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Abstract. The notion of lattice derivation, introduced by Szász in [S1, S2], has
been recently resumed in the study of several di�erent problems. Our theoretical
investigations ideally pursue and complete the ones initiated by Szász, who only
scratched the surface of this subject.
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1 Introduction
Given an algebraic structure [A; +, ·], where + and · denote two arbitrary

binary operations, we call derivation of A any function f : A −→ A such that:

f(a + b) = f(a) + f(b),
f(a · b) = f(a) · b + a · f(b).

This de�nition clearly coincides with the usual (algebraic) notion of deriva-
tion when [A; +, ·] is a ring. However, it can be formally stated for every al-
gebraic structure endowed with two binary operations. In this paper, we will
consider the special case in which [A; +, ·] is a lattice, so that + and · are,
respectively, the join and the meet operations.

These ideas have been introduced and developed by Szász in a series of
papers (here we recall [S1, S2]), in which he established the main properties of
derivations of lattices. Also Kolibiar [K] gave his contribution, for example in
the study of the case of the chain of natural numbers. However, it seems that
these investigations only scratched the surface of the subject.

Several years later, some works appeared in which these concepts are con-
sidered again, even if, in most of the cases, only implicitly.

In [C] the author introduces the notion of Γ-lattice, in order to study the
lattice of the submodules of a module over a commutative ring with identity.
Using the terminology of the above paper, it turns out that the maps ϕγ , though
in general not lattice derivations, have many properties in common with them
(for instance, ϕγ(0) = 0 and ϕγ preserves joins). Moreover, the de�nition
of c-purity recalls the characterization of lattice derivations in a lattice with
maximum (see theorem 3 in the present paper). In [NP] the authors study
the concept of translation on a graph. They explicitly cite the works of Szász
[S1, S2]. It is clear that, if one considers the lattice of convex subsets of a
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graph such that the meet operation is given by taking the convex hull and
the join operation by taking the greatest included convex (so that the usual
order by inclusion is reversed), then the de�ning condition of a translation on
a graph is essentially the same of the axiom concerning the behaviour of a
lattice derivation with respect to the meet operation. Finally, the study of
nonexpansive multipliers is undertaken in [PS]. Also in this case it is evident
how the concept of multiplier derives from and is strictly related to that of
lattice derivation (or, better, of lattice translation).

We think that the above examples fully justify the investigation of the prop-
erties of derivations of lattices from a purely theoretical point of view. In the
present paper we �rst review the main results, due essentially to Szász, also
providing some interesting examples. Then we embed any lattice having some
additional properties into the lattice of its derivations, thus introducing a new
kind of completion of a lattice. Next we construct an interesting derivation
which can be de�ned in a vast class of lattices. These two last constructions
are both believed to be new. Finally, we examine a particular derivation of
the divisor lattice, which we have called the radical, and we show its numerous
appearances in combinatorics, algebra and geometry.

2 De�nition and basic properties
Let L = [L;∨,∧] be a lattice; a derivation of L [S2] is a function f : L −→ L

satisfying:

1) f(x ∨ y) = f(x) ∨ f(y),

2) f(x ∧ y) = (f(x) ∧ y) ∨ (x ∧ f(y)), for any x, y ∈ L.

Before giving the basic instances of derivations of particular classes of lat-
tices, it could be useful to learn some simple properties of such functions; we
remark that some of them have already been stated in [S2]. However, a very
elementary example can be given.

Let B2 = {0, 1} × {0, 1} be the Boolean algebra having 4 elements. Apart
from the trivial derivations 0 and id (which are derivations in every lattice with
minimum), we �nd the two functions f and g de�ned as follows:

f(a, b) = f(a, 0), g(a, b) = g(0, b).

Moreover, if we denote D(B2) the set of the derivations of B2, it can be easily
seen that D(B2) = {0, id, f, g}.

Now we start with the very �rst elements of the theory of lattice derivations.
First of all, let us have a look to the de�nition of derivation, and particularly
to condition 2), i.e.

f(x ∧ y) = (f(x) ∧ y) ∨ (x ∧ f(y)).



ON DERIVATIONS OF LATTICES 3

We can prove that this condition is redundant, and we �nd a suitable way
to simplify it. Indeed, since x ∧ y ≤ x, we have f(x ∧ y) ≤ f(x), and we also
have f(x ∧ y) ≤ x ∧ y ≤ y. These two last facts are simple consequences of the
de�nition of derivation, and can be immediately derived, for example, from the
next theorem 1. Therefore we have obtained f(x ∧ y) ≤ f(x) ∧ y. In the same
way we also get f(x ∧ y) ≤ x ∧ f(y), so we can conclude that condition 2) is
equivalent to the following:

2′) f(x ∧ y) = f(x) ∧ y = x ∧ f(y).

A map satisfying condition 2') is called a (meet-)translation in [S1, S2]. The
dual concept of join-translation has been introduced and studied for the �rst
time in [S1].

The �rst concept we need to recall from general lattice theory is that of dual
closure.

Given a lattice L, a function f : L −→ L is said to be a dual closure when
the following conditions hold:

i) f is an order morphism;

ii) f(x) ≤ x, for any x ∈ L;

iii) f(f(x)) = f(x), for any x ∈ L.

The following theorem is a collection of some results scattered throughout
[S1, S2].

Theorem 1 Every lattice derivation is a dual closure.

Proof. Let f : L −→ L be a lattice derivation.
i) Given x, y ∈ L, if x ≤ y, then x ∧ y = x, and so f(x) = f(x ∧ y) =

x ∧ f(y) ≤ f(y).

ii) From 2) of the de�nition of derivation we get f(x) = f(x∧ x) = f(x)∧ x,
and so f(x) ≤ x.

iii) We have:
f2(x) = f(f(x ∧ x)) = f(f(x) ∧ x)

= f(x) ∧ f(x) = f(x). 2

Remark. Notice that in the above proof we have never used the fact that f is a
join-endomorphism. This means that every meet-translation is a dual closure.

It is very easy to see that the above theorem is not invertible. Indeed,
consider the Boolean algebra B2 and de�ne the function f : B2 −→ B2 as
follows:

f(x, y) =
{

(0, 0), if (x, y) 6= (1, 1)
(1, 1), if (x, y) = (1, 1)
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It is immediately seen that f is a dual closure but not a derivation.

An element a ∈ L is said to be �xed for the derivation f when a = f(a); we
denote by Fix f the set of the �xed elements of f . Observe that Fix f = Im f ,
as a simple consequence of theorem 1, iii).

Proposition 2 [S2] A derivation f is a lattice homomorphism of L and also
preserves the minimum 0. In particular, ker f = {a ∈ L|f(a) = 0} is an ideal
of L. Furthermore, Fix f is an ideal of L too.

Proof. We show that f preserves meets. For x, y in L, we get:

f(x ∧ y) ≤ f(x) ∧ f(y), for f is an order-morphism,
f(x) ∧ f(y) ≤ f(x) ∧ y = f(x ∧ y), from 2').

Now consider x, y ∈ Fix f ; clearly f(x ∨ y) = f(x) ∨ f(y) = x ∨ y. So it
remains only to prove that, for any x ∈ Fix f and y ≤ x, we have y ∈ Fix f .
Indeed, we get y = y ∧ x = y ∧ f(x) = f(x ∧ y) = f(y) which is enough to
conclude. 2

Remark. Notice that, if L is a modular lattice, condition 2) can be rewritten
in the following way:

f(x ∧ y) = (f(x) ∧ y) ∨ (x ∧ f(y)) = y ∧ (f(x) ∨ (x ∧ f(y)))
= y ∧ (x ∧ (f(x) ∨ f(y))) = (x ∧ y) ∧ f(x ∨ y).

Recall ([CD]) that an element a of a lattice L is said to be distributive
whenever, for every x, y ∈ L, a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y). The set of all the
distributive elements of a lattice is called the center of the lattice.

The next, fundamental result states that for a very large class of lattices all
the derivations are of the same (very simple) form.

Theorem 3 [S2] Consider a lattice L with a maximum 1. Then f : L −→ L
is a derivation of L if and only if there exists a distributive element a ∈ L such
that f(x) = a ∧ x, for every x ∈ L. Obviously, in this case we have a = f(1).

Proof. Clearly, if a ∈ L is a distributive element, every function of the form
f(x) = a∧x is a derivation (even if L does not have a maximum). Now suppose
f : L −→ L is a derivation; by de�nition we have:

f(x) = f(x ∧ 1) = x ∧ f(1).

Clearly f(1) ∈ L must be a distributive element, since f is a derivation, and
this completes our proof. 2
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Therefore, for a distributive lattice L with maximum 1, the class of the
derivations of L coincides with the class of the maps fa : L −→ L de�ned by
fa(x) = a∧x. More precisely, fa is the only derivation of L such that f(1) = a.
We will call these derivations simple derivations (even if the lattice L is not
distributive), and we will say that fa is the simple derivation associated with a.

Thus, in the rest of the paper we will be mainly interested in derivations of
lattices either unbounded or nondistributive.

Recall that in [S1, S2] distributivity in lattices is characterized by means of
translations. More precisely, it is shown that a lattice is distributive if and only
if the sets of meet-translations and of derivations coincide.

To close this section, we �nd interesting to state a few further properties of
derivations, in order to investigate their behaviour with respect to some common
operations. Part of the following proposition has been proved in [S2].

Proposition 4 If f, g are derivations of the lattice L, then f ◦g is a derivation
too. Moreover, if L is distributive, then f ∨ g and f ∧ g are derivations, and we
also have f ∧ g = f ◦ g.

Proof. A simple computation shows that

(f ◦ g)(x ∨ y) = f(g(x) ∨ g(y)) = (f ◦ g)(x) ∨ (f ◦ g)(y),
(f ◦ g)(x ∧ y) = f(g(x) ∧ y) = (f ◦ g)(x) ∧ y,

which is the �rst thesis.
For the second part of the proposition, we have:

(f ∨ g)(x ∨ y) = f(x ∨ y) ∨ g(x ∨ y) = f(x) ∨ f(y) ∨ g(x) ∨ g(y)
= (f ∨ g)(x) ∨ (f ∨ g)(y);

(f ∨ g)(x ∧ y) = f(x ∧ y) ∨ g(x ∧ y) = (f(x) ∧ y) ∨ (g(x) ∧ y)
= y ∧ (f(x) ∨ g(x)) = y ∧ (f ∨ g)(x);

(f ∧ g)(x ∨ y) = f(x ∨ y) ∧ g(x ∨ y) = (f(x) ∨ f(y)) ∧ (g(x) ∨ g(y))
= (f(x) ∧ g(y)) ∨ (f(y) ∧ g(x)) ∨ (f ∧ g)(x) ∨ (f ∧ g)(y)

=(∗) (f ∧ g)(x) ∨ (f ∧ g)(y),

(f ∧ g)(x ∧ y) = f(x ∧ y) ∧ g(x ∧ y) = f(x) ∧ y ∧ g(x) ∧ y

= (f ∧ g)(x) ∧ y.

Equality (*) can be explained as follows. We have (f ∧g)(x∧y) = f(x∧y)∧
g(x∧y) = f(x)∧y∧x∧g(y) = f(x)∧g(y), and so both f(x)∧g(y) ≤ (f ∧g)(x)
and f(x) ∧ g(y) ≤ (f ∧ g)(y).



6 L. FERRARI

Finally, we immediately have:

(f ◦ g)(x) = f(x ∧ g(x)) = f(x) ∧ g(x) = (f ∧ g)(x)

so our proof is complete. 2

Remark. Note that the equality f◦g = f∧g does not depend on the distributivity
of L; this means that the map f ∧ g is a derivation even if the lattice L is not
distributive.

3 Some detailed examples
In this section we study in some details a few concrete examples of derivations

in very special lattices.
As we have said in the above section, we will only consider lattices either

unbounded or nondistributive, which are the only cases in which the derivations
can be nontrivial.

3.1 The chain of natural numbers
Consider the lattice [N;max, min], whose associated poset is the chain [N;≤]

with the usual total order. This lattice does not have a maximum, nevertheless
it possesses only trivial derivations. We remark that this example has also been
considered in [K].

Theorem 5 A map f : N −→ N is a derivation if and only if either f = idN

or f(x) = min(a, x) for some a ∈ N.

Proof. ⇐) Trivial.
⇒) Consider a derivation f : N −→ N and suppose that f 6= idN. Then

there exists an element n + 1 such that f(n + 1) ≤ n; in particular, suppose
that n + 1 is the minimum integer with this property. Clearly f(n + 1) = n
otherwise we would have f(n + 1) < n = f(n) ≤ f(n + 1). Furthermore, if
m ∈ N, we get f(n + m) = n; indeed, if we had f(n + m) ≥ n + 1, we would
get n + 1 ≤ min(f(n + m), n + 1) = f(min(n + m, n + 1)) = f(n + 1) = n,
a contradiction. Thus, if we set a = n, we have f(n) = min(a, n), for every
n ∈ N, as desired. 2

Thanks to the above theorem, we can assert that the case of the chain
of natural numbers is completely analogous to that of a bounded distributive
lattice, in the sense that all the derivations are simple. The only exception is
the identity, which obviously cannot be simple. However, if one �completes"
the chain [N;≤] by adding a maximum ∞ (this is usually called the Dedekind-
McNeille completion of [N;≤] and we will denote it N, see [DP]), it turns
out that every derivation of N is the restriction of a simple derivation of its
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Dedekind-McNeille completion N (the identity of N is simply the restriction
of the identity of N, which is the simple derivation of N associated with the
maximum ∞).

3.2 Direct products
Another interesting case to investigate is that of a direct product of lattices.

The �rst result we obtain is the following proposition, which provides a special
class of derivations, namely the �projections" onto a �nite subproduct.

Proposition 6 Consider a family (Li)i∈I of lattices with minimum 0, and de-
note by

∏
i∈I Li the direct product of the family. Consider a �nite subset I0 ⊆ I

and take the function fI0 :
∏

i∈I Li −→
∏

i∈I Li de�ned by f((xi)i∈I) = (yi)i∈I ,
where yi = xi if i ∈ I0 and yi = 0 if i /∈ I0. Then fI0 is a derivation of the
lattice

∏
i∈I Li.

Proof. We examine only the case in which I = {1, 2}, since the general case
can be treated exactly in the same way. So consider, for example, the map
f1 : L1 ×L2 −→ L1 ×L2 de�ned by f1(x1, x2) = (x1, 0). The proof that f1 is a
derivation is a straightforward veri�cation:

f1((x1, x2) ∨ (y1, y2)) = f1(x1 ∨ y1, x2 ∨ y2)
= (x1 ∨ y1, 0) = (x1, 0) ∨ (y1, 0)
= f1(x1, x2) ∨ f1(y1, y2);

f1((x1, x2) ∧ (y1, y2)) = f1(x1 ∧ y1, x2 ∧ y2)
= (x1 ∧ y1, 0) = (x1, 0) ∧ (y1, y2)
= f1(x1, x2) ∧ (y1, y2) = (x1, x2) ∧ (y1, 0)
= (x1, x2) ∧ f1(y1, y2).2

The derivations found in the above proposition are not simple derivations in
general (it can be easily seen by observing that, if the Li are unbounded, then
ImfI0 is unbounded as well, for I0 6= ∅). So the situation is slightly di�erent
from the case of a chain, since now we have instances of nontrivial derivations
(i.e., di�erent from the identity) which are not simple. Furthermore, in this case
also the concept of Dedekind-McNeille completion cannot help: indeed, if we
consider, e.g., the direct product N×N, we observe that its Dedekind-McNeille
completion is obtained simply by adding a maximum∞, but it is clear that the
two projections (which are derivations thanks to the last proposition) are not
simple even in (N ×N) ∪ {∞}. However, if we denote by N = N ∪ {∞} the
Dedekind-McNeille completion of N (as we did in the previous subsection), we
see that the projections are simple derivations of the complete lattice N ×N
(associated with the elements (∞, 0) and (0,∞)). More generally, taken a family
(Li)i∈I of lattices, if Li is any completion of Li, then the projections associated
with any �nite subset of I are simple derivations of the lattice

∏
i∈I Li.
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For the rest of this subsection we will use the following notations:

πj :
∏

i∈I

Li −→ Lj

: (ai)i∈I 7−→ aj

ιj : Lj −→
∏

i∈I

Li

: aj 7−→ (δijaj)i∈I

where δij is the Kronecher delta. As usual, we will call the maps πj projections
and the maps ιj immersions1. Given a family of functions (fi)i∈I , with fi :
Li −→ Li, for every i ∈ I, we de�ne the direct product of the above family to
be the map

⊗

i∈I

fi :
∏

i∈I

Li −→
∏

i∈I

Li

: (ai)i∈I 7−→ (fi(ai))i∈I . (1)

Proposition 7 Let f =
⊗

i∈I fi as in (1). If f is a derivation of
∏

i∈I Li,
then fj is a derivation of Lj, for every j ∈ I.

Proof. Fix j ∈ I. Then it is immediate to see that

fj = πj ◦ f ◦ ιj .

The axioms of a derivation are now easy to prove. We only show that
fj(a ∧ b) = a ∧ fj(b), leaving the fact that fj is a join-homomorphism to the
reader:

fj(a ∧ b) = πj(f(ιj(a ∧ b))) = πj(ιj(a) ∧ f(ιj(b)))
= a ∧ fj(b). 2

Since the converse of the above proposition is trivial, we have that a direct
product of functions is a derivation if and only if each factor is a derivation.

More generally, we can characterize the derivations of a (�nite) direct prod-
uct of lattices as follows. De�ne a π-derivation as a function f :

∏
i∈I Li −→ Lj

(for some j ∈ I) satisfying:

i) f((ai)i∈I ∨ (bi)i∈I) = f((ai)i∈I) ∨ f((bi)i∈I);

ii) f((ai)i∈I ∧ (bi)i∈I) = f((ai)i∈I) ∧ bj = aj ∧ f((bi)i∈I).

Then it is easy to prove the following:

Theorem 8 The map f :
∏

i∈I Li −→
∏

i∈I Li is a derivation if and only if all
the projections πj ◦ f :

∏
i∈I Li −→ Lj are π-derivations.

1recall that they are lattice homomorphisms.
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3.3 The divisor lattice [N∗; lcm, gcd]

The set N∗ of positive integers endowed with the well-known operations of
lcm and gcd is a distributive lattice without maximum. It is clear that this
lattice is isomorphic to a sublattice of the direct product of |N| copies of N
considered as a chain with its natural order. More precisely, it is the sublattice
of NN constituted by all the elements having �nite support (i.e., of the form
(an)n∈N where an 6= 0 only for a �nite number of n ∈ N). The interest of this
example lies in the possibility of de�ning and studying a particular function,
whose appearences in algebra, geometry and combiatorics are plentiful. We call
radical of a positive integer n = pα1

1 · . . . · pαr
r (uniquely factorized into product

of primes) the positive integer r(n) = r(pα1
1 · . . . · pαr

r ) = p1 · . . . · pr. Therefore
the radical of a number is the product of the primes of its factorization.

Proposition 9 The radical function r : N −→ N is a derivation of the lattice
[N∗; lcm, gcd].

Proof. Let n = pα1
1 · . . . ·pαr

r ·pαr+1
r+1 · . . . ·pαs

s , m = pβ1
1 · . . . ·pβr

r · qβr+1
r+1 · . . . · qβt

t (in
this way we distinguish the common primes belonging to both n and m from
the other primes occurring in the two factorizations). It is not di�cult to show
that the following equalities hold:

r(lcm(n,m)) =

= r
(
p
max (α1,β1)
1 · . . . · pmax (αr,βr)

r · pαr+1
r+1 · . . . · pαs

s · qβr+1
r+1 · . . . · qβt

t

)

= p1 · . . . · pr · pr+1 · . . . · ps · qr+1 · . . . · qt

= lcm(p1 · . . . · ps, p1 · . . . · pr · qr+1 · . . . · qt)
= lcm(r(n), r(m));

r(gcd(n,m)) = r
(
p
min (α1,β1)
1 · . . . · pmin (αr,βr)

r

)

= p1 · . . . · pr

= gcd (pα1
1 · . . . · pαs

s , p1 · . . . · pr · qr+1 · . . . · qt)
= gcd(n, r(m)) (= gcd(r(n), m)).2

Some applications concerning the radical function will be given at the end
of the paper.

4 The Der-completion of a lattice
In many of the examples considered in the previous section it happens that,

for a given lattice L, it is possible to de�ne a suitable completion L of L such
that the set D(L) of the derivations of L coincides with the set D(L) of the
derivations of L (and, of course, all such derivations are simple in L). This
suggests the idea that, if the lattice L possesses nice properties, then the set
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D(L) of derivations of L is a completion of L. The next theorem is a �rst result
in this direction.

Theorem 10 Let D be a locally �nite and distributive lattice with minimum 0.
Consider on D(D) the usual meet and join operations as de�ned in section 2.
Then D(D) is a complete lattice containing (a copy of) D: it will be called the
Der-completion of D.

Proof. Given (fi)i∈I ⊆ D(D), we can de�ne:
(∨

i∈I

fi

)
(x) =

∨

i∈I

fi(x), (2)
(∧

i∈I

fi

)
(x) =

∧

i∈I

fi(x). (3)

The r.h. sides of (2) and (3) are both well-de�ned. Indeed, fi(x) ≤ x, ∀i ∈ I,
hence fi(x) ∈ [0, x], ∀i ∈ I. Since D is locally �nite, there exists a �nite subset
I of I such that {fi(x) | i ∈ I} = {fi(x) | i ∈ I}, and so

∨
i∈I fi(x) =

∨
i∈I fi(x)

and
∧

i∈I fi(x) =
∧

i∈I fi(x). Therefore arbitrary sups and infs of elements of
D(D) are de�ned, at least as functions from D to itself. Besides, it is clear that
the set S(D) ⊆ D(D) of simple derivations is isomorphic to D.

Thus it only remains to show that D(D) is a complete lattice, that is arbi-
trary joins and meets of derivations are derivations too. Let's start with the case
of the join, and consider the function

∨
i∈I fi, where all the fi are derivations

of D. We have:
(∨

i∈I

fi

)
(x ∨ y) =

∨

i∈I

fi(x ∨ y) =
∨

i∈I

(fi(x) ∨ fi(y))

=
∨

i∈I

fi(x) ∨
∨

i∈I

fi(y) =

(∨

i∈I

fi

)
(x) ∨

(∨

i∈I

fi

)
(y);

so the function
∨

i∈I fi is a join-homomorphism. Its behaviour with respect to
the meet operation is a bit more di�cult to investigate. We have:

(∨

i∈I

fi

)
(x ∧ y) =

∨

i∈I

fi(x ∧ y);

obviously, since fi(x∧y) ≤ x∧y ≤ x∨y, we can consider a �nite set I ⊆ I such
that {fi(z) | i ∈ I, z ≤ x ∨ y} = {fi(z) | i ∈ I, z ≤ x ∨ y}. It is then clear that,
for any z ≤ x ∨ y, we have

∨
i∈I fi(z) =

∨
i∈I fi(z), where the r. h. s. is now a
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�nite join. Therefore we get:
(∨

i∈I

fi

)
(x ∧ y) =

∨

i∈I

fi(x ∧ y) =
∨

i∈I

(x ∧ fi(y))

= x ∧
∨

i∈I

fi(y) = x ∧
(∨

i∈I

fi

)
(x),

which is enough to conclude that
∨

i∈I fi is a derivation. The argument to
be used for the function

∧
i∈I fi is analogous. As far as the join operation is

concerned, we have
(∧

i∈I

fi

)
(x ∨ y) =

∧

i∈I

fi(x ∨ y) =
∧

i∈I

fi(x ∨ y),

where, as before, I ⊆ I is a �nite set such that {fi(z) | i ∈ I, z ≤ x ∨ y} =
{fi(z) | i ∈ I, z ≤ x ∨ y}. From proposition 4 we know that any �nite meet of
derivations is a derivation, and so

∧

i∈I

fi(x ∨ y) =
∧

i∈I

fi(x) ∨
∧

i∈I

fi(y)

=

(∧

i∈I

fi

)
(x) ∨

(∧

i∈I

fi

)
(y).

Finally, for the meet we have immediately:
(∧

i∈I

fi

)
(x ∧ y) =

∧

i∈I

fi(x ∧ y) =
∧

i∈I

x ∧ fi(y)

= x ∧
(∧

i∈I

fi

)
(y),

so the proof is complete. 2

Remark. Clearly, if D is a distributive lattice with maximum, then D(D) ' D.

Examples. As we have seen in section 3.1, the Der-completion of the chain
of natural numbers is the chain N = N ∪ {∞}, where ∞ is greater than any
natural number: this is nothing else than the Dedekind-Mc Neille completion
of N. If one considers a �nite direct product of the form Nr (endowed with
coordinatewise meet and join), then its Der-completion is the lattice N

r (which
is not the Dedekind-Mc Neill completion of Nr). Finally, the Der-completion of
the lattice [N; lcm, gcd] is (isomorphic to) the lattice of all the in�nite sequences
of elements of N (with coordinatewise meet and join).
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5 In�nitely distributive lattices
Let D be a distributive lattice with minimum 0. We say that D is in�nitely

distributive when, for every a, xi ∈ D, the following equalities hold:

a ∨
∧

i

xi =
∧

i

(a ∨ xi),

a ∧
∨

i

xi =
∨

i

(a ∧ xi),

provided that the above infs and sups exist. There is a nice example of deriva-
tion, which can be de�ned in any in�nitely distributive lattice.

Theorem 11 Let D be an in�nitely distributive lattice with minimum 0. The
function

f : D −→ D

: x 7−→
∨

a ≤ x
a atom

a

is a derivation of D.

Proof. As usual, we have to study the behaviour of f with respect to the meet
and join operations. We have:

f(x ∨ y) =
∨

c ≤ x ∨ y
c atom

c;

now observe that in a distributive lattice, if c is an atom, then c ≤ x ∨ y if
and only if c ≤ x or c ≤ y. Indeed, if c ≤ x ∨ y, then c ∧ (x ∨ y) = c and,
using distributivity, (c ∧ x) ∨ (c ∧ y) = c. Now use the fact that c is an atom to
conclude that c ∧ x = c or c ∧ y = c, that is c ≤ x or c ≤ y. Thus we have

∨

c ≤ (x ∨ y)
c atom

c =
∨

a ≤ x
a atom

a ∨
∨

b ≤ y
b atom

b = f(x) ∨ f(y),

which is enough to conclude that f(x ∨ y) = f(x) ∨ f(y).
Next we have

f(x) ∧ y =




∨

a ≤ x
a atom

a


 ∧ y =

∨

a ≤ x
a atom

(a ∧ y). (4)

In the last equality we have used the hypothesis that D is in�nitely distribu-
tive. Now observe that, if a is an atom and a � y, then clearly a ∧ y = 0.
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Therefore, in the r. h. s. of (4) we can replace the atoms less than x with the
atoms less than x ∧ y, so obtaining:

∨

a ≤ x
a atom

(a ∧ y) =
∨

c ≤ x ∧ y
c atom

(c ∧ y) =
∨

c ≤ x ∧ y
c atom

c = f(x ∧ y).

Thus we can conclude that f(x∧y) = f(x)∧y, and this completes our proof.
2

Example. The radical function of [N; lcm, gcd] is clearly a derivation of this
form.

6 The radical function in combinatorics, algebra
and geometry

6.1 Multisets
A multiset M is a set of pairs (m,α) ∈ M ×N, where M is any set. This

de�nition is much less rigorous than many other ones, however it will be enough
for our purpouses. If (m,α) ∈ M, then α is called the multiplicity of m in M .
The set M is called the support of M. It is clear that any set can be viewed
as a special multiset whose elements all have multiplicity 1. Given a family of
multisets, one can endow it with an obvious partial order, by saying thatM≤ N
whenever, for any (m,α) ∈ M, there exists β ≥ α such that (m, β) ∈ N . The
operations ∨ and ∧ of sup and inf between two multisets induced by the above
partial order are lattice operations; so, if a family of multisets is closed under ∨
and ∧, we will call it a lattice of multisets. Observe that any lattice of multisets
is trivially distributive.

Proposition 12 Let M be a lattice of multisets. Then the function

r : M −→ M

: M 7−→ r(M)

which maps any M ∈ M to its support M = r(M) is a derivation of M. In
particular, if M is the family of all �nite multisets, then M is isomorphic to the
divisor lattice [N∗; lcm, gcd] and r is precisely the radical function.

6.2 Arithmetical functions
Consider the set of all the functions f : N −→ C (these are called arith-

metical functions) endowed with the usual sum and scalar multiplication ((f +
g)(n) = f(n) + g(n), αf(n) = f(αn)) and with the convolution operation:
(f ? g)(n) =

∑
d|n f(d)g(n

d ). The algebra obtained this way is usually called
Dirichlet algebra, and we will denote it by D.
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The radical function is clearly an element of D. It is called the core function
in [MC], where it is also stated the following identity (µ and φ are the usual
Möbius and Euler functions of number theory):

r(n) =
∑

d|n
|µ(d)|φ(d), ∀n.

One of the most remarkable properties of the radical function from the point
of view of Dirichlet algebra is stated in the next proposition.

Proposition 13 r is a multiplicative function, i.e. for any n, m such that
gcd(n,m) = 1, r(n ·m) = r(n) · r(m).

Proof. It is an immediate consequence of the fact that r is a join-homomorphism
in the divisor lattice. 2

As a byproduct of the above proposition, we have that r is invertible in D.
It is quite easy to determine r−1.

Proposition 14 We have:

r−1(1) = 1, r−1(pn) = (−1)np · (p− 1)n−1, n > 0.

Proof. Clearly r−1(1) = 1. By induction, suppose that

r−1(pk) = (−1)kp · (p− 1)k−1, if 0 < k < n .

Since (r ? r−1)(pn) = 0 (n 6= 0), we must have:

0 = (r ? r−1)(pn) =
n∑

k=0

r(pk) · r−1(pn−k)

= r−1(pn) + p ·
n−1∑

k=1

(−1)kp(p− 1)k−1 + p,

whence

r−1(pn) = p ·
n−1∑

k=1

(−1)k−1p(p− 1)k−1 − p

= p2 ·
n−2∑

k=0

(1− p)k − p = p2 · 1− (1− p)n−1

p
− p

= −p(1− p)n−1 = (−1)np(p− 1)n−1,

which is the desired expression for r−1(pn). 2

Remark. The function r−1 is interesting from a combinatorial point of view.
Indeed for any prime p, the polynomial (−1)nr−1(pn) (in p) is the chromatic
polynomial of a tree having n vertices.
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In some cases, the convolution of r with well-known arithmetical functions
gives some interesting results.

Proposition 15 If µ is the usual Möbius function on N, then:

(r ? µ)(n) =





1, if n = 1,
φ(n), if n is square-free,
0, otherwise,

where φ is the usual Euler function.

Proof. Clearly (r ? µ)(1) = 1, since the convolution of multiplicative functions
is again multiplicative. Then we have:

(r ? µ)(p) = p− 1 = φ(p),
(r ? µ)(pn) = p− p = 0 (n > 1).

This is enough to conclude thanks to the multiplicativity of r ? µ. 2

Proposition 16 If ζ is the usual zeta function on N, then:

(r ? ζ)(pα1
1 · . . . · pαn

n ) = (1 + α1p1) · . . . · (1 + αnpn). (5)

Proof. Computing r ? ζ on a generic prime-power we get

(r ? ζ)(pn) =
∑

d|pn

r(d)ζ
(

pn

d

)
= 1 + np,

and the conclusion follows by multiplicativity. 2

Remark. The function r ? ζ is usually called the arithmetical integral of r, since
(r ? ζ)(n) =

∑
d|n r(d). From the last proposition it follows that (r ? ζ)(n) is the

sum of the square-free divisors of n each considered with its own multiplicity
(i.e., how many times it appears in n).

6.3 Commutative algebra (and algebraic geometry)
Let K be a �eld and K[x1, . . . , xn] the polynomial ring on n indeterminates

over K. Using the preorder induced by divisibility and then considering the
canonically associated partial order, K[x1, . . . , xn] is a poset and, in fact, a
lattice. Take f ∈ K[x1, . . . , xn], and suppose that its unique decomposition into
irreducible factors (up to invertible elements) is f = fα1

1 ·. . .·fαr
r . We call radical

of f the polynomial r(f) = f1 · . . . ·fr. From a geometric point of view, it is clear
that V (f) = V (r(f)) (where, by de�nition, V (f) = {P ∈ Kn | f(P ) = 0}), so
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that the polynomials f and r(f) de�nes the same algebraic variety. A simple
result which relates f and r(f) is the following:

f = r(f) · (f ∧ fx1 ∧ . . . ∧ fxn
),

where fy denotes the partial derivative with respect to y. So the radical function
plays a important role in �cleaning� algebraic objects, retaining only the essential
geometric informations. It is an easy exercise to verify that r is a derivation of
the lattice of polynomials.

The above considerations can be brought to a more abstract level. Let A
be a commutative ring with unity, and I(A) the set of its ideals. If I ∈ I(A),
the radical of I is, by de�nition, the set r(I) = {x ∈ A | ∃n ∈ N : xn ∈ I}. A
well-known characterization says that

r(I) =
⋂

P £ A
P prime
P ⊇ I

P.

It is clear that the above de�nition introduces a function r (the radical
function) from I(A) to itself.

The theory of ideals study, among other things, various operations which can
be introduced on I(A), such as sum, product, intersection, etc. . In general,
I(A) is not a lattice with respect to any two operation one can de�ne; moreover,
even if it is, it seldom happens that the radical function introduced above is a
derivation in the lattice so obtained. However, there is at least one special case
in which everything works.

A Dedekind domain is an integral domain in which every ideal is a product
of prime ideals. It is a standard exercise in commutative algebra to show that,
in this case, every ideal has a unique decomposition as a product of prime ideals,
except for the order of the factors. The next proposition, stated without proof,
collects some known facts about Dedekind domains. They can be found, for
example, in [LMC].

Proposition 17 Let A be a Dedekind domain. Then:

i) A is an arithmetical ring, i.e. the operations of sum and intersection
of ideals are distributive one with respect to the other; this means that
[I(A);∩, +] is a distributive lattice;

ii) A is a multiplication ring, i.e. if I, J ∈ I(A) and I ⊆ J , then there exists
L ∈ I(A) such that I = JL;

iii) A is an almost multiplication ring, i.e. each ideal of A which has prime
radical is a power of its radical;

iv) A is Noetherian and every nonzero proper prime ideal of A is a maximal
ideal.
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The next property of Dedekind domains is crucial for our last result, so we
will give a proof of it.

Lemma 18 Let A be a Dedekind domain and I, J £ A having no common fac-
tor in their decompositions as a product of prime ideals. Then I and J are
comaximal, that is I + J = A.

Proof. If I and J are distinct prime ideal, then the lemma is proved thanks
to proposition 17, iv). Otherwise, without loss of generality, suppose that I =
P1 · P2 and J = Q1 · Q2. If P1 · P2 +Q1 · Q2 ⊂ A, then there exists a maximal
idealM such that P1 ·P2 +Q1 ·Q2 ⊆M, hence P1 ·P2 ⊆M and Q1 ·Q2 ⊆M.
From proposition 17, ii), there exist A,B £ A such that P1 · P2 = M · A and
Q1 · Q2 = M · B. Therefore I and J have the common factor M in their
decomposition, which is a contradiction. 2

Thanks to proposition 17, i), if A is a Dedekind domain, then [I(A)∗ =
I(A) \ {0};∩, +] is a distributive lattice. If we interpret the operation ∩ as
the join operation and the operation + as the meet operation (so reversing the
usual order given by inclusion), we have that I(A)∗ has minimum A and does
not have maximum.

Theorem 19 If A is a Dedekind domain, then the radical function r : I(A)∗ −→
I(A)∗ de�ned on nonzero ideals is a derivation of I(A)∗.

Proof. We have to show the following equalities, for any I, J ∈ I(A)∗:

1) r(I ∩ J) = r(I) ∩ r(J);

2) r(I + J) = r(I) + J = I + r(J).

Equality 1) is true in any commutative ring, as it is well known. As far as
equality 2) is concerned, assume that, in the expressions of I and J as products
of prime ideals, there are some common factors. Thanks to the distributivity of
the product with respect to the sum (which is valid in any commutative ring),
we can write:

I + J = Pα1
1 · . . . · Pαr

r · (I + J),

where I, J £ A having no common prime factor. Therefore, using the above
lemma, I + J = A, and so

r(I + J) = P1 · . . . · Pr · r(I + J) = P1 · . . . · Pr.

(Here we have used the fact that r(A·B) = r(A) · r(B)). On the other hand,
consider the ideal r(I) + J . It is clear that

r(I) + J = P1 · . . . · Pr · A+ Pβ1
1 · . . . · Pβr

r · B,

where P1, . . . ,Pr are the prime ideals appearing in both the factorizations of
I and J , A is a product of prime ideals di�erent from P1, . . . ,Pr and B is
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an ideal whose factorization does not contain P1, . . . ,Pr. Therefore we have
immediately:

r(I) + J = P1 · . . . · Pr · (A+ Pβ1−1
1 · . . . · Pβr−1

r · B).

(If any of the βi − 1 is zero, then Pβi−1
i = A and can be removed). Now it

is clear that A and Pβ1−1
1 · . . . · Pβr−1

r · B do not have common prime factors, so
(lemma 18) their sum is A, whence

r(I) + J = P1 · . . . · Pr,

which concludes the proof. 2

Remark. It could be interesting to wonder whether the last theorem remains
true by relaxing the hypotheses on the ring A. It could be possible to use some
of the conditions stated in proposition 17, so avoiding the stronger hypothesis
that A is a Dedekind domain.
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