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Abstract. We describe explicitly a family of moduli spaces of homoge-
neous bundles over P2(C) via representations of the quiver QP2 , making
use of toric geometry.

1. Introduction

Let X = G/P be a Hermitian symmetric variety and let P = R · N be
the Levi decomposition, where R is reductive and N is nilpotent. Then we
define the (infinite) quiver QX whose points are the dominant weights of R.
To any vertex vλ it is associated a unique irreducible homogeneous vector
bundle Eλ. Arrows vλ → vµ in QX are defined by G-equivariant extensions
Ext1X(Eλ, Eµ)G.

After Bondal and Kapranov in [1] first introduced these quivers as a tool
to investigate homogeneous bundles on X, the study was taken up again by
Hille in [7] and Ottaviani and Rubei in [13] and [12]. After these papers, we
know that the category of G-homogeneous bundles over X is equivalent to
the category of representations of QX with certain relations. In [12] these
relations are made precise, and a method to compute the cohomology of
homogeneous bundles is also developed.

As a consequence, one can describe the moduli space of homogeneous
bundles on X making use of the relevant (semi)invariant theory, see [10], [14],
[15], [16], [8], [9]. In this situation, deep computational tools are available
after [2], [3], [4], [5].

Here we describe explicitly the moduli space of homogeneous deformations
of a special type of homogeneous bundles on X = P2, given by a represen-
tation of the quiver QP2 having only a chain of boxes meeting at points
sitting on the line representing completely reducible homogeneous bundles
with slope zero (see Definition 2). This moduli space is isomorphic to an
iterated P1-bundle over a single point. In particular it turns out to be an
irreducible smooth projective toric Fano variety. This is the content of The-
orem 1.

In Section (2) we provide the general framework about homogeneous bun-
dles on P2 and state the main result. In Section (3) we describe the ring of
semi–invariants in terms of toric coordinates and prove our statement. In
section (4) we recover the torus action on the quiver representation and draw
some side remarks.
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2. Moduli space of homogeneous bundles

Let Q = QP2 be the connected component containing O = OP2 of the
quiver with relations associated to P2 = SL(2)/P(α1) as defined in [12, Def-
inition 5.2]. Let Q0 (resp. Q1) be the set of vertices (resp. arrows) of Q.
The set Q0 is in one–to–one correspondence with the subset of the lattice
Z2 given by points (i, j) with i ≤ j. The point (i, j) represents a homoge-
neous vector bundle Ei,j associated to a completely reducible representation
of P(α1). Setting Q = ΩP2(2), we have Ei,j ' Si−j Q(i + 2 j). Thus we have

(1) c1(Ei,j) = 3/2 (i + j) (i− j + 1)

An arrow Ei,j → Eh,k is given by an element of Ext1(Ei,j , Eh,k)SL(2) '
Hom(Ei,j , Eh,k)SL(2).

Let α ∈ NQ0 be nonzero for a finite number of elements (i, j) in Q0. We
call α a weight vector. Define a homogeneous bundle F (α) = ⊕i,jVi,j ⊗Ei,j ,
where Vi,j is a complex vector space of dimension αi,j and Ei,j is defined
above. Accordingly define G(α) =

∏
i,j GL(Vi,j). A character θ : G(α) → C∗

is defined for any g = (gi,j) ∈ G by θ(gi,j) =
∏

i,j det(gi,j)θi,j , with θi,j ∈ Z.
According to [10] there is a natural choice for the character θ namely

(2) θi,j = rk(F (α)) c1(Ei,j)− c1(F (α)) rk(Ei,j)

With this choice for θ, semistability of representations according to King is
equivalent to slope semistability according to Mumford and Takemoto, check
[12, Theorem 8.1 and 8.2]. We will always assume θ to be of this form.

Definition 1 (Moduli space of homogeneous bundles). Define the space
K(Q, V (α)) =

⊕
a∈Q1

Hom(Vt a, Vh a) where t a ∈ Q0 (resp. h a ∈ Q0)
denotes the tail (resp. head) of a ∈ Q1, and consider the closed subset
V (α) ⊂ K(Q, V (α)) given by the relations in Q (see [12, Section 8]). The
group G(α) acts on V (α) and we define the space of semi–invariants of degree
m as

Am(α) =C[V (α)]G(α),mθ =

={f ∈ C[V (α)] | f(g x) = θ(g)m f(x), ∀x ∈ V (α)}
Given a weight vector α, define the associated moduli space

M(α) := Proj(
⊕
m

Am(α))

The variety M(α) is projective and parametrizes homogeneous bundles
F over P2 such that the completely reducible bundle associated to F is
isomorphic to F (α).

Definition 2. For n ≥ 1 and for any sequence of natural numbers
k0, . . . , kn+1 with k0 ≥ 1, kn+1 ≥ 1, and ki ≥ 2 for 2 ≤ i ≤ n, define
the weight vector αn as

αn = (k0, 1, 1, k1, 1, 1, k2, 1, . . . , 1, kn, 1, 1, kn+1)
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according to the diagram

(3) Ck0

d0
��

C
c0oo

a1

��
C Ck1

d1
��

b1oo C
c1oo

a2

��
C Ck2

b2oo

d2
��

· · ·c2oo

...
...
an

��
· · · Ckn

dn
��

bnoo C
cnoo

an+1

��
C Ckn+1

bn+1

oo

We call the vertex corresponding to k0 (i.e. the upper left corner) the origin
of αn. We denote Mn := M(αn).

Up to twisting by a line bundle O(3 t) we can suppose that the main
diagonal in Definition 2 sits either on the line i = −j, either on the line
i = −j + 1. For simplicity, we will consider only the former case, the latter
being completely analogous.

By formulas (1) and (2) one derives the following straightforward lemma.

Lemma 1. Given a homogeneous vector bundle F with weight vector α,
the character coefficients of θ corresponding to slope semistability are, up to
scalar, given by

(4) θi,j = (i− j + 1)(i + j).

Formula (4) says that the coefficient θi,j is rk(Ei,j) = i− j + 1, times the
distance from the diagonal i + j = 0.

Theorem 1. The moduli space Mn is isomorphic to a P1-bundle over Mn−1,
where M0 is a single point. Mn is an irreducible smooth projective Fano
variety of dimension n.

The rest of the paper is devoted to the proof of the above result.

3. Semi–Invariants via the toric picture

Consider αn and fix a complex vector space W = Vj,−j for some j with
and nj = dim(W ) 6= 0. By Lemma 1, we can write the value of θ at the
vector spaces Vi,j associated to the dimension vector αn

(5) θ = (0, 1,−1, 0, 2,−2, . . . , 0, n + 1,−n− 1, 0)

Then θ takes value 0 at the point corresponding to W ; and we look for
semi–invariants of weight zero at W i.e. for invariants under the GL(W )-
action. For convenience rename aj , bj , cj and dj of diagram (3) as a, b, c, d
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in order to draw the following picture

Vt a

a

��
Vh b W

boo

d
��

Vt c
coo

Vh d

Lemma 2. Let f be a regular function on V (αn) satisfying f(g x) = f(x)
for all g ∈ GL(W ). Then f is a linear combination of forms of the type
f ′ h where h is a function independent of a, b, c, d and f ′ lies in the ring
C[b a, d a, b c, d c].

Proof. Write K(Q, V (αn)) = KW (αn)⊕K ′(αn), where no arrow in K ′(αn)
has tail or head in W and

KW (αn) = Hom(Vt a,W )⊕Hom(Vt c,W )⊕Hom(W,Vh b)⊕Hom(W,Vh d)

A regular function f is represented by an element of the polynomial
algebra Sym(K(Q, V (αn))) ' Sym(KW (αn)) ⊗ Sym(K ′(αn)). Clearly
any element in Sym(K ′(αn)) is independent of a, b, c, d. Put S(W ) :=
Sym(KW (αn)). We need to identify the GL(W )-invariant elements in S(W ).

Decomposing S(W ) with respect to GL(W )-action we find

S(W ) '
⊕
η,ξ

Sη W ⊗ Sξ W∨ ⊗ (Sη(V ∨
t a ⊕ V ∨

t c)⊗ Sξ(Vh b ⊕ Vh d))

where η and ξ run through Young tableaux with at most dim(W ) rows and
Sη, Sξ are the associated Schur functors.

Let Ta,c := V ∨
t a ⊕ V ∨

t c and Hb,d := Vh b ⊕ Vh d. The spaces Ta,c and Hb,d

are 2-dimensional, so η and ξ run through Young tableaux with at most 2
rows, respectively of length p + q and p. Since we look for GL(W )-invariant
elements, Schur Lemma gives η = ξ and we get

S(W )GL(W ) ' ∧2(Ta,c)⊗p ⊗ ∧2(Hb,d)⊗p ⊗ Sq(Ta,c)⊗ Sq(Hb,d)

Now the unique element in ∧2(Ta,c)⊗p ⊗ ∧2(Hb,d)⊗p represents the p-th
power of the determinant D of the matrix

Ta,c

 
b a b c
d a d c

!
−−−−−−−−−→ Hb,d

On other hand
⊕

q Sq(Ta,c) ⊗ Sq(Hb,d) can be identified with the sub-
space of degree 0 elements in the subring Sym(Ta,c) ⊗ Sym(Hb,d), where
deg(a) = deg(c) = −1, deg(b) = deg(d) = 1. It is immediate to check
that b a, d a, b c, d c have degree zero and that they generate this subring. Fi-
nally, we observe that D = b a · d c− b c · d a, so the generator D is actually
redundant. �
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For a quiver representation as in diagram (3) with dimension vector αn,
we set

xi = bi ci · di ai for i = 1 . . . n(6)
yi = bi ai for i = 1 . . . n + 1(7)

Lemma 3. Let αn be as in Definition 2 and suppose the origin of αn sits
on (0, 0) i.e. F (αn) contains Ok0 . Then a basis of the vector space A1(αn)
is given by the elements

(8) xe1
1 · xe2

2 · · ·xen
n · y1−e1

1 · y2−e1−e2
2 · · · yn+1−en

n+1

with the conditions

(9)



0 ≤ e1 ≤ 1,
0 ≤ e1 + e2 ≤ 2,
...
0 ≤ en−1 + en ≤ n,
ei ≥ 0

Furthermore, the ring
⊕

m Am(αn) is generated by A1(αn).

Proof. Let f be an element of Am(αn). By the expression (5) of θ, f is an
invariant element for the GL(Vj,−j)-action for every j. Consider the subring
of the ring of regular functions on K(Q, V (αn)) consisting of the elements
f ′ satisfying f ′(g x) = f ′(x) for all g ∈

∏
j GL(Vj,−j). Lemma 2 provides

generators for this subring of the form bi ai, di ai, bi ci, di ci.
Now, on the sequence of 1-dimensional vector spaces lying above (resp.

below) the main diagonal, the character θ takes values 1, 2, . . . , n + 1 (resp.
−1,−2, . . . ,−n − 1). On the other hand, notice that bi ai and di ai are
semi–invariants of weight 1 for the C∗-action on Vt ai , while bi ci, di ci have
weight 0 for this action. Analogously for Vt ci . Respectively, bi ai, bi ci are
semi–invariants of weight −1 for the C∗-action on Vh bi

, and analogously for
Vh di

. Finally, notice that the only semi–invariants of weight 0 (i.e. the only
invariants) for the GL(Vh c0)-action on Vh c0 involving c0 and d0 (resp. for the
GL(Vt bn+1)-action on Vt bn+1 involving an+1 and bn+1) are of the form (d0 c0)p

(resp. are of the form (bn+1 an+1)p) for some natural number p.
Using the commutativity relations in V (α) we can replace any occurrence

of dj cj by bj aj .
For n = 1 it is easy to see that A1(α1) is generated by xe1

1 y1−e1
1 y2−e1

2 for
e1 = 0, 1. Suppose now n ≥ 2. It follows that any f in Am(αn), is a linear
combination of monomials of the form

(10)
∏

(bj aj)pj · (bj cj)qj · (dj aj)tj

for certain exponents pj , qj , tj and 0 ≤ j ≤ n+1 (we assume d0 a0 = b0 c0 =
dn+1 an+1 = bn+1 cn+1 = 1). In order for the above monomial to have weight
j at Vt aj and weight −j at Vh bj

for all j = 2, . . . , n (i.e. in order for f to
lie in A1(αn)), we have pj + qj−1 + tj = pj−1 + qj + tj = j. It follows that
pj − qj = pj−1 − qj−1. Since p0 + t0 = q0 + t0 = 1, we have that qj = tj for
all j.
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Since no arrow in V (αn) has head in Vt aj , for f to lie in A1(V (αn)) the
term of (10) involving aj occur at most j times. Hence we obtain the ex-
pression (8) and the conditions (9) for the generators of A1(V (αn)). Finally,
for f in Am(V (αn)), it suffices to put pj + qj−1 + tj = pj−1 + qj + tj = mj to
deduce that a basis for Am(V (α)) is provided by the elements of the form

(11) xe1
1 · xe2

2 · · ·xen
n · ym−e1

1 · y2m−e1−e2
2 · · · ym(n+1)−en

n+1

with the conditions 0 ≤ e1 ≤ m, . . . , 0 ≤ en−1 +en ≤ mn and ei ≥ 0 for all i.
Since this space is generated by A1(V (αn)), the last statement is proved. �

Lemma 4. In the hypothesis of Lemma 3, the conditions (9) of Lemma 3
cut a rational convex polyhedron ∆(n). The fan F (n) corresponding to ∆(n)
is defined by the following rays in the lattice Zn

(12)


r1 = (1, 0, . . . , 0), s1 = (−1, 0, . . . , 0),
r2 = (0, 1, . . . , 0), s2 = (−1,−1, 0, . . . , 0),
...

...
rn = (0, . . . , 0, 1), sn = (0, . . . , 0,−1,−1)

Proof. The rays of the fan F (n) correspond to the facets of ∆(n). In fact, up
to the sign, they are the coefficients of the hyperplane supporting a facet (see
[6], pages 23–27). The inductive construction of F (n) out of F (n − 1) goes
as follows. The facets of ∆(n − 1) yield the facets of ∆(n). The new facets
appearing in ∆(n) are ∆(n − 1) itself and a facet defined by the equation
en−1 + en = n. Hence the cones of F (n) are exactly the cones generated by
the cones in F (n − 1) and a ray (0, . . . , 1) (resp. (0, . . . ,−1,−1)). Hence
if the primitive generators of the rays in the cones of F (n − 1) form the
Zn−1-basis also F (n) describes a smooth variety. The fan F (1) describes P1.
This finishes the proof. �

Lemma 5. The fan F (n) corresponding to ∆(n) as defined in Lemma 4 is
associated to the toric variety Pn recursively defined by

Pn = P(OPn−1 ⊕ OPn−1(−S1)) → Pn−1

P0 = {pt},

where S1 is a divisor corresponding to the ray s1. The variety Pn is naturally
equipped with the very ample divisor Ln taking value 1, 2, 3, . . . , n at the rays
s1, . . . , sn and 0 at the rays r1, . . . , rn defined in Lemma 4.

Proof. The coefficients of the very ample divisor follow easily from the in-
equalities describing the polyhedron ∆(n) (see [6], page 66). The P1−bundle
structure follows from the description of projective line bundles given by Oda
in [11], pages 58–59. �

Proof of the main result. By Lemmas 3, 4, 5, the moduli space Mn is
isomorphic to the variety Pn i.e. it is identified with a P1-bundle over Mn−1.
Hence it is clearly an irreducible smooth n-dimensional Fano manifold. This
concludes the proof of Theorem 1.
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4. Further remarks

We relate first the weight vector αn to representation–theoretic bundles.
Given n ∈ N, write o(n) for the round down of (n − 1)/2 and p(n) for the
round down of n/2, so that o(n) + p(n) + 1 = n. The proof of the following
remark is straightforward.

Remark 1. i) Given the weight vector α0 with vertex in (i,−i), the
unique point of M0 corresponds to the homogeneous bundle Bi defined
as cokernel of the unique SL(3)-equivariant map

Γi,1V ⊗ O(−i− 2) −→ Γi+2,1V ⊗ O(−i)

ii) The weight vector αn with vertex in (0, 0) corresponds the tensor prod-
uct Bo(n) ⊗ Ep(n),−p(n).

On the other hand, one can ask wether Mn parametrizes stable, semistable
or even decomposable homogeneous vector bundles. This has been investi-
gated by Kac in [8], [9] and we give account of this in the following remark.

Remark 2. Putting k0 = kn+1 = 1 and ki = 2 for 1 ≤ i ≤ n, the general ele-
ment of M(αn) represents a stable homogeneous bundle. Indeed, for general
maps (ai, bi, ci, di) in (3), corresponding to a general representation V , one
easily checks that there exists no subrepresentation V ′ with θ(V ′) ≥ θ(V ).

On the other hand, for ki > 2, 1 ≤ i ≤ n, the general element V of M(αn)
decomposes as V ' V ⊕V ′, where V is a representation with dimension vec-
tor αn and ki = 2 for 1 ≤ i ≤ n, while V ′ is a direct sum ⊕i S2 i Q(−i)⊕ki−ki .
Indeed in this case it is easy to find, for general maps (ai, bi, ci, di) of V ′, a
splitting injection V ↪→ V . However, the injection might not split at special
points.

A geometric interpretation of the previous fact can be given as follows.
Letting α1 = (1, 1, 1, k1, 1, 1, 1) have origin at E0,0 = O, one obtains M1 '
P1. For k1 = 2, M1 is parametrized by the projective invariant of the 4
maps a1, b1, c1, d1, i.e. by the cross ratio of 4 points in P1, check [12]. For
k1 > 2, the maps a1, b1, c1, d1 yield 2 points P1, P2 and 2 hyperplanes Z1,
Z2 in Pk1−1. Hence again M1 is parametrized by the cross ratio of the 4
points P1, P2, P1 P2 ∩ Z1, P1 P2 ∩ Z2. The corresponding vector bundle is
indecomposable if P1 P2 meets Z1 ∩ Z2.

Remark 3. Let zj be a map zj : Vt aj → Vh aj
such that dj zj = 0 and

bj zj 6= 0. Choose such a map zj for 1 ≤ j ≤ n and let (λ1, . . . , λn) be an
element of (C∗)n. Define the (C∗)n-action

(λ1, . . . , λn) : (ai, bi, ci, di) 7→ (ai + (λi − 1)
bi ai

bi zi
zi, bi, ci, di)

Then (C∗)n acts on V (α). This action lifts to Am(α) multiplying xi in
(6) by λi. So the induced (C∗)n-action on Mn is equivalent to the standard
(C∗)n-action on Mn as an n-dimensional toric variety (cfr. [11], page 95).

Observe that different values of θi,j yield different linear systems on Mn.

Remark 4. Let αn be as in Definition 2 and let the origin of αn be at
Ep,−p i.e. let F (αn) contain Ek0

p,−p = S2p Q(−p)k0 . Then, tracing back the
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proof of Lemma 3, one shows that Mn is isomorphic to Pn (confer Lemma
5), equipped with the very ample line bundle Lp taking value (1 + p, 2 +
p, . . . , n + p) at the rays s1, . . . , sn and 0 elsewhere.

For example, letting α1 = (1, 1, 1, 2, 1, 1, 1) have origin at Ep,−p, the coor-
dinate ring of the space M1 is C[yp

p yp+1
p+1, xp yp−1

p yp
p+1, . . . , x

p
p yp+1], so M1 is

a rational normal curve of degree p.
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