
Cohomology of Tango bundle on P5

Daniele Faenzi ∗

Sunto. – Il fibrato di Tango è definito come pull–back del fibrato di Cayley C sulla quadrica liscia Q5 attraverso
una funzione f definita in caratteristica 2 che fattorizza il morfismo di Frobenius ϕ. La coomologia di T è
calcolata in termini di S ⊗ C, ϕ∗(C), Sym2(C) e C, che si studiano con il teorema di Borel–Bott–Weil.
Abstract. – The Tango bundle T is defined as the pull–back of the Cayley bundle over the quadric Q5 via a
map f existing only in characteristic 2 and factorizing the Frobenius ϕ. The cohomology of T is computed in
terms of S ⊗ C, ϕ∗(C), Sym2(C) and C, which we handle with Borel–Bott–Weil theorem. 1

1. – The bundles on P5 and on Q5

The well–known Hartshorne conjecture states, in particular, that there are no indecomposable
rank-2 vector bundles on Pn, when n is greater than 5. However, one of the few rank-2 bundles
on P5 up to twist and pull–back by finite morphisms is the Tango bundle T first given in [Tan76].
Later Horrocks in [Hor78] and Decker Manolache and Schreyer in [DMS92] discovered that it can be
obtained starting from Horrocks rank-3 bundle. In [Fae03] we proved that T is the pull–back of the
Cayley bundle over the quadric Q5. Anyway it only exists in characteristic 2.

Here we compute the cohomology of T applying an analogue of Borel–Bott–Weil theorem in
positive characteristic. In section (1) we introduce the involved bundles and state the theorem, while
in section (2) we give proofs and some more remarks. We will need to compute the cohomology of
ϕ∗(C), Sym2(C) and C, where ϕ is the degree 32 Frobenius morphism ϕ : P5 → P5, defined when
char(k) = 2. We make use of Macaulay2 computer algebra package, see [GS].

Let k be an algebraically closed field, and let Q5 be the smooth 5-dimensional quadric hypersurface
over k. On the coordinate ring R(P5) we use variables xi’s while on R(Q5) we use zj ’s.

Q5 = {z2
0 + z1z2 + z3z4 + z5z6 = 0} ⊂ P6

Both on P5 and Q5, we denote Chern classes by integers, meaning integral multiples of the positive
generators in each degree of the Chow ring. Further, we call intermediate cohomology group any sheaf
cohomology group of degree other than 0 or 5, i.e. the dimension of the ambient variety.

On Q5 = G2 /P(α1) we have the Cayley bundle C, associated to the standard representation of
the semisimple part of the parabolic group P(α1), where α1 is the shortest root in the Lie algebra of
the exceptional Lie group G2, having the following Dynkin diagram.

The bundle C is obtained as the irreducible P(α1)-homogeneous module with maximal weight
λ2 − 2λ1. The bundle C(2) (weight λ2) is globally generated and we have h0(C(2)) = 14. By virtue
of [Fae03, Theorem (2)] we can define the Tango bundle as follows.

Definition. Let char(k) = 2. For any odd n there exists a non–constant morphism f : Pn −→ Qn.
For n = 5 the pull–back T = f∗(C(1)) is a stable rank-2 bundle with c1(T ) = 2, c2(T ) = 4 and
Hilbert polynomial:

χ(T (t)) =
1
60

t5 +
1
3
t4 +

25
12

t3 +
11
3

t2 − 51
10

t− 14
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Therefore we have, for every 0 ≤ p ≤ 5 and t ∈ Z:

T ' T ∗(2) and hp(T (t)) = h5−p(T (−t− 8))

Theorem 1. Given the Tango bundle T defined above, we have:

h0(T (t)) = χ(T (t)) for t ≥ 3

Furthermore, the only nonvanishing intermediate cohomology of T is the following:

t −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2
h1(T (t)) 1 7 14 13 1
h2(T (t)) 1
h3(T (t)) 1
h4(T (t)) 1 13 14 7 1

In particular, the bundle T ′ = T (−4) is the only twist of T for which all cohomology groups
vanish.

Recall the definition of the spinor 4-bundle S over Q5. Since Q5 = Spin(7)/P(β1), where β1 is
the shortest root of Spin(7), we define S as the bundle associated to the spin representation of the
semisimple part ss(P(β1)) = Spin(5). The bundle S∨ = S(1) is globally generated. By Beilinson’s
theorem, the bundle S(1), extended by zero to P6, has the minimal graded free resolution:

0 −→ OP6(−1)8 B−→ O8
P6 −→ S(1) −→ 0

where now B, by the observations in [Bea00], is an antisymmetric matrix whose determinant is the
equation of the quadric, to the power 4. This is done by the matrix:

B =



0 0 0 −z3 0 −z1 z5 −z0

0 0 z3 0 z1 0 −z0 −z6

0 −z3 0 0 −z5 z0 0 −z2

z3 0 0 0 z0 z6 z2 0
0 −z1 z5 −z0 0 0 0 z4

z1 0 −z0 −z6 0 0 −z4 0
−z5 z0 0 −z2 0 z4 0 0
z0 z6 z2 0 −z4 0 0 0


(1)

The bundle C is related to S in the following way. One computes c4(S∨) = 0. So, given a
nontrivial global section of S∨, we have a rank-3 bundle G defined by:

0 −→ O
a−→ S∨ −→ G −→ 0 (2)

It turns out that c3(G∨(1)) = 0. One can prove that G∨(1) has a unique section b and that the
quotient by such b is isomorphic to C(1) i.e. C is the cohomology of the monad:

O(−1)
b (−1)−−−−→ S

at

−−→ O (3)

The bundle C has rank 2 and Chern classes (−1, 1). The only non–vanishing intermediate co-
homology groups are H1(C) = H4(C(−4)) = k. All this is done in [Ott90] and follows easily from
[Jan87, Proposition 5.4] in any characteristic.
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2. – Proof of the theorem and further remarks

First of all we need some properties of the map f : Pn −→ Qn. Recall that it is defined for
char(k) = 2 and for any odd n as:

f(x0 : . . . : xn) = (x0x1 + · · ·+ xn−1xn : x2
0 : . . . : x2

n)

The map f is a finite morphism of degree 2n−1 and factors the Frobenius morphism ϕ as in the
diagram:

Qn

π

��

ϕ
// Qn

Pn
ϕ

//

f
;;vvvvvvvvv
Pn

f

::vvvvvvvvv

where π the projection from (1 : 0 : . . . : 0).

Observation 2. Given the map f defined above, we have:

f∗(OP5) = O⊕ O(−1)14 ⊕ O(−2)

f∗(OP5(1)) = S ⊕ O6 ⊕ O(−1)6 (4)

Proof. Let F = f∗(OP5),G = f∗(OP5(1)). The map f is a 16: 1 cover, because the Frobenius is 32: 1
and the projection π is 2 : 1. Then F and G are rank-16 vector bundles, whose cohomology one can
read from the Leray degenerate spectral sequence. Indeed since Ri(f∗) = 0 (for i > 0) we have:

Hi(Q5,F(t)) = Hi(P5, f∗(OQ5(t)) = Hi(P5,OP5(2t)) (5)

Hi(Q5,G(t)) = Hi(P5, f∗(OQ5(1)(t)) = Hi(P5,OP5(2t + 1))

for 0 ≤ i ≤ 5 and every t. This says that F and G have no intermediate cohomology, hence
by [Kap86] or [BGS87] they must decompose as sum of twisted spinor bundles S(a) and line
bundles (although actually Kapranov’s setting is over C). For G this implies, by a computa-
tion on the Euler characteristic, that the only choice is the one stated. On the other hand for F

we have a priori two possibilities: either the one stated above either S⊕S(−1)⊕O⊕O(−1)6⊕O(−2).

Now the formula (5) says that the polynomial ring R(P5) decomposes as a module over R(Q5)
(under the action given by f) as R(P5)even ⊕R(P5)odd where:

R(P5)even = ⊕
t∈Z

H0(P5,O(2t)) R(P5)odd = ⊕
t∈Z

H0(P5,O(2t + 1))

For F we have to compute explicitly a presentation of the R(Q5)−module R(P5)even. We need e0

to generate k = R(P5)0 and eij to generate the monomial xixj (i 6= j) in R(P5)2, thus obtaining a
map:

Φ: R(Q5)⊕R(Q5)(−1)15 −→ R(P5)0 ⊕R(P5)2

But the coordinate e45 is redundant, since z0Φ(e0) + Φ(e01) + Φ(e23) = Φ(e45). Now for R(P5)4:
the terms containing x2

i already lie in the image (got by the action of zi−1), and in fact we just
have to fix x0x1x2x3 because, e.g. x0x1x2x4 = z3Φ(e34) + z5Φ(e25) + z0Φ(e24) and x0x1x4x5 =
x0x1x2x3 + z1z2Φ(e0) + z0Φ(e01). Thus we get a generator in degree 2 (and no syzygy); moreover
x0x1x2x3x4x5 = z1z2Φ(e23) + z3z4Φ(e01) + z0(x0x1x2x3), so that R(P5)6, and in fact all R(P5)even,
is also covered.

The presentation can be in fact computed also for R(P5)odd. In this case one finds as syzygy of
a map R(Q5)6 ⊕ R(Q5)(−1)14 → R(P5)odd the matrix B described in (1) giving the spinor bundle,
thus getting again (4).
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Remark 3. Observation (2) can probably be extended to any odd dimension. Here we only mention
that for f : P3 −→ Q3 we get f∗(OP3) = S ⊕ OQ3 ⊕ OQ3(−1) and f∗(OP3(1)) = O4

Q3
which can be

computed by the presentation or by Euler characteristic.
Finally, one may notice that π∗(S) = OP5(−1)8 and clearly π∗(OP5(t)) = O(t)⊕O(t−1) so that the

extension 0 → S(−1) → O(−1)8 → S → 0 splits after π∗ (actually this holds in any characteristic).
This agrees with the formula:

ϕ∗(OP5) = O⊕ O(−1)15 ⊕ O(−2)15 ⊕ O(−3)

ϕ∗(OP5(1)) = O6 ⊕ O(−1)20 ⊕ O(−2)6

Next we compute the cohomology of Sym2 C, C ⊗ C, S ⊗ C. First notice that if V is the
SL(2)−representation giving C, when char(k) = 2 the representation Sym2 V (having weight 2λ2 −
4λ1) will not be irreducible (recall that in finite characteristic SL(2) is not linearly reductive, check
[Nag62]). On the contrary, letting C [2] = ϕ∗(C), we have the non–split exact sequence:

0 −→ C [2] −→ Sym2 C −→ O(−1) −→ 0 (6)

We also have:

ϕ∗(OQ5) = O⊕ O(−1)20 ⊕ O(−2)7 ⊕ S(−1) (7)

ϕ∗(OQ5(1)) = O7 ⊕ O(−1)20 ⊕ O(−2)⊕ S

Now again by Borel–Bott–Weil theorem ([Jan87, Proposition 5.4]) we know hi(Sym2 C(3)) = 0
for all i, Sym2 C(4) is globally generated and:

h0(Sym(t)) = χ(Sym2 C(t)) =
1
20

t5 +
3
8

t4 − 27
8

t2 − 81
20

t for t ≥ 4

h1(Sym2 C(2)) = 14 h1(Sym2 C(1)) = 7 h1(Sym2 C(−1)) = 1

where in the above twists these are the only non–vanishing Hi’s. By Serre duality we only miss
H2(Sym2 C). Now since Ri(ϕ∗) = 0, by the degenerate Leray spectral sequence, (6) and (7) we get:

H2(Sym2 C) =H2(C [2])
Leray
= H2(C ⊗ S(−1))

Leray
=

= H2(C [2](−1)) = H2(Sym2 C(−1)) Bott= k

and by the same argument h1(Sym2 C) = 1, while the remaining hi are zero. The same procedure
yields the following values of hi(S ⊗ C(t)):

h1(S ⊗ C) = 1 h1(S ⊗ C(1)) = 6 (8)

h2(S ⊗ C(−1)) = 1 h3(S ⊗ C(−2)) = 1

h4(S ⊗ C(−4)) = 6 h4(S ⊗ C(−5)) = 1

Now we can prove Theorem 1.

Proof of Theorem 1. Since Ri(f∗) = 0 for i > 0 we compute cohomology over Q5 and get:

Hi(P5, T (2t)) =Hi(Q5, f∗(OP5)⊗ C(1 + t))

Hi(P5, T (2t + 1)) =Hi(Q5, f∗(OP5(1))⊗ C(1 + t)) (9)

The even part gives Hi(P5, T (2t)) = Hi(Q5, C(1 + t))⊕ Hi(Q5, C(t))14 ⊕ Hi(Q5, C(t − 1)), while
the odd part gives Hi(P5, T (2t + 1)) = Hi(Q5, C(1 + t))6 ⊕Hi(Q5, C(t))6 ⊕Hi(Q5, S ⊗C(1 + t)) and
these are known by the above formulas.
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Remark 4. The values h2(Sym2 C) = h1(Sym2 C) = 1 exhibit non–standard cohomology for the
representation Sym2 V . Indeed 3λ2 − 3λ1 is singular ((3λ2 − 3λ1, 3α1 + α2) = 0) so standard Borel–
Bott–Weil theorem (i.e. in characteristic 0) would give hi(Sym2 C) = 0. Of course, we would have
no such sequence as (6).

Still, by tensoring the monad defining C by C(t) we get:

0 −→ G∨ ⊗ C(t) −→ S ⊗ C(t) −→ C(t) −→ 0
0 −→ C(t− 1) −→ G∨ ⊗ C(t) −→ C ⊗ C(t) −→ 0

whence we derive the values of hi(S ⊗C(t)) from those of Sym2 C, because, if char(k) 6= 2, C ⊗C =
Sym2 C ⊕ O(−1). This way we would get the same values as in (8) if char(k) = 0. Finally, one can
compute on Macaulay2 the values of the cohomology of C [2] and check the correctness of the above
result.

Now we can write the Beilinson table of the normalized T (−1):

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 7
0 0 0 0 0 0


Then we write T (−1) as cohomology of a monad:

O(−1)⊕ Ω4(4) −→ Ω2(2)⊕ Ω1(1) −→ O7

As Wolfram Decker pointed out to us, another way to get Tango’s bundle is by Horrocks bundle H

in characteristic 2. Concretely, Horrocks becomes a non–split extension 0 → T (−1) → H → O → 0.
This allows to compute the cohomology of H in terms of T .

Moreover in [DMS92] one finds an explicit description of the maps in the Beilinson monad. This
provides also a check of computations. Denoting with e0, . . . , e5 the canonical basis of E (the exterior
algebra over W = H0(P5,O(1))), and using the natural isomorphism Hom(Ωi(i),Ωj(j)) = ∧i−jW =
Ej−i, T is the cohomology of the maps α and β:

β =



e0 e4e5

e1 e3e5

e2 e3e4

e3 e1e2

e4 e0e2

e5 e0e1

0 e0e3 + e1e4 + e2e5


α =

(
e0e1e2 + e3e4e5 e0e1e3e4 + e0e2e3e5 + e1e2e4e5 0

e0e3 + e1e4 + e2e5 e0e1e2 + e3e4e5 e1e2e4e5

)
Finally, using the equations for T , Macaulay2 provides the following resolution:

0 //
O7(−7)
⊕

O(−8)
// O49(−6) // O98(−5) // O76(−4) //

O7(−3)
⊕

O14(−2)
// T // 0
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Applying cohomology algorithms in Macaulay2 developed by Decker Eisenbud and Schreyer one
may also obtain a full table of the cohomology, which we write in Macaulay2 notation:

total: 573 260 92 27 14 7 2 2 7 14 27 92 260 573

-6: 573 260 91 14 . . . . . . . . . .

-5: . . 1 13 14 7 1 . . . . . . .

-4: . . . . . . 1 . . . . . . .

-3: . . . . . . . 1 . . . . . .

-2: . . . . . . . 1 7 14 13 1 . .

-1: . . . . . . . . . . 14 91 260 573

(10)

Reading the table along one antidiagonal gives the list of cohomology groups of a single twist.
Here the list for T starts from the up–right corner, while starting from a shift to the left means
reading the list for a (−1)−twist. Table (10) agrees with Theorem 1.
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