g-measures

Gibbs measures

イロト イポト イヨト イヨト ヨー のくや

Signal description: Process or Gibbs? I. General introduction

Contributors: S. Berghout (Leiden) A. van Enter (Groningen) S. Gallo (São Carlos), G. Maillard (Aix-Marseille), E. Verbitskiy (Leiden)

Florence in May, 2017

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

The issue

A signal with a stochastic component is detected

 $\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_0 \omega_1 \cdots \omega_n \omega_{n+1} \cdots$

ω_i belongs to some finite "alphabet" \mathcal{A}

E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A} = \{0, 1\}$
- ▶ DNA string, $\mathcal{A} = \{A, C, G, T\}$

Basic tenets

Stochastic description due to signal variability Full description = probability measure μ on $\mathcal{A}^{\mathbb{Z}}$ **Key issue:** efficient characterization of μ .

Gibbs measures

うして ふむ くは くち くち くう

The issue

A signal with a stochastic component is detected

 $\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_0 \omega_1 \cdots \omega_n \omega_{n+1} \cdots$

 ω_i belongs to some finite "alphabet" \mathcal{A} E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A} = \{0, 1\}$
- DNA string, $\mathcal{A} = \{A, C, G, T\}$

Basic tenets

Stochastic description due to signal variability Full description = probability measure μ on $\mathcal{A}^{\mathbb{Z}}$ **Key issue:** efficient characterization of μ .

Gibbs measures

うして ふむ くは くち くち くう

The issue

A signal with a stochastic component is detected

 $\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_0 \omega_1 \cdots \omega_n \omega_{n+1} \cdots$

 ω_i belongs to some finite "alphabet" \mathcal{A} E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A} = \{0, 1\}$
- DNA string, $\mathcal{A} = \{A, C, G, T\}$

Basic tenets

Stochastic description due to signal variability Full description = probability measure μ on $\mathcal{A}^{\mathbb{Z}}$

Key issue: efficient characterization of μ .

Gibbs measures

うして ふむ くは くち くち くう

The issue

A signal with a stochastic component is detected

 $\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_0 \omega_1 \cdots \omega_n \omega_{n+1} \cdots$

 ω_i belongs to some finite "alphabet" \mathcal{A} E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A} = \{0, 1\}$
- DNA string, $\mathcal{A} = \{A, C, G, T\}$

Basic tenets

Stochastic description due to signal variability Full description = probability measure μ on $\mathcal{A}^{\mathbb{Z}}$ **Key issue:** efficient characterization of μ .

・ロト ・ 一下・ ・ ヨト ・ 日 ・

э

First approach: Transition probabilities

Machine-learning approach:

- ▶ Use first part of the train to develop "rules" to predict rest
- ▶ By recurrence: enough to predict *next* bit given "history"

That is, estimate the conditional probabilities w.r.t. past

$$P(X_n \mid X_{n-1}, X_{n-2}, \ldots)$$

through its law, defined by a function g such that

$$P(X_0 = \omega_0 \mid X_{-\infty}^{-1} = \omega_{-\infty}^{-1}) = g(\omega_0 \mid \omega_{-\infty}^{-1})$$

Look for μ determined by (consistent with) this g:

$$\mu \left(X_0 = \omega_0 \mid X_{-\infty}^{-1} = \omega_{-\infty}^{-1} \right) = g \left(\omega_0 \mid \omega_{-\infty}^{-1} \right)$$

First approach: Transition probabilities

Machine-learning approach:

▶ Use first part of the train to develop "rules" to predict rest

▶ By recurrence: enough to predict *next* bit given "history" That is, estimate the conditional probabilities w.r.t. past

$$P(X_n \mid X_{n-1}, X_{n-2}, \ldots)$$

through its law, defined by a function g such that

$$P(X_0 = \omega_0 \mid X_{-\infty}^{-1} = \omega_{-\infty}^{-1}) = g(\omega_0 \mid \omega_{-\infty}^{-1})$$

Look for μ determined by (consistent with) this g:

$$\mu \left(X_0 = \omega_0 \mid X_{-\infty}^{-1} = \omega_{-\infty}^{-1} \right) = g \left(\omega_0 \mid \omega_{-\infty}^{-1} \right)$$

First approach: Transition probabilities

Machine-learning approach:

▶ Use first part of the train to develop "rules" to predict rest

▶ By recurrence: enough to predict *next* bit given "history" That is, estimate the conditional probabilities w.r.t. past

$$P(X_n \mid X_{n-1}, X_{n-2}, \ldots)$$

through its law, defined by a function g such that

$$P(X_0 = \omega_0 \mid X_{-\infty}^{-1} = \omega_{-\infty}^{-1}) = g(\omega_0 \mid \omega_{-\infty}^{-1})$$

Look for μ determined by (consistent with) this g:

$$\mu(X_0 = \omega_0 \mid X_{-\infty}^{-1} = \omega_{-\infty}^{-1}) = g(\omega_0 \mid \omega_{-\infty}^{-1})$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ● □ ● ● ● ●

Process aproach

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Regular *g*-measures

Relevant transitions expected to be insensitive to farther past:

g is a **regular** g-function if $\forall \epsilon > 0 \exists n \ge 0$ such that

$$\sup_{\omega,\sigma} \left| g(\omega_0 \mid \sigma_{-1}^{-n} \, \omega_{-\infty}^{-n-1}) - g(\omega_0 \mid \sigma_{-\infty}^{-1}) \right| < \epsilon \tag{1}$$

(1) is equivalent to g(ω₀ | ·) continuous in product topology
 Additional, not very relevant, non-nullness condition
 A probability measure μ is a regular g-measure if it is consistent with some regular g-function
 Signal μ thought as a process: past determines future (causality)

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Regular *g*-measures

Relevant transitions expected to be insensitive to farther past: g is a **regular** g-function if $\forall \epsilon > 0 \exists n \ge 0$ such that

$$\sup_{\omega,\sigma} \left| g(\omega_0 \mid \sigma_{-1}^{-n} \, \omega_{-\infty}^{-n-1}) - g(\omega_0 \mid \sigma_{-\infty}^{-1}) \right| < \epsilon$$
 (1)

(1) is equivalent to g(ω₀ | ·) continuous in product topology
 Additional, not very relevant, non-nullness condition
 A probability measure μ is a regular g-measure if it is consistent with some regular g-function
 Signal μ thought as a process: past determines future (causality)

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Regular *g*-measures

Relevant transitions expected to be insensitive to farther past: g is a **regular** g-function if $\forall \epsilon > 0 \exists n \ge 0$ such that

$$\sup_{\omega,\sigma} \left| g(\omega_0 \mid \sigma_{-1}^{-n} \, \omega_{-\infty}^{-n-1}) - g(\omega_0 \mid \sigma_{-\infty}^{-1}) \right| < \epsilon$$
 (1)

- ▶ (1) is equivalent to $g(\omega_0 | \cdot)$ continuous in product topology
- ▶ Additional, not very relevant, non-nullness condition

A probability measure μ is a **regular** *g*-measure if it is consistent with some regular *g*-function Signal μ thought as a process: past determines future (causality)

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Regular *g*-measures

Relevant transitions expected to be insensitive to farther past: g is a **regular** g-function if $\forall \epsilon > 0 \exists n \ge 0$ such that

$$\sup_{\omega,\sigma} \left| g(\omega_0 \mid \sigma_{-1}^{-n} \, \omega_{-\infty}^{-n-1}) - g(\omega_0 \mid \sigma_{-\infty}^{-1}) \right| < \epsilon$$
 (1)

- ▶ (1) is equivalent to $g(\omega_0 | \cdot)$ continuous in product topology
- ▶ Additional, not very relevant, non-nullness condition

A probability measure μ is a **regular** *g*-measure if it is consistent with some regular *g*-function

Signal μ thought as a process: past determines future (causality)

g-measures

Gibbs measures

Regular *g*-measures

Relevant transitions expected to be insensitive to farther past: g is a **regular** g-function if $\forall \epsilon > 0 \exists n \ge 0$ such that

$$\sup_{\omega,\sigma} \left| g(\omega_0 \mid \sigma_{-1}^{-n} \, \omega_{-\infty}^{-n-1}) - g(\omega_0 \mid \sigma_{-\infty}^{-1}) \right| < \epsilon$$
 (1)

- ▶ (1) is equivalent to $g(\omega_0 | \cdot)$ continuous in product topology
- ▶ Additional, not very relevant, non-nullness condition

A probability measure μ is a **regular** *g*-measure if it is consistent with some regular *g*-function

Signal μ thought as a process: past determines future (causality)

g-measures

Gibbs measures

SOG

Fields point of view

If the full train is available, why use only the past? Learn to predict a bit using past and future! X_n determined by finite-window probabilities

 $\mathbb{P}(X_n \mid X_{n-1}, X_{n-2}, \dots; X_{n+1}, X_{n+2}, \dots)$

through conditional laws determined by a function γ s.t.

$$P(X_0 = \omega_0 \mid X_{\{0\}^c} = \omega_{\{0\}^c}) = \gamma(\omega_0 \mid \omega_{\{0\}^c})$$

Specification: γ satisfying certain compatibility condition Look for μ determined by (consistent with) this γ :

$$\mu (X_0 = \omega_0 \mid X_{\{0\}^c} = \omega_{\{0\}^c}) = \gamma (\omega_0 \mid \omega_{\{0\}^c})$$

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Fields point of view

If the full train is available, why use only the past? Learn to predict a bit using past and future! X_n determined by finite-window probabilities

$$\mathbb{P}(X_n \mid X_{n-1}, X_{n-2}, \ldots; X_{n+1}, X_{n+2}, \ldots)$$

through conditional laws determined by a function γ s.t.

$$P\left(X_0 = \omega_0 \mid X_{\{0\}^c} = \omega_{\{0\}^c}\right) = \gamma\left(\omega_0 \mid \omega_{\{0\}^c}\right)$$

Specification: γ satisfying certain compatibility condition Look for μ determined by (consistent with) this γ :

$$\mu (X_0 = \omega_0 \mid X_{\{0\}^c} = \omega_{\{0\}^c}) = \gamma (\omega_0 \mid \omega_{\{0\}^c})$$

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Fields point of view

If the full train is available, why use only the past? Learn to predict a bit using past and future! X_n determined by finite-window probabilities

$$\mathbb{P}(X_n \mid X_{n-1}, X_{n-2}, \ldots; X_{n+1}, X_{n+2}, \ldots)$$

through conditional laws determined by a function γ s.t.

$$P\left(X_0 = \omega_0 \mid X_{\{0\}^c} = \omega_{\{0\}^c}\right) = \gamma\left(\omega_0 \mid \omega_{\{0\}^c}\right)$$

Specification: γ satisfying certain compatibility condition Look for μ determined by (consistent with) this γ :

$$\mu(X_0 = \omega_0 \mid X_{\{0\}^c} = \omega_{\{0\}^c}) = \gamma(\omega_0 \mid \omega_{\{0\}^c})$$

g-measures

Gibbs measures

うつん 川 エー・エー・ エー・ シック

Quasilocal measures

A specification γ is **quasilocal** if $\forall \epsilon > 0 \exists n, m \ge 0$

$$\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n,m]^{c}}\right) - \gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right| < \epsilon$$

$$(2)$$

for every σ, ω

- (2) is equivalent to $\gamma(\omega_0 | \cdot)$ continuous in product topology
- Gibbs specifications are, in addition, strongly non-null

A probability measure μ is a **quasilocal** (**Gibbs**) **measure** if it is consistent with some quasilocal (Gibbs) specification Signal μ thought as non-causal or with anticipation

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Quasilocal measures

A specification γ is **quasilocal** if $\forall \epsilon > 0 \exists n, m \ge 0$

$$\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n,m]^{c}}\right) - \gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right| < \epsilon$$

$$(2)$$

for every σ, ω

- ▶ (2) is equivalent to $\gamma(\omega_0 | \cdot)$ continuous in product topology
- ▶ Gibbs specifications are, in addition, strongly non-null

A probability measure μ is a **quasilocal** (**Gibbs**) **measure** if it is consistent with some quasilocal (Gibbs) specification Signal μ thought as non-causal or with anticipation

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Quasilocal measures

A specification γ is **quasilocal** if $\forall \epsilon > 0 \exists n, m \ge 0$

$$\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n,m]^{c}}\right) - \gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right| < \epsilon$$

$$(2)$$

for every σ, ω

- ▶ (2) is equivalent to $\gamma(\omega_0 | \cdot)$ continuous in product topology
- ▶ Gibbs specifications are, in addition, strongly non-null

A probability measure μ is a **quasilocal** (**Gibbs**) **measure** if it is consistent with some quasilocal (Gibbs) specification

Signal μ thought as non-causal or with anticipation

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Quasilocal measures

A specification γ is **quasilocal** if $\forall \epsilon > 0 \exists n, m \ge 0$

$$\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n,m]^{c}}\right) - \gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right| < \epsilon$$

$$(2)$$

for every σ, ω

- ▶ (2) is equivalent to $\gamma(\omega_0 | \cdot)$ continuous in product topology
- ▶ Gibbs specifications are, in addition, strongly non-null

A probability measure μ is a **quasilocal** (**Gibbs**) **measure** if it is consistent with some quasilocal (Gibbs) specification Signal μ thought as non-causal or with anticipation Introduction ○○○○●

Comparison

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Questions, questions

Signals best described as processes or as Gibbs?

Both setups give complementary information:

- ▶ Processes: ergodicity, coupling, renewal, perfect simulation
- ▶ Fields: Gibbs theory

Are these setups mathematically equivalent?

Is every regular *g*-measure Gibbs and viceversa?

Introduction ○○○○●

Comparison

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Questions, questions

Signals best described as processes or as Gibbs? Both setups give complementary information:

- ▶ Processes: ergodicity, coupling, renewal, perfect simulation
- ▶ Fields: Gibbs theory

Are these setups mathematically equivalent? Is every regular *q*-measure Gibbs and viceversa?

Introduction ○○○○○●

Comparison

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Questions, questions

Signals best described as processes or as Gibbs? Both setups give complementary information:

- ▶ Processes: ergodicity, coupling, renewal, perfect simulation
- ▶ Fields: Gibbs theory

Are these setups mathematically equivalent? Is every regular *g*-measure Gibbs and viceversa?

Introduction ○○○○●

Comparison

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Questions, questions

Signals best described as processes or as Gibbs? Both setups give complementary information:

- ▶ Processes: ergodicity, coupling, renewal, perfect simulation
- ▶ Fields: Gibbs theory

Are these setups mathematically equivalent?

Is every regular g-measure Gibbs and viceversa?

Introduction ○○○○●

Comparison

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Questions, questions

Signals best described as processes or as Gibbs? Both setups give complementary information:

- ▶ Processes: ergodicity, coupling, renewal, perfect simulation
- ▶ Fields: Gibbs theory

Are these setups mathematically equivalent?

Is every regular g-measure Gibbs and viceversa?

History

 Gibbs measures

Prehistory

- Onicescu-Mihoc (1935): chains with complete connections
 - ▶ Existence of limit measures in non-nul cases
 - ▶ → random systems with complete connections (book by Iosifescu and Grigorescu, Cambridge 1990)
- ▶ Doeblin-Fortet (1937):
 - ▶ Taxonomy: A or B, dep. on continuity and non-nullness
 - Existence of invariant measures
 - Suggested: uniqueness of invariant measures (coupling!).
 Completed by Iosifescu (1992)
- ▶ Harris (1955): chains of infinite order
 - ▶ Framework of *D*-ary expansions
 - ▶ Weaker uniqueness condition
 - ▶ Cut-and-paste coupling

History

 Gibbs measures

Prehistory

- Onicescu-Mihoc (1935): chains with complete connections
 - Existence of limit measures in non-nul cases
 - ▶ → random systems with complete connections (book by Iosifescu and Grigorescu, Cambridge 1990)
- ▶ Doeblin-Fortet (1937):
 - ▶ Taxonomy: A or B, dep. on continuity and non-nullness
 - ▶ Existence of invariant measures
 - Suggested: uniqueness of invariant measures (coupling!). Completed by Iosifescu (1992)
- ▶ Harris (1955): chains of infinite order
 - ▶ Framework of *D*-ary expansions
 - ▶ Weaker uniqueness condition
 - ▶ Cut-and-paste coupling

History

 Gibbs measures

Prehistory

- Onicescu-Mihoc (1935): chains with complete connections
 - Existence of limit measures in non-nul cases
 - ▶ → random systems with complete connections (book by Iosifescu and Grigorescu, Cambridge 1990)
- ▶ Doeblin-Fortet (1937):
 - ▶ Taxonomy: A or B, dep. on continuity and non-nullness
 - Existence of invariant measures
 - Suggested: uniqueness of invariant measures (coupling!). Completed by Iosifescu (1992)

▶ Harris (1955): chains of infinite order

- ▶ Framework of *D*-ary expansions
- Weaker uniqueness condition
- Cut-and-paste coupling

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

More recent history

► Keane (1972): g-measures (g-functions), existence and uniqueness

- ▶ Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- ▶ Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ▶ Kalikow (1990):
 - ▶ random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

- ► Keane (1972): g-measures (g-functions), existence and uniqueness
- ► Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ▶ Kalikow (1990):
 - ▶ random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

- ► Keane (1972): g-measures (g-functions), existence and uniqueness
- ► Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ▶ Kalikow (1990):
 - ▶ random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

- ► Keane (1972): g-measures (g-functions), existence and uniqueness
- ▶ Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- ► Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ▶ Kalikow (1990):
 - ▶ random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

- ► Keane (1972): g-measures (g-functions), existence and uniqueness
- ▶ Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- ▶ Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ► Kalikow (1990):
 - ▶ random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

- ► Keane (1972): g-measures (g-functions), existence and uniqueness
- ▶ Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- ▶ Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ► Kalikow (1990):
 - random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

History

g-measures ⊙●○○○○○○○○○○○○ Gibbs measures

- ► Keane (1972): g-measures (g-functions), existence and uniqueness
- ▶ Ledrapier (1974): variational principle
- ▶ Walters (1975): relation with transfer operator theory
- ▶ Lalley (1986): list processes, regeneration, uniqueness
- ▶ Berbee (1987): uniqueness
- ► Kalikow (1990):
 - random Markov processes
 - uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

g-measures ○○●○○○○○○○○○○○○ Gibbs measures

うして ふむ くは くち くち くう

Differences with Markov

Differences with Markov: Invariance

• Invariant measures: on space of trajectories (not just on \mathcal{A})

$$\mu(x_0) = \sum_{y} g(x_0 \mid y) \mu(y)$$
$$\longrightarrow \quad \mu(x_0) = \int g(x_0 \mid x_{-\infty}^{-1}) \mu(dx_{-\infty}^{-1})$$

• Conditioning is over measure zero events: $\{X_{-\infty}^{-1} = x_{-\infty}^{-1}\}$

- Importance of " μ -almost surely"
- Properties must be essential = survive measure-zero changes

g-measures ○○●○○○○○○○○○○○○ Gibbs measures

うして ふむ くは くち くち くう

Differences with Markov

Differences with Markov: Invariance

• Invariant measures: on space of trajectories (not just on \mathcal{A})

$$\mu(x_0) = \sum_{y} g(x_0 \mid y) \mu(y)$$
$$\longrightarrow \quad \mu(x_0) = \int g(x_0 \mid x_{-\infty}^{-1}) \mu(dx_{-\infty}^{-1})$$

• Conditioning is over measure zero events: $\{X_{-\infty}^{-1} = x_{-\infty}^{-1}\}$

- ▶ Importance of "µ-almost surely"
- ▶ Properties must be *essential* = survive measure-zero changes

g-measures ○○**○**●○○○○○○○○○○ Gibbs measures

うつん 川 エー・エー・ エー・ シック

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- ▶ Uniqueness criteria
- ► Simulation?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- ▶ Uniqueness criteria
- ► Simulation?

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- ▶ Uniqueness criteria
- ► Simulation?

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- ▶ Analogous to statistical mechanics:

Many invariant measures = 1st order phase transitions

Issues are, then, similar to those of stat mech:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- ▶ Uniqueness criteria
- ► Simulation?

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- Uniqueness criteria
- ▶ Simulation?

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- Uniqueness criteria
- ► Simulation?

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

Many invariant measures = 1st order phase transitions Issues are, then, similar to those of stat mech:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- Uniqueness criteria

► Simulation?

Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

- ▶ Not due to lack of ergodicity (non-null transitions)
- ▶ Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

- ▶ How many invariant measures? (= phase diagrams)
- ▶ Properties of measures? (mixing, extremality, ergodicity)
- Uniqueness criteria
- Simulation?

Formal definitions

g-measures ○○○●○○○○○○○○○ Gibbs measures

うつん 川 エー・エー・ エー・ シック

Transition probabilities

Basic structure:

- Space $\mathcal{A}^{\mathbb{Z}}$ with product σ -algebra \mathcal{F} (and product topo)
- For $\Lambda \subset \mathbb{Z}$, $\mathcal{F}_{\Lambda} = \{$ events depending on $\omega_{\Lambda} \} \subset \mathcal{F}$

Definition

(i) A family of transition probabilities is a measurable function

$$g(\cdot | \cdot) : \mathcal{A} \times \mathcal{A}_{-\infty}^{n-1} \longrightarrow [0,1]$$

such that $\sum_{x_0 \in \mathcal{A}} g(x_0 \mid x_{-\infty}^{-1}) = 1$

(ii) μ is a process consistent with $g(\cdot | \cdot)$ if

$$\mu(\{x_0\}) = \int g\left(x_0 \mid y_{-\infty}^{-1}\right) \mu(dy)$$

Formal definitions

g-measures ○○○●○○○○○○○○○ Gibbs measures

く ロ ト く 目 ト く 目 ト く 日 ト く 日 ト

Transition probabilities

Basic structure:

- Space $\mathcal{A}^{\mathbb{Z}}$ with product σ -algebra \mathcal{F} (and product topo)
- For $\Lambda \subset \mathbb{Z}$, $\mathcal{F}_{\Lambda} = \{$ events depending on $\omega_{\Lambda} \} \subset \mathcal{F}$

Definition

(i) A family of transition probabilities is a measurable function $g(\cdot \mid \cdot) : \mathcal{A} \times \mathcal{A}_{-\infty}^{n-1} \longrightarrow [0,1]$

such that $\sum_{x_0 \in \mathcal{A}} g(x_0 \mid x_{-\infty}^{-1}) = 1$

(ii) μ is a process consistent with $g(\cdot | \cdot)$ if

$$\mu(\{x_0\}) = \int g(x_0 \mid y_{-\infty}^{-1}) \, \mu(dy)$$

Formal definitions

g-measures ○○○●○○○○○○○○○ Gibbs measures

うして ふむ くは くは くち くし く

Transition probabilities

Basic structure:

- Space $\mathcal{A}^{\mathbb{Z}}$ with product σ -algebra \mathcal{F} (and product topo)
- For $\Lambda \subset \mathbb{Z}$, $\mathcal{F}_{\Lambda} = \{$ events depending on $\omega_{\Lambda} \} \subset \mathcal{F}$

Definition

(i) A family of transition probabilities is a measurable function $g(\cdot \mid \cdot) : \mathcal{A} \times \mathcal{A}_{-\infty}^{n-1} \longrightarrow [0, 1]$

such that $\sum_{x_0 \in \mathcal{A}} g(x_0 \mid x_{-\infty}^{-1}) = 1$

(ii) μ is a process consistent with $g(\cdot | \cdot)$ if

$$\mu(\{x_0\}) = \int g\left(x_0 \mid y_{-\infty}^{-1}\right) \mu(dy)$$

g-measures ○○○○●○○○○○○○○ Gibbs measures

General results

Let

General results (no hypotheses on g)

•
$$\mathcal{G}(g) = \{\mu \text{ consistent with } g\}$$

•
$$\mathcal{F}_{-\infty} := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty,k]}$$
 (tail σ -algebra)

Theorem

 $\lim_{A\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{\Lambda_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0,\quad\forall A\in\mathcal{F}$

g-measures ○○○○●○○○○○○○○ Gibbs measures

General results

Let

General results (no hypotheses on g)

- $\mathcal{G}(g) = \{\mu \text{ consistent with } g\}$
- $\mathcal{F}_{-\infty} := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty,k]}$ (tail σ -algebra)

Theorem

- (a) $\mathcal{G}(g)$ is a convex set
- (b) μ is extreme in $\mathcal{G}(g)$ iff μ is trivial on $\mathcal{F}_{-\infty}$ $(\mu(A) = 0, 1 \text{ for } A \in \mathcal{F}_{-\infty})$
- (c) μ is extreme in $\mathcal{G}(g)$ iff

 $\lim_{\Lambda \uparrow \mathbb{Z}} \sup_{B \in \mathcal{F}_{\Lambda_{-}}} \left| \mu(A \cap B) - \mu(A)\mu(B) \right| = 0 , \quad \forall A \in \mathcal{F}$

g-measures ○○○○●○○○○○○○○ Gibbs measures

General results

Let

General results (no hypotheses on g)

•
$$\mathcal{G}(g) = \{\mu \text{ consistent with } g\}$$

•
$$\mathcal{F}_{-\infty} := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty,k]}$$
 (tail σ -algebra)

Theorem

(c) μ is extreme in $\mathcal{G}(g)$ iff

 $\lim_{A\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{A_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0,\quad\forall A\in\mathcal{F}$

g-measures ○○○○●○○○○○○○○ Gibbs measures

General results

Let

General results (no hypotheses on g)

•
$$\mathcal{G}(g) = \{\mu \text{ consistent with } g\}$$

•
$$\mathcal{F}_{-\infty} := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty,k]}$$
 (tail σ -algebra)

Theorem

 $\lim_{\Lambda\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{\Lambda_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0\;,\quad\forall A\in\mathcal{F}$

g-measures Gibbs measures

General results

Let

General results (no hypotheses on q)

•
$$\mathcal{G}(g) = \{\mu \text{ consistent with } g\}$$

•
$$\mathcal{F}_{-\infty} := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty,k]}$$
 (tail σ -algebra)

Theorem

(d) Each $\mu \in \mathcal{G}(q)$ is determined by its restriction to $\mathcal{F}_{-\infty}$

g-measures Gibbs measures

General results

Let

General results (no hypotheses on q)

•
$$\mathcal{G}(g) = \{\mu \text{ consistent with } g\}$$

•
$$\mathcal{F}_{-\infty} := \bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty,k]}$$
 (tail σ -algebra)

Theorem

(d) Each $\mu \in \mathcal{G}(q)$ is determined by its restriction to $\mathcal{F}_{-\infty}$ (e) $\mu \neq \nu$ extreme in $\mathcal{G}(q) \Longrightarrow$ mutually singular on $\mathcal{F}_{-\infty}$

F

General results

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Construction through limits

Let $P_{[m,n]}$ be the "window transition probabilities"

$$g_{[m,n]}(x_m^n \mid x_{-\infty}^{m-1}) := g(x_n \mid x_{-\infty}^{n-1}) g(x_{n-1} \mid x_{-\infty}^{n-2}) \cdots g(x_m \mid x_{-\infty}^{m-1})$$

Theorem

If μ is extreme on $\mathcal{G}(g)$, then for μ -almost all $y \in \mathcal{A}^{\mathbb{Z}}$,

$$g_{[-\ell,\ell]}(x_m^n \mid y_{-\infty}^{-\ell-1}) \xrightarrow[\ell \to \infty]{} \mu(\{x_m^n\})$$

for all $x_m^n \in \mathcal{A}^{[m,n]}$ (no hypotheses on g)

General results

g-measures

Gibbs measures

うして ふむ くは くち くち くう

Construction through limits

Let $P_{[m,n]}$ be the "window transition probabilities"

$$g_{[m,n]}(x_m^n \mid x_{-\infty}^{m-1}) := g(x_n \mid x_{-\infty}^{n-1}) g(x_{n-1} \mid x_{-\infty}^{n-2}) \cdots g(x_m \mid x_{-\infty}^{m-1})$$

Theorem

If μ is extreme on $\mathcal{G}(g)$, then for μ -almost all $y \in \mathcal{A}^{\mathbb{Z}}$,

$$g_{[-\ell,\ell]}(x_m^n \mid y_{-\infty}^{-\ell-1}) \xrightarrow[\ell \to \infty]{} \mu(\{x_m^n\})$$

for all $x_m^n \in \mathcal{A}^{[m,n]}$ (no hypotheses on g)

General results

g-measures ○○○○○○○●○○○○○○○ Gibbs measures

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Regular *g*-measures

Definition

A measure μ on $\mathcal{A}^{\mathbb{Z}}$ is **regular** (continuous) if it is consistent with regular transition probabilities

Theorem (Palmer, Parry and Walters (1977))

 μ is a regular g-measure if and only if the sequence $\mu(\omega_0 \mid \omega_{-n}^{-1})$ converges uniformly in ω as $n \to \infty$

Theorem

If g is regular (continuous), then every $\lim_{j} g_{[\ell_j, -\ell_j]}(\cdot \mid y_{-\infty}^{-\ell_j-1})$ defines a g-measure.

General results

g-measures ○○○○○○○●○○○○○○○ Gibbs measures

うして ふむ くは くち くち くう

Regular *g*-measures

Definition

A measure μ on $\mathcal{A}^{\mathbb{Z}}$ is **regular** (continuous) if it is consistent with regular transition probabilities

Theorem (Palmer, Parry and Walters (1977))

 μ is a regular g-measure if and only if the sequence $\mu(\omega_0 \mid \omega_{-n}^{-1})$ converges uniformly in ω as $n \to \infty$

Theorem

If g is regular (continuous), then every $\lim_{j} g_{[\ell_j, -\ell_j]}(\cdot \mid y_{-\infty}^{-\ell_j-1})$ defines a g-measure.

General results

 Gibbs measures

Regular *g*-measures

Definition

A measure μ on $\mathcal{A}^{\mathbb{Z}}$ is **regular** (continuous) if it is consistent with regular transition probabilities

Theorem (Palmer, Parry and Walters (1977))

 μ is a regular g-measure if and only if the sequence $\mu(\omega_0 \mid \omega_{-n}^{-1})$ converges uniformly in ω as $n \to \infty$

Theorem

If g is regular (continuous), then every $\lim_{j} g_{[\ell_j, -\ell_j]}(\cdot \mid y_{-\infty}^{-\ell_j-1})$ defines a g-measure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

g-measures ○○○○○○○●○○○○○○ $\begin{array}{c} \mathbf{Gibbs\ measures}\\ \texttt{0000000000} \end{array}$

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

► The **continuity rate** of *g*:

$$\operatorname{var}_{k}(g) := \sup_{x,y} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right|$$

▶ The log-continuity rate of g:

$$\operatorname{var}_{k}(\log g) := \sup_{x,y} \log \frac{g(x_{0} \mid x_{-\infty}^{-1})}{g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1})}$$

$$\Delta_k(g) := \inf_{x,y} \sum_{x_0} \left[g(x_0 \mid x_{-\infty}^{-1}) \land g(x_0 \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right]$$

g-measures ○○○○○○○●○○○○○○ Gibbs measures

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

• The **continuity rate** of *g*:

$$\operatorname{var}_{k}(g) := \sup_{x,y} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right|$$

▶ The **log-continuity rate** of *g*:

$$\operatorname{var}_{k}(\log g) := \sup_{x,y} \log \frac{g(x_{0} \mid x_{-\infty}^{-1})}{g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1})}$$

$$\Delta_k(g) := \inf_{x,y} \sum_{x_0} \left[g(x_0 \mid x_{-\infty}^{-1}) \land g(x_0 \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right]$$

g-measures ○○○○○○○●○○○○○○ $\begin{array}{c} \mathbf{Gibbs\ measures}\\ \texttt{0000000000} \end{array}$

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

• The **continuity rate** of *g*:

$$\operatorname{var}_{k}(g) := \sup_{x,y} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right|$$

► The log-continuity rate of g:

$$\operatorname{var}_k(\log g) := \sup_{x,y} \log \frac{g(x_0 \mid x_{-\infty}^{-1})}{g(x_0 \mid x_{-1}^{-k} y_{-\infty}^{-k-1})}$$

$$\Delta_k(g) := \inf_{x,y} \sum_{x_0} \left[g(x_0 \mid x_{-\infty}^{-1}) \land g(x_0 \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right]$$

g-measures ○○○○○○○●○○○○○○ Gibbs measures

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

• The **continuity rate** of *g*:

$$\operatorname{var}_{k}(g) := \sup_{x,y} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right|$$

► The log-continuity rate of g:

$$\operatorname{var}_{k}(\log g) := \sup_{x,y} \log \frac{g(x_{0} \mid x_{-\infty}^{-1})}{g(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1})}$$

$$\Delta_k(g) := \inf_{x,y} \sum_{x_0} \left[g(x_0 \mid x_{-\infty}^{-1}) \land g(x_0 \mid x_{-1}^{-k} y_{-\infty}^{-k-1}) \right]$$

Uniqueness

g-measures ○○○○○○○○●○○○○○ Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Non-nullness hypotheses

► g is weakly non-null if

$$\sum_{x_0} \inf_{y} g(x_0 \mid y_{-\infty}^{-1}) > 0$$

► g is (strongly) non-null if

$$\inf_{x_0,y} g(x_0 \mid y_{-\infty}^{-1}) > 0$$

[Doeblin-Fortet:

- Chain of type A: for g continuous and weakly non-null
- ▶ Chain of type B: for g log-continuous and non-null]

g-measures ○○○○○○○○●○○○○○ Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Non-nullness hypotheses

► g is weakly non-null if

$$\sum_{x_0} \inf_{y} g(x_0 \mid y_{-\infty}^{-1}) > 0$$

► g is (strongly) non-null if

$$\inf_{x_0, y} g(x_0 \mid y_{-\infty}^{-1}) > 0$$

[Doeblin-Fortet:

• Chain of type A: for g continuous and weakly non-null

▶ Chain of type B: for g log-continuous and non-null]

g-measures ○○○○○○○○●○○○○○ Gibbs measures

うして ふむ くは くち くち くう

Non-nullness hypotheses

► g is weakly non-null if

$$\sum_{x_0} \inf_{y} g(x_0 \mid y_{-\infty}^{-1}) > 0$$

► g is (strongly) non-null if

$$\inf_{x_0,y} g(x_0 \mid y_{-\infty}^{-1}) > 0$$

[Doeblin-Fortet:

- Chain of type A: for g continuous and weakly non-null
- ► Chain of type B: for g log-continuous and non-null]

Criteria

g-measures ○○○○○○○●○○○○

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Uniqueness criteria (selected)

 \blacktriangleright Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

$$\sum_k \operatorname{var}_k(g) < \infty$$

• Harris (1955): g weakly non-null and

$$\sum_{n \ge 1} \prod_{k=1}^{n} \left(1 - \frac{|E|}{2} \operatorname{var}_{k}(g) \right) = +\infty$$

• Berbee (1987): g non-null and

$$\sum_{n \ge 1} \exp\left(-\sum_{k=1}^n \operatorname{var}_k(\log g)\right) = +\infty$$

Criteria

g-measures ○○○○○○○●○○○○

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Uniqueness criteria (selected)

 \blacktriangleright Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

$$\sum_k \operatorname{var}_k(g) < \infty$$

• Harris (1955): g weakly non-null and

$$\sum_{n\geq 1}\prod_{k=1}^n \left(1 - \frac{|E|}{2} \operatorname{var}_k(g)\right) = +\infty$$

• Berbee (1987): g non-null and

$$\sum_{n \ge 1} \exp\left(-\sum_{k=1}^n \operatorname{var}_k(\log g)\right) = +\infty$$

Criteria

g-measures ○○○○○○○●○○○○ Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Uniqueness criteria (selected)

 \blacktriangleright Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

$$\sum_k \operatorname{var}_k(g) < \infty$$

• Harris (1955): g weakly non-null and

$$\sum_{n\geq 1}\prod_{k=1}^{n}\left(1-\frac{|E|}{2}\operatorname{var}_{k}(g)\right)=+\infty$$

• Berbee (1987): g non-null and

$$\sum_{n \ge 1} \exp\left(-\sum_{k=1}^n \operatorname{var}_k(\log g)\right) = +\infty$$

Criteria

 Gibbs measures

Uniqueness criteria (cont.)

• Stenflo (2003): g non-null and

$$\sum_{n\geq 1}\prod_{k=1}^n \Delta_k(g) = +\infty,$$

▶ Johansson and Öberg (2002): g non-null and

$$\sum_{k\geq 1} \operatorname{var}_k^2(\log g) < +\infty$$

Criteria

 Gibbs measures

Uniqueness criteria (cont.)

• Stenflo (2003): g non-null and

$$\sum_{n\geq 1}\prod_{k=1}^n \Delta_k(g) = +\infty,$$

▶ Johansson and Öberg (2002): g non-null and

$$\sum_{k\geq 1} \operatorname{var}_k^2(\log g) < +\infty$$

Criteria

 Gibbs measures

Uniqueness criteria (cont.)

• Stenflo (2003): g non-null and

$$\sum_{n\geq 1}\prod_{k=1}^n \Delta_k(g) = +\infty,$$

▶ Johansson and Öberg (2002): g non-null and

$$\sum_{k\geq 1} \operatorname{var}_k^2(\log g) < +\infty$$

Criteria

g-measures ○○○○○○○○○○

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Comments

Leaving non-nullness aside, criteria are not fully comparable

Rough comparison:

- Doeblin-Fortet: $\operatorname{var}_k \sim 1/k^{1+d}$
- Harris–Stenflo: $\operatorname{var}_k \sim 1/k$
- ▶ Johansson-Öberg: $var_k \sim 1/k^{1/2+\delta}$

Criteria

g-measures ○○○○○○○○○○○○●○○ Gibbs measures

Comments

Leaving non-nullness aside, criteria are not fully comparable Rough comparison:

- ► Doeblin-Fortet: $\operatorname{var}_k \sim 1/k^{1+\delta}$
- Harris–Stenflo: $\operatorname{var}_k \sim 1/k$
- ▶ Johansson-Öberg: $\operatorname{var}_k \sim 1/k^{1/2+\delta}$

Criteria

g-measures ○○○○○○○○○○○○○●○ Gibbs measures

Criterion of a different species

Let

$$\operatorname{osc}_{j}(g) := \sup_{x=y \text{ off } j} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid y_{-\infty}^{-1}) \right|$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$\sum_{j<0} \delta_j(g) < 1$$

- One-sided version of Dobrushin condition in stat. mech.
- ▶ This criterion is not comparable with precedent ones
- ▶ In particular no non-nullness requirement!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

Criteria

g-measures ○○○○○○○○○○○○○●○ Gibbs measures

Criterion of a different species

Let

$$\operatorname{osc}_{j}(g) := \sup_{x=y \text{ off } j} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid y_{-\infty}^{-1}) \right|$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$\sum_{j<0} \delta_j(g) < 1$$

- One-sided version of Dobrushin condition in stat. mech.
- ▶ This criterion is not comparable with precedent ones
- ▶ In particular no non-nullness requirement!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Criteria

g-measures ○○○○○○○○○○○○○●○ Gibbs measures

うして ふむ くは くち くち くう

Criterion of a different species

Let

$$\operatorname{osc}_{j}(g) := \sup_{x=y \text{ off } j} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid y_{-\infty}^{-1}) \right|$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$\sum_{j<0} \delta_j(g) < 1$$

▶ One-sided version of Dobrushin condition in stat. mech.

- ▶ This criterion is not comparable with precedent ones
- ▶ In particular no non-nullness requirement!

Criteria

g-measures ○○○○○○○○○○○○○●○ Gibbs measures

うして ふむ くは くち くち くう

Criterion of a different species

Let

$$\operatorname{osc}_{j}(g) := \sup_{x=y \text{ off } j} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid y_{-\infty}^{-1}) \right|$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$\sum_{j<0} \delta_j(g) < 1$$

▶ One-sided version of Dobrushin condition in stat. mech.

- ▶ This criterion is not comparable with precedent ones
- ▶ In particular no non-nullness requirement!

Criteria

g-measures ○○○○○○○○○○○○○●○ Gibbs measures

うして ふむ くは くち くち くう

Criterion of a different species

Let

$$\operatorname{osc}_{j}(g) := \sup_{x=y \text{ off } j} \left| g(x_{0} \mid x_{-\infty}^{-1}) - g(x_{0} \mid y_{-\infty}^{-1}) \right|$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$\sum_{j<0} \delta_j(g) < 1$$

- ▶ One-sided version of Dobrushin condition in stat. mech.
- ▶ This criterion is not comparable with precedent ones
- ▶ In particular no non-nullness requirement!

Non-uniqueness

g-measures ○○○○○○○○○○○○○● Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Examples of non-uniqueness

▶ First example: Bramson and Kalikow (1993):

 $\operatorname{var}_k(g) \ge C/\log|k|$

▶ Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg criterion is sharp: For all $\varepsilon > 0$ there exists g with

$$\sum_{k<0} \operatorname{var}_k^{2+\epsilon}(g) < \infty \quad ext{and} \quad |\mathcal{G}(P)| > 1$$

▶ Hulse (2006): One-sided Dobrushin criterion is sharp: For all $\varepsilon > 0$ there exists g with

$$\sum_{k<0} \operatorname{osc}_k(g) = 1 + \epsilon \quad \text{and} \quad |\mathcal{G}(P)| > 1$$

g-measures ○○○○○○○○○○○○○● Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Non-uniqueness

Examples of non-uniqueness

▶ First example: Bramson and Kalikow (1993):

 $\operatorname{var}_k(g) \ge C/\log|k|$

▶ Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg criterion is sharp: For all $\varepsilon > 0$ there exists g with

$$\sum_{k<0} \operatorname{var}_k^{2+\epsilon}(g) < \infty \quad \text{and} \quad |\mathcal{G}(P)| > 1$$

▶ Hulse (2006): One-sided Dobrushin criterion is sharp: For all $\varepsilon > 0$ there exists g with

$$\sum_{k < 0} \operatorname{osc}_k(g) = 1 + \epsilon \quad \text{and} \quad |\mathcal{G}(P)| > 1$$

g-measures ○○○○○○○○○○○○○● Gibbs measures

うして ふゆう ふほう ふほう ふしゃ

Non-uniqueness

Examples of non-uniqueness

▶ First example: Bramson and Kalikow (1993):

 $\operatorname{var}_k(g) \ge C/\log|k|$

▶ Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg criterion is sharp: For all $\varepsilon > 0$ there exists g with

$$\sum_{k<0} \operatorname{var}_k^{2+\epsilon}(g) < \infty \quad ext{and} \quad |\mathcal{G}(P)| > 1$$

▶ Hulse (2006): One-sided Dobrushin criterion is sharp: For all $\varepsilon > 0$ there exists g with

$$\sum_{k<0} \operatorname{osc}_k(g) = 1 + \epsilon \quad \text{and} \quad |\mathcal{G}(P)| > 1$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

History

Gibbs measures: Historic highlights

Prehistory:

- ▶ Boltzmann, Maxwell (kinetic theory): Probability weights
- ▶ Gibbs: Geometry of phase diagrams

History:

- ▶ Dobrushin (1968), Lanford and Ruelle (1969): Conditional expectations
- ▶ Preston (1973): Specifications
- ▶ Kozlov (1974), Sullivan (1973): Quasilocality and Gibbsianness

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

History

Gibbs measures: Historic highlights

Prehistory:

- ▶ Boltzmann, Maxwell (kinetic theory): Probability weights
- ▶ Gibbs: Geometry of phase diagrams

History:

- ▶ Dobrushin (1968), Lanford and Ruelle (1969): Conditional expectations
- ▶ Preston (1973): Specifications
- ▶ Kozlov (1974), Sullivan (1973): Quasilocality and Gibbsianness

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Statistical mechanics motivation

Equilibrium

Issue: Given microscopic behavior in finite regions, determine the macroscopic behavior

Basic tenets:

- (i) Equilibrium = probability measure
- (ii) Finite regions = finite parts of an infinite system
- (iii) Exterior of a finite region = frozen external condition
- (iv) Macroscopic behavior = limit of infinite regions

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Statistical mechanics motivation

Equilibrium

Issue: Given microscopic behavior in finite regions, determine the macroscopic behavior

Basic tenets:

- (i) Equilibrium = probability measure
- (ii) Finite regions = finite parts of an infinite system
- (iii) Exterior of a finite region = frozen external condition
- (iv) Macroscopic behavior = limit of infinite regions

g-measures

Gibbs measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Statistical mechanics motivation

Equilibrium

Issue: Given microscopic behavior in finite regions, determine the macroscopic behavior

Basic tenets:

- (i) Equilibrium = probability measure
- (ii) Finite regions = finite parts of an infinite system
- (iii) Exterior of a finite region = frozen external condition
- (iv) Macroscopic behavior = limit of infinite regions

g-measures

うして ふゆう ふほう ふほう ふしゃ

Statistical mechanics motivation

Equilibrium = Probability kernels

Set up: Product space $\Omega = \mathcal{A}^{\mathbb{L}}$ System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\gamma_{\Lambda}(\cdot | \cdot)$

$\begin{array}{l} \gamma_\Lambda(f\mid\omega) \ = \mbox{equilibrium value of } f \\ \mbox{when the configuration outside } \Lambda \mbox{ is } \omega \end{array}$

Equilibrium in $\Lambda =$ Equilibrium in every $\Lambda' \subset \Lambda$. Equilibrium value of f in $\Lambda =$ expectations in Λ' with $\Lambda \setminus \Lambda'$ distributed according to the Λ -equilibrium

$$\gamma_{\Lambda}(f \mid \omega) = \gamma_{\Lambda} \Big(\gamma_{\Lambda'}(f \mid \cdot) \mid \omega \Big) \qquad (\Lambda' \subset \Lambda \Subset \mathbb{L})$$

g-measures

うして ふゆう ふほう ふほう ふしゃ

Statistical mechanics motivation

Equilibrium = Probability kernels

Set up: Product space $\Omega = \mathcal{A}^{\mathbb{L}}$ System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\gamma_{\Lambda}(\cdot | \cdot)$

 $\begin{array}{l} \gamma_\Lambda(f\mid\omega) \ = \mbox{equilibrium value of } f \\ \mbox{when the configuration outside } \Lambda \mbox{ is } \omega \end{array}$

Equilibrium in Λ = Equilibrium in every $\Lambda' \subset \Lambda$. Equilibrium value of f in Λ = expectations in Λ' with $\Lambda \setminus \Lambda'$ distributed according to the Λ -equilibrium

$$\gamma_{\Lambda}(f \mid \omega) = \gamma_{\Lambda} \Big(\gamma_{\Lambda'}(f \mid \cdot) \mid \omega \Big) \qquad (\Lambda' \subset \Lambda \Subset \mathbb{L})$$

g-measures

うして ふゆう ふほう ふほう ふしゃ

Statistical mechanics motivation

Equilibrium = Probability kernels

Set up: Product space $\Omega = \mathcal{A}^{\mathbb{L}}$ System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\gamma_{\Lambda}(\cdot | \cdot)$

 $\begin{array}{l} \gamma_\Lambda(f\mid\omega) \ = \mbox{equilibrium value of } f \\ \mbox{when the configuration outside } \Lambda \mbox{ is } \omega \end{array}$

Equilibrium in Λ = Equilibrium in every $\Lambda' \subset \Lambda$. Equilibrium value of f in Λ = expectations in Λ' with $\Lambda \setminus \Lambda'$ distributed according to the Λ -equilibrium

$$\gamma_{\Lambda}(f \mid \omega) = \gamma_{\Lambda} \Big(\gamma_{\Lambda'}(f \mid \cdot) \mid \omega \Big) \qquad (\Lambda' \subset \Lambda \Subset \mathbb{L})$$

g-measures

Statistical mechanics motivation

Specifications

Definition

A specification is a family $\gamma = \{\gamma_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of probability kernels $\gamma_{\Lambda} : \mathcal{F} \times \Omega \longrightarrow [0, 1]$ such that

(i) External dependence: $\gamma_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda^{c}}$ -measurable

(ii) Frozen external conditions: Each γ_{Λ} is proper,

$$\gamma_{\Lambda}(h f \mid \omega) \; = \; h(\omega) \, \gamma_{\Lambda}(f \mid \omega)$$

if h depends only on $\omega_{\Lambda^{\circ}}$

(iii) Equilibrium in finite regions: The family γ is consistent

 $\gamma_{\Delta} \gamma_{\Lambda} = \gamma_{\Delta} \qquad \text{if } \Delta \supset \Lambda$

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

g-measures

うして ふゆう ふほう ふほう ふしゃ

Statistical mechanics motivation

Specifications

Definition

A specification is a family $\gamma = \{\gamma_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of probability kernels $\gamma_{\Lambda} : \mathcal{F} \times \Omega \longrightarrow [0, 1]$ such that

- (i) External dependence: $\gamma_{\Lambda}(f \mid \cdot)$ is \mathcal{F}_{Λ^c} -measurable
- (ii) Frozen external conditions: Each γ_{Λ} is proper,

$$\gamma_{\Lambda}(h f \mid \omega) \; = \; h(\omega) \, \gamma_{\Lambda}(f \mid \omega)$$

if h depends only on ω_{Λ^c}

(iii) Equilibrium in finite regions: The family γ is consistent

 $\gamma_{\Delta} \gamma_{\Lambda} = \gamma_{\Delta} \qquad \text{if } \Delta \supset \Lambda$

g-measures

うして ふゆう ふほう ふほう ふしつ

Statistical mechanics motivation

Specifications

Definition

A specification is a family $\gamma = \{\gamma_{\Lambda} : \Lambda \Subset \mathbb{L}\}$ of probability kernels $\gamma_{\Lambda} : \mathcal{F} \times \Omega \longrightarrow [0, 1]$ such that

- (i) External dependence: $\gamma_{\Lambda}(f \mid \cdot)$ is \mathcal{F}_{Λ^c} -measurable
- (ii) Frozen external conditions: Each γ_{Λ} is proper,

$$\gamma_{\Lambda}(h \ f \mid \omega) \ = \ h(\omega) \ \gamma_{\Lambda}(f \mid \omega)$$

if h depends only on ω_{Λ^c}

(iii) Equilibrium in finite regions: The family γ is consistent

$$\gamma_{\Delta} \gamma_{\Lambda} = \gamma_{\Delta} \qquad \text{if } \Delta \supset \Lambda$$

g-measures

うして ふむ くは くち くち くう

Statistical mechanics motivation

Consistency

Definition

A probability measure μ on Ω is **consistent** with γ if

 $\mu \gamma_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations = equilibrium in infinite regions)

- ▶ Several consistent measures = first-order phase transition
- Specification \sim system of regular conditional probabilities
- \blacktriangleright Difference: no apriori measure, hence conditions required for all ω rather than almost surely
- \blacktriangleright Stat. mech.: conditional probabilities \longrightarrow measures

g-measures

Statistical mechanics motivation

Consistency

Definition

A probability measure μ on Ω is **consistent** with γ if

 $\mu \gamma_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations = equilibrium in infinite regions)

- ▶ Several consistent measures = first-order phase transition
- Specification \sim system of regular conditional probabilities
- \blacktriangleright Difference: no apriori measure, hence conditions required for all ω rather than almost surely
- \blacktriangleright Stat. mech.: conditional probabilities \longrightarrow measures

g-measures

Statistical mechanics motivation

Consistency

Definition

A probability measure μ on Ω is **consistent** with γ if

 $\mu \gamma_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations = equilibrium in infinite regions)

- ▶ Several consistent measures = first-order phase transition
- ▶ Specification \sim system of regular conditional probabilities
- ▶ Difference: no apriori measure, hence conditions required for all ω rather than almost surely
- ▶ Stat. mech.: conditional probabilities \rightarrow measures

g-measures

Statistical mechanics motivation

Consistency

Definition

A probability measure μ on Ω is **consistent** with γ if

 $\mu \gamma_{\Lambda} = \mu$ for each $\Lambda \Subset \mathbb{L}$

(DLR equations = equilibrium in infinite regions)

- ▶ Several consistent measures = first-order phase transition
- ▶ Specification ~ system of regular conditional probabilities
- \blacktriangleright Difference: no a priori measure, hence conditions required for all ω rather than almost surely
- ▶ Stat. mech.: conditional probabilities \longrightarrow measures

g-measures

General results

Let

General results (no hypotheses on γ)

•
$$\mathcal{G}(\gamma) = \{\mu \text{ consistent with } \gamma\}$$

•
$$\mathcal{F}_{\infty} := \bigcap_{\Lambda \Subset \mathbb{L}} \mathcal{F}_{\Lambda^{c}} (\sigma\text{-algebra at infinity})$$

Theorem

 $\lim_{\Lambda\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{\Lambda_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0\;,\quad\forall A\in\mathcal{F}$

g-measures

General results

Let

General results (no hypotheses on γ)

- $\mathcal{G}(\gamma) = \{\mu \text{ consistent with } \gamma\}$
- $\mathcal{F}_{\infty} := \bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}} (\sigma\text{-algebra at infinity})$

Theorem

- (a) $\mathcal{G}(\gamma)$ is a convex set
- (b) μ is extreme in $\mathcal{G}(\gamma)$ iff μ is trivial on \mathcal{F}_{∞} $(\mu(A) = 0, 1 \text{ for } A \in \mathcal{F}_{\infty})$
- (c) μ is extreme in $\mathcal{G}(\gamma)$ iff

 $\lim_{A\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{\Lambda_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0,\quad\forall A\in\mathcal{F}$

g-measures

General results

Let

General results (no hypotheses on γ)

•
$$\mathcal{G}(\gamma) = \{\mu \text{ consistent with } \gamma\}$$

•
$$\mathcal{F}_{\infty} := \bigcap_{\Lambda \Subset \mathbb{L}} \mathcal{F}_{\Lambda^{c}} (\sigma\text{-algebra at infinity})$$

Theorem

(c) μ is extreme in $\mathcal{G}(\gamma)$ iff

 $\lim_{A\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{A_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0,\quad\forall A\in\mathcal{F}$

g-measures

General results

Let

General results (no hypotheses on γ)

•
$$\mathcal{G}(\gamma) = \{\mu \text{ consistent with } \gamma\}$$

•
$$\mathcal{F}_{\infty} := \bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}} (\sigma\text{-algebra at infinity})$$

Theorem

 $\lim_{\Lambda\uparrow\mathbb{Z}}\sup_{B\in\mathcal{F}_{\Lambda_{-}}}\left|\mu(A\cap B)-\mu(A)\mu(B)\right|=0\;,\quad\forall A\in\mathcal{F}$

a-measures

General results

General results (no hypotheses on γ)

Let

• $\mathcal{G}(\gamma) = \{\mu \text{ consistent with } \gamma\}$

•
$$\mathcal{F}_{\infty} := \bigcap_{\Lambda \Subset \mathbb{L}} \mathcal{F}_{\Lambda^{c}} (\sigma\text{-algebra at infinity})$$

Theorem

(d) Each $\mu \in \mathcal{G}(\gamma)$ is determined by its restriction to \mathcal{F}_{∞} うして ふむ くは くち くち くう

a-measures

General results

General results (no hypotheses on γ)

Let

• $\mathcal{G}(\gamma) = \{\mu \text{ consistent with } \gamma\}$

•
$$\mathcal{F}_{\infty} := \bigcap_{\Lambda \Subset \mathbb{L}} \mathcal{F}_{\Lambda^{c}} (\sigma\text{-algebra at infinity})$$

Theorem

General results

g-measures

Gibbs measures

イロト イポト イヨト イヨト ヨー のくや

Construction through limits

Theorem If μ is extreme on $\mathcal{G}(\gamma)$, then for μ -almost all $\sigma \in \Omega$,

$$\gamma_{\Delta}(\omega_{\Lambda} \mid \sigma_{\Delta^{c}}) \xrightarrow{} \mu(\{\omega_{\Lambda}\})$$

for all $\omega \in \Omega$ (no hypotheses on γ)

General results

g-measures

Gibbs measures

SOG

Quasilocality

Definition

A measure μ on $\mathcal{A}^{\mathbb{L}}$ is **quasilocal** (continuous) if it is consistent with a quasilocal specification

Theorem

 μ is quasilocal if and only if the sequence $\mu(\omega_0 \mid \omega_{-n}^{-1} \omega_1^m)$ converges uniformly in ω as $n, m \to \infty$

Theorem

If γ is quasilocal, then every $\lim_{j} \gamma_{\Lambda_{j}}(\cdot \mid \sigma_{\Lambda_{j}^{c}})$, with $\Lambda_{j} \to \mathbb{L}$, defines a consistent measure.

General results

g-measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Quasilocality

Definition

A measure μ on $\mathcal{A}^{\mathbb{L}}$ is **quasilocal** (continuous) if it is consistent with a quasilocal specification

Theorem

 μ is quasilocal if and only if the sequence $\mu(\omega_0 \mid \omega_{-n}^{-1} \omega_1^m)$ converges uniformly in ω as $n, m \to \infty$

Theorem

If γ is quasilocal, then every $\lim_{j} \gamma_{\Lambda_j}(\cdot \mid \sigma_{\Lambda_j^c})$, with $\Lambda_j \to \mathbb{L}$, defines a consistent measure.

General results

g-measures

Quasilocality

Definition

A measure μ on $\mathcal{A}^{\mathbb{L}}$ is **quasilocal** (continuous) if it is consistent with a quasilocal specification

Theorem

 μ is quasilocal if and only if the sequence $\mu(\omega_0 \mid \omega_{-n}^{-1} \omega_1^m)$ converges uniformly in ω as $n, m \to \infty$

Theorem

If γ is quasilocal, then every $\lim_{j} \gamma_{\Lambda_j} (\cdot \mid \sigma_{\Lambda_j^c})$, with $\Lambda_j \to \mathbb{L}$, defines a consistent measure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

g-measures

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Stat Mech

Link with statistical mechanics

Definition

A specification γ is

- ▶ **non-null** if $\inf_{\sigma} \gamma_{\Lambda} (\omega_{\Lambda} \mid \sigma_{\Lambda^c}) > 0$ for $\omega \in \Omega, \Lambda \Subset \mathbb{L}$
- **Gibbs** if it is quasilocal and non-null

Theorem (Kozlov)

A specification is Gibbsian iff it has the Boltzmann form

$$\gamma(\omega_{\Lambda} \mid \omega_{\Lambda^{c}}) = \exp\left\{-\sum_{A \cap \Lambda \neq \emptyset} \phi_{A}(\omega_{A})\right\} / Norm. ,$$

where $\{\phi_A\}$ (interaction) satisfy

$$\sum_{A\ni 0} \|\phi_A\|_{\infty} < \infty \ .$$

g-measures

うして ふむ くは くち くち くう

Stat Mech

Link with statistical mechanics

Definition

A specification γ is

- ▶ **non-null** if $\inf_{\sigma} \gamma_{\Lambda} (\omega_{\Lambda} \mid \sigma_{\Lambda^c}) > 0$ for $\omega \in \Omega, \Lambda \Subset \mathbb{L}$
- **Gibbs** if it is quasilocal and non-null

Theorem (Kozlov)

A specification is Gibbsian iff it has the Boltzmann form

$$\gamma(\omega_{\Lambda} \mid \omega_{\Lambda^{c}}) = \exp\left\{-\sum_{A \cap \Lambda \neq \emptyset} \phi_{A}(\omega_{A})\right\} / Norm. ,$$

where $\{\phi_A\}$ (interaction) satisfy

$$\sum_{A\ni 0} \|\phi_A\|_{\infty} < \infty \ .$$

Introduction 000000

g-measures

Gibbs measures ○○○○○○○●

イロト イポト イヨト イヨト ヨー のくや

Phase transitions

Uniqueness and non-uniqueness

Uniqueness results

• Berbee:
$$\sum_{n\geq 1} \exp\left(-\sum_{k=1}^n \operatorname{var}_k(\log \gamma)\right) = +\infty$$

• Dobrushin:
$$\sum_{j < 0} \delta_j(g) < 1$$

Non-uniqueness results

- Fifty years of rigorous stat mech
- ▶ Markov models: Non-uniqueness in two or more dimensions

Introduction 000000

g-measures

Gibbs measures

イロト イポト イヨト イヨト ヨー のくや

Phase transitions

Uniqueness and non-uniqueness

Uniqueness results

• Berbee:
$$\sum_{n\geq 1} \exp\left(-\sum_{k=1}^n \operatorname{var}_k(\log \gamma)\right) = +\infty$$

• Dobrushin:
$$\sum_{j<0} \delta_j(g) < 1$$

Non-uniqueness results

- ▶ Fifty years of rigorous stat mech
- ▶ Markov models: Non-uniqueness in two or more dimensions

Issues 00 Positive

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Signal description: Process or Gibbs? II. Relation between approaches

Contributors: S. Berghout (Leiden) A. van Enter (Groningen) S. Gallo (São Carlos), G. Maillard (Aix-Marseille), E. Verbitskiy (Leiden)

Florence in May, 2017

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

The issues

(I) Given a measure μ on $\mathcal{A}^{\mathbb{Z}}$

- Is it always both a g and a Gibbs measure?
- ▶ If yes, which are the pros and cons of each point of view?

(II) Are g-functions and specifications in correspondence?

- Same uniqueness regions?
- ▶ Same phase diagrams?

(III) Can theoretical aspects be "imported"?

- Variational approach
- ▶ Large deviations

Negative 00000000000000 **Other**

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

The issues

(I) Given a measure μ on $\mathcal{A}^{\mathbb{Z}}$

- Is it always both a g and a Gibbs measure?
- ▶ If yes, which are the pros and cons of each point of view?
- (II) Are g-functions and specifications in correspondance?
 - ► Same uniqueness regions?
 - Same phase diagrams?
- (III) Can theoretical aspects be "imported"?
 - Variational approach
 - ► Large deviations

Negative 00000000000000 **Other**

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

The issues

(I) Given a measure μ on $\mathcal{A}^{\mathbb{Z}}$

- Is it always both a g and a Gibbs measure?
- ▶ If yes, which are the pros and cons of each point of view?
- (II) Are g-functions and specifications in correspondance?
 - ▶ Same uniqueness regions?
 - ▶ Same phase diagrams?
- (III) Can theoretical aspects be "imported"?
 - Variational approach
 - ▶ Large deviations

Positive

Negative

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Mathematical formalization

Mathematically, there are three natural questions:

(Q1) Is there a map $b: g \longrightarrow \gamma^g$ such that $\mathcal{G}(g) = \mathcal{G}(\gamma^g)$? (Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma) = \mathcal{G}(g^{\gamma})$? (Q3) If so, are these map mutual inverses:

$$bc = id = cb$$
 $\left[\gamma^{g^{\gamma}} = \gamma , g^{\gamma^g} = g\right]?$

True for Markov (A finite) [Georgii, Chapter 3, uses eigenvalues]

Positive

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Mathematical formalization

Mathematically, there are three natural questions:

(Q1) Is there a map $b: g \longrightarrow \gamma^g$ such that $\mathcal{G}(g) = \mathcal{G}(\gamma^g)$? (Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma) = \mathcal{G}(g^{\gamma})$? (Q3) If so, are these map mutual inverses:

$$bc = id = cb$$
 $\left[\gamma^{g^{\gamma}} = \gamma , g^{\gamma^g} = g\right]?$

True for Markov (\mathcal{A} finite) [Georgii, Chapter 3, uses eigenvalues]

Positive

Negative

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Mathematical formalization

Mathematically, there are three natural questions:

(Q1) Is there a map $b: g \longrightarrow \gamma^g$ such that $\mathcal{G}(g) = \mathcal{G}(\gamma^g)$? (Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma) = \mathcal{G}(g^{\gamma})$? (Q3) If so, are these map mutual inverses:

$$bc = id = cb$$
 $\left[\gamma^{g^{\gamma}} = \gamma , g^{\gamma^g} = g\right]?$

True for Markov (\mathcal{A} finite) [Georgii, Chapter 3, uses eigenvalues]

Positive

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Mathematical formalization

Mathematically, there are three natural questions:

(Q1) Is there a map $b: g \longrightarrow \gamma^g$ such that $\mathcal{G}(g) = \mathcal{G}(\gamma^g)$? (Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma) = \mathcal{G}(g^{\gamma})$? (Q3) If so, are these map mutual inverses:

$$bc = id = cb$$
 $\left[\gamma^{g^{\gamma}} = \gamma , g^{\gamma^{g}} = g\right]?$

True for Markov (\mathcal{A} finite) [Georgii, Chapter 3, uses eigenvalues]

Other

イロト イポト イヨト イヨト ヨー のくや

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^g$?

Natural answer:

$$\gamma_{[k,\ell]}^g(\omega_k^\ell \mid \sigma) = \lim_{n \to \infty} \frac{g_{[k,n]}(\omega_k^\ell \sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1})}{g_{[k,n]}(\sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1})}$$

Need to guarantee that the limit exists for all σ

Definition

A g function has **good future** if

• g is non-null and

$$\blacktriangleright \sum_j \delta_j(g) < \infty$$

Other

イロト イポト イヨト イヨト ヨー のくや

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^g$? Natural answer:

$$\gamma_{[k,\ell]}^g \left(\omega_k^\ell \mid \sigma \right) \; = \; \lim_{n \to \infty} \frac{g_{[k,n]} \left(\omega_k^\ell \, \sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1} \right)}{g_{[k,n]} \left(\sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1} \right)}$$

Need to guarantee that the limit exists for all σ

Definition

A g function has **good future** if

 \blacktriangleright g is non-null and

$$\blacktriangleright \sum_j \delta_j(g) < \infty$$

Other

イロト イポト イヨト イヨト ヨー のくや

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^g$? Natural answer:

$$\gamma_{[k,\ell]}^g \left(\omega_k^\ell \mid \sigma \right) \; = \; \lim_{n \to \infty} \frac{g_{[k,n]} \left(\omega_k^\ell \sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1} \right)}{g_{[k,n]} \left(\sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1} \right)}$$

Need to guarantee that the limit exists for all σ

Definition

A g function has **good future** if

 \blacktriangleright g is non-null and

$$\blacktriangleright \sum_j \delta_j(g) < \infty$$

Other

イロト イポト イヨト イヨト ヨー のくや

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^g$? Natural answer:

$$\gamma_{[k,\ell]}^g \left(\omega_k^\ell \mid \sigma \right) \; = \; \lim_{n \to \infty} \frac{g_{[k,n]} \left(\omega_k^\ell \sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1} \right)}{g_{[k,n]} \left(\sigma_{\ell+1}^n \mid \sigma_{-\infty}^{k-1} \right)}$$

Need to guarantee that the limit exists for all σ

Definition

- A g function has **good future** if
 - g is non-null and

•
$$\sum_j \delta_j(g) < \infty$$

Issues	Positive
00	00000

Negative 0000000000000 **Other**

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Positive answer to (Q1)

Denote

 $\bullet \Theta_{\mathrm{GF}} := \{g \text{ has GF} \}$ $\bullet \Pi := \{\gamma \text{ quasilocal} \}$ $\bullet \Pi_1 := \{\gamma : |\mathcal{G}(\gamma)| = 1\}$

Theorem $(g \rightsquigarrow \text{specification})$

The previous prescription defines a map

 $egin{array}{ccc} b: \Theta_{
m GF} &
ightarrow & \gamma \ g & \mapsto & \gamma^g \end{array}$

which satisfies (a) $\mathcal{G}(g) \subset \mathcal{G}(\gamma^g)$ (b) b restricted to $b^{-1}(\Pi_1)$ is one-to-one Thus, if $g \in b^{-1}(\Pi_1)$,

$$\mathcal{G}(g) \ = \ \mathcal{G}(\gamma^g) = \{\mu^g\}$$

Issues	Positive	Negative	Other
00	00000	000000000000	00000
Positivo onevo	r to (01)		

Denote

 $\Theta_{\text{GF}} := \{g \text{ has GF}\}$ $\Pi := \{\gamma \text{ quasilocal}\}$ $\Pi_1 := \{\gamma : |\mathcal{G}(\gamma)| = 1\}$

Theorem ($g \rightsquigarrow$ **specification)** The previous prescription defines a map

 $\begin{array}{rccc} b: \Theta_{\rm GF} & \to & \gamma \\ g & \mapsto & \gamma^g \end{array}$

which satisfies (a) $\mathcal{G}(g) \subset \mathcal{G}(\gamma^g)$ (b) b restricted to $b^{-1}(\Pi_1)$ is one-to-one. Thus, if $g \in b^{-1}(\Pi_1)$,

 $\mathcal{G}(g) \;=\; \mathcal{G}(\gamma^g) = \{\mu^g\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Issues	Positive	Negative	Other
00	00000	000000000000	000000
Positive answe	r to (Q1)		

Denote

 $\bullet \Theta_{\mathrm{GF}} := \{g \text{ has GF} \}$ $\bullet \Pi := \{\gamma \text{ quasilocal} \}$ $\bullet \Pi_1 := \{\gamma : |\mathcal{G}(\gamma)| = 1\}$

Theorem $(g \rightsquigarrow \text{specification})$

The previous prescription defines a map

 $\begin{array}{rccc} b: \Theta_{\rm GF} & \to & \gamma \\ g & \mapsto & \gamma^g \end{array}$

which satisfies (a) $\mathcal{G}(g) \subset \mathcal{G}(\gamma^g)$ (b) b restricted to $b^{-1}(\Pi_1)$ is one-to-one. Thus, if $g \in b^{-1}(\Pi_1)$,

 $\mathcal{G}(g) \;=\; \mathcal{G}(\gamma^g) = \{\mu^g\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Negative 00000000000000

Construction of the map c

The natural prescription is

$$g^{\gamma}(\omega_{0} \mid \sigma_{-\infty}^{-1}) = \lim_{n \to \infty} \gamma_{[0,n]}(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty})$$

provided that, for each σ ,

- ▶ the limit exists and
- the limit is independent of ξ

Denote

$$\bullet \Theta_{\text{HUC}} = \left\{ g: \sum_{j} \delta_{j}(g) < 1 \right\}$$
$$\bullet \Pi_{\text{HUC}} := \left\{ \gamma : \sum_{j} \delta_{j}(\gamma) < 1 \right\}$$

Dobrushin condition provides **hereditary uniqueness**: Uniqueness on each (infinite) Λ for any σ_{Λ^c}

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Construction of the map c

The natural prescription is

$$g^{\gamma}(\omega_{0} \mid \sigma_{-\infty}^{-1}) = \lim_{n \to \infty} \gamma_{[0,n]}(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty})$$

provided that, for each σ ,

- ▶ the limit exists and
- ▶ the limit is independent of ξ

Denote

$$\bullet \Theta_{\text{HUC}} = \left\{ g: \sum_{j} \delta_{j}(g) < 1 \right\}$$
$$\bullet \Pi_{\text{HUC}} := \left\{ \gamma : \sum_{j} \delta_{j}(q) < 1 \right\}$$

Dobrushin condition provides **hereditary uniqueness**: Uniqueness on each (infinite) Λ for any σ_{Λ^c}

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Construction of the map c

The natural prescription is

$$g^{\gamma}(\omega_{0} \mid \sigma_{-\infty}^{-1}) = \lim_{n \to \infty} \gamma_{[0,n]}(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty})$$

provided that, for each σ ,

- ▶ the limit exists and
- the limit is independent of ξ

Denote

$$\bullet \ \Theta_{\text{HUC}} = \left\{ g: \sum_{j} \delta_{j}(g) < 1 \right\}$$

•
$$\Pi_{\text{HUC}} := \left\{ \gamma : \sum_{j} \delta_j(\gamma) < 1 \right\}$$

Dobrushin condition provides hereditary uniqueness: Uniqueness on each (infinite) Λ for any σ_{Λ^c}

うして ふむ くは くち くち くう

Construction of the map c

The natural prescription is

$$g^{\gamma}(\omega_{0} \mid \sigma_{-\infty}^{-1}) = \lim_{n \to \infty} \gamma_{[0,n]}(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty})$$

provided that, for each σ ,

- ▶ the limit exists and
- the limit is independent of ξ

Denote

$$\bullet \Theta_{\text{HUC}} = \left\{ g: \sum_{j} \delta_{j}(g) < 1 \right\}$$
$$\bullet \Pi_{\text{HUC}} := \left\{ \gamma : \sum_{j} \delta_{j}(\gamma) < 1 \right\}$$

Dobrushin condition provides **hereditary uniqueness**:

Uniqueness on each (infinite) Λ for any σ_{Λ^c}

Theorem (specification $\rightsquigarrow g$)

The previous prescription defines a map

$$\begin{array}{rccc} c: \Pi_{\mathrm{HUC}} & \to & \Theta_{\mathrm{HUC}} \\ \gamma & \mapsto & g^{\gamma} \end{array}$$

イロト イポト イヨト イヨト ヨー のくや

which satisfies
(a) G(f^γ) = G(γ) = {μ^γ}
(b) The map c is one-to-one.

Negative

うして ふむ くは くち くち くう

Invertibility of the maps

Proofs of previous theorems yield bounds on $\delta_j(\gamma^g)$ and $\delta_j(g^\gamma)$ Denote

- $\bullet \ \Theta_{\text{EXP}} = \left\{ g : \exists a > 1 \text{ s.t. } \lim_{j \to -\infty} a^{|j|} \, \delta_j(g) = 0 \right\}$
- $\square \Pi_{\text{EXP}} = \left\{ \gamma : \exists a > 1 \text{ s.t. } \lim_{j \to \infty} a^j \, \delta_j(\gamma) = 0 \right\}$

Theorem (LIS $\leftrightarrow \rightarrow$ specification)

(a) $b \circ c = \text{Id over } c^{-1}(\Theta_{\text{GF}}), \text{ and } \mathcal{G}(g^{\gamma}) = \mathcal{G}(\gamma) = \{\mu^{\gamma}\}$

(b) $c \circ b = \text{Id over } b^{-1}(\Pi_{\text{HUC}}) \text{ and } \mathcal{G}(\gamma^f) = \mathcal{G}(f) = \{\mu^f\}$

(c) b and c establish a one-to-one correspondence between Θ_{EXP} and Π_{EXP} that preserves the consistent measure.

Invertibility of the maps

Proofs of previous theorems yield bounds on $\delta_j(\gamma^g)$ and $\delta_j(g^\gamma)$ Denote

- $\bullet \ \Theta_{\mathrm{EXP}} = \left\{ g : \exists \, a > 1 \text{ s.t. } \lim_{j \to -\infty} a^{|j|} \, \delta_j(g) = 0 \right\}$
- $\square_{\text{EXP}} = \left\{ \gamma : \exists a > 1 \text{ s.t. } \lim_{j \to \infty} a^j \, \delta_j(\gamma) = 0 \right\}$

Theorem (LIS ‹~ specification)

(a) b ∘ c = Id over c⁻¹(Θ_{GF}), and G(g^γ) = G(γ) = {μ^γ}
(b) c ∘ b = Id over b⁻¹(Π_{HUC}) and G(γ^f) = G(f) = {μ^f}
(c) b and c establish a one-to-one correspondence between Θ_{EXP} and Π_{EXP} that preserves the consistent measure.

Invertibility of the maps

Proofs of previous theorems yield bounds on $\delta_j(\gamma^g)$ and $\delta_j(g^\gamma)$ Denote

- $\Theta_{\text{EXP}} = \left\{ g : \exists a > 1 \text{ s.t. } \lim_{j \to -\infty} a^{|j|} \delta_j(g) = 0 \right\}$
- $\blacktriangleright \Pi_{\text{EXP}} = \left\{ \gamma : \exists a > 1 \text{ s.t. } \lim_{j \to \infty} a^j \, \delta_j(\gamma) = 0 \right\}$

Theorem (LIS « specification)

(a) b ∘ c = Id over c⁻¹(Θ_{GF}), and G(g^γ) = G(γ) = {μ^γ}
(b) c ∘ b = Id over b⁻¹(Π_{HUC}) and G(γ^f) = G(f) = {μ^f}
(c) b and c establish a one-to-one correspondence between Θ_{EXP} and Π_{EXP} that preserves the consistent measure.

Issues

Positive

Negative ••••••• **Other**

イロト イポト イヨト イヨト ヨー のくや

Negative answer to (Q1)

A regular g that is not Gibbs

$$\mathcal{A} = \{0, 1\}; \text{ denote } \underline{\omega} = \omega_{-\infty}^{-1}$$

Consider g-functions of the form

$$g(1 \,|\, \underline{\omega}) \;=\; p_{\ell(\underline{\omega})}$$

where

▶ $\ell(\underline{\omega})$ = number of 0's before first 1 looking backwards:

$$\ell(\underline{\omega}) = \min\{j \ge 0 \colon \omega_{-j-1} = 1\}$$

• $\{p_i\}_{i\geq 0} \in (0,1)$ satisfy

$$\inf_{i\geq 0} p_i = \epsilon > 0 \quad , \qquad p_\infty = \lim_{i\to\infty} p_i \; .$$

Issues

Positive

Negative ••••••• **Other**

うして ふむ くは くち くち くう

Negative answer to (Q1)

A regular g that is not Gibbs

$$\mathcal{A} = \{0, 1\}; \text{ denote } \underline{\omega} = \omega_{-\infty}^{-1}$$

Consider g-functions of the form

$$g(1 \mid \underline{\omega}) = p_{\ell(\underline{\omega})}$$

where

▶ $\ell(\underline{\omega})$ = number of 0's before first 1 looking backwards:

$$\ell(\underline{\omega}) = \min\{j \ge 0 \colon \omega_{-j-1} = 1\}$$

• $\{p_i\}_{i\geq 0} \in (0,1)$ satisfy

$$\inf_{i \ge 0} p_i = \epsilon > 0 \quad , \qquad p_\infty = \lim_{i \to \infty} p_i \; .$$

 Other

Negative answer to (Q1)

Regularity

Non-nullness: $g(\cdot | \cdot) \ge \epsilon \wedge 1 - \epsilon$

Continuity:

$$\sup_{\substack{\omega_{-k}^{-1} = \sigma_{-k}^{-1}}} \left| g(1 \mid \underline{\omega}) - g(1 \mid \underline{\sigma}) \right|$$
$$= \sup_{\omega_{-k}^{-1} = \sup_{\omega_{-k}^{-1}} \left| g(1 \mid 0^{-1}_{-k} \omega_{-\infty}^{-k-1}) - g(1 \mid 0^{-1}_{-k} \sigma_{-\infty}^{-k-1}) \right|$$

$$= \sup_{l,m \ge k} |p_l - p_m|$$
$$\longrightarrow 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Positive

Negative ○●○○○○○○○○○○ **Other**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Regularity

Non-nullness:
$$g(\cdot | \cdot) \ge \epsilon \land 1 - \epsilon$$

Continuity:

$$\begin{aligned} \sup_{\substack{\omega_{-k}^{-1} = \sigma_{-k}^{-1}}} \left| g(1 \mid \underline{\omega}) - g(1 \mid \underline{\sigma}) \right| \\ &= \sup_{l,m \ge k} \left| g(1 \mid 0_{-k}^{-1} \omega_{-\infty}^{-k-1}) - g(1 \mid 0_{-k}^{-1} \sigma_{-\infty}^{-k-1}) \right| \\ &= \sup_{l,m \ge k} \left| p_l - p_m \right| \\ &\longrightarrow 0 \end{aligned}$$

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Properties of the process

For all choices of sequences p_i as above

- ▶ There exists a unique stationary chain μ compatible with g
- μ is supported on infinitely many 1's with intervals of 0's
- μ is a renewal chain with visible renewals
- μ can be perfectly simulated

For all practical purposes, chains are as regular as they can be Nevertheless, for some choices of p_i the chains are not Gibbsian.

Cause: problem when conditioning on "all 0"

Negative

うして ふむ くは くち くち くう

Properties of the process

For all choices of sequences p_i as above

- ▶ There exists a unique stationary chain μ compatible with g
- μ is supported on infinitely many 1's with intervals of 0's
- μ is a renewal chain with visible renewals
- μ can be perfectly simulated

For all practical purposes, chains are as regular as they can be Nevertheless, for some choices of p_i the chains are not Gibbsian.

Cause: problem when conditioning on "all 0"

Negative

うして ふむ くは くち くち くう

Properties of the process

For all choices of sequences p_i as above

- ▶ There exists a unique stationary chain μ compatible with g
- μ is supported on infinitely many 1's with intervals of 0's
- μ is a renewal chain with visible renewals
- μ can be perfectly simulated

For all practical purposes, chains are as regular as they can be Nevertheless, for some choices of p_i the chains are not Gibbsian.

Cause: problem when conditioning on "all 0"

Negative ○○○●○○○○○○○○ イロト イポト イヨト イヨト ヨー のくや

Main result

Theorem

Negative answer to (Q1)

There exist choices of $\{p_i\}_{i\geq 0}$ as above for which the sequences

$$\left[\mu\left(X_{0}=\omega_{0}\mid X_{-i-1}=1, X_{-i}^{-1}=0_{-i}^{j}, X_{1}^{j}=0_{1}^{j}, X_{j+1}=1\right)\right]_{i,j\geq 1}$$

does not converge as $i, j \to \infty$.

In particular $\mu(0 \mid \cdot)$ is essentially discontinuous at $\omega = 0^{+\infty}_{-\infty}$

Negative ○○○●○○○○○○○○

Main result

Theorem

Negative answer to (Q1)

There exist choices of $\{p_i\}_{i\geq 0}$ as above for which the sequences

$$\left[\mu\left(X_{0}=\omega_{0}\mid X_{-i-1}=1, X_{-i}^{-1}=0_{-i}^{j}, X_{1}^{j}=0_{1}^{j}, X_{j+1}=1\right)\right]_{i,j\geq 1}$$

does not converge as $i, j \to \infty$.

In particular $\mu(0 \mid \cdot)$ is essentially discontinuous at $\omega = 0^{+\infty}_{-\infty}$

Issues 00 Proof of no Q1 Positive

Negative

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof of main result

It is based on the following

Claim

$$\mu \left(X_0 = \omega_0 \mid X_{-i-1} = 1, X_{-i}^j = 0_{-i}^j, X_{j+1} = 1 \right)$$

is determined by the ratio

$$\prod_{k=0}^{j-1} \frac{1-p_k}{1-p_{k+i}}.$$

Thus, discontinuity at $0^{+\infty}_{-\infty} \equiv p_k$ s.t. this ratio oscillates

Issues 00 Proof of no Q1 Positive

Negative

Proof of main result

It is based on the following

Claim

$$\mu \left(X_0 = \omega_0 \mid X_{-i-1} = 1, X_{-i}^j = 0_{-i}^j, X_{j+1} = 1 \right)$$

is determined by the ratio

$$\prod_{k=0}^{j-1} \frac{1-p_k}{1-p_{k+i}}$$

Thus, discontinuity at $0^{+\infty}_{-\infty} \equiv p_k$ s.t. this ratio oscillates

◆□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Positive

Negative

Other

Proof of no Q1

Proof (cont.)

Economical way: Define $p_k = 1 - (1 - p_\infty)\xi^{v_k}$ so that

$$\prod_{k=0}^{j-1} \frac{1-p_k}{1-p_{k+i}} = \xi^{\sum_{k=0}^{j-1} (v_k - v_{k+i})}$$

Choose $v_k \to 0$, but such that $\sum_{k=0}^{j} v_k$ oscillates Example: $\xi \in (1, (1-p_{\infty})^{-2})$ and

$$v_k = \frac{(-1)^{r_k}}{r_k}$$
 with $r_k = \inf\left\{i \ge 1 : \sum_{j=1}^i j \ge k+1\right\}$

First terms:

$$-1, \frac{1}{2}, \frac{1}{2}, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots$$

Positive

Negative

Proof of no Q1

Proof (cont.)

Economical way: Define $p_k = 1 - (1 - p_\infty)\xi^{v_k}$ so that

$$\prod_{k=0}^{j-1} \frac{1-p_k}{1-p_{k+i}} = \xi^{\sum_{k=0}^{j-1} (v_k - v_{k+i})}$$

Choose $v_k \to 0$, but such that $\sum_{k=0}^{j} v_k$ oscillates Example: $\xi \in (1, (1 - p_{\infty})^{-2})$ and

$$v_k = \frac{(-1)^{r_k}}{r_k}$$
 with $r_k = \inf\left\{i \ge 1 : \sum_{j=1}^i j \ge k+1\right\}$

First terms:

$$-1, \frac{1}{2}, \frac{1}{2}, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots$$

 $\underset{00}{\mathrm{Issues}}$

Proof of no Q1

Positive

Negative

Proof of the claim

$$\mu(X_{-i-1} = 1, X_{-i}^{j} = 0_{-i}^{j}, X_{j+1} = 1)$$

= $\mu(X_{-i-1} = 1)\mu(X_{-i}^{j-1} = 0_{-i}^{j+1}, X_{j} = 1 | X_{-i-1} = 1)$
= $\mu(X_{-i-1} = 1) \prod_{k=0}^{i+j} (1 - p_{k}) p_{i+j+1}$

Analogously

$$\mu (X_{-i-1} = 1, X_{-i}^{-1} = 0_{-i}^{-1}, X_0 = 1, X_1^{j-1} = 0_1^{j-1}, X_{j+1} = 1)$$

= $\mu (X_{-i-1} = 1) \left(\prod_{k=0}^{i-1} (1-p_k) p_i \right) \left(\prod_{k=0}^{j-1} (1-p_k) p_j \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Issues 00 Proof of no Q1 Positive

Negative

Other

Proof of the claim (cont.)

Hence

$$\begin{split} \mu \left(X_0 &= 0 \mid X_{-i-1} = 1, X_{-i}^j = 0_{-i}^j, X_{j+1} = 1 \right) \\ &= \frac{\prod_{k=0}^{i+j} (1-p_k) p_{i+j+1}}{\prod_{k=0}^{i-1} (1-p_k) p_i \prod_{k=0}^{j-1} (1-p_k) p_j + \prod_{k=0}^{i+j} (1-p_k) p_{i+j+1}} \\ &= \left[1 + \frac{p_i p_j}{(1-p_{i+j}) p_{i+j+1}} \prod_{k=0}^{j-1} \frac{1-p_k}{1-p_{k+i}} \right]^{-1} \\ &\sim \left[1 + \frac{p_\infty}{(1-p_\infty)} \prod_{k=0}^{j-1} \frac{1-p_k}{1-p_{k+i}} \right]^{-1} \end{split}$$

Positive

Negative

Negative answer to (Q2)

A Gibbs that is not regular g [Bissacot, Endo, van Enter and Le Ny (2017)] Consider Dyson models:

- $\blacktriangleright \mathcal{A} = \{-1, 1\}, \mathbb{L} = \mathbb{Z}$
- Specification defined by

$$\gamma_{\{0\}} \left(\sigma_0 \mid \sigma_{\{0\}^c} \right) = \exp \left[\beta \sum_{j \in \mathbb{Z}_{\neq 0}} \frac{\sigma_0 \sigma_j}{|j|^{\alpha}} \right] / \text{Norm.}$$

for $1 < \alpha < 2$

At low temperature there is a phase transition:

$$\mathcal{G}(\gamma) = \{\mu^+, \mu_-\} \text{ with } \mu^{\pm} = \lim_{n \to \infty} \gamma_{[-n,n]}(\cdot \mid \pm)$$

Theorem

Let $\alpha^* = 3 - \frac{\log 3}{\log 2} \in (1,2)$. Then, for each $\alpha \in (\alpha^*,2)$ the measures μ^{\pm} are not regular g at low enough temperatures.

Positive

Negative

Negative answer to (Q2)

A Gibbs that is not regular g [Bissacot, Endo, van Enter and Le Ny (2017)] Consider Dyson models:

- $\blacktriangleright \mathcal{A} = \{-1, 1\}, \mathbb{L} = \mathbb{Z}$
- Specification defined by

$$\gamma_{\{0\}}(\sigma_0 \mid \sigma_{\{0\}^c}) = \exp\left[\beta \sum_{j \in \mathbb{Z}_{\neq 0}} \frac{\sigma_0 \sigma_j}{|j|^{\alpha}}\right] / \text{Norm.}$$

for $1 < \alpha < 2$

At low temperature there is a phase transition:

$$\mathcal{G}(\gamma) = \{\mu^+, \mu_-\} \text{ with } \mu^{\pm} = \lim_{n \to \infty} \gamma_{[-n,n]}(\cdot \mid \pm)$$

Theorem

Let $\alpha^* = 3 - \frac{\log 3}{\log 2} \in (1, 2)$. Then, for each $\alpha \in (\alpha^*, 2)$ the measures μ^{\pm} are not regular g at low enough temperatures.

Positive

Negative

Negative answer to (Q2)

A Gibbs that is not regular g [Bissacot, Endo, van Enter and Le Ny (2017)] Consider Dyson models:

- $\blacktriangleright \mathcal{A} = \{-1, 1\}, \mathbb{L} = \mathbb{Z}$
- Specification defined by

$$\gamma_{\{0\}}(\sigma_0 \mid \sigma_{\{0\}^c}) = \exp\left[\beta \sum_{j \in \mathbb{Z}_{\neq 0}} \frac{\sigma_0 \sigma_j}{|j|^{\alpha}}\right] / \text{Norm.}$$

for $1 < \alpha < 2$

At low temperature there is a phase transition:

$$\mathcal{G}(\gamma) = \{\mu^+, \mu_-\} \text{ with } \mu^{\pm} = \lim_{n \to \infty} \gamma_{[-n,n]}(\cdot \mid \pm)$$

Theorem

Let $\alpha^* = 3 - \frac{\log 3}{\log 2} \in (1, 2)$. Then, for each $\alpha \in (\alpha^*, 2)$ the measures μ^{\pm} are not regular g at low enough temperatures.

Positive

Negative

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Sketch of the argument

First ingredient of the argument: Interfaces Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for μ^+ : Let $\alpha^* < \alpha < 2$ and T low enough

Under Dobrushin boundary conditions:

$$\sigma_i = \begin{cases} -1 & i \le -1 \\ +1 & i \ge L+1 \end{cases}$$

an interface develops at $I^* \sim L/2$ such that

- Mostly "-1" in $[0, I^*)$ and "+1" on $(I^*, L]$
- Probability of displacing interface $\sim e^{-cL^{2-}}$

$$\gamma_{[0,L]} \left(\left| I^* - (L/2) \right| > \epsilon L \right| - + \right) \leq f(\epsilon) L e^{-cL^{2-\alpha}} \qquad (1)$$

Positive

Negative

うして ふむ くは くち くち くう

Sketch of the argument

First ingredient of the argument: Interfaces Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for μ^+ : Let $\alpha^* < \alpha < 2$ and T low enough Under Dobrushin boundary conditions:

$$\sigma_i = \begin{cases} -1 & i \le -1 \\ +1 & i \ge L+1 \end{cases}$$

an interface develops at $I^* \sim L/2$ such that

- Mostly "-1" in $[0, I^*)$ and "+1" on $(I^*, L]$
- Probability of displacing interface $\sim e^{-cL^{2-\alpha}}$

 $\gamma_{[0,L]}(|I^* - (L/2)| > \epsilon L | -+) \leq f(\epsilon) L e^{-cL^{2-\alpha}}$

Positive

Negative

うして ふむ くは くち くち くう

Sketch of the argument

First ingredient of the argument: Interfaces Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for μ^+ : Let $\alpha^* < \alpha < 2$ and T low enough Under Dobrushin boundary conditions:

$$\sigma_i = \begin{cases} -1 & i \le -1 \\ +1 & i \ge L+1 \end{cases}$$

an interface develops at $I^* \sim L/2$ such that

- Mostly "-1" in $[0, I^*)$ and "+1" on $(I^*, L]$
- Probability of displacing interface $\sim e^{-cL^{2-\alpha}}$

$$\gamma_{[0,L]} (|I^* - (L/2)| > \epsilon L | -+) \le f(\epsilon) L e^{-cL^{2-\alpha}}$$
 (1)

Positive

Negative

Sketch of the argument

Second ingredient: Wetting

Flipping the left "-" beyond -N has an energy cost of at most

$$\sum_{\substack{i \in [0,L]\\j \leq -N}} \frac{1}{|i-j|} \sim \frac{L}{N^{\alpha-1}}$$

negligible w.r.t. RHS of (1) if N is grows superlinearly with L:

$$\frac{L}{N^{\alpha-1}} = o(1) \tag{2}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Consequence: $\exists \delta > 0$ s.t. for each ϵ

$$\mu^{+} \left(\omega_{i} \mid (-1)^{-1}_{-N} \right) \leq -\delta \quad , \quad i \in [0, (1-\epsilon)L/2]$$
(3)

for L large enough and N as in (2)

Positive

Negative

Sketch of the argument

Second ingredient: Wetting

Flipping the left "-" beyond -N has an energy cost of at most

$$\sum_{\substack{i \in [0,L]\\j \leq -N}} \frac{1}{|i-j|} \sim \frac{L}{N^{\alpha-1}}$$

negligible w.r.t. RHS of (1) if N is grows superlinearly with L:

$$\frac{L}{N^{\alpha-1}} = o(1) \tag{2}$$

Consequence: $\exists \delta > 0$ s.t. for each ϵ

$$\mu^{+}\left(\omega_{i} \mid (-1)_{-N}^{-1}\right) \leq -\delta \quad , \quad i \in [0, (1-\epsilon)L/2]$$
(3)

for L large enough and N as in (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Positive

Negative

Sketch of the argument

Third ingredient: Energy cost of alternating

Alternating spins in $[-L_1, 0]$ have a L_1 -independent energy cost

$$\max_{\omega} \sum_{\substack{i \in [-L_1, -1]\\ j \notin [-L_1, -1]}} \frac{(1)^i}{|i-j|^{\alpha}} \,\omega_j \,\leq \,c \tag{4}$$

with c independent of L_1 . From (1), (3) and (4):

$$\mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (-1)^{-L_{1}-1}_{-N-L_{1}} \right) \leq -\delta$$
 (5)

for L large enough as long as $L/N^{\alpha-1} = o(1)$ and $L_1 = o(L)$.

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○日 ● ○○○

Positive

Negative

Sketch of the argument

Third ingredient: Energy cost of alternating

Alternating spins in $[-L_1, 0]$ have a L_1 -independent energy cost

$$\max_{\omega} \sum_{\substack{i \in [-L_1, -1]\\ j \notin [-L_1, -1]}} \frac{(1)^i}{|i-j|^{\alpha}} \,\omega_j \,\leq \,c \tag{4}$$

with c independent of L_1 . From (1), (3) and (4):

$$\mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (-1)^{-L_{1}-1}_{-N-L_{1}} \right) \leq -\delta$$
 (5)

for L large enough as long as $L/N^{\alpha-1} = o(1)$ and $L_1 = o(L)$.

・ロト ・母ト ・ヨト ・ヨー うへで

Positive

Negative 000000000000000 Sketch of the argument

Conclusion

Analogously, conditioning on "+" in [-N, -1]:

$$\mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (+1)^{-L_{1}-1}_{-N-L_{1}} \right) \geq \delta$$
(6)

Hence, for L large enough

$$\left| \mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (+1)^{-L_{1}-1}_{-N-L_{1}} \right) - \mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (-1)^{-L_{1}-1}_{-N-L_{1}} \right) \right| > 2\delta$$

Left-conditioning is not quasilocal (discontinuous w.r.t. past)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

Positive

Negative 000000000000000 Sketch of the argument

Conclusion

Analogously, conditioning on "+" in [-N, -1]:

$$\mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (+1)^{-L_{1}-1}_{-N-L_{1}} \right) \geq \delta$$
(6)

Hence, for L large enough

$$\left| \mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (+1)^{-L_{1}-1}_{-N-L_{1}} \right) - \mu^{+} \left(\omega_{0} \mid (\omega^{\text{alt}})^{-1}_{-L_{1}} (-1)^{-L_{1}-1}_{-N-L_{1}} \right) \right| > 2\delta$$

Left-conditioning is not quasilocal (discontinuous w.r.t. past)

Positive

Negative 00000000000000 **Other** ●○○○○○○○○○○○

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Necessary and sufficient conditions

Review of additional issues and results I. When a regular g is Gibbs

Theorem

A regular g-measure is Gibbs iff the sequence

$$\prod_{i=1}^{n} \frac{g\left(\omega_{i} \mid \omega_{1}^{i-1} \sigma_{0} \omega_{-\infty}^{-1}\right)}{g\left(\omega_{i} \mid \omega_{1}^{i-1} \eta_{0} \omega_{-\infty}^{-1}\right)}$$

converges, $\forall \sigma_0, \eta_0$, uniformly on ω , as $n \to \infty$

Positive

Other

II. Reversibility

Relation between left- and right-conditioning?

Definition

Reversible measures

A regular *g*-measure is **reversible** if it is continuous w.r.t. the *future*:

$$\sup_{\omega,\sigma} \left| \mu(\omega_0 \mid \sigma_1^n \, \omega_{n+1}^\infty) - \mu(\omega_0 \mid \sigma_1^\infty) \right| < \epsilon$$

Theorem

A regular g-measure μ is reversible iff the sequence

$$\prod_{i=1}^{n} \frac{g(\omega_i \mid \omega_0^{i-1})}{g(\omega_i \mid \omega_1^{i-1})}$$

converges uniformly on ω , as $n \to \infty$, to a fit on free of zeros

Positive

Other

II. Reversibility

Relation between left- and right-conditioning?

Definition

Reversible measures

A regular *g*-measure is **reversible** if it is continuous w.r.t. the *future*:

$$\sup_{\omega,\sigma} \left| \mu \big(\omega_0 \mid \sigma_1^n \, \omega_{n+1}^\infty \big) - \mu \big(\omega_0 \mid \sigma_1^\infty \big) \right| < \epsilon$$

Theorem

A regular g-measure μ is reversible iff the sequence

$$\prod_{i=1}^{n} \frac{g(\omega_i \mid \omega_0^{i-1})}{g(\omega_i \mid \omega_1^{i-1})}$$

converges uniformly on ω , as $n \to \infty$, to a fit on free of zeros

Positive

Other

II. Reversibility

Relation between left- and right-conditioning?

Definition

Reversible measures

A regular *g*-measure is **reversible** if it is continuous w.r.t. the *future*:

$$\sup_{\omega,\sigma} \left| \mu \big(\omega_0 \mid \sigma_1^n \, \omega_{n+1}^\infty \big) - \mu \big(\omega_0 \mid \sigma_1^\infty \big) \right| < \epsilon$$

Theorem

A regular g-measure μ is reversible iff the sequence

$$\prod_{i=1}^{n} \frac{g(\omega_i \mid \omega_0^{i-1})}{g(\omega_i \mid \omega_1^{i-1})}$$

converges uniformly on ω , as $n \to \infty$, to a fittion free of zeros

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへで

Known examples

Positive

Negative 00000000000000 **Other** ○○●○○○○○○○○○○

イロト イポト イヨト イヨト ヨー のくや

Overview of examples

▶ \exists non-reversible measures (example is also non-Gibbs)

- ▶ \exists reversible *g*-measures with different left and right continuity rates
- The above g- but non-Gibbs measure is reversible

Known examples

Positive

Negative

Other ○○●○○○○○○○○○○

イロト イポト イヨト イヨト ヨー のくや

Overview of examples

- ▶ \exists non-reversible measures (example is also non-Gibbs)
- ▶ ∃ reversible g-measures with different left and right continuity rates
- The above g- but non-Gibbs measure is reversible

Known examples

Positive

Negative

Other ○○●○○○○○○○○○○

イロト イポト イヨト イヨト ヨー のくや

Overview of examples

- ▶ \exists non-reversible measures (example is also non-Gibbs)
- ► ∃ reversible g-measures with different left and right continuity rates
- ▶ The above g- but non-Gibbs measure is reversible

Negative

Other

うして ふむ くは くち くち くう

III. Singletons vs interval kernels

Transitions vs kernels

Asymmetry in conditional kernels:

- g-measures determined by single-time transitions $g(\cdot \mid \omega_{-\infty}^{-1})$
- ► Gibbs measures determined by full specifications $\{\gamma_{\Lambda}(\cdot \mid \omega_{\Lambda^c}) : \Lambda \Subset \mathbb{Z}\}$

To put approaches on a common ground

- $g \longrightarrow$ left-interval specifications (LIS)
- specifications $\longrightarrow \gamma_{\{0\}}$ plus order-consistency

Positive

Negative

Other

うして ふむ くは くち くち くう

III. Singletons vs interval kernels

Transitions vs kernels

Asymmetry in conditional kernels:

- g-measures determined by single-time transitions $g(\cdot \mid \omega_{-\infty}^{-1})$
- ► Gibbs measures determined by full specifications $\{\gamma_{\Lambda}(\cdot \mid \omega_{\Lambda^c}) : \Lambda \Subset \mathbb{Z}\}$

To put approaches on a common ground

- $g \longrightarrow$ left-interval specifications (LIS)
- specifications $\longrightarrow \gamma_{\{0\}}$ plus order-consistency

Positive

Negative 00000000000000 **Other**

Left-interval specifications

$g\mbox{-}{\rm functions}$ admit a specification-like framework. Denote

• $\mathcal{J} = \text{set of bounded intervals in } \mathbb{Z}$

• If
$$[a, b] \in \mathcal{J}, m_{\Lambda} := b$$
,

$$\blacktriangleright \ \mathcal{F}_{\leq \Lambda} := \mathcal{F}_{(-\infty,b]}$$

$$\blacktriangleright \mathcal{F}_{\Lambda_{-}} := \mathcal{F}_{(-\infty,a-1]}$$

The iterated-conditioning formula

$$g_{[m,n]}(\omega_m^n \mid \omega_{-\infty}^{n-1}) = g(\omega_m \mid \omega_{-\infty}^{m-1}) g(\omega_{m-1} \mid \omega_{-\infty}^{m-2}) \cdots g(\omega_n \mid \omega_{-\infty}^{n-1})$$

defines a family of probability kernels $G = \{g_{\Lambda} : \Lambda \in \mathcal{J}\}$ s.t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つへぐ

Positive

Other

うして ふむ くは くち くち くう

Left-interval specifications

 $g\mbox{-}{\rm functions}$ admit a specification-like framework. Denote

• $\mathcal{J} = \text{set of bounded intervals in } \mathbb{Z}$

• If
$$[a,b] \in \mathcal{J}, m_{\Lambda} := b$$
,

•
$$\mathcal{F}_{\leq \Lambda} := \mathcal{F}_{(-\infty,b]}$$

•
$$\mathcal{F}_{\Lambda_{-}} := \mathcal{F}_{(-\infty,a-1]}$$

The iterated-conditioning formula

$$g_{[m,n]}(\omega_m^n \mid \omega_{-\infty}^{n-1}) = g(\omega_m \mid \omega_{-\infty}^{m-1}) g(\omega_{m-1} \mid \omega_{-\infty}^{m-2}) \cdots g(\omega_n \mid \omega_{-\infty}^{n-1})$$

defines a family of probability kernels $G = \{g_{\Lambda} : \Lambda \in \mathcal{J}\}$ s.t.

Positive

Other

Left-interval specifications

g-functions admit a specification-like framework. Denote

• $\mathcal{J} = \text{set of bounded intervals in } \mathbb{Z}$

• If
$$[a,b] \in \mathcal{J}, m_{\Lambda} := b$$
,

$$\blacktriangleright \mathcal{F}_{\leq \Lambda} := \mathcal{F}_{(-\infty,b]}$$

•
$$\mathcal{F}_{\Lambda_{-}} := \mathcal{F}_{(-\infty,a-1]}$$

The iterated-conditioning formula

$$g_{[m,n]}(\omega_m^n \mid \omega_{-\infty}^{n-1}) = g(\omega_m \mid \omega_{-\infty}^{m-1}) g(\omega_{m-1} \mid \omega_{-\infty}^{m-2}) \cdots g(\omega_n \mid \omega_{-\infty}^{n-1})$$

defines a family of probability kernels $G = \{g_{\Lambda} : \Lambda \in \mathcal{J}\}$ s.t.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Definition of LIS

(i) Increasing measurability: g_Λ : F_{≤m_Λ} × Ω → [0,1]
(ii) Dependence on past: g_Λ(f | ·) is F_Λ-measurable
(iii) Properness: For Λ ∈ J and f F_{≤Λ}-measurable,

$$g_{\Lambda}(h f \mid \omega) = h(\omega) g_{\Lambda}(f \mid \omega)$$

if h depends only on $\omega_{\Lambda_{-}}$ (iv) Consistency: For $\Delta, \Lambda \in \mathcal{J} : \Delta \supset \Lambda$,

$$g_{\Delta} g_{\Lambda} = g_{\Delta}$$
 over $\mathcal{F}_{\leq m_{\Lambda}}$

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Definition of LIS

(i) Increasing measurability: g_Λ : F_{≤m_Λ} × Ω → [0,1]
(ii) Dependence on past: g_Λ(f | ·) is F_Λ-measurable
(iii) Properness: For Λ ∈ J and f F_{≤Λ}-measurable,

$$g_{\Lambda}(h f \mid \omega) = h(\omega) g_{\Lambda}(f \mid \omega)$$

if h depends only on $\omega_{\Lambda_{-}}$ (iv) Consistency: For $\Delta, \Lambda \in \mathcal{J} : \Delta \supset \Lambda$,

$$g_{\Delta} g_{\Lambda} = g_{\Delta} \quad \text{over } \mathcal{F}_{\leq m_{\Lambda}}$$

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Definition of LIS

(i) Increasing measurability: g_Λ : F_{≤m_Λ} × Ω → [0, 1]
(ii) Dependence on past: g_Λ(f | ·) is F_Λ-measurable
(iii) Properness: For Λ ∈ J and f F_{≤Λ}-measurable,

$$g_{\Lambda}(h f \mid \omega) \; = \; h(\omega) \, g_{\Lambda}(f \mid \omega)$$

if h depends only on $\omega_{\Lambda_{-}}$

(iv) Consistency: For $\Delta, \Lambda \in \mathcal{J} : \Delta \supset \Lambda$,

$$g_{\Delta} g_{\Lambda} = g_{\Delta}$$
 over $\mathcal{F}_{\leq m_{\Lambda}}$

Positive 00000 Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Definition of LIS

(i) Increasing measurability: g_Λ : F_{≤m_Λ} × Ω → [0, 1]
(ii) Dependence on past: g_Λ(f | ·) is F_Λ-measurable
(iii) Properness: For Λ ∈ J and f F_{≤Λ}-measurable,

$$g_{\Lambda}(h f \mid \omega) \; = \; h(\omega) \, g_{\Lambda}(f \mid \omega)$$

if h depends only on $\omega_{\Lambda_{-}}$

(iv) Consistency: For $\Delta, \Lambda \in \mathcal{J} : \Delta \supset \Lambda$,

$$g_{\Delta} g_{\Lambda} = g_{\Delta} \quad \text{over } \mathcal{F}_{\leq m_{\Lambda}}$$

Negative 00000000000000 **Other**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G) = \mathcal{G}(g)$:

 $\mu g_{\Lambda} = \mu \, \forall \, \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu \, g = \mu$

Observations:

- ▶ Unlike specifications, kernels apply to different σ -algebras
- ▶ Kernels *only* for intervals
- ▶ Nevertheless the theory for specifications can be adapted
- ▶ Generalization: L partially ordered (POS)

Negative 00000000000000 **Other**

・ロト ・御 ト ・ ヨト ・ ヨト - ヨー

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G) = \mathcal{G}(g)$:

$$\mu \, g_{\Lambda} = \mu \, \forall \, \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu \, g = \mu$$

Observations:

- Unlike specifications, kernels apply to different σ -algebras
- ► Kernels *only* for intervals
- ▶ Nevertheless the theory for specifications can be adapted
- ▶ Generalization: L partially ordered (POS)

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G) = \mathcal{G}(g)$:

$$\mu g_{\Lambda} = \mu \,\forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g = \mu$$

Observations:

- ▶ Unlike specifications, kernels apply to different σ -algebras
- ► Kernels *only* for intervals
- ▶ Nevertheless the theory for specifications can be adapted
- ▶ Generalization: L partially ordered (POS)

Issues 00 III.1 LIS Positive

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G) = \mathcal{G}(g)$:

$$\mu g_{\Lambda} = \mu \ \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g = \mu$$

Observations:

- ▶ Unlike specifications, kernels apply to different σ -algebras
- ▶ Kernels *only* for intervals
- ▶ Nevertheless the theory for specifications can be adapted
- Generalization: L partially ordered (POS)

Issues 00 III.1 LIS Positive

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G) = \mathcal{G}(g)$:

$$\mu g_{\Lambda} = \mu \,\forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g = \mu$$

Observations:

- ▶ Unlike specifications, kernels apply to different σ -algebras
- ▶ Kernels *only* for intervals
- ▶ Nevertheless the theory for specifications can be adapted
- ▶ Generalization: L partially ordered (POS)

Issues 00 III.1 LIS Positive

Other ○○○○**○**●○○○○○

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G) = \mathcal{G}(g)$:

$$\mu g_{\Lambda} = \mu \ \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g = \mu$$

Observations:

- ▶ Unlike specifications, kernels apply to different σ -algebras
- ▶ Kernels *only* for intervals
- ▶ Nevertheless the theory for specifications can be adapted
- ► Generalization: L partially ordered (POS)

III.2 Specifications from singletons

From singletons to specifications (general \mathbb{L})

Would like to generate kernels from the singletons $\gamma_{\{i\}}$ However, not any family of singletons is admissible Choice of internal regions lead to *compatibility conditions*

Let us start with two sites:

► The consistency $\gamma_{\{i,j\}} = \gamma_{\{i,j\}} \gamma_{\{i\}}$ implies

 $\gamma_{\{i,j\}} \left(\sigma_i \sigma_j \mid \omega \right) = \gamma_{\{i\}} \left(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c} \right) \gamma_{\{i,j\}} \left(\sigma_j \mid \omega \right)$ (7)

• On the other hand $\gamma_{\{i,j\}} = \gamma_{\{i,j\}} \gamma_{\{j\}}$ implies

 $\gamma_{\{i,j\}} \left(\sigma_i \sigma_j \mid \omega \right) = \gamma_{\{j\}} \left(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c} \right) \gamma_{\{i,j\}} \left(\sigma_i \mid \omega \right)$ (8)

III.2 Specifications from singletons

From singletons to specifications (general \mathbb{L})

Would like to generate kernels from the singletons $\gamma_{\{i\}}$ However, not any family of singletons is admissible Choice of internal regions lead to *compatibility conditions* Let us start with two sites:

▶ The consistency $\gamma_{\{i,j\}} = \gamma_{\{i,j\}} \gamma_{\{i\}}$ implies

$$\gamma_{\{i,j\}} \left(\sigma_i \sigma_j \mid \omega \right) = \gamma_{\{i\}} \left(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c} \right) \gamma_{\{i,j\}} \left(\sigma_j \mid \omega \right)$$
(7)

▶ On the other hand $\gamma_{\{i,j\}} = \gamma_{\{i,j\}} \gamma_{\{j\}}$ implies

$$\gamma_{\{i,j\}} \left(\sigma_i \sigma_j \mid \omega \right) = \gamma_{\{j\}} \left(\sigma_j \mid \sigma_i \, \omega_{\{i\}^c} \right) \gamma_{\{i,j\}} \left(\sigma_i \mid \omega \right)$$
(8)

Positive

Negative

Other

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

III.2 Specifications from singletons

From (7)-(8)

$$\gamma_{\{i,j\}}(\sigma_i \mid \omega) = \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})} \,\gamma_{\{i,j\}}(\sigma_j \mid \omega)$$

Summing over σ_i ,

$$\gamma_{\{i,j\}}(\sigma_j \mid \omega) = \left[\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}\right]^{-1}$$

Inserting this in (7)

$$\gamma_{\{i,j\}}(\sigma_i\sigma_j \mid \omega) = \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}}$$
(9)

Iss	u	e	\mathbf{s}
00			

Positive

Negative

Other

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

III.2 Specifications from singletons

From (7)-(8)

$$\gamma_{\{i,j\}}(\sigma_i \mid \omega) = \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^{c}})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^{c}})} \gamma_{\{i,j\}}(\sigma_j \mid \omega)$$

Summing over σ_i ,

$$\gamma_{\{i,j\}}(\sigma_j \mid \omega) = \left[\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}\right]^{-1}$$

Inserting this in (7)

$$\gamma_{\{i,j\}}(\sigma_i\sigma_j \mid \omega) = \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}}$$

Positive

Negative

Other

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

III.2 Specifications from singletons

From (7)-(8)

$$\gamma_{\{i,j\}}(\sigma_i \mid \omega) = \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^{c}})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^{c}})} \gamma_{\{i,j\}}(\sigma_j \mid \omega)$$

Summing over σ_i ,

$$\gamma_{\{i,j\}}(\sigma_j \mid \omega) = \left[\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}\right]^{-1}$$

Inserting this in (7)

$$\gamma_{\{i,j\}}(\sigma_i \sigma_j \mid \omega) = \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}}$$
(9)

Positive

Negative

Other ○○○○○○○○●○○○

イロト イポト イヨト イヨト ヨー のくや

III.2 Specifications from singletons

Order-consistency condition

Using, instead, (8) we similarly arrive to the $i \leftrightarrow j$ expression:

$$\gamma_{\{i,j\}}(\sigma_i \sigma_j \mid \omega) = \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\sum_{\sigma_j} \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}}$$
(10)

RHS of (9) =RHS of $(10) \implies$ order-consistency condition:

$$\frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}} = \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\sum_{\sigma_j} \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}}$$
(11)

Positive

Negative

Other ○○○○○○○○●○○○

III.2 Specifications from singletons

Order-consistency condition

Using, instead, (8) we similarly arrive to the $i \leftrightarrow j$ expression:

$$\gamma_{\{i,j\}}(\sigma_i \sigma_j \mid \omega) = \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\sum_{\sigma_j} \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}}$$
(10)

RHS of (9) = RHS of $(10) \Longrightarrow$ order-consistency condition:

$$\frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\sum_{\sigma_i} \frac{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}} = \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\sum_{\sigma_j} \frac{\gamma_{\{j\}}(\sigma_j \mid \sigma_i \,\omega_{\{i\}^c})}{\gamma_{\{i\}}(\sigma_i \mid \sigma_j \,\omega_{\{j\}^c})}}$$
(11)

Positive

Negative

Other

III.2 Specifications from singletons

The reconstruction theorem

Further compatibility conditions from other $\Lambda \Subset \mathbb{L}$? Miracle! (11) is enough

Theorem

If (11) hold for all $i, j \in \mathbb{L}, \omega \in \Omega$ (denominators $\downarrow 0!$), then

▶ ∃ exactly one γ with the given single-site kernels, defined by

$$\gamma_{\Lambda\cup\Gamma}(\sigma_{\lambda}\sigma_{\Gamma} \mid \omega) = \frac{\gamma_{\Gamma}(\sigma_{\Gamma} \mid \sigma_{\Lambda} \omega_{\Lambda^{c}})}{\sum_{\sigma_{\Gamma}} \frac{\gamma_{\Gamma}(\sigma_{\Gamma} \mid \sigma_{\Lambda} \omega_{\Lambda^{c}})}{\gamma_{\Lambda}(\sigma_{\Lambda} \mid \sigma_{\Gamma} \omega_{\Gamma^{c}})}}$$

• Furthermore, such γ satisfies:

$$\blacktriangleright \ \mathcal{G}(\gamma) = \left\{ \mu : \mu \gamma_{\{i\}} = \mu \ \forall i \in \mathbb{L} \right\}$$

 $\triangleright \gamma$ is quasilocal (resp. non-null) iff so are the $\gamma_{\{i\}}$

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

III.2 Specifications from singletons

The reconstruction theorem

Further compatibility conditions from other $\Lambda \Subset \mathbb{L}$? Miracle! (11) is enough

Theorem

If (11) hold for all $i, j \in \mathbb{L}, \omega \in \Omega$ (denominators $\dot{\varepsilon}$ 0!), then

▶ ∃ exactly one γ with the given single-site kernels, defined by

$$\gamma_{\Lambda\cup\Gamma}(\sigma_{\lambda}\sigma_{\Gamma} \mid \omega) = \frac{\gamma_{\Gamma}(\sigma_{\Gamma} \mid \sigma_{\Lambda} \,\omega_{\Lambda^{c}})}{\sum_{\sigma_{\Gamma}} \frac{\gamma_{\Gamma}(\sigma_{\Gamma} \mid \sigma_{\Lambda} \,\omega_{\Lambda^{c}})}{\gamma_{\Lambda}(\sigma_{\Lambda} \mid \sigma_{\Gamma} \,\omega_{\Gamma^{c}})}}$$

• Furthermore, such γ satisfies:

$$\blacktriangleright \ \mathcal{G}(\gamma) = \left\{ \mu : \mu \, \gamma_{\{i\}} = \mu \; \forall \, i \in \mathbb{L} \right\}$$

 $\triangleright \gamma$ is quasilocal (resp. non-null) iff so are the $\gamma_{\{i\}}$

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

III.2 Specifications from singletons

The reconstruction theorem

Further compatibility conditions from other $\Lambda \Subset \mathbb{L}$? Miracle! (11) is enough

Theorem

If (11) hold for all $i, j \in \mathbb{L}, \omega \in \Omega$ (denominators \not{a} 0!), then

▶ ∃ exactly one γ with the given single-site kernels, defined by

$$\gamma_{\Lambda\cup\Gamma}(\sigma_{\lambda}\sigma_{\Gamma} \mid \omega) = \frac{\gamma_{\Gamma}(\sigma_{\Gamma} \mid \sigma_{\Lambda} \,\omega_{\Lambda^{c}})}{\sum_{\sigma_{\Gamma}} \frac{\gamma_{\Gamma}(\sigma_{\Gamma} \mid \sigma_{\Lambda} \,\omega_{\Lambda^{c}})}{\gamma_{\Lambda}(\sigma_{\Lambda} \mid \sigma_{\Gamma} \,\omega_{\Gamma^{c}})}}$$

• Furthermore, such γ satisfies:

Positive

Negative

Other ○○○○○○○○○○●○

III.2 Specifications from singletons

Comments

▶ Consistency condition (11) are automatically satisfied if

 Singletons come from a specification. Hence theorem shows that a specification is uniquely defined by singletons [Georgii's Theorem 1.33]

• Singletons come from a pre-existing measure μ :

$$\gamma_i(\omega_i \mid \omega) = \lim_{n \to \infty} \frac{\mu(\omega_{V_n})}{\mu(\omega_{V_n \setminus \{i\}})}$$

for an exhausting sequence of volumes $\{V_n\}$

- Dachian and Nahapetian (2001) provided alternative construction (weaker non-nullness, stronger order-consistency)
- ▶ Reconstruction also with very weak non-nullness

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Positive

Negative

Other ○○○○○○○○○○●○

III.2 Specifications from singletons

Comments

▶ Consistency condition (11) are automatically satisfied if

- Singletons come from a specification. Hence theorem shows that a specification is uniquely defined by singletons [Georgii's Theorem 1.33]
- Singletons come from a pre-existing measure μ :

$$\gamma_i(\omega_i \mid \omega) = \lim_{n \to \infty} \frac{\mu(\omega_{V_n})}{\mu(\omega_{V_n \setminus \{i\}})}$$

for an exhausting sequence of volumes $\{V_n\}$

- Dachian and Nahapetian (2001) provided alternative construction (weaker non-nullness, stronger order-consistency)
- ▶ Reconstruction also with very weak non-nullness

Positive

Negative

Other ○○○○○○○○○○●○

III.2 Specifications from singletons

Comments

▶ Consistency condition (11) are automatically satisfied if

- Singletons come from a specification. Hence theorem shows that a specification is uniquely defined by singletons [Georgii's Theorem 1.33]
- Singletons come from a pre-existing measure μ :

$$\gamma_i(\omega_i \mid \omega) = \lim_{n \to \infty} \frac{\mu(\omega_{V_n})}{\mu(\omega_{V_n \setminus \{i\}})}$$

for an exhausting sequence of volumes $\{V_n\}$

- Dachian and Nahapetian (2001) provided alternative construction (weaker non-nullness, stronger order-consistency)
- ▶ Reconstruction also with very weak non-nullness

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Conclusion

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Final comments

The general mathematical framework is clear enough:

- \blacktriangleright Gibbs and g have comparable but not identical theories
- ▶ General theory: partially ordered specifications

What about practical considerations?

- ▶ In some cases one theory is applicable but not the other
- "Numerical" criteria to detect these cases?
- ▶ If both theories applicable: "numerical efficiency"?

Conclusion

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Final comments

The general mathematical framework is clear enough:

- \blacktriangleright Gibbs and g have comparable but not identical theories
- ▶ General theory: partially ordered specifications

What about practical considerations?

- ▶ In some cases one theory is applicable but not the other
- "Numerical" criteria to detect these cases?
- ▶ If both theories applicable: "numerical efficiency"?

Conclusion

Positive

Negative

Other

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のの⊙

Final comments

The general mathematical framework is clear enough:

- \blacktriangleright Gibbs and g have comparable but not identical theories
- ▶ General theory: partially ordered specifications

What about practical considerations?

- ▶ In some cases one theory is applicable but not the other
- "Numerical" criteria to detect these cases?
- ▶ If both theories applicable: "numerical efficiency"?