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ABSTRACT. We find an upper bound for the degree of nonvanishing cohomology of
twisted holomorphic ¢g-forms on an irreducible Hermitian symmetric variety X as
a function of ¢ depending linearly on the twist, the dimension and the index of X,
making use of simple Euclidean geometry.

1. INTRODUCTION

Let X = G/P be an irreducible Hermitian symmetric variety embedded equivari-
antly into a projective space P(V') by a very ample line bundle Ox (1) and consider
the bundle of twisted holomorphic g-forms Q% (¢) = Q% ® Ox(1)®¢. Some vanishing
theorems for the cohomology of Q% (¢) were first obtained by Bott in [Bot57] in the
case X ~ P" and extended to Grassmannians by Le Potier in [LP75] and to quadrics
by Shiffman and Sommese in [SS85].

Making use of work by Kostant [Kos61], Snow [Sno86b] in [Sno86a], developed an
algorithm to determine wether a given cohomology group HP(X, Q% (£)) vanishes for
any X. These results were extended by Manivel and Snow to arbitrary homogeneous
varieties in [MS96]. Applications to ample vector bundles on any projective variety
can be found in [Man96], [Man97] and [Cha03].

However Snow’s algorithm is of combinatoric nature and leads to nontrivial com-
putations even on simple examples. In this paper we present a graphic and geometric
approach to the problem, making use of Bott theorem and Kostant’s work plus under-
graduate Euclidean geometry. We find an upper bound for the degree of nonvanishing
cohomology HP(X, Q% (£)) as a function of ¢,# depending linearly on the dimension
and the index of X.

For basic definitions and results on homogeneous varieties and representations we
refer to [FH91], [Ott95], [LMO3], [Tit67].
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2. A VANISHING THEOREM FOR HP(X, Q% (¢))

In this section we let X be an irreducible Hermitian symmetric variety i.e. a
rational homogeneous variety X = G/P where G is a simple algebraic group over C
and P = P(qy) is a parabolic subgroup of G such that Q% is an irreducible P-module.
Let A ={aj...ay} be the set of fundamental roots of = (G), A = {A1... A} be the
associated set of fundamental weights, (—, —) be the Killing form on and ®* be the
set of positive roots of . We have Pic(X) 2 Z =7Z-H and —Kx = 1x H where tx is
a positive integer called the indez of X. Define also g = > ;. Finally, for a vector
p in the weight lattice of denote by E, the homogeneous bundle associated to the
irreducible representation of maximal weight u.

Theorem 2.1. Let X = G/P(ay) be an irreducible Hermitian symmetric variety and
let | be an integer. Define

Pmax = max{p |3q such that H’(Q%(£)) # 0}
If £ <0 then pmax = 0. If £ > 1x then pmax = dim(X). If0 < £ < .x then
Lx —/

Pmax < dim(X)

21x

3. PROOFS AND FIGURES

Lemma 3.1. Let X = G/P(ay) be an irreducible Hermitian symmetric variety. Then
the expression of any weight of Q% in the fundamental roots contains —ay with mul-
tiplicity 1.

Proof. Since Tx is the bundle associated to /(ag), all the weights of T'x are precisely
the roots of that contain oy with multiplicity at least 1. So any weight of Qx con-
tains —qy, with multiplicity at least 1.

Now since 2} is indecomposable, it is given by an irreducible representation of
ss((ag)), twisted by a character £\, and —ay belongs to the weight space of Q.

Moreover the root system of ss((ag)) is generated by ai,...,dk,... ,an. So any
weight having a coefficient grater than 1 for —ay does not lie in the ss((ay))-orbit of
— 0. O

Lemma 3.2. Let X = G/P(ay) be an irreducible Hermitian symmetric variety, with
tx = ¢ and dimx = d. Then the mazimal weights of Q% lie

e on the sphere S(0) centered in —g and passing through 0.

e on the hyperplane orthogonal to Ay passing through the point —%)\k

Proof. Denote by H, the hyperplane orthogonal to @ € ® and passing through —g
and by w, the reflection in the weight lattice of along the hyperplane H,. The
maximal weights of Q% are then obtained as wq () where o € T contains ay in its
expression with respect to A and p is a maximal weight of Qg(_l. All such weights
then lie on the sphere centered in —g and since Qg( 2 O the sphere passes through 0.
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Now (a, Ax) = 0 for 7 # k, so the coefficient (a, p) is a constant ¢ for all such o’s by
lemma 3.1. The weights of Q% then lie on the hyperplane orthogonal to Ax. Notice
that after d consecutive reflections 0 is mapped to Q% = Kx whose weight is —¢ Ak,
so the constant is ¢ = ¢/d as required. O

Proof of theorem 2.1. Recall that E, ® Ox(¢) = E, . The maximal weights of
Q% () then lie on the sphere S(¢) centered in —g + £\ and of radius |g|. Consider
the intersection of the two spheres S(£) and S(0). As one can read off from figure 1,
or 2 these two spheres meet along the hyperplane H, orthogonal to A; and passing
through z = _L%M)\k i.e. the dashed line in figure 1 or 2. The figures refer respectively
to the weight lattice of P? and Q3.

From the proof of lemma 3.2 recall the constant ¢ = ¢ x / dim(X). Whenever p > “5;[,
the vertex of a p-th Bott Chamber u, (i.e. a maximal weight of Q%) lies beyond the
hyperplane H, i.e. (tp, A\x) < (2, Ax). Then, for p > % any weight of Q% (¢) meets
no Bott chamber of order p, so HP(Q%(£)) = 0. So the statement is proved. O

H2 HO

FIGURE 1. Twisting weights of Q4 over P2 by O(¢)
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FIGURE 2. Twisting weights of Q7 over Q3 by O(¥)

Since irreducible Hermitian symmetric varieties are completely classified, see for
instance [Ram66), one can comprehend the possible cases in the following corollary.

Corollary 3.3. Let X be in irreducible Hermitian symmetric variety, let 0 < £ < 1x

be an integer and pmax be defined as in theorem 2.1.

alternatives takes place

Then one of the following

Group X dim(X) Lx Pmax <
—k)(k —£
Ar | SUnt D/P(oxsr) | (K +1) | 1 | @B
By | Spin(2n +1)/P(an) 2n — 1 2n — 1 -1t
Cn (2n)/P(an) @ n+1 W
Dy, Spin(2n) /P (1) on — 2 2 — 2 2n;2—£
D, Spin(2n)/P(an) @ I — 2 n(2ng2f£)
Eg Ee/P () 16 12 202-0
Bo| ErfPlar) a1 18 safg
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