_{2}(\mathscr{E})=$ $d(d-1)(d-2) / 3$.

Theorem 2.1. On a general surface $Y_{d} \subset \mathbb{P}=\mathbb{P}^{3}$, it is defined a rank 2 initialized aCM bundle \mathscr{E} with:

$$
c_{1}(\mathscr{E})=d-2, \quad c_{2}(\mathscr{E})=\frac{d(d-1)(d-2)}{3}
$$

if and only if $d \leq 15$.
Proof - Note that the aCM bundle \mathscr{E} is defined on a surface Y_{d} if and only if Y_{d} contains an aG subscheme Z of length $m=d(d-1)(d-2) / 3$, and index $i=2 d-6$. This means that the function h_{Z} must agree with $h_{\mathbb{P}}$ up to degree $d-3$ and symmetric around $d-2$. In particular h_{Z} is uniquely determined.

To compute the dimension of the component $\mathscr{G}_{\mathrm{h}_{Z}}(i, m, d)$ of the scheme $\mathscr{G}(i, m, d)$ we may choose a subscheme Z having a minimal graded resolution of the form:

$$
\begin{array}{cccc}
\mathscr{O}_{\mathbb{P}}(-d)^{d-1} & & \mathscr{O}_{\mathbb{P}}(-d+2)^{d-1} & \\
\oplus & \rightarrow & \oplus & \rightarrow J_{Z, \mathbb{P}} \rightarrow 0 . . \\
\mathscr{O}_{\mathbb{P}}(-d+1)^{\epsilon} & & \mathscr{O}_{\mathbb{P}}(-d+1)^{\epsilon} &
\end{array}
$$

Then the dimension of this component equals $4 d^{2}-4 d-1$, see Kle98, Theorem 2.3]. Therefore, given a surface Y_{d} in the image of $p_{m, i, d}$ we have:

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{Im}\left(p_{m, i, d}\right)\right) & \leq 4 d^{2}-4 d-1-\operatorname{dim}\left(p_{m, i, d}^{-1}\left(Y_{d}\right)\right) \leq \\
& \leq 4 d^{2}-4 d-1-d+1-\operatorname{dim}\left(\mathrm{M}_{Y_{d}}(2, d-2, m)\right) \leq \\
& \leq 4 d^{2}-5 d+\frac{d^{2}-18 d+41}{6}
\end{aligned}
$$

It is easy it see that this quantity is strictly less than $h^{0}\left(\mathbb{P}, \mathscr{O}_{\mathbb{P}}(d)\right)-1$ for $d \geq 16$. So the map $p_{m, i, d}$ cannot be dominant for $d \geq 16$.

To prove the converse, we use the package Macaulay 2. We distinguish two cases according to the parity of d, and we let f be a generic mapping of the form 2.1.

In both cases, we consider the map Pf which associates to a skew-symmetric matrix the square root of its determinant. We would like to prove that Pf is dominant at the point represented by the matrix f, for each $d \leq 15$. For $d=1,2$, the assertion is trivial, while the case $d=3$ is clear by Fae05.

For $d \geq 4$, we consider the the ideal J generated by the Pfaffians of order $d-2$ and degree $d-2$. Let \mathfrak{m} be the ideal generated by the four variables of R, and define the ideal:

$$
\mathcal{J}=\mathfrak{m}^{2} \cdot J
$$

By Adler's method (see for instance the appendix of [Bea00]), our claim takes place if we show the equality:

$$
\operatorname{dim}_{\mathbf{k}}\left(R / \mathcal{J}_{d}\right)=0
$$

For each $4 \leq d \leq 15$, our claim can be checked by the Macaulay 2 script:

```
isPrime(32003)
kk = ZZ/32003
R = kk[x_0..x_3];
almostQuadratic = (e1,e2,R) -> (
    -- a random almost quadratic skew-symmetric
    -- matrix on R of order e1+e2
    e:=e1+e2;
    N1:=binomial (e1, 2);
    N2:=binomial (e2,2);
    N12:=e1*e2;
    N:=binomial(e,2);
    S:=kk[t_0..t_(N-1)];
    G:=genericSkewMatrix(S,t_0,e);
    substitute(G,random(R^{0},R^{N1:0,N12:-1,N2:-2}))
    )
quadraticAdler:=(M,d)->(
    --- returns the ideal generated by Pfaffians of degree d-2
    --- and by all polynomials of degree 2
    I := pfaffians((rank (source(M))-2),M);
    minI := mingens(I);
    mi := (min(degrees source minI))_0;
```

```
    va := ideal(vars(R));
    ideal(submatrix(minI,
    (toList select(0..(rank(source(minI))-1),i->(degree (minI)_i_0)_0==mi))
    ))*(va^(2)))
isDominant = (d)->(
    M := almostQuadratic((d-2*floor(d/2)),d,R);
    PF := quadraticAdler(M,d);
    (0 == hilbertFunction(d,R/PF))
    )
for d from 4 to 15 do print (d,isDominant(d))
```

This returns the value true for each $4 \leq d \leq 15$, in the approximate time of four hours on a personal computer.

References

[AC00] Enrique Arrondo and Laura Costa, Vector bundles on Fano 3folds without intermediate cohomology, Comm. Algebra 28 (2000), no. 8, 3899-3911. MR 2001d:14043
[AF06] Enrique Arrondo and Daniele Faenzi, Vector bundles with no intermediate cohomology on Fano threefolds of type V_{22}, Pacific J. Math. 225 (2006), no. 2, 201-220. MR MR2233732
[AG99] Enrique Arrondo and Beatriz Graña, Vector bundles on $G(1,4)$ without intermediate cohomology, J. Algebra 214 (1999), no. 1, 128-142. MR 2000e:14069
[Bea00] Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39-64, Dedicated to William Fulton on the occasion of his 60th birthday. MR 2002b:14060
[BGS87] Ragnar-Olaf Buchweitz, Gert-Martin Greuel, and FrankOlaf Schreyer, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182. MR 88d:14005
[CF06] Luca Chiantini and Daniele Faenzi, Rank 2 arithmetically cohen-macaulay bundles on a general quintic surface, Available at the authors' web page, www.math.unifi.it/faenzi/papers/, 2006.
[CM00] Luca Chiantini and Carlo Madonna, ACM bundles on a general quintic threefold, Matematiche (Catania) 55 (2000), no. 2, 239-258 (2002), Dedicated to Silvio Greco on the occasion of his 60 th birthday (Catania, 2001). MR 1984199
[CM04] \qquad , A splitting criterion for rank 2 bundles on a general sextic threefold, Internat. J. Math. 15 (2004), no. 4, 341-359. MR MR2069682 (2006a:14072)
[CM05] _ ACM bundles on general hypersurfaces in \mathbb{P}^{5} of low degree, Collect. Math. 56 (2005), no. 1, 85-96. MR MR2131134 (2006a:14073)
[Die96] Susan J. Diesel, Irreducibility and dimension theorems for families of height 3 Gorenstein algebras., Pac. J. Math. 172 (1996), no. 2, 365-397 (English).
[EH88] David Eisenbud and Jürgen Herzog, The classification of homogeneous Cohen-Macaulay rings of finite representation type, Math. Ann. 280 (1988), no. 2, 347-352. MR MR929541 (89c:13012)
[Fae05] DANIELE FAENZI, Rank 2 arithmetically cohen-macaulay bundles on a nonsingular cubic surface, Available on the arxiv server, http://arxiv.org/abs/math.ag/0504492, 2005.
[GS] Daniel R. Grayson and Michael E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
[Hor64] Geoffrey Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc. London Math. Soc. (3) 14 (1964), 689-713. MR $30 \# 120$
[IK99] Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and determinantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman. MR MR1735271 (2001d:14056)
[Kle78] Hans Kleppe, Deformation of schemes defined by vanishing of Pfaffians, J. Algebra 53 (1978), no. 1, 84-92. MR MR0498556 (58 \#16657)
[Kle98] Jan O. Kleppe, The smoothness and the dimension of PGor (H) and of other strata of the punctual Hilbert scheme, J. Algebra 200 (1998), no. 2, 606-628. MR MR1610672 (99k:14007)
[Knö87] Horst Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153-164. MR 88d:14004
[KRR05] Mohan N. Kumar, Prabhakar A. Rao, and Girivau V. Ravindra, Arithmetically Cohen-Macaulay Bundles on Hypersurfaces, Available on the arxiv server, http://arxiv.org/abs/math.ag/0507161, 2005.
[KRR06] _ Arithmetically Cohen-Macaulay Bundles on Threefold Hypersurfaces, Available on the arxiv server, http://arxiv.org/abs/math.ag/0611620, 2006.
[Mad02] Carlo Madonna, ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds, Rev. Roumaine Math. Pures Appl. 47 (2002), no. 2, 211-222 (2003). MR 1979043

