
BUNDLES OVER FANO THREEFOLDS OF TYPE V22

DANIELE FAENZI

Abstract. An explicit resolution of the diagonal over V22 is given,
making use of some observations about instanton bundles with c2 = 3.
Different descriptions of V22 are interpreted in terms of mutations of
vector bundles.

1. Introduction

Among smooth complex Fano threefolds with ρ = 1, those with h2,1 = 0
play a special rôle. According to Iskosvskih’s classification [Isk77], [Isk78],
there exist four classes of such varieties, namely P3, Q3, V5 and V22, respec-
tively of index 4, 3, 2 and 1, where the genus-12 variety V22 is the only one
with non–trivial moduli. Their degree, respectively 1, 2, 5 and 22, is max-
imal in each index class; they are all rational and deformation equivalent
to a smooth orbit closure of the group SL(2,C). Moreover, their K-theory
ring is isomorphic to Z4. The geometry of these varieties has been studied
in an enormous number of papers, and we refer to [IP99] for an exhaus-
tive treatment of them and to [Sch01], [Muk03], [AF93] for more important
results.

Here we will study the variety V22 in terms of bundles over it and we will
prove the following result.

Theorem. The general variety X of type V22 admits the resolution of the
diagonal

0→ G3 �G
3 → G2 �G

2 → G1 �G
1 → G0 �G

0 → O∆ → 0

where (G3, . . . , G0) (respectively (G3, . . . , G0)) is an exceptional collection of
stable aCM bundles of rank 2, 3, 4, 1 (respectively of rank 2, 5, 3, 1).

This gives an analogue of Bĕılinson’s theorem over the projective space,
see [Bei78]. Further instances of this fact were found e.g. by Kapranov in
[Kap88], by Canonaco for weighted projective spaces in [Can00], by Orlov
in [Orl91] for the threefold V5, by the author in [Fae03] still for the threefold
V5.

The main tools are results obtained by Schreyer in [Sch01] and by Mukai
in [Muk92] involving nets of quadrics, 3-instanton bundles on P3 and nets
of alternating 2-forms. It will turn out that mutations of the bundles Gi
of the above Theorem are closely related to the different descriptions of the
threefold V22.
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The paper is organized as follows. In Section 2 we give basic definitions
and lemmas. In Section 3 we provide the first description of V22 by means of
nets of quadrics, recall its relation with the moduli space of twisted cubics
and with 3-instanton bundles on P3. Section 4 takes care of the definition
of V22 via nets of alternating 2-forms and contains the technical core of the
paper i.e. Theorem 4.5. This theorem is crucial in Proposition 6.4, which
in turn is the key to prove Theorem 7.2, our main result. Section 5 is
devoted to the description of V22 via polar hexagons to a plane quartic. In
Section 6 we give several results concerning bundles on X and describe the
homomorphism groups between them, while in Section 7 we state precisely
and prove the main result (cfr. Theorem 7.2), together with some corollaries
(cfr. Corollary 7.3 and 7.4). Finally in Section 8 we draw some remarks,
including helices and the Mukai–Umemura case i.e. a threefold of type V22

with an SL(2) quasi–homogeneous structure.

Remark. After this paper was finished, the author learned of the existence
of an interesting preprint by Alexander Kuznetsov, [Kuz97], where similar
questions are investigated, although making use of different methods.

Aknowledgements. I would like to express my gratitude to Enrique Ar-
rondo for many useful discussions and Frank–Olaf Schreyer and Giorgio Ot-
taviani for interesting comments. Also, I would like to thank the department
of mathematics of Universidad Complutense de Madrid for the hospitality.

2. Generalities

We will always assume that the ambient variety X is a compact complex
algebraic smooth variety with Pic(X) ' Z = 〈OX(1)〉, OX(1) being a very
ample line bundle.

Definition 2.1. For a pair of vector bundles F and G on a variety X, define
pF ,G : Hom(F ,G)⊗F → G and iF ,G : F → Hom(F ,G)∗⊗G as the canonical
evaluations. If pF ,G (resp. iF ,G)) is surjective (resp. injective) define the left
mutation LF G = ker(pF ,G) (resp. the right mutation RG F = (coker iF ,G)).

We refer to the book [hel90] useful properties of mutations, to [Dre86]
and [GR87] for their original use over projective spaces.

For any complex vector space V denote by 1V (resp. by χV ) the identity
map of V (resp. the canonical map V ∗⊗V → C). We write Si, where i is
a finite sequence of nondecreasing integers, for the Schur functor associated
to the Young tableau defined by the partition given by i. More precisely,
the tableau defined by i has ij boxes on the j-th row. For example Sj V ,
where j is an integer and V is a vector space, is the j-th symmetric power
of V .

Definition 2.2. Given a sheaf F over X, we say that F is aCM (for
arithmetically Cohen–Macaulay) if Hp(X,F(t)) = 0, for all t ∈ Z and for
0 < p < dim(X).

We will write Hp(−) or Hom(−,−) instead of Hp(X,−) or HomX(−,−)
unless the ambient variety X is not clear from the context.

Given a subvariety Z ⊂ X we denote its ideal sheaf by JZ,X and, by abuse
of notation, the ideal of Z in the coordinate ring of X.
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Definition 2.3. A variety X of type V22 is a smooth projective threefold
with Pic(X) = 〈OX(1)〉 = 〈ω∗X〉 and deg(OX(1)) = 22.

We refer to [HL97] for the definition of stability of bundles, in the sense
of Mumford–Takemoto, with respect to the positive generator c1(OX(1)) of
Pic(X).

Recall from [IP99] that the Chow ring CH(X) is isomorphic to Z4, where
CH2(X) (resp. CH3(X)) is generated by the class of a line (resp. of a point)
in X.

Given a vector bundle F on X we denote its Chern classes by ci(F), for
1 ≤ i ≤ 3 by ci ∈ Z, meaning ci(F) = ciξi, where ξ1 = c1(OX(1)), ξ2 is the
cohomology class of a line in X and ξ3 is the cohomology class of a point in
X. Denote by µ(F) the rational number c1(F)/ rk(F), called the slope of
F . We say that a bundle F is normalized if −1 < µ(F) ≤ 0. We write Fn
for the unique normalized twist of F . The proof of following lemma can be
adapted from Pn since Pic(X) ' Z, see [OSS80].

Lemma 2.4 (Hoppe). Let F be a rank r vector bundle on X. Then F is
stable if h0((∧pF)n) = 0 for 1 ≤ p < r.

3. Nets of dual quadrics and 3-instanton bundles on P3

Let A ' C4 and B ' C3 be complex vector spaces, and let R = C[A] =
C[x0, . . . , x3] and T = C[B] be polynomial algebras over them. Considering
the dual ring R∗ = C[A∗] we have R∗ ' C[∂0, . . . , ∂3]. Then define the
apolarity action of R∗ on R by differentiation ∂i(xj) = i! j/i xj−i, where

i, j are multiindeces and ∂i(xj) = 0 if j � i. Then for ∂ ∈ SiA∗ we have

the apolarity map ∂ : Sj A → Sj−iA. In the same way T ∗ acts on T by
apolarity and we have perfect pairings between degree d polynomials over
R (resp. over T ) and degree d differential operators over R (resp. over T ).

We define the variety H to be the irreducible component of Hilb3t+1(P(A))
containing rational normal cubics in P(A), as constructed in [EPS87]. The
open subset Hc consisting of points which are Cohen–Macaulay embeds in
G(C3, S2A) by means of the vector bundle U∗H whose fiber over [Γ] ∈ Hc is

TorR1 (R/JΓ,P3 ,C)2 ' C3. Equivalently, we associate to any [Γ] ∈ Hc the net
of quadrics on P(A) vanishing on Γ.

Moreover, there exists a rank-2 bundle on Hc whose fiber over Γ is
TorR2 (R/JΓ,P3 ,C)3 ' C2. Namely we take the space of first order syzygies
of JΓ,P3 . We denote this bundle by EH.

Lemma 3.1. Over the variety Hc, the bundle U∗H (resp. the bundle EH)

is globally generated with H0(U∗)∗ ' S2A. (resp. with H0(E∗H)∗ '
S2,1A = ker(S2A⊗A → S3A)). The vector bundle E∗H embeds Hc into

G(C2, S2,1A) = G(P1,P19).
We have the canonical isomorphisms Hom(EH, UH) ' A∗,

Hom(∧2UH, EH) ' A∗ and H0(∧2U∗)∗ ' ∧2 S2A ' S3,1A. The mor-
phism i∧2UH,EH

is induced by the map ∧2 S2A → A⊗S2,1A in the diagram
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below

(1) ∧2 S2A

��
vvl l l l

A⊗S2,1A // S2A⊗S2A
m // S4A

where the map m is the multiplication in C[A] and the maps ∧2 S2A →
S2A⊗S2A and A⊗S2,1A→ S2A⊗S2A are the canonical injections.

Proof. Over a point [Γ] in Hc we take the minimal graded free resolution of
JΓ,P3 in degree 3. This yields the exact sequence

(2) 0← H0(JΓ,P3(3))← A⊗UH,Γ ← EH,Γ ← 0

The above map A⊗UH,Γ ← EH,Γ is induced by iE,U and the isomorphism
Hom(EH, UH) ' A∗ is clear. Since det(UH) ' OH(1) and det(EH) ' OH(1)
we have Hom(∧2UH, EH) ' Hom(E∗H,∧2U∗H) ' Hom(EH, UH) ' A∗.

Since any quadratic form on A contains a twisted cubic in Hc, we
have H0(U∗H) ' S2A∗ and globalizing (2) we get H0(E∗H)∗ ' S2,1A =

ker(S2A⊗A→ S3A). Since the 2×2 minors of the matrix A⊗UH ← EH in
(2) define the twisted cubic Γ, EH provides an embedding into G(C2, S2,1A)
and thus it is globally generated.

Finally, there are SL(A)-equivariant isomorphisms S2A⊗S2A ' S2,2A⊕
S3,1A ⊕ S4A, A⊗S2,1A ' S2,1,1A ⊕ S2,2A ⊕ S3,1A, ∧2 S2A ' S2,1,1A.
Then by Schur’s Lemma the inclusion S2,1,1A ↪→ S2A⊗S2A composes to
zero with m and therefore factors injectively through A⊗S2,1A, so the last
statement is proved. �

Definition 3.2. A net of dual quadrics Ψ (parametrized by B) on P(A)
is defined as a surjective map Ψ : S2A → B. We also denote by Ψ the

composition A⊗A→ S2A
Ψ−→ B. Let Ψ> : B∗ → S2A∗ be the transpose of

Ψ and let VΨ = ker(Ψ). For [Γ] ∈ H consider JΓ,P3 . Given a general net Ψ
define

XΨ ={[Γ] ∈ H ⊂ Hilb3t+1(P3)|Ψ(H0(JΓ,P3(2))) = 0} =

={[Γ] ∈ H ⊂ Hilb3t+1(P3)|H0(JΓ,P3(2)) ⊂ VΨ}

Lemma 3.3. Given a general net of dual quadrics Ψ : S2A → B, XΨ is a
Fano threefold of type V22, equipped with a rank-2 vector bundle EH and a
rank-3 vector bundle UH.

Consider a net of dual quadrics Ψ as defined in 3.2. We take the ideal JΨ

of polynomials in R annihilated by Ψ i.e.

(3) JΨ = {p ∈ R | Ψ>(β)(p) = 0, ∀ β ∈ B∗}

where Ψ>(β) sits in S2A∗ and for ∂ ∈ S2A∗, p ∈ S2A we define ∂(p) by
apolarity action as at the beginning of this section.

Definition 3.4. For general Ψ define the Artinian ring RΨ = R/JΨ. Taking

its minimal graded free resolution, put V i,j
Ψ = TorRi (RΨ,C)j . As shown in
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[Sch01, Lemma 4.1], the minimal graded free resolution of RΨ reads

(4)

0← R/JΨ ← R
pΨ←− V 1,2

Ψ ⊗R(−2)
qΨ←− V 2,3

Ψ ⊗R(−3)⊕ V 2,4
Ψ ⊗R(−4)

rΨ←−
rΨ←− V 3,5

Ψ ⊗R(−5)← (V 4,6
Ψ )⊗R(−6)← 0

We have RΨ
1 ' A, RΨ

2 ' B and RΨ
d = 0 for d ≥ 3.

Recall by [Sch01, Corollary 4.3] that there is an isomorphism (V 4,6
Ψ )∗ '

V 2,4
Ψ . The dimensions of the spaces V i,j

Ψ are the following

dim(V 1,2
Ψ ) = 7 dim(V 2,3

Ψ ) = 8 dim(V 2,4
Ψ ) = 3 dim(V 3,5

Ψ ) = 8

There is a canonical isomorphism V 1,2
Ψ ' VΨ = ker(Ψ), indeed we have

V 1,2
Ψ = {p ∈ S2A | Ψ>(β)(p) = 0, ∀β ∈ B∗} ' ker Ψ. Thus we will identify

these spaces from now on.

Definition 3.5. Given a general net of dual quadrics Ψ as in 3.2 and the ring
RΨ defined in 3.4, consider the vector bundle ker(pΨ) over P(A) obtained
sheafifying pΨ

(5) 0→ ker(pΨ)→ V ⊗OP(A)(−2)
pΨ−→ OP(A) → 0

We get H0(ker(pΨ)(t)) = 0 for t < 3.

Lemma 3.6 (Schreyer). Given a general net of dual quadrics Ψ as in 3.2,
the sheafification of the map qΨ gives an instanton bundle EΨ defined by

(6) 0→ EΨ(−5)→ V 2,3
Ψ ⊗OP(A)(−3)

qΨ−→ ker(pΨ)→ 0

We have c2(EΨ) = 3 and h1(EΨ(t)) = 0 except for t = 0, 1, 2. Furthermore
we have the canonical isomorphisms

H1(ker(pΨ)) ' C H1(ker(pΨ)(1)) ' A H1(ker(pΨ)(2)) ' B

H1(EΨ(−1)) ' V 2,4
Ψ H1(EΨ) ' A∗ H1(EΨ(1)) ' C

There exists an isomorphism H1(Ω1
P(A)⊗EΨ) ' V 3,5

Ψ and the vector space

V 3,5
Ψ is endowed with a canonical alternating duality. Finally, the instanton

bundle EΨ is isomorphic to the cohomology of the monad

(V 2,4
Ψ )∗⊗OP(A)(−1)

rΨ−→ V 3,5
Ψ ⊗OP(A)

r>Ψ−→ V 2,4
Ψ ⊗OP(A)(1)

where the map rΨ is defined by the minimal graded free resolution (4) and

we recall (V 4,6
Ψ )∗ ' V 2,4

Ψ and (V 3,5
Ψ )∗ ' V 3,5

Ψ .

The relation between nets of quadrics and 3-instanton bundles has been
throughly investigated by Gruson and Skiti in [GS94]. We give account of
this in the following remark.

Remark 3.7 (Gruson–Skiti). For a general instanton bundle E on P(A)
with c2(E) = 3, the homomorphism H1(E(−1))⊗A → H1(E) gives a map
Ψ>E : H1(E(−1)) ' C3 ↪→ A∗⊗A∗ since H1(E) ' A∗. The map Ψ>E factors

through S2A∗ and for E ' EΨ it agrees with Ψ>. Then we may indifferently
start with a general net Ψ or with a general 3-instanton E .
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4. Nets of dual quadrics and nets of alternating 2-forms

Remark 4.1. Given a general net of dual quadrics Ψ as in 3.2, the space
TorR∗ (RΨ,C)∗ is endowed with a natural skew–commutative algebra struc-
ture, see [Sch01, Section 5]. In particular, we define the net of alternating

2-forms σΨ as the tor-multiplication ∧2VΨ → V 2,4
Ψ .

By construction, see [Eis95, exercise A.3.20], the map σΨ fits in the com-
mutative diagram below.

(7) ∧2V 1,2
Ψ ⊗R(−4)

∧2pΨ //

σΨ⊗ 1R
��

(V 1,2
Ψ ⊗R(−2))⊕2

��

(pΨ,pΨ)
// R

V 2,4
Ψ ⊗R(−4) qΨ

// V 1,2
Ψ ⊗R(−2) pΨ

// R

It will turn out from Theorem 4.5 that V 2,4
Ψ ' B∗ so we will be able to

write with no ambiguity σΨ as a map ∧2VΨ → B∗.

Let V be a complex vector space of dimension 7 and consider the Grass-
mannian G = G(C3, V ) endowed with the rank-3 universal subbundle UG.
Given a 3-dimensional complex vector space B, let σ : ∧2V → B∗ be a net
of alternating 2-forms.

Definition 4.2. Given a general net of alternating forms σ : ∧2V → B∗

define

Xσ = {C3 ⊂ V | σ>(b)(u ∧ v) = 0 for any u, v ∈ C3, for any b ∈ B}
The variety Xσ is a Fano threefold of type V22 given in G as the zero locus

of the section σ of B∗⊗∧2(U∗G).

Lemma 4.3 (Schreyer). Given a general net dual quadrics Ψ as in Defini-
tion 3.2, and the net of alternating 2-forms σΨ of Remark 4.1, we have an
isomorphism XΨ ' XσΨ. Under this isomorphism UH is taken to UG.

Remark 4.4. For a general net σ define the map ς : V ⊗B → V ∗ associated
to σ> : B → ∧2V ∗ by ς(u⊗ b)(v) = σ>(b)(u ∧ v) for u ∈ B and u, v ∈ V .
There is an isomorphism

HomX(UG, Q
∗
G) ' B

The map ς is the transpose of the map on global sections of the dual of
the surjective map pU,Q∗ : B⊗U → Q∗.

Proof. The definition of ς is clear. Considering the Koszul complex of X in
G one computes easily H0(X,S2 U∗G) ' S2 V ∗ and H0(X,∧2U∗G) ' cokerσ>,

obtaining Hom(UG, Q
∗
G) ' H0(U∗G⊗Q∗G) ' B. Now for b ∈ B, u ∈ UG,

q ∈ QG, we have pUG,Q
∗
G
(b⊗u)(q) = σ>(b)(u⊗ q). Therefore pUG,Q

∗
G

agrees
with ς. The map ς is surjective for general σ so pUG,Q

∗
G

is also surjective for
U∗G and QG are globally generated. �

Theorem 4.5. For a general net of dual quadrics Ψ we have the following
natural exact sequence

(8) 0→ YΨ
`1−→ A⊗V 2,3

Ψ
`2−→ B⊗VΨ

`3−→ V ∗Ψ → 0
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where the vector space YΨ and the map `2 are given by

YΨ = ker(σΨ : ∧2VΨ → V 2,4
Ψ )(9)

`2 : A⊗V 2,3
Ψ

qΨ−→ S2A⊗VΨ

Ψ⊗ 1VΨ−−−−−→ B⊗VΨ(10)

The map `3 is defined as ς as in Remark 4.4 with σ = σΨ. The map `1
is defined lifting the inclusion YΨ ↪→ S2A⊗VΨ to A⊗V 2,3

Ψ via the map qΨ

i.e. `1 makes the following diagram commutative

(11) A⊗V 2,3
Ψ
qΨ��

YΨ

`1
22eeeeeeeeeeeeeeeeeeeeeee

// ∧2VΨ ↪→ VΨ⊗VΨ
// S2A⊗VΨ

There is a canonical isomorphism V 2,4
Ψ ' B∗.

Proof. To prove the exactness in A⊗V 2,3
Ψ we need to use the definition of

σΨ in 4.1. In fact, considering the resolution of the ideal JΨ, taken in degree
4, we write

(12) 0→ A⊗V 2,3
Ψ ⊕ V 2,4

Ψ

qΨ−→ S2A⊗VΨ → S4A→ 0

and we need to consider the composition (10). Notice that the kernel
of Ψ⊗ 1VΨ

in S2A⊗VΨ is VΨ⊗VΨ. Moreover it is mapped to zero by
m : S2A⊗S2A → S4A, so it must lie in ∧2 S2A. Therefore we have
ker(Ψ⊗ 1VΨ

) = ∧2 S2A ∩ VΨ⊗VΨ = ∧2VΨ. So we obtain the following
exact sequence

(13) 0→ ∧2VΨ → A⊗V 2,3
Ψ ⊕ V 2,4

Ψ

Ψ⊗ 1VΨ
◦qΨ−−−−−−−→ B⊗VΨ

where the map `1 of the statement is the restriction to YΨ of the above map
∧2VΨ → A⊗V 2,3

Ψ ⊕ V 2,4
Ψ and we still have to prove that `1 takes image in

A⊗V 2,3
Ψ . Now Tor multiplication identifies the map σΨ : ∧2VΨ → V 2,4

Ψ as
the arrow making diagram (7) commutative. This diagram, taken in degree
4, boils down to the following commutative diagram.

∧2VΨ
//

σΨ
&&MMMMMMMMMMMM A⊗V 2,3
Ψ ⊕ V 2,4

Ψ
//

π
V

2,4
Ψ

��

S2A⊗VΨ

V 2,4
Ψ

This, together with (13), proves at the same time that the map `1 is

well defined in YΨ and that the the required sequence is exact in A⊗V 2,3
Ψ .

Consequently it is exact also in YΨ. In order to prove exactness in B⊗VΨ

we will need to use the instanton bundle EΨ.
Denote the kernel sheaf ker(pΨ) by K1

Ψ. Taking the symmetrized powers
of the sequence (5) we get

0→ K2
Ψ → S2 VΨ⊗O → O(4)→ 0(14)

0→ ∧2K1
Ψ(4)→ VΨ⊗K1

Ψ(2)→ K2
Ψ → 0(15)

0→ S2K1
Ψ(4)→ S2 VΨ⊗O → VΨ⊗O(2)→ 0(16)

0→ ∧2K1
Ψ(4)→ ∧2VΨ⊗O → K1

Ψ(4)→ 0(17)
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for some vector bundle K2
Ψ. In turn the symmetrized square of the sequence

(6) gives the following

0→ O(−6)→ ∧2V 2,3
Ψ ⊗O(−2)→ K3

Ψ → 0(18)

0→ K3
Ψ → V 2,3

Ψ ⊗K1
Ψ(1)→ S2K1

Ψ(4)→ 0(19)

for some vector bundle K3
Ψ. So we get the the following commutative dia-

gram with exact rows and columns.

0 // S2 VΨ
// S4A // // H1(K2

Ψ)

0 // VΨ⊗VΨ
//

OO

S2A⊗VΨ

Ψ⊗ 1VΨ // //

OO

B⊗VΨ

OOOO

0 // ∧2VΨ
//

OO

A⊗V 2,3
Ψ ⊕ V 2,4

Ψ
// //

OO

H1(∧2K1
Ψ(4))

OO

Here the left vertical column is the canonical decomposition V ⊗ 2
Ψ into

symmetric and skew–symmetric tensors, the central vertical row is (12) and
the bottom row is the cohomology sequence of (17). This yields two presen-
tations of H1(K2

Ψ) (the vertical one from (15) and the horizontal one from
(14)).

On the other hand K2
Ψ defined in (14) and S2K1

Ψ(4) fit into the following
short exact sequence

(20) 0→ S2K1
Ψ(4)→ K2

Ψ → K1
Ψ(4)→ 0

Summing up we can then build the following commutative diagram (we
omit surrounding zeroes for brevity)

(21) K3
Ψ

//

��

V 2,3
Ψ ⊗K1

Ψ(1) //

��

S2K1
Ψ(4)

��

K4
Ψ

//

��

V 2,3
Ψ ⊗VΨ⊗O(−1) //

��

K2
Ψ

��

EΨ(−1) // V 2,3
Ψ ⊗O(1) // K1

Ψ(4)

where the top (resp. bottom) horizontal row is (19) (resp. (6)). The central
row defines some bundle K4

Ψ as the kernel of the composition of the two

projections V 2,3
Ψ ⊗VΨ⊗O(−1)→ VΨ⊗K1

Ψ(2) and VΨ⊗K1
Ψ(2)→ K2

Ψ of (6)
and (15). The right (resp. central) vertical column comes from (20) (resp.
comes from (5)) . Use (18) to show H2(K3

Ψ) ' S2A∗ and Lemma 3.6 for

H1(EΨ(−1)) ' B∗. Now taking cohomology in the diagram (21) we get

0 // A⊗V 2,3
Ψ

// A⊗V 2,3
Ψ ⊕ V 2,4

Ψ
// //

��

B∗ ' H1(EΨ(−1))

Ψ>
��

0 // A⊗V 2,3
Ψ

// H1(S2K1
Ψ(4)) // //

����

S2A∗ ' H2(K3
Ψ)

����

H1(K2
Ψ)

' // V ∗Ψ
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This provides the following isomorphisms

V 2,4
Ψ ' B∗

V ∗Ψ ' coker(S2 VΨ → S4A) ' H1(K2
Ψ)

V ∗Ψ ' coker(A⊗V 2,3
Ψ → B⊗VΨ) ' H1(K2

Ψ)

Thus we proved the exactness of the sequence (8). �

5. Polar hexagons to a plane quartic

5.1. The Variety of Sums of Powers. Let B be a 3-dimensional C-vector
space and f ∈ S4B be a plane quartic. Put P̌2 = P(B∗). According to Mukai
[Muk92], we define the subvariety of Hilb6(P̌2) consisting of polar hexagons
to f .

Definition 5.1. Given a general quartic form f ∈ S4B = H0(P2,O(4))
define the variety of sums of powers as

VSP(6, f) = {f1, . . . , f6 | f4
1 + . . .+ f4

6 = f}
where the closure is taken in Hilb6(P̌2).

Lemma 5.2 (Mukai, Schreyer). For general f the variety VSP(6, f) is a
Fano threefold of type V22. Given a net of dual quadrics Ψ as in Definition
3.2, there exists a quartic such that VSP(6, f) ' XΨ.

Remark 5.3. Considering the apolarity action of T ∗ on T (cfr. section 3)
we may view f as the map f : B∗ → S3B taking ∂ to ∂(f). This map
is injective for general f so we can define Vf = S3B/f(B∗). Under the

hypothesis of Lemma 5.2, there is a natural isomorphism VΨ ' S3B/f(B∗).

Definition 5.4. Let f be a general plane quartic and let X = VSP(6, f).
Then there is a rank-3 vector bundle UVSP (resp. a rank-5 vector bun-
dle KVSP) on VSP(6, f), whose fiber over an element Λ = (f1, . . . , f6) ∈
VSP(6, f) is 〈f3

1 , . . . , f
3
6 〉/f(B∗) (resp. the fiber is 〈f4

1 , . . . , f
4
6 〉/f). This

bundle embeds X into G(C3, Vf ) (resp. into G(C3, S4B/f)) (see Remark
5.3). Denote by Q∗VSP the restriction to X of the universal rank-4 quotient
bundle on G(C3, Vf ).

5.2. The Hilbert Scheme. For any Λ ∈ Hilb6(P̌2) we can consider the
resolution of the ideal JΛ,P̌2 over the ring T ∗ = C[B∗]. For a general length-
6 subscheme Λ the resolution reads

0← JΛ,P̌2 ← T ∗(−3)4 ← T ∗(−4)3 ← 0

The resolution has this shape whenever no conic of P̌2 passes through Λ
and no line cuts a length-3 subscheme of Λ. This open set, which we denote
by Hilb6(P̌2)◦, embeds into G(C4,S3B∗) by means of a rank-4 vector bundle
Q∗L. The fiber of Q∗L over Λ defined as TorT

∗
1 (T ∗/JΛ,P̌2 ,C)3 ' C4 i.e. we

take the space of cubics vanishing on Λ. We have H0(QL)∗ ' S3B∗.
Moreover we have a rank-3 vector bundle UL on Hilb6(P̌2)◦ whose fiber

over Λ is the 3-space of first–order syzygies of Λ. Equivalently we take
TorT

∗
2 (T ∗/JΛ,P̌2 ,C)4 ' C3. We have H0(U∗L )∗ ' S3,1B∗ ' ker(S3B∗⊗B∗ →

S4B∗). One computes dim(S3,1B∗) = 15. The bundle U∗L provides an
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embedding Hilb6(P̌2)◦ ⊂ G(C3,S3,1B∗). The following Lemma is proved in
[Sch01, Theorem 2.3] except for the last statement that follows from [Sch01,
Theorem 2.6].

Lemma 5.5 (Schreyer). Let f ∈ S4B be a general quartic and, making use
of the apolarity pairing (cfr Section 3), define the ideal

Jf = {s ∈ T ∗ | s(f) = 0}
Then the ring (T ∗)f = T ∗/Jf is Artinian Gorenstein and its minimal

graded free resolution over T ∗ takes the form

(22) 0← (T ∗)f ← T ∗ ← V 1,3
f ⊗T ∗(−3)← V 2,4

f ⊗T ∗(−4)← T ∗(−7)← 0

where V i,j
f = TorT

∗
i ((T ∗)f ,C)j. We have dim(V1,3

f ) = dim(V2,4
f ) = 7 and

there is a canonical duality (V 1,3
f )∗ ' V 2,4

f .

The map ς>f : V 2,4
f → B∗⊗V 1,3

f defined by (22) is skew–symmetric and

induces σ>f : B → ∧2(V 2,4
f )∗ (cfr. Remark 4.4). We have Xσf ' VSP(6, f)

(see Definitions 4.2 and 5.1).

Thus, the rank-4 bundle QL provides an embedding X ↪→ G(C4, V 1,3
f )

while the rank-3 bundle U∗L gives X ↪→ G(C4, V 2,4
f ) where V 1,3

f and V 2,4
f are

dual 7-dimensional complex vector spaces.

Remark 5.6. After restriction to X = VSP(6, f) there are natural iso-
morphisms Q∗VSP ' Q∗L and UVSP ' UL. On X = VSP(6, f) we have

H0(QL)∗ ' V 1,3
f ' ker(f> : S3B∗ � B), H0(U∗L )∗ ' V 2,4

f ' Vf .

Proof. The isomorphism V 1,3
f ' ker(f> : S3B∗ � B) is clear, indeed, by

the definition of Jf , the cubic forms that generate Jf (i.e. the space V 1,3
f by

Lemma 5.5) are those annihilated by f> : S3B∗ � B under the apolarity

pairing (i.e. the space ker(f>)). Also, we have H0(QL)∗ ' V 1,3
f since by

Lemma 5.5 the cubic forms vanishing on a length-6 subscheme Λ with [Λ] ∈
VSP(6, f) lie in V 1,3

f .

Now, given Λ = (f1, . . . , f6) ∈ VSP(6, f), the fiber of Q∗L,Λ consists of

those elements in S3B∗ (and actually in V 1,3
f ⊂ S3B∗) that vanish identically

on Λ i.e. that annihilate f3
1 , . . . , f

3
6 under the apolarity pairing (cfr. Remark

5.3). Equivalently we take the degree-3 generators of the ideal JΛ,P̌2 i.e.
Q∗VSP,Λ. Thus we have Q∗L,Λ ' Q∗VSP,Λ.

Then we also have UL ' UVSP since since they are both isomorphic to
ker pO,QVSP

. By virtue of the duality in Lemma 5.5, we also have H0(U∗)∗ '
V 2,4
f ' (V 1,3)∗f ' Vf . �

5.3. The variety of Kronecker modules. Following Drezet we introduce
the following variety of Kronecker modules. Consider the space of 3 × 4
matrices with entries in B∗ and the G.I.T. quotient

K = M3×4(B∗)//SL(3)× SL(4)

An element [γ] ∈ K is represented by γ : Vs(γ) → Vt(γ)⊗B∗ where Vs(γ) '
C3 and Vt(γ) ' C4 denote the source and target vector spaces of the map γ.
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The variety K has been studied in detail in [Dre88]. It is endowed with two
natural bundles, Q∗K (resp. UK) of rank 4 (resp. 3), whose fiber over [γ] ∈ K
is Vs(γ) (resp. Vt(γ)). The bundles UK and Q∗K are related by

HomK(UK, Q
∗
K) ' B

Lemma 5.7 (Drezet). There is a birational map δ : Hilb6(P̌2) 99K K de-
fined over Hilb6(P̌2)◦ associating to Λ the map γ : TorT

∗
2 (T ∗/JΛ,P̌2 ,C)4 →

B∗⊗TorT
∗

1 (T ∗/JΛ,P̌2 ,C)3. Denote by K◦ the open subset of K isomorphic

via δ to Hilb6(P̌2)◦.

Notice that under the isomorphism δ|Hilb6(P̌2)◦ , the bundle UK is pulled

back to UL and Q∗K is pulled back to Q∗L.

Lemma 5.8. Define PK as PK = coker(iUK,Q
∗
K

: UK → B∗⊗Q∗K). Then
PK is locally free of rank 9 over K◦. The fiber of PK is identified with
H0(JΛ,P̌2(4))/f .

The bundle P ∗K is globally generated with H0(P ∗K) ' S4B. The zero locus
in G(3× 4, B∗) of its general section f is a Fano threefold of type V22 of the
form VSP(6, f) defined in 5.1.

Proof. The bundle P ∗K is globally generated since QK and U∗K are. Recall

that H0(QL)∗ ' S3B∗ and H0(U∗L )∗ ' S3,1B∗. Computing global sections

of P ∗K via the map δ defined in 5.7 we get the H0(P ∗K) ' S4B. Now the

condition for a point Λ ∈ Hilb6(P̌2) to lie in X is that the generators of its
ideal, as elements of S3B∗, multiplied by any linear form ∂ ∈ B∗, map to
zero under the evaluation with f ∈ (S4B∗)∗ ' S4B.

This means that Λ lies in the zero locus of the section f of the ker-
nel bundle P ∗K, since the map induced on global sections by the evaluation
B⊗QK → U∗K is just the multiplication m in T . So the zero locus of a
section f of P ∗K is isomorphic to the variety VSP(6, f). �

Remark 5.9. In the framework of Lemma 5.8, there exists a rank-5 bundle
KK = ker(pO,P ∗K : H0(P ∗K)⊗OK → P ∗K). Under the identifications of Remark
5.6 we have an isomorphism on X, KVSP ' KK.

Proof. It is easy to show that there exists the following commutative diagram
with exact rows and columns (we omit zeroes surrounding all the diagram
for brevity).

(23) sl(B) // B∗⊗B
χB // C

S3,1B∗

OO

// B∗⊗S3B∗
m //

1B∗ ⊗ f

OO

S4B∗

f

OO

Vf

OO

ς>
// B∗⊗V ∗f //

OO

ker(f)

OO

Here f is considered alternatively as a map S3B∗ → B (in the central
column) or as an element of S4B ' (S4B∗)∗ (in the right column) and the
bottom row is defined by Remark 4.4. Since K∗VSP is globally generated
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with H0(K∗VSP)∗ ' ker f ⊂ S4B∗ by Definition 5.4, the bottom row of (23)
proves the following

(24) KVSP ' ker(pUVSP,Q
∗
VSP

: B⊗UVSP → Q∗VSP)

On the other hand by definition of KK we have

(25) KK ' ker(pUK,Q
∗
K

: B⊗UK → Q∗K)

Thus we conclude keeping in mind Lemma 5.7. �

6. Bundles on X

Throughout the rest of the paper, X will be a Fano threefold of type
V22 defined by a general net of dual quadrics Ψ as X = XΨ according
to Definition 3.2. In particular, we fix a 3-dimensional (respectively, 4-
dimensional) C-vector space B (respectively, A). We will keep in mind the
isomorphisms of Lemmas 4.3, 5.2 and of Remarks 5.3, 5.6 and 5.9.

Then, we denote by U , (resp. Q∗ and K) the rank-3 (resp. rank-4 and
rank-5) bundles on X defined by any of the constructions of Sections (3),

(4) and (5). We will often drop the subscript Ψ e.g. V 2,3
Ψ = V 2,3 and we will

write E for the bundle EH restricted to X.

Lemma 6.1. There are the following natural isomorphisms

Hom(U,Q∗) ' B Hom(E,U) ' A∗ Hom(K,U) ' B∗(26)

Furthermore there are the following natural exact sequences

0→ K → B⊗U → Q∗ → 0(27)

0→ U → B∗⊗Q∗ → P → 0(28)

0→ K → H0(K∗)∗⊗O → P ∗ → 0(29)

0→ U → V ⊗O → Q∗ → 0(30)

Finally we have the following Chern classes

c1(U) = −1 c2(U) = 10 c3(U) = −2

c1(Q∗) = −1 c2(Q∗) = 12 c3(Q∗) = −4

c1(K) = −2 c2(K) = 40 c3(K) = −20

c1(P ) = −2 c2(P ) = 48 c3(P ) = −36

Proof. It is straightforward to compute the Chern classes of the bundles
involved in our statement. Further, the isomorphisms in (26) follow the
from Remarks 5.9, 4.4 and Lemma 3.1 by restriction to X, as well as the
exact sequences (27). The exact sequence (28) follows from Lemma 5.8.
Combining (27) and (28) one obtains the following commutative diagram
with exact rows and columns (we omit surrounding zeroes for brevity)

U
iU,Q∗

//

iU,O
��

B∗⊗Q∗
1B∗ ⊗ iQ∗,O

��

pQ∗,P
// P

iP,O
��

V ⊗O
pO,Q

��

ς>⊗ 1O // B∗⊗V ∗⊗O //

1B∗ ⊗ pO,U∗
��

coker(ς>)⊗O ' H0(K∗)⊗O
pO,K∗

��

Q
iQ,U∗

// B∗⊗U∗ pU∗,K∗
// K∗
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where ς is defined in Remark 4.4 and the vertical arrows in the first two
columns are the obvious ones. Then the last column yields the exact se-
quence (29). �

Lemma 6.2. The bundles U , Q, K are aCM stable sheaves on X.

Proof. It follows from Definition 4.2 that X is the zero locus in G(C3, V ) of a
section of the globally generated bundle U(1)3. Taking the Koszul complex
associated to this section tensorized by U(t) and using Bott theorem (see
[Bot57]) over G(C3, V ) one computes the required vanishing for U and Q in
order to show that they are aCM modules. Using the exact sequence (27)
it is immediate to show that K is also an aCM module.

Since c1(U) = c1(Q∗) = −1 and h0(U) = h0(Q∗) = 0, and since U∗ and Q
are globally generated, it follows easily from Lemma 2.4 that U and Q are
stable. From the exact sequence (27) one sees that h0(K) = h0(∧2K) = 0.
Finally from ∧pK(1) ' ∧5−pK∗(−1) and again using (27) it follows that
h0((∧3K)n) = h0((∧4K)n) = 0. Thus we conclude by Lemma 2.4. �

Lemma 6.3. The bundle E∗ is globally generated with H0(E∗)∗ ' V 2,3 '
C8. There is a rank-6 bundle L defined by the exact sequence

(31) 0→ E → V 2,3⊗O → L∗ → 0

There exists a rank-10 vector bundle M with H0(M∗)∗ ' S3A, whose
fiber over [Γ] ∈ X = XΨ is H0(JΓ,P(A)(3)) ' C10 according to Definition
3.2. There are the exact sequences

0→ E
iE,U−−−→ A⊗U

pU,M−−−→M → 0(32)

0→ V 2,3 → A⊗V m−→ S3A→ 0(33)

where (33) is obtained dualizing global sections of the dual of (32) and m is
the composition of the obvious maps A⊗V ↪→ A⊗S2A→ S3A.

Finally, M∗ is globally generated and there exists a rank-10 vector bundle
N defined by the exact sequence

(34) 0→M → S3A⊗O → N∗ → 0

Proof. By the discussion in Section 3 and Definition 3.4, the fiber of the
bundle E over any point of X embeds in V 2,3

Ψ ' C8, so H0(E∗)∗ ' V 2,3
Ψ and

E∗ is globally generated and we have the exact sequence (31).
The map E → A⊗U in (32) is obtained globalizing qΨ in the res-

olution (4). Equivalently over any [Γ] ∈ Hc we take the linear map
A⊗Tor2(R/JΓ,P3 ,C)3 → Tor1(R/JΓ,P3 ,C)2 given by the 2 × 3 matrix of
linear forms whose 2 × 2 minors define Γ. Therefore (33) follows at once
from (4).

Finally, it is clear that M∗ is globally generated and rk(N) = dim(S3A)−
10 = 10. �

Proposition 6.4. We have Hom(∧2U,E) ' A∗ and we define the following
maps (cfr. Lemma 6.1)

e1 = i∧2U,E : ∧2U → A⊗E(35)

e2 = Ψ ◦ iE,U : A⊗E → B⊗U(36)

e3 = pU,Q∗ : B⊗U → Q∗(37)
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Then the following sequence is exact

(38) 0→ ∧2U
e1−→ A⊗E e2−→ B⊗U e3−→ Q∗ → 0

Proof. The dual of all the bundles appearing in the sequence (38) are globally
generated, hence the sequence is exact if we prove that transpose of the maps
e1, e2 and e3 induce an exact sequence on global sections of the dual bundles.
Denote these maps by ej for j = 1, 2, 3.

It is clear that e3
> = `3 of Theorem 4.5. Since iE,U maps the syzygy

of a twisted cubic Γ with [Γ] ∈ X to the 2 × 3 matrix of linear forms in
the minimal graded free resolution of JΓ,P3 (see Lemma 6.3), the map on

global section A⊗H0(E∗)∗ → S2A⊗H0(U∗)∗ induced by iE,U agrees with

qΨ. Therefore we have e2
> = `2.

Now recall that Hom(∧2U,E) ' Hom(E∗,∧2U∗) ' Hom(E,U) ' A∗,
(cfr. Lemma 6.1 and Lemma 3.1), thus we have the map i∧2U,E : ∧2U →
A⊗E. Since σ = σΨ by Definition 4.2 and Lemma 4.3 we have H0(∧2U∗)∗ '
ker(σ : ∧2V → B∗) ' YΨ. Thus we have the map e1

> : YΨ → A⊗V 2,3
Ψ , and

we need to prove that is coincides with `1. Observe that the map i∧2U,E is
defined by restriction from H of the map i∧2UH,EH

. Now by Lemma 3.1 i∧2U,E

is induced by the diagram (1). On the other hand by Theorem 4.5 i∧2U,E

is induced by the the diagram (11). Since the diagram (11) is obtained
restricting to X the global sections spaces appearing in the diagram (1), we
have e1

> = `1. Thus we conclude by Theorem 4.5. �

Remark 6.5. We can define a map ψ : A → A∗⊗B associated to the net
Ψ> : B∗ → S2A∗. Indeed we put ψ(a)(b⊗ ∂) = Ψ(∂(a⊗ b)) for a, b ∈ A and
∂ ∈ B∗. In turn we have a map

(39) ψ : A⊗U → A∗⊗Q∗

and the map ψ> : A⊗Q → A∗⊗U∗ is defined by the formula
ψ>(a⊗ q)(b⊗u) = Ψ(a⊗ b)(u)(q) under the identification B ' Hom(U,Q∗).

Lemma 6.6. Given a general net of dual quadrics Ψ : A⊗A → B, using
σ = σΨ of Remark 4.1 define a map κ : A⊗V → A∗⊗V ∗ by

(40) κ(a⊗u)(b⊗ v) = σ>(Ψ(a⊗ b))(u⊗ v)

The map κ is induced on global sections by ψ. There is an exact sequence

0→ V 2,3 qΨ−→ A⊗V κ−→ A∗⊗V ∗
q>Ψ−→ (V 2,3)∗ → 0

Furthermore, there is a skew–symmmetric duality κ : S3A → S3A∗ such
that the following diagram is commutative

(41) A⊗V
κ

��

m // S3A

κ
��

A∗⊗V ∗ S3A∗
m>

oo

Proof. The definition of κ is clear and implies κ(a⊗u)(b⊗ v) =
κ(b⊗u)(a⊗ v) = −κ(b⊗ v)(a⊗u). Since κ>(a⊗u)(b⊗ v) =
κ(b⊗ v)(a⊗u), we have that κ is skew–symmetric.
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Taking the minimal graded free resolution (4) of RΨ in degree 3 and 4 we
get the exact sequences (33) and (12), and we denote, for the sake of this
proof, by q3

ψ (resp. by q4
ψ) the map qΨ in degree 3 (resp. in degree 4).

Now, by the exact sequence (8) we have
∑
αi,jσ

>(Ψ(ai⊗ b))(u⊗ vj) =
0 if

∑
αi,jb⊗ ai⊗ vj ∈ Im(q4

Ψ), for some coefficients αi,j . Then∑
αi,jσ

>(Ψ(ai⊗ b))(u⊗ vj) = 0 if
∑
αi,jai⊗ vj ∈ Im(q3

Ψ). Thus there ex-

ists a map φ : S3A → A∗⊗V ∗ with φ ◦m = κ. On the other hand, again
by (8), if

∑
αi,jκ(ai⊗uj) = 0 then

∑
αi,j ai⊗uj ∈ Im(q3

Ψ). It follows that
φ is injective.

Now, since (q3
Ψ)> ◦ κ = 0, there exists a map κ such that m> ◦ κ = φ.

This map is bijective since φ is injective and it is skew–symmetric since κ
is. �

Lemma 6.7. We have the following exact sequences.

0→ ∧2U → A⊗E → K → 0(42)

0→M → A∗⊗Q∗ → L→ 0(43)

Furthermore, in the notation of Lemmas 6.3 and 6.6, there is a natural
isomorphism η : M ' N which makes the following diagram commutative

(44) 0 // M
iM,O

//

η

��

S3A⊗O
pO,N∗

//

κ
��

N∗

η>

��

// 0

0 // N
iN,O

// S3A∗⊗O
pO,M∗

// M∗ // 0

Proof. The exact sequence (42) follows immediately by (38) and (27).
It is easy to check that the exact sequences (30), (31), (32), (33) and (34)

induce the following exact commutative diagram (ommitting surrounding
zeroes)

(45) E
iE,O

��

iE,U
// A⊗U

1A⊗ iU,O
��

pU,M
// M

iM,O
��

V 2,3⊗O
qΨ //

pO,L∗
��

A⊗V ⊗O m //

1A⊗ pO,Q
��

S3A⊗O
pO,N∗

��

L∗ // A⊗Q // N∗

thus the dual of the bottom row provides (43).
Further, since the diagram (41) is commutative, and since the homomor-

phism κ is induced by the map ψ (cfr. Lemma 6.6), we get the following
exact commutative diagram (again we omit surrounding zeroes)

(46) M
iM,O

��

κ◦iM,Q∗
// A∗⊗Q∗

1A∗ ⊗ iQ∗,O
��

pQ∗,L
// L
iL,O

��

S3A∗⊗O
m> //

pO,N∗◦κ
��

A∗⊗V ∗⊗O
q>Ψ

//

1A∗ ⊗ pO,U∗
��

(V 2,3)∗⊗O
pO,E∗

��

N∗ // A∗⊗U∗ // E∗
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where the central column is the dual of (30), tensorized with 1A, and the
last column is induced by the first two (and in turn it is the same as the
dual of (31)).

It is easy to prove that the two maps in the bottom row of (45) (resp.
of (46)) agree with iL∗,Q and pQ,N∗ (resp. agree with iN∗,U∗ and pU∗,E∗).

Since pU∗,E∗ = i>E,U , the bottom row of (46) and the first row of (45) give

the isomorphism η. It is clear also that η is induced by κ, so that (44) is
commutative. �

Tracing back the above proof, it is straightforward to prove the following
corollary.

Corollary 6.8. There are the following natural isomorphisms

Hom(E,K) ' A(47)

Hom(E,Q∗) ' coker(ψ)(48)

Hom(Q∗, L) ' A∗(49)

Hom(M,Q∗) ' A(50)

Hom(U,L) ' coker(ψ)(51)

Hom(U,M) ' A(52)

Lemma 6.9. The bundle E is stable aCM with c1(E) = −1 and c2(E) = 7.
The bundle L is also stable and aCM.

Proof. The invariants of E are clear by Lemma The Cohen–Macaulay con-
dition for E follows (42) and Lemma 6.2. The bundle L is also aCM by
the dual of (31) since the map pO,E∗ is surjective on global sections for any
twist.

Stability of E and L is obvious from Lemma 2.4 and (31) since c1(E) =
c1(L) = −1. �

7. Resolution of the diagonal

Define the collection (G3, . . . , G0) = (E,U,Q∗,O).

Lemma 7.1 (Kuznetsov). The collection (G3, . . . , G0) = (E,U,Q∗,O) is
strongly exceptional i.e. Extp(Gj , Gi) = 0 if p > 0 or if i > j and
Hom(Gi, Gi) ' C.

For the original proof we refer to [Kuz96]. However it is easy to reprove
Lemma 7.1 using Corollary 6.8 and the exact sequences of Lemmas 6.1, 6.3
and 6.7. The dual collection is defined as (G3, . . . , G0) = (E,K,U,O).

Theorem 7.2. The general variety X admits the following resolution of the
diagonal

(53) P0 P1 P2 P3

0 // E � E
d0 // U �K

d1 // Q∗ � U
d2 // O // O∆
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where the arrows are given by the following natural elements

Hom(P0,P1) ' A∗⊗A 3 1A

Hom(P1,P2) ' B ⊗B∗ 3 1B

Hom(P2,P3) ' V ∗ ⊗ V 3 1V

Proof. Let us look at the maps in more detail

d2 : Q∗ � U
d2 //

iQ∗,O�iU,O
��

O

V ⊗V ∗⊗O �O
χV ⊗ 1O�O

55kkkkkkkkkkkkkkkkk

d1 : U �K
d1 //

1U�iK,U

��

Q∗ � U

B⊗U � U
pU,Q∗ ⊗ 1U

55kkkkkkkkkkkkkk

d0 : E � E
d0 //

iE,U�iE,U

��

U �K

1U�iK,U

��

A⊗A⊗U � U
Ψ⊗ 1U�U

// B⊗U � U

The map d2 is the restriction from G = G(C3, V ) of a map d̃ : UG �
Q∗G → OG and it is a classical fact that coker(d̃) ' O∆(G). Thus we have
coker(d2) ' O∆ and the sequence is exact in P3.

Let us now look at the composition in P2. It is convenient to prove
exactness for the dualized maps which we then write

O
d>2 //

iO,U�iO,U

��

Q� U∗

iQ,U∗�1U
��

d>1 // U∗ �K∗

V ⊗V ⊗U∗ � U∗
σ⊗ 1U∗�U∗ // B∗⊗U∗ � U∗

1U ⊗ pU∗,K∗

55kkkkkkkkkkkkkk

This yields

ker(d>1 ) = Q� U∗ ∩ U∗ �Q ⊂ B∗⊗U∗ � U∗

Then the mixed tensor products can be separated by factoring out the
identity over U∗. If τ is the involution interchanging factors in X ×X, then
we have the symmetry U∗ �Q = τ∗(Q� U∗). So exactness in P2 is proved
if we prove surjectivity of the map p below

(54) V ⊗O
p

//

1V ⊗ iO,U∗

��

Q

iQ,U∗

��

V ⊗V ⊗U∗
σ⊗ 1U∗

// B∗⊗U∗
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Hence we are done if we prove that the map p is the universal quotient
(which is clearly surjective) i.e. if we prove that pO,Q∗ makes the diagram
(54) commutative when replacing p. And indeed this holds since any mor-
phism b : U → Q∗ comes from a skew–symmetric homomorphism b : V → V ∗

of the ambient space and we have σ>(b)(u ∧ v) = b(v)(u).

Let us turn to P1. Looking at the definition we have

ker(d2) = U �K ∩K � U ⊂ B⊗U � U

Just as in the case of P2 we are allowed to separate the mixed tensor prod-
ucts by factoring out the identity over U and so reduce to prove surjectivity
below

(55) A⊗ E
1A⊗ iE,U

��

q
// K

iK,U

��

A⊗A⊗U
1A⊗ 1A⊗Ψ

// B⊗U
pU,Q

��

Q∗

Thus we are done if we prove that the following sequence is exact in B⊗U

0→ ∧2U → A⊗E
Ψ◦iE,U−−−−→ B⊗U

pU,Q∗−−−→ Q∗ → 0

But this is proved in Proposition 6.4. �

By the classical argument in [Bei78], we get the following corollary.

Corollary 7.3. Any coherent sheaf F on X is functorially isomorphic to
the cohomology a complex CF whose terms are given by

CkF =
⊕
i−j=k

Hi(F ⊗Gj)⊗Gj

Alternatively F is functorially isomorphic to the cohomology a complex
DF whose terms are given by

DkF =
⊕
i−j=k

Hi(F ⊗Gj)⊗Gj

We have the following standard consequence of Theorem 7.2, namely
Castelnuovo–Mumford regularity associated to the collection (G3, . . . , G0).

Corollary 7.4. Let F be a coherent sheaf on X and suppose Hp(Gp⊗F) = 0
for p > 0. Then F is globally generated.

Proof. Again by a standard argument, one looks at the term D0
F in the

complex DF . which is isomorphic to H0(F)⊗O in the hypothesis. On the
other hand, in the complex DF , any differential with source in H0(F)⊗O
vanishes. Therefore the evaluation map pO,F is surjective and the statement
is proved. �
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8. Further remarks

Remark 8.1. The diagram (55) can be completed to the following exact
diagram, where we omit surrounding zeroes for brevity.

∧2U
i∧2U,E

//

i∧2U,U

��

A⊗E
1A⊗ iE,U

��

pE,K
// K

iK,U

��

(V ⊕ ∧2A)⊗U //

j

��

A⊗A⊗U
Ψ⊗ 1U //

1A⊗ψ
��

B⊗U
pU,Q

��

sl(A)⊗Q∗ //

pQ∗,L

��

A⊗A∗⊗Q∗
χA⊗ 1Q∗

//

1A⊗ pQ∗,L
��

Q∗

A⊗L A⊗L

where j is defined by the inclusion V ⊕∧2A ↪→ A⊗A followed by ψ, defined
by (39) in Remark 6.5.

Proof. Exactness of the horizontal sequences is straightforward. The central
column follows from the exact sequences (32) and (43). The right column
is (27). The left column is induced by the central and right ones, where

the isomorphism Hom(∧2U,U) ' ker(A⊗A Ψ−→ B) ' V ⊕ ∧2A, is clear.
Commutativity of all the squares is left to the reader. �

8.1. Helices. We refer to [hel90] and [Bon90] for general definitions and
properties concerning helices and to [Nog94] for the study of helices on Fano
threefolds.

Consider the collection (G3, . . . , G0) of Section (7) (strongly exceptional
by Lemma 7.1) and extend it defining Gj+4k = Gj ⊗O(−1) for any j =
0, 1, 2, 3 and any k. We will show in the following remark that Gj+1 '
LGj LGj−1 LGj−2 Gj−3, for any j, according to Definition 2.1. All of the
sequences from (56) to (59) below are obtained resolving Gi⊗O(1) with
respect to the basis (G3, . . . , G0) according to Corollary 7.3.

Remark 8.2. There are the following exact sequences.

O(−1)
iO(−1),E−−−−−→ V 2,3⊗E

h0
2−→ ker(ς)⊗U

h0
1−→ V ⊗Q∗

pQ∗,O−−−−→ O(56)

Q∗(−1)
iQ∗,O−−−→ V ∗⊗O(−1)

h1
2−→ A⊗E

h1
1−→ B⊗U

pU,Q∗−−−→ Q∗(57)

U(−1)
iU,Q∗−−−→ B∗⊗Q∗(−1)

h2
2−→ ker(ς)∗⊗O(−1)

h2
1−→ A∗⊗E

pE,U−−−→ U(58)

E
iE,U−−−→ A⊗U

h3
2−→ A∗⊗Q∗

h3
1−→ (V 2,3)∗⊗O

pO,E∗−−−−→ E∗(59)

where the first map in each sequence is injective and the last one is surjective.
In (56) ς is defined in Remark 4.4, h0

1 is the defined by the composition
ker(ς)⊗U ↪→ V ⊗B⊗U followed by 1V ⊗ pU,Q∗ and h0

2 is given by

V 2,3⊗E
qΨ⊗ iE,U−−−−−−→ V ⊗A⊗A⊗U 1V ⊗Ψ⊗ 1U−−−−−−−→ V ⊗B⊗U
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In (57), h1
1 is the composition

A⊗E
1A⊗ ıE,U−−−−−−→ A⊗A⊗U Ψ⊗ 1U−−−−→ B⊗U

while h1
2 is identified with the projection V ∗⊗O(−1)→ ∧2U ' U∗(−1).

In (58) we have ker(pE,U ) ' K∗(−1) by (42). This gives back the isomor-

phisms ker(ς)∗ ' coker(ς>) ' H0(K∗), established in the proof of Lemma
6.1. and the map h2

1. Then h2
2 is given by (28).

In (58) we have to glue together the exact sequences (31), (32) and (43).

8.2. Quasi–homogeneous case. In this section we restrict our attention
to U22, the Mukai–Umemura 3-fold i.e. the SL(2)-quasi homogeneous case.
This is throughly studied in [MU83], [AF93], [Muk92]. Let us denote Y1 the
standard representation space of SL(2) and Yn the weight−n representation,
so that and Yn = Sn Y1.

In terms of plane quartics U22 corresponds to a double conic. The action
of SO(3) preserves this conic so we may view B as Y2 and the stabilizer in
SO(3) of a polar hexagon is the order 60 icosahedral group, isomorphic to
A5.

In terms of the net Ψ of dual quadrics, U22 corresponds to a net containing
a twisted cubic in the dual space, on which SL(2) naturally acts. In this case
there are isomorphisms of SL(2)-modules

B ' Y2 A ' Y3(60)

The net of dual quadrics Ψ is itself equivariant. Therefore by the isomor-
phism S2A ' Y6⊕Y2 we deduce V ' Y6. Further, the resolution of RΨ takes
the form (3), so one computes V 2,3 ' Y7. The instanton EΨ of Section (3) is
endowed with an SL(2)-action in this case and H1(ΩP(A)⊗EΨ) is isomorphic
to Y1 ⊕ Y5.

The threefold U22 also corresponds to the (smooth) closure of the SL(2)-
orbit of the polynomial x11 y+ 11x6 y6−x y11 in Y12. This appeared first in
[MU83]. The roots of this polynomial can be drawn in the Riemann sphere
when to form the vertices of a regular icosahedron. For a quick sketch of
how this relates to the other Fano threefolds with b3 = 0 see also [Fae03].

Proposition 8.3. The variety U22 admits the resolution of the diagonal
(53), where all maps are SL(2)-equivariant.

Proof. The maps we have defined over the product X × X in Theorem
7.2 are equivariant under the SL(2)-action. Since di represents the iden-
tity in HomX×X(Pi,Pi+1) ' Yw(i)⊗Yw(i), where w(0) = 3, w(1) = 2,
w(2) = 6, it lies in the unique 1-dimensional SL(2)-invariant subspace of
HomX×X(Pi,Pi+1).

Computing the weights of HomX×X(Pi,Pi+2), one sees that there are no
SL(2)-invariant subspaces. Thus the composition di ◦ di−1 is zero for all i.
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The sequence (8) in this case can be read in terms of SL(2)-modules and
it boils down to

0 // Y10
// Y10
⊕

⊕ Y8
//

⊕
Y8
⊕

Y6
// Y6
⊕

Y6
//

⊕
Y6

// 0

Y4
// Y4

This sequence is clearly exact. However the proof of exactness in (55)
is forced since the induced map A⊗E → K is SL(2)-invariant, hence it
coincides (up to a scalar) with the projection from A⊗E onto the cokernel
of ∧2U → A⊗E and as such it it surjective. �

Since all the maps defined in Theorem 7.2 are functorial, they lift to
the moduli space of V22 threefolds. So, once we prove that the sequence
of morphisms (53) is a complex, by semicontinuity we can deduce general
exactness from exactness over a point of the moduli space. By the above
proposition this point can be taken to be [U22].
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