Signal description: Process or Gibbs? I. General introduction

Contributors: S. Berghout (Leiden)
A. van Enter (Groningen)
S. Gallo (São Carlos),
G. Maillard (Aix-Marseille),
E. Verbitskiy (Leiden)

Florence in May, 2017

The issue

A signal with a stochastic component is detected

$$
\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_{0} \omega_{1} \cdots \omega_{n} \omega_{n+1} \cdots
$$

ω_{i} belongs to some finite "alphabet" \mathcal{A}
E.g. biological signals:

Basic tenets
Stochastic description due to signal variability Full description $=$ probability measure μ on $\mathcal{A}^{\mathbb{Z}}$

The issue

A signal with a stochastic component is detected

$$
\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_{0} \omega_{1} \cdots \omega_{n} \omega_{n+1} \cdots
$$

ω_{i} belongs to some finite "alphabet" \mathcal{A}
E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A}=\{0,1\}$
- DNA string, $\mathcal{A}=\{A, C, G, T\}$

Basic tenets
Stochastic description due to signal variability
Full descrintion $=$ nrobabilitv measure μ on $\mathcal{A}^{\mathbb{Z}}$
Key issue: efficient characterization of μ.

The issue

A signal with a stochastic component is detected

$$
\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_{0} \omega_{1} \cdots \omega_{n} \omega_{n+1} \cdots
$$

ω_{i} belongs to some finite "alphabet" \mathcal{A}
E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A}=\{0,1\}$
- DNA string, $\mathcal{A}=\{A, C, G, T\}$

Basic tenets
Stochastic description due to signal variability
Full description $=$ probability measure μ on $\mathcal{A}^{\mathbb{Z}}$

The issue

A signal with a stochastic component is detected

$$
\cdots \omega_{-n-1} \omega_{-n} \cdots \omega_{-1} \omega_{0} \omega_{1} \cdots \omega_{n} \omega_{n+1} \cdots
$$

ω_{i} belongs to some finite "alphabet" \mathcal{A}
E.g. biological signals:

- Spike sequence of a neuron, $\mathcal{A}=\{0,1\}$
- DNA string, $\mathcal{A}=\{A, C, G, T\}$

Basic tenets
Stochastic description due to signal variability
Full description $=$ probability measure μ on $\mathcal{A}^{\mathbb{Z}}$
Key issue: efficient characterization of μ.

First approach: Transition probabilities

Machine-learning approach:

- Use first part of the train to develop "rules" to predict rest
- By recurrence: enough to predict next bit given "history"
through its law, defined by a function g such that Look for μ determined by (consistent with) this g

First approach: Transition probabilities

Machine-learning approach:

- Use first part of the train to develop "rules" to predict rest
- By recurrence: enough to predict next bit given "history"

That is, estimate the conditional probabilities w.r.t. past

$$
P\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots\right)
$$

through its law, defined by a function g such that

$$
P\left(X_{0}=\omega_{0} \mid X_{-\infty}^{-1}=\omega_{-\infty}^{-1}\right)=g\left(\omega_{0} \mid \omega_{-\infty}^{-1}\right)
$$

First approach: Transition probabilities

Machine-learning approach:

- Use first part of the train to develop "rules" to predict rest
- By recurrence: enough to predict next bit given "history"

That is, estimate the conditional probabilities w.r.t. past

$$
P\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots\right)
$$

through its law, defined by a function g such that

$$
P\left(X_{0}=\omega_{0} \mid X_{-\infty}^{-1}=\omega_{-\infty}^{-1}\right)=g\left(\omega_{0} \mid \omega_{-\infty}^{-1}\right)
$$

Look for μ determined by (consistent with) this g :

$$
\mu\left(X_{0}=\omega_{0} \mid X_{-\infty}^{-1}=\omega_{-\infty}^{-1}\right)=g\left(\omega_{0} \mid \omega_{-\infty}^{-1}\right)
$$

Regular g-measures

Relevant transitions expected to be insensitive to farther past:
g is a regular g-function if $\forall \epsilon>0 \exists n \geq 0$ such that continuous in product topology -Additional. not very relevant, n1011-17111117ess coniditiont

Regular g-measures

Relevant transitions expected to be insensitive to farther past: g is a regular g-function if $\forall \epsilon>0 \exists n \geq 0$ such that

$$
\begin{equation*}
\sup _{\omega, \sigma}\left|g\left(\omega_{0} \mid \sigma_{-1}^{-n} \omega_{-\infty}^{-n-1}\right)-g\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)\right|<\epsilon \tag{1}
\end{equation*}
$$

Regular g-measures

Relevant transitions expected to be insensitive to farther past:
g is a regular g-function if $\forall \epsilon>0 \exists n \geq 0$ such that

$$
\begin{equation*}
\sup _{\omega, \sigma}\left|g\left(\omega_{0} \mid \sigma_{-1}^{-n} \omega_{-\infty}^{-n-1}\right)-g\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)\right|<\epsilon \tag{1}
\end{equation*}
$$

- (1) is equivalent to $g\left(\omega_{0} \mid \cdot\right)$ continuous in product topology
- Additional, not very relevant, non-nullness condition

Regular g-measures

Relevant transitions expected to be insensitive to farther past:
g is a regular g-function if $\forall \epsilon>0 \exists n \geq 0$ such that

$$
\begin{equation*}
\sup _{\omega, \sigma}\left|g\left(\omega_{0} \mid \sigma_{-1}^{-n} \omega_{-\infty}^{-n-1}\right)-g\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)\right|<\epsilon \tag{1}
\end{equation*}
$$

- (1) is equivalent to $g\left(\omega_{0} \mid \cdot\right)$ continuous in product topology
- Additional, not very relevant, non-nullness condition A probability measure μ is a regular g-measure if it is consistent with some regular g-function

Regular g-measures

Relevant transitions expected to be insensitive to farther past:
g is a regular g-function if $\forall \epsilon>0 \exists n \geq 0$ such that

$$
\begin{equation*}
\sup _{\omega, \sigma}\left|g\left(\omega_{0} \mid \sigma_{-1}^{-n} \omega_{-\infty}^{-n-1}\right)-g\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)\right|<\epsilon \tag{1}
\end{equation*}
$$

- (1) is equivalent to $g\left(\omega_{0} \mid \cdot\right)$ continuous in product topology
- Additional, not very relevant, non-nullness condition

A probability measure μ is a regular g-measure if it is consistent with some regular g-function
Signal μ thought as a process: past determines future (causality)

Fields point of view

If the full train is available, why use only the past?
Learn to predict a bit using past and future!
\qquad

Fields point of view

If the full train is available, why use only the past?
Learn to predict a bit using past and future!
X_{n} determined by finite-window probabilities

$$
\mathbb{P}\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots ; X_{n+1}, X_{n+2}, \ldots\right)
$$

through conditional laws determined by a function γ s.t.

$$
P\left(X_{0}=\omega_{0} \mid X_{\{0\}^{\mathrm{c}}}=\omega_{\{0\}^{\mathrm{c}}}\right)=\gamma\left(\omega_{0} \mid \omega_{\{0\}^{\mathrm{c}}}\right)
$$

Specification: γ satisfying certain compatibility condition

Fields point of view

If the full train is available, why use only the past?
Learn to predict a bit using past and future!
X_{n} determined by finite-window probabilities

$$
\mathbb{P}\left(X_{n} \mid X_{n-1}, X_{n-2}, \ldots ; X_{n+1}, X_{n+2}, \ldots\right)
$$

through conditional laws determined by a function γ s.t.

$$
P\left(X_{0}=\omega_{0} \mid X_{\{0\}^{\mathrm{c}}}=\omega_{\{0\}^{\mathrm{c}}}\right)=\gamma\left(\omega_{0} \mid \omega_{\{0\}^{\mathrm{c}}}\right)
$$

Specification: γ satisfying certain compatibility condition Look for μ determined by (consistent with) this γ :

$$
\mu\left(X_{0}=\omega_{0} \mid X_{\{0\}^{\mathrm{c}}}=\omega_{\{0\}^{\mathrm{c}}}\right)=\gamma\left(\omega_{0} \mid \omega_{\{0\}^{\mathrm{c}}}\right)
$$

Quasilocal measures

A specification γ is quasilocal if $\forall \epsilon>0 \exists n, m \geq 0$

$$
\begin{equation*}
\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n, m]^{c}}\right)-\gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right|<\epsilon \tag{2}
\end{equation*}
$$

for every σ, ω

Gibbs specifications are, in addition, strongly non-null A nrohahility measure 11 is a muasilocal (Gihhs) measure if it is consistent with some quasilocal (Gibbs) specification

Quasilocal measures

A specification γ is quasilocal if $\forall \epsilon>0 \exists n, m \geq 0$

$$
\begin{equation*}
\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n, m]^{c}}\right)-\gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right|<\epsilon \tag{2}
\end{equation*}
$$

for every σ, ω

- (2) is equivalent to $\gamma\left(\omega_{0} \mid \cdot\right)$ continuous in product topology
- Gibbs specifications are, in addition, strongly non-null
\square is consistent with some quasilocal (Gibbs) specification

Quasilocal measures

A specification γ is quasilocal if $\forall \epsilon>0 \exists n, m \geq 0$

$$
\begin{equation*}
\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n, m]^{c}}\right)-\gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right|<\epsilon \tag{2}
\end{equation*}
$$

for every σ, ω

- (2) is equivalent to $\gamma\left(\omega_{0} \mid \cdot\right)$ continuous in product topology
- Gibbs specifications are, in addition, strongly non-null

A probability measure μ is a quasilocal (Gibbs) measure if it is consistent with some quasilocal (Gibbs) specification

Quasilocal measures

A specification γ is quasilocal if $\forall \epsilon>0 \exists n, m \geq 0$

$$
\begin{equation*}
\left|\gamma\left(\omega_{0} \mid \omega_{-n}^{m} \sigma_{[n, m]^{c}}\right)-\gamma\left(\omega_{0} \mid \omega_{\{0\}^{c}}\right)\right|<\epsilon \tag{2}
\end{equation*}
$$

for every σ, ω

- (2) is equivalent to $\gamma\left(\omega_{0} \mid \cdot\right)$ continuous in product topology
- Gibbs specifications are, in addition, strongly non-null

A probability measure μ is a quasilocal (Gibbs) measure if it is consistent with some quasilocal (Gibbs) specification
Signal μ thought as non-causal or with anticipation

Questions, questions

Signals best described as processes or as Gibbs?

Both setups give complementary information:

- Processes: ergodicity, coupling, renewal, perfect simulation
- Finlda: Gihbe thener

Are these setups mathematically equivalent?

Questions, questions

Signals best described as processes or as Gibbs?
Both setups give complementary information:

- Processes: ergodicity, coupling, renewal, perfect simulation
- Fields: Gibbs theory
\square
Are these setups mathematically equivalent? Is every regular g-measure Gibbs and viceversa? What is more emicient: One or two-side conditioning?

Questions, questions

Signals best described as processes or as Gibbs?
Both setups give complementary information:

- Processes: ergodicity, coupling, renewal, perfect simulation
- Fields: Gibbs theory

Are these setups mathematically equivalent?
Is every regular g-measure Gibbs and viceversa?
What is more efficient:
Efficiency vs interpretation

Questions, questions

Signals best described as processes or as Gibbs?
Both setups give complementary information:

- Processes: ergodicity, coupling, renewal, perfect simulation
- Fields: Gibbs theory

Are these setups mathematically equivalent?
Is every regular g-measure Gibbs and viceversa?
What is more efficient: One or two-side conditioning?

Questions, questions

Signals best described as processes or as Gibbs?
Both setups give complementary information:

- Processes: ergodicity, coupling, renewal, perfect simulation
- Fields: Gibbs theory

Are these setups mathematically equivalent?
Is every regular g-measure Gibbs and viceversa?
What is more efficient: One or two-side conditioning?
Efficiency vs interpretation?

Prehistory

- Onicescu-Mihoc (1935): chains with complete connections
- Existence of limit measures in non-nul cases
- \rightarrow random systems with complete connections (book by Iosifescu and Grigorescu, Cambridge 1990)

Prehistory

- Onicescu-Mihoc (1935): chains with complete connections
- Existence of limit measures in non-nul cases
- \rightarrow random systems with complete connections (book by Iosifescu and Grigorescu, Cambridge 1990)
- Doeblin-Fortet (1937):
- Taxonomy: A or B, dep. on continuity and non-nullness
- Existence of invariant measures
- Suggested: uniqueness of invariant measures (coupling!). Completed by Iosifescu (1992)

Prehistory

- Onicescu-Mihoc (1935): chains with complete connections
- Existence of limit measures in non-nul cases
- \rightarrow random systems with complete connections (book by Iosifescu and Grigorescu, Cambridge 1990)
- Doeblin-Fortet (1937):
- Taxonomy: A or B, dep. on continuity and non-nullness
- Existence of invariant measures
- Suggested: uniqueness of invariant measures (coupling!). Completed by Iosifescu (1992)
- Harris (1955): chains of infinite order
- Framework of D-ary expansions
- Weaker uniqueness condition
- Cut-and-paste coupling

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle
- Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle
- Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle
- Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle
- Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness
- Berbee (1987): uniqueness
- random Markov processes
- uniform martingales

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle
- Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness
- Berbee (1987): uniqueness
- Kalikow (1990):
- random Markov processes
- uniform martingales

More recent history

- Keane (1972): g-measures (g-functions), existence and uniqueness
- Ledrapier (1974): variational principle
- Walters (1975): relation with transfer operator theory
- Lalley (1986): list processes, regeneration, uniqueness
- Berbee (1987): uniqueness
- Kalikow (1990):
- random Markov processes
- uniform martingales
- Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari, Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson, Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo, Sidoravicius, Theodorescu, ...

Differences with Markov: Invariance

- Invariant measures: on space of trajectories (not just on \mathcal{A})

$$
\begin{aligned}
\mu\left(x_{0}\right) & =\sum_{y} g\left(x_{0} \mid y\right) \mu(y) \\
& \longrightarrow \mu\left(x_{0}\right)=\int g\left(x_{0} \mid x_{-\infty}^{-1}\right) \mu\left(d x_{-\infty}^{-1}\right)
\end{aligned}
$$

Differences with Markov: Invariance

- Invariant measures: on space of trajectories (not just on \mathcal{A})

$$
\begin{aligned}
\mu\left(x_{0}\right) & =\sum_{y} g\left(x_{0} \mid y\right) \mu(y) \\
& \longrightarrow \mu\left(x_{0}\right)=\int g\left(x_{0} \mid x_{-\infty}^{-1}\right) \mu\left(d x_{-\infty}^{-1}\right)
\end{aligned}
$$

- Conditioning is over measure zero events: $\left\{X_{-\infty}^{-1}=x_{-\infty}^{-1}\right\}$
- Importance of " μ-almost surely"
- Properties must be essential = survive measure-zero changes

Differences with Markov: Phase diagrams

There may be several invariant measures

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Analogous to statistical mechanics:

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Different histories can lead to different invariant measures

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

Many invariant measures $=1$ st order phase transitions

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

Many invariant measures $=1$ st order phase transitions
Issues are, then, similar to those of stat mech:

- How many invariant measures? (= phase diagrams)

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

Many invariant measures $=1$ st order phase transitions
Issues are, then, similar to those of stat mech:

- How many invariant measures? (= phase diagrams)
- Properties of measures? (mixing, extremality, ergodicity)

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

Many invariant measures $=1$ st order phase transitions
Issues are, then, similar to those of stat mech:

- How many invariant measures? (= phase diagrams)
- Properties of measures? (mixing, extremality, ergodicity)
- Uniqueness criteria

Differences with Markov: Phase diagrams

There may be several invariant measures

- Not due to lack of ergodicity (non-null transitions)
- Different histories can lead to different invariant measures
- Analogous to statistical mechanics:

Many invariant measures $=1$ st order phase transitions
Issues are, then, similar to those of stat mech:

- How many invariant measures? (= phase diagrams)
- Properties of measures? (mixing, extremality, ergodicity)
- Uniqueness criteria
- Simulation?

Transition probabilities

Basic structure:

- Space $\mathcal{A}^{\mathbb{Z}}$ with product σ-algebra \mathcal{F} (and product topo)
- For $\Lambda \subset \mathbb{Z}, \mathcal{F}_{\Lambda}=\left\{\right.$ events depending on $\left.\omega_{\Lambda}\right\} \subset \mathcal{F}$

Transition probabilities

Basic structure:

- Space $\mathcal{A}^{\mathbb{Z}}$ with product σ-algebra \mathcal{F} (and product topo)
- For $\Lambda \subset \mathbb{Z}, \mathcal{F}_{\Lambda}=\left\{\right.$ events depending on $\left.\omega_{\Lambda}\right\} \subset \mathcal{F}$

Definition

(i) A family of transition probabilities is a measurable function

$$
g(\cdot \mid \cdot): \mathcal{A} \times \mathcal{A}_{-\infty}^{n-1} \longrightarrow[0,1]
$$

such that $\sum_{x_{0} \in \mathcal{A}} g\left(x_{0} \mid x_{-\infty}^{-1}\right)=1$

Transition probabilities

Basic structure:

- Space $\mathcal{A}^{\mathbb{Z}}$ with product σ-algebra \mathcal{F} (and product topo)
- For $\Lambda \subset \mathbb{Z}, \mathcal{F}_{\Lambda}=\left\{\right.$ events depending on $\left.\omega_{\Lambda}\right\} \subset \mathcal{F}$

Definition

(i) A family of transition probabilities is a measurable function

$$
g(\cdot \mid \cdot): \mathcal{A} \times \mathcal{A}_{-\infty}^{n-1} \longrightarrow[0,1]
$$

such that $\sum_{x_{0} \in \mathcal{A}} g\left(x_{0} \mid x_{-\infty}^{-1}\right)=1$
(ii) μ is a process consistent with $g(\cdot \mid \cdot)$ if

$$
\mu\left(\left\{x_{0}\right\}\right)=\int g\left(x_{0} \mid y_{-\infty}^{-1}\right) \mu(d y)
$$

General results

General results (no hypotheses on g)

Let

- $\mathcal{G}(g)=\{\mu$ consistent with $g\}$
- $\mathcal{F}_{-\infty}:=\bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty, k]}$ (tail σ-algebra)

General results

General results (no hypotheses on g)

Let

- $\mathcal{G}(g)=\{\mu$ consistent with $g\}$
- $\mathcal{F}_{-\infty}:=\bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty, k]}$ (tail σ-algebra)

Theorem
(a) $\mathcal{G}(g)$ is a convex set

General results (no hypotheses on g)

Let

- $\mathcal{G}(g)=\{\mu$ consistent with $g\}$
- $\mathcal{F}_{-\infty}:=\bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty, k]}$ (tail σ-algebra)

Theorem

(a) $\mathcal{G}(g)$ is a convex set
(b) μ is extreme in $\mathcal{G}(g)$ iff μ is trivial on $\mathcal{F}_{-\infty}$ ($\mu(A)=0,1$ for $A \in \mathcal{F}_{-\infty}$)

General results (no hypotheses on g)

Let

- $\mathcal{G}(g)=\{\mu$ consistent with $g\}$
- $\mathcal{F}_{-\infty}:=\bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty, k]}$ (tail σ-algebra)

Theorem
(a) $\mathcal{G}(g)$ is a convex set
(b) μ is extreme in $\mathcal{G}(g)$ iff μ is trivial on $\mathcal{F}_{-\infty}$ ($\mu(A)=0,1$ for $A \in \mathcal{F}_{-\infty}$)
(c) μ is extreme in $\mathcal{G}(g)$ iff

$$
\lim _{\Lambda \uparrow \mathbb{Z}} \sup _{B \in \mathcal{F}_{\Lambda_{-}}}|\mu(A \cap B)-\mu(A) \mu(B)|=0, \quad \forall A \in \mathcal{F}
$$

General results (no hypotheses on g)

Let

- $\mathcal{G}(g)=\{\mu$ consistent with $g\}$
- $\mathcal{F}_{-\infty}:=\bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty, k]}$ (tail σ-algebra)

Theorem
(a) $\mathcal{G}(g)$ is a convex set
(b) μ is extreme in $\mathcal{G}(g)$ iff μ is trivial on $\mathcal{F}_{-\infty}$ ($\mu(A)=0,1$ for $A \in \mathcal{F}_{-\infty}$)
(c) μ is extreme in $\mathcal{G}(g)$ iff

$$
\lim _{\Lambda \uparrow \mathbb{Z}} \sup _{B \in \mathcal{F}_{\Lambda_{-}}}|\mu(A \cap B)-\mu(A) \mu(B)|=0, \quad \forall A \in \mathcal{F}
$$

(d) Each $\mu \in \mathcal{G}(g)$ is determined by its restriction to $\mathcal{F}_{-\infty}$

General results (no hypotheses on g)

Let

- $\mathcal{G}(g)=\{\mu$ consistent with $g\}$
- $\mathcal{F}_{-\infty}:=\bigcap_{k \in \mathbb{Z}} \mathcal{F}_{(-\infty, k]}$ (tail σ-algebra)

Theorem
(a) $\mathcal{G}(g)$ is a convex set
(b) μ is extreme in $\mathcal{G}(g)$ iff μ is trivial on $\mathcal{F}_{-\infty}$ ($\mu(A)=0,1$ for $A \in \mathcal{F}_{-\infty}$)
(c) μ is extreme in $\mathcal{G}(g)$ iff

$$
\lim _{\Lambda \uparrow \mathbb{Z}} \sup _{B \in \mathcal{F}_{\Lambda_{-}}}|\mu(A \cap B)-\mu(A) \mu(B)|=0, \quad \forall A \in \mathcal{F}
$$

(d) Each $\mu \in \mathcal{G}(g)$ is determined by its restriction to $\mathcal{F}_{-\infty}$ (e) $\mu \neq \nu$ extreme in $\mathcal{G}(g) \Longrightarrow$ mutually singular on $\mathcal{F}_{-\infty}$

General results

Construction through limits

Let $P_{[m, n]}$ be the "window transition probabilities"

$$
\begin{aligned}
& g_{[m, n]}\left(x_{m}^{n} \mid x_{-\infty}^{m-1}\right):= \\
& \quad g\left(x_{n} \mid x_{-\infty}^{n-1}\right) g\left(x_{n-1} \mid x_{-\infty}^{n-2}\right) \cdots g\left(x_{m} \mid x_{-\infty}^{m-1}\right)
\end{aligned}
$$

Theorem
If 11 is ertren on $g(g)$, then for μ-almost all $y \in \mathcal{A}^{Z}$.

Construction through limits

Let $P_{[m, n]}$ be the "window transition probabilities"

$$
\begin{aligned}
& g_{[m, n]}\left(x_{m}^{n} \mid x_{-\infty}^{m-1}\right):= \\
& \quad g\left(x_{n} \mid x_{-\infty}^{n-1}\right) g\left(x_{n-1} \mid x_{-\infty}^{n-2}\right) \cdots g\left(x_{m} \mid x_{-\infty}^{m-1}\right)
\end{aligned}
$$

Theorem
If μ is extreme on $\mathcal{G}(g)$, then for μ-almost all $y \in \mathcal{A}^{\mathbb{Z}}$,

$$
g_{[-\ell, \ell]}\left(x_{m}^{n} \mid y_{-\infty}^{-\ell-1}\right) \underset{\ell \rightarrow \infty}{\longrightarrow} \mu\left(\left\{x_{m}^{n}\right\}\right)
$$

for all $x_{m}^{n} \in \mathcal{A}^{[m, n]}$ (no hypotheses on g)

Regular g－measures

Definition
A measure μ on $\mathcal{A}^{\mathbb{Z}}$ is regular（continuous）if it is consistent with regular transition probabilities
\square
\square
\qquad

Regular g-measures

Definition

A measure μ on $\mathcal{A}^{\mathbb{Z}}$ is regular (continuous) if it is consistent with regular transition probabilities

Theorem (Palmer, Parry and Walters (1977))
μ is a regular g-measure if and only if the sequence $\mu\left(\omega_{0} \mid \omega_{-n}^{-1}\right)$ converges uniformly in ω as $n \rightarrow \infty$

Regular g-measures

Definition

A measure μ on $\mathcal{A}^{\mathbb{Z}}$ is regular (continuous) if it is consistent with regular transition probabilities

Theorem (Palmer, Parry and Walters (1977))

μ is a regular g-measure if and only if the sequence $\mu\left(\omega_{0} \mid \omega_{-n}^{-1}\right)$ converges uniformly in ω as $n \rightarrow \infty$

Theorem

If g is regular (continuous), then every $\lim _{j} g_{\left[\ell_{j},-\ell_{j}\right]}\left(\cdot \mid y_{-\infty}^{-\ell_{j}-1}\right)$ defines a g-measure.

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses
> The continuity rate of g :

- The log-continuity rate of g :

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

- The continuity rate of g :

$$
\operatorname{var}_{k}(g):=\sup _{x, y}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}\right)\right|
$$

- The log-continuity rate of g :

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

- The continuity rate of g :

$$
\operatorname{var}_{k}(g):=\sup _{x, y}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}\right)\right|
$$

- The log-continuity rate of g :

$$
\operatorname{var}_{k}(\log g):=\sup _{x, y} \log \frac{g\left(x_{0} \mid x_{-\infty}^{-1}\right)}{g\left(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}\right)}
$$

- The Δ-rato of f

Continuity rates

Uniqueness conditions: continuity and non-nulness hypotheses

- The continuity rate of g :

$$
\operatorname{var}_{k}(g):=\sup _{x, y}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}\right)\right|
$$

- The log-continuity rate of g :

$$
\operatorname{var}_{k}(\log g):=\sup _{x, y} \log \frac{g\left(x_{0} \mid x_{-\infty}^{-1}\right)}{g\left(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}\right)}
$$

- The Δ-rate of g :

$$
\Delta_{k}(g):=\inf _{x, y} \sum_{x_{0}}\left[g\left(x_{0} \mid x_{-\infty}^{-1}\right) \wedge g\left(x_{0} \mid x_{-1}^{-k} y_{-\infty}^{-k-1}\right)\right]
$$

Non-nullness hypotheses

- g is weakly non-null if

$$
\sum_{x_{0}} \inf _{y} g\left(x_{0} \mid y_{-\infty}^{-1}\right)>0
$$

- g is (strongly) non-null if

Doeblin-Fortet:
\rightarrow Chain of tupe A: for g continuous and weakly non-nutl - Chain of type B: for g log-continuous and non-null]

Non-nullness hypotheses

- g is weakly non-null if

$$
\sum_{x_{0}} \inf _{y} g\left(x_{0} \mid y_{-\infty}^{-1}\right)>0
$$

- g is (strongly) non-null if

$$
\inf _{x_{0}, y} g\left(x_{0} \mid y_{-\infty}^{-1}\right)>0
$$

Non-nullness hypotheses

- g is weakly non-null if

$$
\sum_{x_{0}} \inf _{y} g\left(x_{0} \mid y_{-\infty}^{-1}\right)>0
$$

- g is (strongly) non-null if

$$
\inf _{x_{0}, y} g\left(x_{0} \mid y_{-\infty}^{-1}\right)>0
$$

[Doeblin-Fortet:

- Chain of type A : for g continuous and weakly non-null
- Chain of type B : for g log-continuous and non-null]

Uniqueness criteria (selected)

- Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

$$
\sum_{k} \operatorname{var}_{k}(g)<\infty
$$

- Berbee (1987): g non-null and

Uniqueness criteria (selected)

- Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

$$
\sum_{k} \operatorname{var}_{k}(g)<\infty
$$

- Harris (1955): g weakly non-null and

$$
\sum_{n \geq 1} \prod_{k=1}^{n}\left(1-\frac{|E|}{2} \operatorname{var}_{k}(g)\right)=+\infty
$$

- Berbee (1987)
g non-null and

Uniqueness criteria (selected)

- Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

$$
\sum_{k} \operatorname{var}_{k}(g)<\infty
$$

- Harris (1955): g weakly non-null and

$$
\sum_{n \geq 1} \prod_{k=1}^{n}\left(1-\frac{|E|}{2} \operatorname{var}_{k}(g)\right)=+\infty
$$

- Berbee (1987): g non-null and

$$
\sum_{n \geq 1} \exp \left(-\sum_{k=1}^{n} \operatorname{var}_{k}(\log g)\right)=+\infty
$$

Uniqueness criteria (cont.)

- Stenflo (2003): g non-null and

$$
\sum_{n \geq 1} \prod_{k=1}^{n} \Delta_{k}(g)=+\infty
$$

- Johansson and Oberg (2002): g non-null and

Uniqueness criteria (cont.)

- Stenflo (2003): g non-null and

$$
\sum_{n>1} \prod_{k=1}^{n} \Delta_{k}(g)=+\infty
$$

- Johansson and Öberg (2002): g non-null and

$$
\sum_{k \geq 1} \operatorname{var}_{k}^{2}(\log g)<+\infty
$$

Uniqueness criteria (cont.)

- Stenflo (2003): g non-null and

$$
\sum_{n>1} \prod_{k=1}^{n} \Delta_{k}(g)=+\infty
$$

- Johansson and Öberg (2002): g non-null and

$$
\sum_{k \geq 1} \operatorname{var}_{k}^{2}(\log g)<+\infty
$$

Comments

Leaving non-nullness aside, criteria are not fully comparable Rough comparison:

- Doeblin-Fortet: $\operatorname{var}_{k} \sim 1 / k^{1+\delta}$
- Harris-Stenflo: $\operatorname{var}_{k} \sim 1 / k$
- Johansson-Oberg:

Comments

Leaving non-nullness aside, criteria are not fully comparable Rough comparison:

- Doeblin-Fortet: $\operatorname{var}_{k} \sim 1 / k^{1+\delta}$
- Harris-Stenflo: $\operatorname{var}_{k} \sim 1 / k$
- Johansson-Öberg: $\operatorname{var}_{k} \sim 1 / k^{1 / 2+\delta}$

Criterion of a different species

Let

$$
\operatorname{osc}_{j}(g):=\sup _{x=y \text { off } j}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid y_{-\infty}^{-1}\right)\right|
$$

Then (F-Maillard, 2005) there is a unique consistent chain if

Criterion of a different species

Let

$$
\operatorname{osc}_{j}(g):=\sup _{x=y \text { off } j}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid y_{-\infty}^{-1}\right)\right|
$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$
\sum_{j<0} \delta_{j}(g)<1
$$

Criterion of a different species

Let

$$
\operatorname{osc}_{j}(g):=\sup _{x=y \text { off } j}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid y_{-\infty}^{-1}\right)\right|
$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$
\sum_{j<0} \delta_{j}(g)<1
$$

- One-sided version of Dobrushin condition in stat. mech.
- In particular no non-nullness requirement!

Criterion of a different species

Let

$$
\operatorname{osc}_{j}(g):=\sup _{x=y \text { off } j}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid y_{-\infty}^{-1}\right)\right|
$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$
\sum_{j<0} \delta_{j}(g)<1
$$

- One-sided version of Dobrushin condition in stat. mech.
- This criterion is not comparable with precedent ones

Criterion of a different species

Let

$$
\operatorname{osc}_{j}(g):=\sup _{x=y \text { off } j}\left|g\left(x_{0} \mid x_{-\infty}^{-1}\right)-g\left(x_{0} \mid y_{-\infty}^{-1}\right)\right|
$$

Then (F-Maillard, 2005) there is a unique consistent chain if

$$
\sum_{j<0} \delta_{j}(g)<1
$$

- One-sided version of Dobrushin condition in stat. mech.
- This criterion is not comparable with precedent ones
- In particular no non-nullness requirement!

Examples of non-uniqueness

- First example: Bramson and Kalikow (1993):

$$
\operatorname{var}_{k}(g) \geq C / \log |k|
$$

- Hulse (2006): One-sided Dobrushin criterion is sharp: For all $\varepsilon>0$ there exists g with

Examples of non-uniqueness

- First example: Bramson and Kalikow (1993):

$$
\operatorname{var}_{k}(g) \geq C / \log |k|
$$

- Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg criterion is sharp: For all $\varepsilon>0$ there exists g with

$$
\sum_{k<0} \operatorname{var}_{k}^{2+\epsilon}(g)<\infty \quad \text { and } \quad|\mathcal{G}(P)|>1
$$

Examples of non-uniqueness

- First example: Bramson and Kalikow (1993):

$$
\operatorname{var}_{k}(g) \geq C / \log |k|
$$

- Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg criterion is sharp: For all $\varepsilon>0$ there exists g with

$$
\sum_{k<0} \operatorname{var}_{k}^{2+\epsilon}(g)<\infty \quad \text { and } \quad|\mathcal{G}(P)|>1
$$

- Hulse (2006): One-sided Dobrushin criterion is sharp: For all $\varepsilon>0$ there exists g with

$$
\sum_{k<0} \operatorname{osc}_{k}(g)=1+\epsilon \quad \text { and } \quad|\mathcal{G}(P)|>1
$$

Gibbs measures: Historic highlights

Prehistory:

- Boltzmann, Maxwell (kinetic theory): Probability weights
- Gibbs: Geometry of phase diagrams
- Dobrushin (1968), Lanford and Ruelle (1969): Conditional
- Preston (1973): Specifications
- Kozlov (1974), Sullivan (1973): Quasilocality and Gibbsianness

Gibbs measures: Historic highlights

Prehistory:

- Boltzmann, Maxwell (kinetic theory): Probability weights
- Gibbs: Geometry of phase diagrams

History:

- Dobrushin (1968), Lanford and Ruelle (1969): Conditional expectations
- Preston (1973): Specifications
- Kozlov (1974), Sullivan (1973): Quasilocality and Gibbsianness

Equilibrium

Issue: Given microscopic behavior in finite regions, determine the macroscopic behavior

Basic tenets:
Equilibrium $=$ probability measure
(i) Finite regions $=$ finite parts of an infinite system (iii) Exterior of a finite region $=$ frozen external condition (iv) Macroscopic behavior $=$ limit of infinite regions

Equilibrium

Issue: Given microscopic behavior in finite regions, determine the macroscopic behavior

Basic tenets:

(i) Equilibrium $=$ probability measure
(ii) Finite regions $=$ finite parts of an infinite system
(iii) Exterior of a finite region $=$ frozen external condition

Equilibrium

Issue: Given microscopic behavior in finite regions, determine the macroscopic behavior

Basic tenets:

(i) Equilibrium $=$ probability measure
(ii) Finite regions $=$ finite parts of an infinite system
(iii) Exterior of a finite region $=$ frozen external condition
(iv) Macroscopic behavior $=$ limit of infinite regions

Equilibrium $=$ Probability kernels

Set up: Product space $\Omega=\mathcal{A}^{\mathbb{L}}$
System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\gamma_{\Lambda}(\cdot \mid \cdot)$
$\gamma_{\Lambda}(f \mid \omega)=$ equilibrium value of f when the configuration outside Λ is ω

Equilibrium in $\Lambda=$ Equilibrium in every $\Lambda^{\prime} \subset \Lambda$.
Equilibrium value of f in $\Lambda=$ expectations in Λ^{\prime} distributed according to the Λ-equilibrium

Equilibrium $=$ Probability kernels

Set up: Product space $\Omega=\mathcal{A}^{\mathbb{L}}$
System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\gamma_{\Lambda}(\cdot \mid \cdot)$
$\gamma_{\Lambda}(f \mid \omega)=$ equilibrium value of f when the configuration outside Λ is ω

Equilibrium in $\Lambda=$ Equilibrium in every $\Lambda^{\prime} \subset \Lambda$.
Equilibrium value of f in $\Lambda=$ expectations in Λ^{\prime} with $\Lambda \backslash \Lambda^{\prime}$ distributed according to the Λ-equilibrium

Equilibrium $=$ Probability kernels

Set up: Product space $\Omega=\mathcal{A}^{\mathbb{L}}$
System in $\Lambda \Subset \mathbb{L}$ described by a probability kernel $\gamma_{\Lambda}(\cdot \mid \cdot)$
$\gamma_{\Lambda}(f \mid \omega)=$ equilibrium value of f when the configuration outside Λ is ω

Equilibrium in $\Lambda=$ Equilibrium in every $\Lambda^{\prime} \subset \Lambda$.
Equilibrium value of f in $\Lambda=$ expectations in Λ^{\prime} with $\Lambda \backslash \Lambda^{\prime}$ distributed according to the Λ-equilibrium

$$
\gamma_{\Lambda}(f \mid \omega)=\gamma_{\Lambda}\left(\gamma_{\Lambda^{\prime}}(f \mid \cdot) \mid \omega\right) \quad\left(\Lambda^{\prime} \subset \Lambda \Subset \mathbb{L}\right)
$$

Specifications

Definition

A specification is a family $\gamma=\left\{\gamma_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of probability kernels $\gamma_{\Lambda}: \mathcal{F} \times \Omega \longrightarrow[0,1]$ such that
(i) External dependence: $\gamma_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda^{c}-\text {-measurable }}$

Specifications

Definition

A specification is a family $\gamma=\left\{\gamma_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of probability kernels $\gamma_{\Lambda}: \mathcal{F} \times \Omega \longrightarrow[0,1]$ such that
(i) External dependence: $\gamma_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda^{c}}$-measurable
(ii) Frozen external conditions: Each γ_{Λ} is proper,

$$
\gamma_{\Lambda}(h f \mid \omega)=h(\omega) \gamma_{\Lambda}(f \mid \omega)
$$

if h depends only on $\omega_{\Lambda^{c}}$

Specifications

Definition

A specification is a family $\gamma=\left\{\gamma_{\Lambda}: \Lambda \Subset \mathbb{L}\right\}$ of probability kernels $\gamma_{\Lambda}: \mathcal{F} \times \Omega \longrightarrow[0,1]$ such that
(i) External dependence: $\gamma_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda^{c}}$-measurable
(ii) Frozen external conditions: Each γ_{Λ} is proper,

$$
\gamma_{\Lambda}(h f \mid \omega)=h(\omega) \gamma_{\Lambda}(f \mid \omega)
$$

if h depends only on $\omega_{\Lambda^{c}}$
(iii) Equilibrium in finite regions: The family γ is consistent

$$
\gamma_{\Delta} \gamma_{\Lambda}=\gamma_{\Delta} \quad \text { if } \Delta \supset \Lambda
$$

Consistency

Definition

A probability measure μ on Ω is consistent with γ if

$$
\mu \gamma_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

$($ DLR equations $=$ equilibrium in infinite regions)

Consistency

Definition

A probability measure μ on Ω is consistent with γ if

$$
\mu \gamma_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations $=$ equilibrium in infinite regions)

Remarks

- Several consistent measures $=$ first-order phase transition
- Difference: no apriori measure, hence conditions required for all ω rather than almost surely

Consistency

Definition

A probability measure μ on Ω is consistent with γ if

$$
\mu \gamma_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations $=$ equilibrium in infinite regions)

Remarks

- Several consistent measures $=$ first-order phase transition
- Specification \sim system of regular conditional probabilities
- Difference: no apriori measure, hence conditions required for all ω rather than almost surely

Consistency

Definition

A probability measure μ on Ω is consistent with γ if

$$
\mu \gamma_{\Lambda}=\mu \quad \text { for each } \Lambda \Subset \mathbb{L}
$$

(DLR equations $=$ equilibrium in infinite regions)

Remarks

- Several consistent measures $=$ first-order phase transition
- Specification \sim system of regular conditional probabilities
- Difference: no apriori measure, hence conditions required for all ω rather than almost surely
- Stat. mech.: conditional probabilities \longrightarrow measures

General results

General results (no hypotheses on γ)

Let

- $\mathcal{G}(\gamma)=\{\mu$ consistent with $\gamma\}$
- $\mathcal{F}_{\infty}:=\bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}}(\sigma$-algebra at infinity)

General results

General results (no hypotheses on γ)

Let

- $\mathcal{G}(\gamma)=\{\mu$ consistent with $\gamma\}$
- $\mathcal{F}_{\infty}:=\bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}}$ (σ-algebra at infinity)

Theorem
(a) $\mathcal{G}(\gamma)$ is a convex set

General results

General results (no hypotheses on γ)

Let

- $\mathcal{G}(\gamma)=\{\mu$ consistent with $\gamma\}$
- $\mathcal{F}_{\infty}:=\bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}}(\sigma$-algebra at infinity $)$

Theorem

(a) $\mathcal{G}(\gamma)$ is a convex set
(b) μ is extreme in $\mathcal{G}(\gamma)$ iff μ is trivial on \mathcal{F}_{∞} ($\mu(A)=0,1$ for $A \in \mathcal{F}_{\infty}$)

General results (no hypotheses on γ)

Let

- $\mathcal{G}(\gamma)=\{\mu$ consistent with $\gamma\}$
- $\mathcal{F}_{\infty}:=\bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}}(\sigma$-algebra at infinity $)$

Theorem
(a) $\mathcal{G}(\gamma)$ is a convex set
(b) μ is extreme in $\mathcal{G}(\gamma)$ iff μ is trivial on \mathcal{F}_{∞} ($\mu(A)=0,1$ for $A \in \mathcal{F}_{\infty}$)
(c) μ is extreme in $\mathcal{G}(\gamma)$ iff

$$
\lim _{\Lambda \uparrow \mathbb{Z}} \sup _{B \in \mathcal{F}_{\Lambda_{-}}}|\mu(A \cap B)-\mu(A) \mu(B)|=0, \quad \forall A \in \mathcal{F}
$$

General results (no hypotheses on γ)

Let

- $\mathcal{G}(\gamma)=\{\mu$ consistent with $\gamma\}$
- $\mathcal{F}_{\infty}:=\bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}}(\sigma$-algebra at infinity $)$

Theorem

(a) $\mathcal{G}(\gamma)$ is a convex set
(b) μ is extreme in $\mathcal{G}(\gamma)$ iff μ is trivial on \mathcal{F}_{∞} ($\mu(A)=0,1$ for $A \in \mathcal{F}_{\infty}$)
(c) μ is extreme in $\mathcal{G}(\gamma)$ iff

$$
\lim _{\Lambda \uparrow \mathbb{Z}} \sup _{B \in \mathcal{F}_{\Lambda_{-}}}|\mu(A \cap B)-\mu(A) \mu(B)|=0, \quad \forall A \in \mathcal{F}
$$

(d) Each $\mu \in \mathcal{G}(\gamma)$ is determined by its restriction to \mathcal{F}_{∞}

General results (no hypotheses on γ)

Let

- $\mathcal{G}(\gamma)=\{\mu$ consistent with $\gamma\}$
- $\mathcal{F}_{\infty}:=\bigcap_{\Lambda \in \mathbb{L}} \mathcal{F}_{\Lambda^{c}}(\sigma$-algebra at infinity $)$

Theorem

(a) $\mathcal{G}(\gamma)$ is a convex set
(b) μ is extreme in $\mathcal{G}(\gamma)$ iff μ is trivial on \mathcal{F}_{∞} ($\mu(A)=0,1$ for $A \in \mathcal{F}_{\infty}$)
(c) μ is extreme in $\mathcal{G}(\gamma)$ iff

$$
\lim _{\Lambda \uparrow \mathbb{Z}} \sup _{B \in \mathcal{F}_{\Lambda_{-}}}|\mu(A \cap B)-\mu(A) \mu(B)|=0, \quad \forall A \in \mathcal{F}
$$

(d) Each $\mu \in \mathcal{G}(\gamma)$ is determined by its restriction to \mathcal{F}_{∞} (e) $\mu \neq \nu$ extreme in $\mathcal{G}(\gamma) \Longrightarrow$ mutually singular on \mathcal{F}_{∞}

Construction through limits

Theorem

If μ is extreme on $\mathcal{G}(\gamma)$, then for μ-almost all $\sigma \in \Omega$,

$$
\gamma_{\Delta}\left(\omega_{\Lambda} \mid \sigma_{\Delta^{c}}\right) \xrightarrow[\Delta \rightarrow \mathbb{L}]{ } \mu\left(\left\{\omega_{\Lambda}\right\}\right)
$$

for all $\omega \in \Omega$ (no hypotheses on γ)

Quasilocality

Definition

A measure μ on $\mathcal{A}^{\mathbb{L}}$ is quasilocal (continuous) if it is consistent with a quasilocal specification

Theorem

Theorem
\qquad

Quasilocality

Definition

A measure μ on $\mathcal{A}^{\mathbb{L}}$ is quasilocal (continuous) if it is consistent with a quasilocal specification

Theorem
μ is quasilocal if and only if the sequence $\mu\left(\omega_{0} \mid \omega_{-n}^{-1} \omega_{1}^{m}\right)$
converges uniformly in ω as $n, m \rightarrow \infty$
Theorem
defines a consistent measure.

Quasilocality

Definition

A measure μ on $\mathcal{A}^{\mathbb{L}}$ is quasilocal (continuous) if it is consistent with a quasilocal specification

Theorem

μ is quasilocal if and only if the sequence $\mu\left(\omega_{0} \mid \omega_{-n}^{-1} \omega_{1}^{m}\right)$ converges uniformly in ω as $n, m \rightarrow \infty$

Theorem

If γ is quasilocal, then every $\lim _{j} \gamma_{\Lambda_{j}}\left(\cdot \mid \sigma_{\Lambda_{j}^{c}}\right)$, with $\Lambda_{j} \rightarrow \mathbb{L}$, defines a consistent measure.

Link with statistical mechanics

Definition

A specification γ is

- non-null if $\inf _{\sigma} \gamma_{\Lambda}\left(\omega_{\Lambda} \mid \sigma_{\Lambda^{c}}\right)>0$ for $\omega \in \Omega, \Lambda \Subset \mathbb{L}$
- Gibbs if it is quasilocal and non-null
\square
A specification is Gibbsian iff it has the Boltzmann form

Link with statistical mechanics

Definition
A specification γ is

- non-null if $\inf _{\sigma} \gamma_{\Lambda}\left(\omega_{\Lambda} \mid \sigma_{\Lambda^{c}}\right)>0$ for $\omega \in \Omega, \Lambda \Subset \mathbb{L}$
- Gibbs if it is quasilocal and non-null

Theorem (Kozlov)

A specification is Gibbsian iff it has the Boltzmann form

$$
\gamma\left(\omega_{\Lambda} \mid \omega_{\Lambda^{\mathrm{c}}}\right)=\exp \left\{-\sum_{A \cap \Lambda \neq \emptyset} \phi_{A}\left(\omega_{A}\right)\right\} / \text { Norm }
$$

where $\left\{\phi_{A}\right\}$ (interaction) satisfy

$$
\sum_{A \ni 0}\left\|\phi_{A}\right\|_{\infty}<\infty
$$

Uniqueness and non-uniqueness

Uniqueness results

- Berbee: $\sum_{n \geq 1} \exp \left(-\sum_{k=1}^{n} \operatorname{var}_{k}(\log \gamma)\right)=+\infty$
- Dobrushin: $\sum_{j<0} \delta_{j}(g)<1$
- Fifty years of rigorous stat mech
- Markov models: Non-uniqueness in two or more dimensions

Uniqueness and non-uniqueness

Uniqueness results

- Berbee: $\sum_{n \geq 1} \exp \left(-\sum_{k=1}^{n} \operatorname{var}_{k}(\log \gamma)\right)=+\infty$
- Dobrushin: $\sum_{j<0} \delta_{j}(g)<1$

Non-uniqueness results

- Fifty years of rigorous stat mech
- Markov models: Non-uniqueness in two or more dimensions

Signal description: Process or Gibbs? II. Relation between approaches

Contributors: S. Berghout (Leiden)
A. van Enter (Groningen)
S. Gallo (São Carlos),
G. Maillard (Aix-Marseille),
E. Verbitskiy (Leiden)

Florence in May, 2017

The issues

(I) Given a measure μ on $\mathcal{A}^{\mathbb{Z}}$

- Is it always both a g and a Gibbs measure?
- If yes, which are the pros and cons of each point of view?
(II) Are g-functions and specifications in correspondance?
- Same uniqueness regions?
- Same phase diagrams?
(III) Can theoretical aspects be "imported"?
- Variational approach
- Large deviations

The issues

(I) Given a measure μ on $\mathcal{A}^{\mathbb{Z}}$

- Is it always both a g and a Gibbs measure?
- If yes, which are the pros and cons of each point of view?
(II) Are g-functions and specifications in correspondance?
- Same uniqueness regions?
- Same phase diagrams?
\square
- Variational approach
- Large deviations

The issues

(I) Given a measure μ on $\mathcal{A}^{\mathbb{Z}}$

- Is it always both a g and a Gibbs measure?
- If yes, which are the pros and cons of each point of view?
(II) Are g-functions and specifications in correspondance?
- Same uniqueness regions?
- Same phase diagrams?
(III) Can theoretical aspects be "imported"?
- Variational approach
- Large deviations

Mathematical formalization

Mathematically, there are three natural questions:
(Q1) Is there a map $b: g \longrightarrow \gamma^{g}$ such that $\mathcal{G}(g)=\mathcal{G}\left(\gamma^{g}\right)$?
(Q2) Is there a map c
(Q3) If so, are these map mutual inverses:

Mathematical formalization

Mathematically, there are three natural questions:
(Q1) Is there a map $b: g \longrightarrow \gamma^{g}$ such that $\mathcal{G}(g)=\mathcal{G}\left(\gamma^{g}\right)$?
(Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma)=\mathcal{G}\left(g^{\gamma}\right)$?
(Q3) If so, are these map mutual inverses:

Mathematical formalization

Mathematically, there are three natural questions:
(Q1) Is there a map $b: g \longrightarrow \gamma^{g}$ such that $\mathcal{G}(g)=\mathcal{G}\left(\gamma^{g}\right)$?
(Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma)=\mathcal{G}\left(g^{\gamma}\right)$?
(Q3) If so, are these map mutual inverses:

$$
b c=\mathrm{id}=c b \quad\left[\gamma^{g^{\gamma}}=\gamma, g^{\gamma^{g}}=g\right] ?
$$

Mathematical formalization

Mathematically, there are three natural questions:
(Q1) Is there a map $b: g \longrightarrow \gamma^{g}$ such that $\mathcal{G}(g)=\mathcal{G}\left(\gamma^{g}\right)$?
(Q2) Is there a map $c: \gamma \longrightarrow g^{\gamma}$ such that $\mathcal{G}(\gamma)=\mathcal{G}\left(g^{\gamma}\right)$?
(Q3) If so, are these map mutual inverses:

$$
b c=\mathrm{id}=c b \quad\left[\gamma^{g^{\gamma}}=\gamma, g^{\gamma^{g}}=g\right] ?
$$

True for Markov (\mathcal{A} finite)
[Georgii, Chapter 3, uses eigenvalues]

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^{g}$?

Need to guarantee that the limit exists for all σ

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^{g}$?
Natural answer:

$$
\gamma_{[k, \ell]}^{g}\left(\omega_{k}^{\ell} \mid \sigma\right)=\lim _{n \rightarrow \infty} \frac{g_{[k, n]}\left(\omega_{k}^{\ell} \sigma_{\ell+1}^{n} \mid \sigma_{-\infty}^{k-1}\right)}{g_{[k, n]}\left(\sigma_{\ell+1}^{n} \mid \sigma_{-\infty}^{k-1}\right)}
$$

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^{g}$?
Natural answer:

$$
\gamma_{[k, \ell]}^{g}\left(\omega_{k}^{\ell} \mid \sigma\right)=\lim _{n \rightarrow \infty} \frac{g_{[k, n]}\left(\omega_{k}^{\ell} \sigma_{\ell+1}^{n} \mid \sigma_{-\infty}^{k-1}\right)}{g_{[k, n]}\left(\sigma_{\ell+1}^{n} \mid \sigma_{-\infty}^{k-1}\right)}
$$

Need to guarantee that the limit exists for all σ
\square
A g function has good future if

Construction of the map b

How would you construct a map $b: g \longrightarrow \gamma^{g}$?
Natural answer:

$$
\gamma_{[k, \ell]}^{g}\left(\omega_{k}^{\ell} \mid \sigma\right)=\lim _{n \rightarrow \infty} \frac{g_{[k, n]}\left(\omega_{k}^{\ell} \sigma_{\ell+1}^{n} \mid \sigma_{-\infty}^{k-1}\right)}{g_{[k, n]}\left(\sigma_{\ell+1}^{n} \mid \sigma_{-\infty}^{k-1}\right)}
$$

Need to guarantee that the limit exists for all σ
Definition
A g function has good future if

- g is non-null and
- $\sum_{j} \delta_{j}(g)<\infty$

Denote

- $\Theta_{\mathrm{GF}}:=\{g$ has GF $\}$
- $\Pi:=\{\gamma$ quasilocal $\}$
- $\Pi_{1}:=\{\gamma:|\mathcal{G}(\gamma)|=1\}$

Theorem ($g \rightsquigarrow$ specification) The previous prescription defines a map whieh satisifes (a) $\mathcal{G}(9) \subset G()^{(0)}$ (b) b restricted to $b^{-1}\left(\Pi_{1}\right)$ is one-to-one Thus, if $g \in b^{-1}\left(\Pi_{1}\right)$,

Denote

- $\Theta_{\mathrm{GF}}:=\{g$ has GF $\}$
- $\Pi:=\{\gamma$ quasilocal $\}$
- $\Pi_{1}:=\{\gamma:|\mathcal{G}(\gamma)|=1\}$

Theorem ($g \rightsquigarrow$ specification)
The previous prescription defines a map

$$
\begin{aligned}
b: \Theta_{\mathrm{GF}} & \rightarrow \gamma \\
g & \mapsto \gamma^{g}
\end{aligned}
$$

which satisfies
(a) $\mathcal{G}(g) \subset \mathcal{G}\left(\gamma^{g}\right)$
(b) b restricted to $b^{-1}\left(\Pi_{1}\right)$ is one-to-one.

Denote

- $\Theta_{\mathrm{GF}}:=\{g$ has GF $\}$
- $\Pi:=\{\gamma$ quasilocal $\}$
- $\Pi_{1}:=\{\gamma:|\mathcal{G}(\gamma)|=1\}$

Theorem ($g \rightsquigarrow$ specification)
The previous prescription defines a map

$$
\begin{aligned}
b: \Theta_{\mathrm{GF}} & \rightarrow \gamma \\
g & \mapsto \gamma^{g}
\end{aligned}
$$

which satisfies
(a) $\mathcal{G}(g) \subset \mathcal{G}\left(\gamma^{g}\right)$
(b) b restricted to $b^{-1}\left(\Pi_{1}\right)$ is one-to-one.

Thus, if $g \in b^{-1}\left(\Pi_{1}\right)$,

$$
\mathcal{G}(g)=\mathcal{G}\left(\gamma^{g}\right)=\left\{\mu^{g}\right\}
$$

Construction of the map c

The natural prescription is

$$
g^{\gamma}\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)=\lim _{n \rightarrow \infty} \gamma_{[0, n]}\left(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty}\right)
$$

Construction of the map c

The natural prescription is

$$
g^{\gamma}\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)=\lim _{n \rightarrow \infty} \gamma_{[0, n]}\left(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty}\right)
$$

provided that, for each σ,

- the limit exists and
- the limit is independent of ξ

Dobrushin condition provides hereditary uniqueness:

Construction of the map c

The natural prescription is

$$
g^{\gamma}\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)=\lim _{n \rightarrow \infty} \gamma_{[0, n]}\left(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty}\right)
$$

provided that, for each σ,

- the limit exists and
- the limit is independent of ξ

Denote

- $\Theta_{\mathrm{HUC}}=\left\{\mathrm{g}: \sum_{j} \delta_{j}(g)<1\right\}$
- $\Pi_{\mathrm{HUC}}:=\left\{\gamma: \sum_{j} \delta_{j}(\gamma)<1\right\}$

Dobrushin condition provides hereditary uniqueness:

Construction of the map c

The natural prescription is

$$
g^{\gamma}\left(\omega_{0} \mid \sigma_{-\infty}^{-1}\right)=\lim _{n \rightarrow \infty} \gamma_{[0, n]}\left(\omega_{0} \mid \sigma_{-\infty}^{-1} \xi_{n+1}^{\infty}\right)
$$

provided that, for each σ,

- the limit exists and
- the limit is independent of ξ

Denote

- $\Theta_{\mathrm{HUC}}=\left\{\mathrm{g}: \sum_{j} \delta_{j}(g)<1\right\}$
- $\Pi_{\mathrm{HUC}}:=\left\{\gamma: \sum_{j} \delta_{j}(\gamma)<1\right\}$

Dobrushin condition provides hereditary uniqueness:
Uniqueness on each (infinite) Λ for any $\sigma_{\Lambda^{c}}$

Theorem (specification $\rightsquigarrow g$)
The previous prescription defines a map

$$
\begin{aligned}
c: \Pi_{\mathrm{HUC}} & \rightarrow \Theta_{\mathrm{HUC}} \\
\gamma & \mapsto g^{\gamma}
\end{aligned}
$$

which satisfies
(a) $\mathcal{G}\left(f^{\gamma}\right)=\mathcal{G}(\gamma)=\left\{\mu^{\gamma}\right\}$
(b) The map c is one-to-one.

Invertibility of the maps

Proofs of previous theorems yield bounds on $\delta_{j}\left(\gamma^{g}\right)$ and $\delta_{j}\left(g^{\gamma}\right)$

Invertibility of the maps

Proofs of previous theorems yield bounds on $\delta_{j}\left(\gamma^{g}\right)$ and $\delta_{j}\left(g^{\gamma}\right)$ Denote

- $\Theta_{\mathrm{EXP}}=\left\{g: \exists a>1\right.$ s.t. $\left.\lim _{j \rightarrow-\infty} a^{|j|} \delta_{j}(g)=0\right\}$
- $\Pi_{\mathrm{EXP}}=\left\{\gamma: \exists a>1\right.$ s.t. $\left.\lim _{j \rightarrow \infty} a^{j} \delta_{j}(\gamma)=0\right\}$

Invertibility of the maps

Proofs of previous theorems yield bounds on $\delta_{j}\left(\gamma^{g}\right)$ and $\delta_{j}\left(g^{\gamma}\right)$
Denote

- $\Theta_{\mathrm{EXP}}=\left\{g: \exists a>1\right.$ s.t. $\left.\lim _{j \rightarrow-\infty} a^{|j|} \delta_{j}(g)=0\right\}$
- $\Pi_{\mathrm{EXP}}=\left\{\gamma: \exists a>1\right.$ s.t. $\left.\lim _{j \rightarrow \infty} a^{j} \delta_{j}(\gamma)=0\right\}$

Theorem (LIS $\leadsto \rightsquigarrow>$ specification)
(a) $b \circ c=\operatorname{Id}$ over $c^{-1}\left(\Theta_{\mathrm{GF}}\right)$, and $\mathcal{G}\left(g^{\gamma}\right)=\mathcal{G}(\gamma)=\left\{\mu^{\gamma}\right\}$
(b) $c \circ b=\mathrm{Id}$ over $b^{-1}\left(\Pi_{\mathrm{HUC}}\right)$ and $\mathcal{G}\left(\gamma^{f}\right)=\mathcal{G}(f)=\left\{\mu^{f}\right\}$
(c) b and c establish a one-to-one correspondence between Θ_{EXP} and Π_{EXP} that preserves the consistent measure.

A regular g that is not Gibbs

$$
\mathcal{A}=\{0,1\} ; \text { denote } \underline{\omega}=\omega_{-\infty}^{-1}
$$

$\rightarrow \ell(\underline{\omega})=$ number of 0's before first 1 looking backwards:

A regular g that is not Gibbs

$$
\mathcal{A}=\{0,1\} ; \text { denote } \underline{\omega}=\omega_{-\infty}^{-1}
$$

Consider g-functions of the form

$$
g(1 \mid \underline{\omega})=p_{\ell(\underline{\omega})}
$$

where

- $\ell(\underline{\omega})=$ number of 0 's before first 1 looking backwards:

$$
\ell(\underline{\omega})=\min \left\{j \geq 0: \omega_{-j-1}=1\right\}
$$

- $\left\{p_{i}\right\}_{i \geq 0} \in(0,1)$ satisfy

$$
\inf _{i \geq 0} p_{i}=\epsilon>0 \quad, \quad p_{\infty}=\lim _{i \rightarrow \infty} p_{i}
$$

Regularity

Non-nullness: $g(\cdot \mid \cdot) \geq \epsilon \wedge 1-\epsilon$ Continuity:

Regularity

Non-nullness: $g(\cdot \mid \cdot) \geq \epsilon \wedge 1-\epsilon$
Continuity:

$$
\begin{aligned}
& \sup _{\omega_{-k}^{-1}=\sigma_{-k}^{-1}}|g(1 \mid \underline{\omega})-g(1 \mid \underline{\sigma})| \\
& \quad=\sup \left|g\left(1 \mid 0_{-k}^{-1} \omega_{-\infty}^{-k-1}\right)-g\left(1 \mid 0_{-k}^{-1} \sigma_{-\infty}^{-k-1}\right)\right| \\
& \quad=\sup _{l, m \geq k}\left|p_{l}-p_{m}\right| \\
& \xrightarrow[k]{\longrightarrow} 0
\end{aligned}
$$

Properties of the process

For all choices of sequences p_{i} as above

- There exists a unique stationary chain μ compatible with g
- μ is supported on infinitely many 1's with intervals of 0 's
- μ is a renewal chain with visible renewals
- μ can be perfectly simulated

Properties of the process

For all choices of sequences p_{i} as above

- There exists a unique stationary chain μ compatible with g
- μ is supported on infinitely many 1's with intervals of 0 's
- μ is a renewal chain with visible renewals
- μ can be perfectly simulated

For all practical purposes, chains are as regular as they can be Nevertheless, for some choices of p_{i} the chains are not Gibbsian.

Properties of the process

For all choices of sequences p_{i} as above

- There exists a unique stationary chain μ compatible with g
- μ is supported on infinitely many 1 's with intervals of 0 's
- μ is a renewal chain with visible renewals
- μ can be perfectly simulated

For all practical purposes, chains are as regular as they can be Nevertheless, for some choices of p_{i} the chains are not Gibbsian.

Cause: problem when conditioning on "all 0"

Main result

Theorem

There exist choices of $\left\{p_{i}\right\}_{i \geq 0}$ as above for which the sequences

$$
\left[\mu\left(X_{0}=\omega_{0} \mid X_{-i-1}=1, X_{-i}^{-1}=0_{-i}^{j}, X_{1}^{j}=0_{1}^{j}, X_{j+1}=1\right)\right]_{i, j \geq 1}
$$

does not converge as $i, j \rightarrow \infty$.
In particular $\mu(0 \mid \cdot)$ is essentially discontinuous at $\omega=0_{-\infty}^{+\infty}$

Main result

Theorem

There exist choices of $\left\{p_{i}\right\}_{i \geq 0}$ as above for which the sequences

$$
\left[\mu\left(X_{0}=\omega_{0} \mid X_{-i-1}=1, X_{-i}^{-1}=0_{-i}^{j}, X_{1}^{j}=0_{1}^{j}, X_{j+1}=1\right)\right]_{i, j \geq 1}
$$

does not converge as $i, j \rightarrow \infty$.
In particular $\mu(0 \mid \cdot)$ is essentially discontinuous at $\omega=0_{-\infty}^{+\infty}$

Proof of main result

It is based on the following
Claim

$$
\mu\left(X_{0}=\omega_{0} \mid X_{-i-1}=1, X_{-i}^{j}=0_{-i}^{j}, X_{j+1}=1\right)
$$

is determined by the ratio

$$
\prod_{k=0}^{j-1} \frac{1-p_{k}}{1-p_{k+i}}
$$

Thus, discontinuity at $0_{-\infty}^{+\infty} \equiv p_{k}$ s.t. this ratio oscillates

Proof of main result

It is based on the following
Claim

$$
\mu\left(X_{0}=\omega_{0} \mid X_{-i-1}=1, X_{-i}^{j}=0_{-i}^{j}, X_{j+1}=1\right)
$$

is determined by the ratio

$$
\prod_{k=0}^{j-1} \frac{1-p_{k}}{1-p_{k+i}}
$$

Thus, discontinuity at $0_{-\infty}^{+\infty} \equiv p_{k}$ s.t. this ratio oscillates

Proof (cont.)

Economical way: Define $p_{k}=1-\left(1-p_{\infty}\right) \xi^{v_{k}}$ so that

$$
\prod_{k=0}^{j-1} \frac{1-p_{k}}{1-p_{k+i}}=\xi^{\sum_{k=0}^{j-1}\left(v_{k}-v_{k+i}\right)}
$$

Choose $v_{k} \rightarrow 0$, but such that $\sum_{k=0}^{j} v_{k}$ oscillates
Example: $\xi \in\left(1,\left(1-p_{\infty}\right)^{-2}\right)$ and

Proof (cont.)

Economical way: Define $p_{k}=1-\left(1-p_{\infty}\right) \xi^{v_{k}}$ so that

$$
\prod_{k=0}^{j-1} \frac{1-p_{k}}{1-p_{k+i}}=\xi^{\sum_{k=0}^{j-1}\left(v_{k}-v_{k+i}\right)}
$$

Choose $v_{k} \rightarrow 0$, but such that $\sum_{k=0}^{j} v_{k}$ oscillates
Example: $\xi \in\left(1,\left(1-p_{\infty}\right)^{-2}\right)$ and

$$
v_{k}=\frac{(-1)^{r_{k}}}{r_{k}} \quad \text { with } \quad r_{k}=\inf \left\{i \geq 1: \sum_{j=1}^{i} j \geq k+1\right\}
$$

First terms:

$$
-1, \frac{1}{2}, \frac{1}{2},-\frac{1}{3},-\frac{1}{3},-\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \ldots
$$

Proof of the claim

$$
\begin{aligned}
& \mu\left(X_{-i-1}=1, X_{-i}^{j}=0_{-i}^{j}, X_{j+1}=1\right) \\
& \quad=\mu\left(X_{-i-1}=1\right) \mu\left(X_{-i}^{j-1}=0_{-i}^{j+1}, X_{j}=1 \mid X_{-i-1}=1\right) \\
& \quad=\mu\left(X_{-i-1}=1\right) \prod_{k=0}^{i+j}\left(1-p_{k}\right) p_{i+j+1}
\end{aligned}
$$

Analogously

$$
\begin{aligned}
& \mu\left(X_{-i-1}=1, X_{-i}^{-1}=0_{-i}^{-1}, X_{0}=1, X_{1}^{j-1}=0_{1}^{j-1}, X_{j+1}=1\right) \\
& \quad=\mu\left(X_{-i-1}=1\right)\left(\prod_{k=0}^{i-1}\left(1-p_{k}\right) p_{i}\right)\left(\prod_{k=0}^{j-1}\left(1-p_{k}\right) p_{j}\right)
\end{aligned}
$$

Proof of the claim (cont.)

Hence

$$
\begin{aligned}
& \mu\left(X_{0}=0 \mid X_{-i-1}=1, X_{-i}^{j}=0_{-i}^{j}, X_{j+1}=1\right) \\
& \quad=\frac{\prod_{k=0}^{i+j}\left(1-p_{k}\right) p_{i+j+1}^{j-1}\left(1-p_{k}\right) p_{i} \prod_{k=0}^{j-1}\left(1-p_{k}\right) p_{j}+\prod_{k=0}^{i+j}\left(1-p_{k}\right) p_{i+j+1}}{\prod_{k=0}^{i-1}} \\
& \quad=\left[1+\frac{p_{i} p_{j}}{\left(1-p_{i+j}\right) p_{i+j+1}} \prod_{k=0}^{j-1} \frac{1-p_{k}}{1-p_{k+i}}\right]^{-1} \\
& \quad \sim\left[1+\frac{p_{\infty}}{\left(1-p_{\infty}\right)} \prod_{k=0}^{j-1} \frac{1-p_{k}}{1-p_{k+i}}\right]^{-1}
\end{aligned}
$$

A Gibbs that is not regular g

[Bissacot, Endo, van Enter and Le Ny (2017)]

Consider Dyson models:

- $\mathcal{A}=\{-1,1\}, \mathbb{L}=\mathbb{Z}$
- Specification defined by

$$
\gamma_{\{0\}}\left(\sigma_{0} \mid \sigma_{\{0\}^{c}}\right)=\exp \left[\beta \sum_{j \in \mathbb{Z}_{\neq 0}} \frac{\sigma_{0} \sigma_{j}}{|j|^{\alpha}}\right] / \text { Norm. }
$$

for $1<\alpha<2$
At low temperature there is a phase transition:

A Gibbs that is not regular g

[Bissacot, Endo, van Enter and Le Ny (2017)]

Consider Dyson models:

- $\mathcal{A}=\{-1,1\}, \mathbb{L}=\mathbb{Z}$
- Specification defined by

$$
\gamma_{\{0\}}\left(\sigma_{0} \mid \sigma_{\{0\}^{\mathrm{c}}}\right)=\exp \left[\beta \sum_{j \in \mathbb{Z}_{\neq 0}} \frac{\sigma_{0} \sigma_{j}}{|j|^{\alpha}}\right] / \text { Norm. }
$$

for $1<\alpha<2$
At low temperature there is a phase transition:

$$
\mathcal{G}(\gamma)=\left\{\mu^{+}, \mu_{-}\right\} \text {with } \mu^{ \pm}=\lim _{n \rightarrow \infty} \gamma_{[-n, n]}(\cdot \mid \pm)
$$

A Gibbs that is not regular g

[Bissacot, Endo, van Enter and Le Ny (2017)]

Consider Dyson models:

- $\mathcal{A}=\{-1,1\}, \mathbb{L}=\mathbb{Z}$
- Specification defined by

$$
\gamma_{\{0\}}\left(\sigma_{0} \mid \sigma_{\{0\}^{\mathrm{c}}}\right)=\exp \left[\beta \sum_{j \in \mathbb{Z}_{\neq 0}} \frac{\sigma_{0} \sigma_{j}}{|j|^{\alpha}}\right] / \text { Norm. }
$$

$$
\text { for } 1<\alpha<2
$$

At low temperature there is a phase transition:

$$
\mathcal{G}(\gamma)=\left\{\mu^{+}, \mu_{-}\right\} \text {with } \mu^{ \pm}=\lim _{n \rightarrow \infty} \gamma_{[-n, n]}(\cdot \mid \pm)
$$

Theorem
Let $\alpha^{*}=3-\frac{\log 3}{\log 2} \in(1,2)$. Then, for each $\alpha \in\left(\alpha^{*}, 2\right)$ the measures $\mu^{ \pm}$are not regular g at low enough temperatures.

First ingredient of the argument: Interfaces

Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for μ^{+}: Let $\alpha^{*}<\alpha<2$ and T low enough
Under Dobrushin boundary conditions: an interface develops at $I^{*} \sim L / 2$ such that Probability of displacing interface

$$
\gamma_{[0, L]}\left(\left|I^{*}-(L / 2)\right|>\epsilon L \mid-+\right)
$$

First ingredient of the argument: Interfaces

Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for μ^{+}: Let $\alpha^{*}<\alpha<2$ and T low enough
Under Dobrushin boundary conditions:

$$
\sigma_{i}= \begin{cases}-1 & i \leq-1 \\ +1 & i \geq L+1\end{cases}
$$

an interface develops at $I^{*} \sim L / 2$ such that

- Mostly " -1 " in $\left[0, I^{*}\right)$ and " +1 " on $\left(I^{*}, L\right]$
- Probability of displacing interface $\sim \mathrm{e}^{-c L^{2-\alpha}}$

First ingredient of the argument: Interfaces

Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for μ^{+}: Let $\alpha^{*}<\alpha<2$ and T low enough
Under Dobrushin boundary conditions:

$$
\sigma_{i}= \begin{cases}-1 & i \leq-1 \\ +1 & i \geq L+1\end{cases}
$$

an interface develops at $I^{*} \sim L / 2$ such that

- Mostly " -1 " in $\left[0, I^{*}\right)$ and " +1 " on $\left(I^{*}, L\right]$
- Probability of displacing interface $\sim \mathrm{e}^{-c L^{2-\alpha}}$

$$
\begin{equation*}
\gamma_{[0, L]}\left(\left|I^{*}-(L / 2)\right|>\epsilon L \mid-+\right) \leq f(\epsilon) L \mathrm{e}^{-c L^{2-\alpha}} \tag{1}
\end{equation*}
$$

Second ingredient: Wetting

Flipping the left "-" beyond $-N$ has an energy cost of at most

$$
\sum_{\substack{i \in[0, L] \\ j \leq-N}} \frac{1}{|i-j|} \sim \frac{L}{N^{\alpha-1}}
$$

negligible w.r.t. RHS of (1) if N is grows superlinearly with L :

$$
\begin{equation*}
\frac{L}{N^{\alpha-1}}=o(1) \tag{2}
\end{equation*}
$$

Consequence: $\exists \delta>0$ s.t. for each ϵ

Second ingredient: Wetting

Flipping the left "-" beyond $-N$ has an energy cost of at most

$$
\sum_{\substack{i \in[0, L] \\ j \leq-N}} \frac{1}{|i-j|} \sim \frac{L}{N^{\alpha-1}}
$$

negligible w.r.t. RHS of (1) if N is grows superlinearly with L :

$$
\begin{equation*}
\frac{L}{N^{\alpha-1}}=o(1) \tag{2}
\end{equation*}
$$

Consequence: $\exists \delta>0$ s.t. for each ϵ

$$
\begin{equation*}
\mu^{+}\left(\omega_{i} \mid(-1)_{-N}^{-1}\right) \leq-\delta \quad, \quad i \in[0,(1-\epsilon) L / 2] \tag{3}
\end{equation*}
$$

for L large enough and N as in (2)

Third ingredient: Energy cost of alternating

Alternating spins in $\left[-L_{1}, 0\right]$ have a L_{1}-independent energy cost

$$
\begin{equation*}
\max _{\omega} \sum_{\substack{i \in\left[-L_{1},-1\right] \\ j \notin\left[-L_{1},-1\right]}} \frac{(1)^{i}}{|i-j|^{\alpha}} \omega_{j} \leq c \tag{4}
\end{equation*}
$$

with c independent of L_{1}.? From (1) (0)

Third ingredient: Energy cost of alternating

Alternating spins in $\left[-L_{1}, 0\right]$ have a L_{1}-independent energy cost

$$
\begin{equation*}
\max _{\omega} \sum_{\substack{i \in\left[-L_{1},-1\right] \\ j \notin\left[-L_{1},-1\right]}} \frac{(1)^{i}}{|i-j|^{\alpha}} \omega_{j} \leq c \tag{4}
\end{equation*}
$$

with c independent of L_{1}. From (1), (3) and (4):

$$
\begin{equation*}
\mu^{+}\left(\omega_{0} \mid\left(\omega^{\text {alt }}\right)_{-L_{1}}^{-1}(-1)_{-N-L_{1}}^{-L_{1}-1}\right) \leq-\delta \tag{5}
\end{equation*}
$$

for L large enough as long as $L / N^{\alpha-1}=o(1)$ and $L_{1}=o(L)$.

Conclusion

Analogously, conditioning on " + " in $[-N,-1]$:

$$
\begin{equation*}
\mu^{+}\left(\omega_{0} \mid\left(\omega^{\text {alt }}\right)_{-L_{1}}^{-1}(+1)_{-N-L_{1}}^{-L_{1}-1}\right) \geq \delta \tag{6}
\end{equation*}
$$

Hence, for L large enough

Left-conditioning is not quasilocal (discontinuous w.r.t. past)

Conclusion

Analogously, conditioning on " + " in $[-N,-1]$:

$$
\begin{equation*}
\mu^{+}\left(\omega_{0} \mid\left(\omega^{\text {alt }}\right)_{-L_{1}}^{-1}(+1)_{-N-L_{1}}^{-L_{1}-1}\right) \geq \delta \tag{6}
\end{equation*}
$$

Hence, for L large enough

$$
\begin{aligned}
& \mid \mu^{+}\left(\omega_{0} \mid\left(\omega^{\text {alt }}\right)_{-L_{1}}^{-1}(+1)_{-N-L_{1}}^{-L_{1}-1}\right) \\
& \quad-\mu^{+}\left(\omega_{0} \mid\left(\omega^{\text {alt }}\right)_{-L_{1}}^{-1}(-1)_{-N-L_{1}}^{-L_{1}-1}\right) \mid>2 \delta
\end{aligned}
$$

Left-conditioning is not quasilocal (discontinuous w.r.t. past)

Review of additional issues and results I. When a regular g is Gibbs

Theorem

A regular g-measure is Gibbs iff the sequence

$$
\prod_{i=1}^{n} \frac{g\left(\omega_{i} \mid \omega_{1}^{i-1} \sigma_{0} \omega_{-\infty}^{-1}\right)}{g\left(\omega_{i} \mid \omega_{1}^{i-1} \eta_{0} \omega_{-\infty}^{-1}\right)}
$$

converges, $\forall \sigma_{0}, \eta_{0}$, uniformly on ω, as $n \rightarrow \infty$

II. Reversibility

Relation between left- and right-conditioning?
Definition

Theorem
4 mornilar g-measure h is reversible iff the sequence
converges uniformly on ω, as $n \rightarrow \infty$, to a fction free of zeros

II. Reversibility

Relation between left- and right-conditioning?
Definition
A regular g-measure is reversible if it is continuous w.r.t. the future:

$$
\sup _{\omega, \sigma}\left|\mu\left(\omega_{0} \mid \sigma_{1}^{n} \omega_{n+1}^{\infty}\right)-\mu\left(\omega_{0} \mid \sigma_{1}^{\infty}\right)\right|<\epsilon
$$

II. Reversibility

Relation between left- and right-conditioning?
Definition
A regular g-measure is reversible if it is continuous w.r.t. the future:

$$
\sup _{\omega, \sigma}\left|\mu\left(\omega_{0} \mid \sigma_{1}^{n} \omega_{n+1}^{\infty}\right)-\mu\left(\omega_{0} \mid \sigma_{1}^{\infty}\right)\right|<\epsilon
$$

Theorem

A regular g-measure μ is reversible iff the sequence

$$
\prod_{i=1}^{n} \frac{g\left(\omega_{i} \mid \omega_{0}^{i-1}\right)}{g\left(\omega_{i} \mid \omega_{1}^{i-1}\right)}
$$

converges uniformly on ω, as $n \rightarrow \infty$, to a fction free of zeros

Overview of examples

- \exists non-reversible measures (example is also non-Gibbs)
- \exists reversible g-measures with different left and right continuity rates
- The ahore g - hut non-Gibbs measume is reversible

Overview of examples

- \exists non-reversible measures (example is also non-Gibbs)
- \exists reversible g-measures with different left and right continuity rates
- The above g - but non-Gibbs measure is reversible

Overview of examples

- \exists non-reversible measures (example is also non-Gibbs)
- \exists reversible g-measures with different left and right continuity rates
- The above g - but non-Gibbs measure is reversible

Transitions vs kernels

Asymmetry in conditional kernels:

- g-measures determined by single-time transitions $g\left(\cdot \mid \omega_{-\infty}^{-1}\right)$
- Gibbs measures determined by full specifications $\left\{\gamma_{\Lambda}\left(\cdot \mid \omega_{\Lambda^{c}}\right): \Lambda \Subset \mathbb{Z}\right\}$
- $g \longrightarrow$ left-interval specifications (LIS)
\triangleright specifications $\longrightarrow \gamma_{\{0\}}$ plus order-consistency

Transitions vs kernels

Asymmetry in conditional kernels:

- g-measures determined by single-time transitions $g\left(\cdot \mid \omega_{-\infty}^{-1}\right)$
- Gibbs measures determined by full specifications $\left\{\gamma_{\Lambda}\left(\cdot \mid \omega_{\Lambda^{c}}\right): \Lambda \Subset \mathbb{Z}\right\}$

To put approaches on a common ground

- $g \longrightarrow$ left-interval specifications (LIS)
- specifications $\longrightarrow \gamma_{\{0\}}$ plus order-consistency

Left-interval specifications

g-functions admit a specification-like framework.

Left-interval specifications

g-functions admit a specification-like framework. Denote

- $\mathcal{J}=$ set of bounded intervals in \mathbb{Z}
- If $[a, b] \in \mathcal{J}, m_{\Lambda}:=b$,
- $\mathcal{F}_{\leq \Lambda}:=\mathcal{F}_{(-\infty, b]}$
- $\mathcal{F}_{\Lambda_{-}}:=\mathcal{F}_{(-\infty, a-1]}$

Left-interval specifications

g-functions admit a specification-like framework. Denote

- $\mathcal{J}=$ set of bounded intervals in \mathbb{Z}
- If $[a, b] \in \mathcal{J}, m_{\Lambda}:=b$,
- $\mathcal{F}_{\leq \Lambda}:=\mathcal{F}_{(-\infty, b]}$
- $\mathcal{F}_{\Lambda_{-}}:=\mathcal{F}_{(-\infty, a-1]}$

The iterated-conditioning formula

$$
\begin{aligned}
& g_{[m, n]}\left(\omega_{m}^{n} \mid \omega_{-\infty}^{n-1}\right) \\
& \quad=g\left(\omega_{m} \mid \omega_{-\infty}^{m-1}\right) g\left(\omega_{m-1} \mid \omega_{-\infty}^{m-2}\right) \cdots g\left(\omega_{n} \mid \omega_{-\infty}^{n-1}\right)
\end{aligned}
$$

defines a family of probability kernels $G=\left\{g_{\Lambda}: \Lambda \in \mathcal{J}\right\}$ s.t.

Definition of LIS

(i) Increasing measurability: $g_{\Lambda}: \mathcal{F}_{\leq_{m_{\Lambda}}} \times \Omega \longrightarrow[0,1]$

Definition of LIS

(i) Increasing measurability: $g_{\Lambda}: \mathcal{F}_{\leq_{m_{\Lambda}}} \times \Omega \longrightarrow[0,1]$
(ii) Dependence on past: $g_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda_{-}-m e a s u r a b l e ~}$

Definition of LIS

(i) Increasing measurability: $g_{\Lambda}: \mathcal{F}_{\leq m_{\Lambda}} \times \Omega \longrightarrow[0,1]$
(ii) Dependence on past: $g_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda_{-}}$-measurable
(iii) Properness: For $\Lambda \in \mathcal{J}$ and $f \mathcal{F}_{\leq \Lambda}$-measurable,

$$
g_{\Lambda}(h f \mid \omega)=h(\omega) g_{\Lambda}(f \mid \omega)
$$

if h depends only on $\omega_{\Lambda_{-}}$

Definition of LIS

(i) Increasing measurability: $g_{\Lambda}: \mathcal{F}_{\leq m_{\Lambda}} \times \Omega \longrightarrow[0,1]$
(ii) Dependence on past: $g_{\Lambda}(f \mid \cdot)$ is $\mathcal{F}_{\Lambda_{-}}$-measurable
(iii) Properness: For $\Lambda \in \mathcal{J}$ and $f \mathcal{F}_{\leq \Lambda}$-measurable,

$$
g_{\Lambda}(h f \mid \omega)=h(\omega) g_{\Lambda}(f \mid \omega)
$$

if h depends only on $\omega_{\Lambda_{-}}$
(iv) Consistency: For $\Delta, \Lambda \in \mathcal{J}: \Delta \supset \Lambda$,

$$
g_{\Delta} g_{\Lambda}=g_{\Delta} \quad \text { over } \mathcal{F}_{\leq m_{\Lambda}}
$$

Properties (i)-(iv): left interval-specification (LIS)

Comments

Knowledge of the LIS G is equivalent to knowledge of g

Observations:

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G)=\mathcal{G}(g)$:

$$
\mu g_{\Lambda}=\mu \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g=\mu
$$

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G)=\mathcal{G}(g)$:

$$
\mu g_{\Lambda}=\mu \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g=\mu
$$

Observations:

- Unlike specifications, kernels apply to different σ-algebras

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G)=\mathcal{G}(g)$:

$$
\mu g_{\Lambda}=\mu \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g=\mu
$$

Observations:

- Unlike specifications, kernels apply to different σ-algebras
- Kernels only for intervals
- Generalization: \mathbb{L} partially ordered (POS)

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G)=\mathcal{G}(g)$:

$$
\mu g_{\Lambda}=\mu \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g=\mu
$$

Observations:

- Unlike specifications, kernels apply to different σ-algebras
- Kernels only for intervals
- Nevertheless the theory for specifications can be adapted

Comments

Knowledge of the LIS G is equivalent to knowledge of g In particular $\mathcal{G}(G)=\mathcal{G}(g)$:

$$
\mu g_{\Lambda}=\mu \forall \Lambda \in \mathcal{J} \quad \Leftrightarrow \quad \mu g=\mu
$$

Observations:

- Unlike specifications, kernels apply to different σ-algebras
- Kernels only for intervals
- Nevertheless the theory for specifications can be adapted
- Generalization: \mathbb{L} partially ordered (POS)

From singletons to specifications (general \mathbb{L})

Would like to generate kernels from the singletons $\gamma_{\{i\}}$
However, not any family of singletons is admissible
Choice of internal regions lead to compatibility conditions

From singletons to specifications (general \mathbb{L})

Would like to generate kernels from the singletons $\gamma_{\{i\}}$
However, not any family of singletons is admissible
Choice of internal regions lead to compatibility conditions
Let us start with two sites:

- The consistency $\gamma_{\{i, j\}}=\gamma_{\{i, j\}} \gamma_{\{i\}}$ implies

$$
\begin{equation*}
\gamma_{\{i, j\}}\left(\sigma_{i} \sigma_{j} \mid \omega\right)=\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right) \gamma_{\{i, j\}}\left(\sigma_{j} \mid \omega\right) \tag{7}
\end{equation*}
$$

- On the other hand $\gamma_{\{i, j\}}=\gamma_{\{i, j\}} \gamma_{\{j\}}$ implies

$$
\begin{equation*}
\gamma_{\{i, j\}}\left(\sigma_{i} \sigma_{j} \mid \omega\right)=\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right) \gamma_{\{i, j\}}\left(\sigma_{i} \mid \omega\right) \tag{8}
\end{equation*}
$$

From (7)-(8)

$$
\gamma_{\{i, j\}}\left(\sigma_{i} \mid \omega\right)=\frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)} \gamma_{\{i, j\}}\left(\sigma_{j} \mid \omega\right)
$$

Summing over σ_{i},

Inserting this in (7)

From (7)-(8)

$$
\gamma_{\{i, j\}}\left(\sigma_{i} \mid \omega\right)=\frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)} \gamma_{\{i, j\}}\left(\sigma_{j} \mid \omega\right)
$$

Summing over σ_{i},

$$
\gamma_{\{i, j\}}\left(\sigma_{j} \mid \omega\right)=\left[\sum_{\sigma_{i}} \frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}\right]^{-1}
$$

From (7)-(8)

$$
\gamma_{\{i, j\}}\left(\sigma_{i} \mid \omega\right)=\frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)} \gamma_{\{i, j\}}\left(\sigma_{j} \mid \omega\right)
$$

Summing over σ_{i},

$$
\gamma_{\{i, j\}}\left(\sigma_{j} \mid \omega\right)=\left[\sum_{\sigma_{i}} \frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}\right]^{-1}
$$

Inserting this in (7)

$$
\begin{equation*}
\gamma_{\{i, j\}}\left(\sigma_{i} \sigma_{j} \mid \omega\right)=\frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\sum_{\sigma_{i}} \frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}} \tag{9}
\end{equation*}
$$

Order-consistency condition

Using, instead, (8) we similarly arrive to the $i \leftrightarrow j$ expression:

$$
\begin{equation*}
\gamma_{\{i, j\}}\left(\sigma_{i} \sigma_{j} \mid \omega\right)=\frac{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\left\{i \mathrm{c}^{\mathrm{c}}\right.}\right)}{\sum_{\sigma_{j}} \frac{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}} \tag{10}
\end{equation*}
$$

Order-consistency condition

Using, instead, (8) we similarly arrive to the $i \leftrightarrow j$ expression:

$$
\begin{equation*}
\gamma_{\{i, j\}}\left(\sigma_{i} \sigma_{j} \mid \omega\right)=\frac{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\left\{i \mathrm{c}^{\mathrm{c}}\right.}\right)}{\sum_{\sigma_{j}} \frac{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}} \tag{10}
\end{equation*}
$$

RHS of $(9)=$ RHS of $(10) \Longrightarrow$ order-consistency condition:

$$
\begin{equation*}
\frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\sum_{\sigma_{i}} \frac{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}}=\frac{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\left\{i \mathrm{c}^{\mathrm{c}}\right.}\right)}{\sum_{\sigma_{j}} \frac{\gamma_{\{j\}}\left(\sigma_{j} \mid \sigma_{i} \omega_{\{i\}^{\mathrm{c}}}\right)}{\gamma_{\{i\}}\left(\sigma_{i} \mid \sigma_{j} \omega_{\{j\}^{\mathrm{c}}}\right)}} \tag{11}
\end{equation*}
$$

The reconstruction theorem

Further compatibility conditions from other $\Lambda \Subset \mathbb{L}$?
anracle! (11) is enough

- Furthermore, such γ satisfies:

The reconstruction theorem

Further compatibility conditions from other $\Lambda \Subset \mathbb{L}$?
Miracle! (11) is enough

Theorem

If (11) hold for all $i, j \in \mathbb{L}, \omega \in \Omega$ (denominators $\dot{\text { i }} 0$!), then

- \exists exactly one γ with the given single-site kernels, defined by

$$
\gamma_{\Lambda \cup \Gamma}\left(\sigma_{\lambda} \sigma_{\Gamma} \mid \omega\right)=\frac{\gamma_{\Gamma}\left(\sigma_{\Gamma} \mid \sigma_{\Lambda} \omega_{\Lambda^{c}}\right)}{\sum_{\sigma_{\Gamma}} \frac{\gamma_{\Gamma}\left(\sigma_{\Gamma} \mid \sigma_{\Lambda} \omega_{\Lambda^{c}}\right)}{\gamma_{\Lambda}\left(\sigma_{\Lambda} \mid \sigma_{\Gamma} \omega_{\Gamma^{c}}\right)}}
$$

The reconstruction theorem

Further compatibility conditions from other $\Lambda \Subset \mathbb{L}$?
Miracle! (11) is enough

Theorem

If (11) hold for all $i, j \in \mathbb{L}, \omega \in \Omega$ (denominators $\dot{\text { i }} 0$!), then

- \exists exactly one γ with the given single-site kernels, defined by

$$
\gamma_{\Lambda \cup \Gamma}\left(\sigma_{\lambda} \sigma_{\Gamma} \mid \omega\right)=\frac{\gamma_{\Gamma}\left(\sigma_{\Gamma} \mid \sigma_{\Lambda} \omega_{\Lambda^{c}}\right)}{\sum_{\sigma_{\Gamma}} \frac{\gamma_{\Gamma}\left(\sigma_{\Gamma} \mid \sigma_{\Lambda} \omega_{\Lambda^{c}}\right)}{\gamma_{\Lambda}\left(\sigma_{\Lambda} \mid \sigma_{\Gamma} \omega_{\Gamma^{c}}\right)}}
$$

- Furthermore, such γ satisfies:
- $\mathcal{G}(\gamma)=\left\{\mu: \mu \gamma_{\{i\}}=\mu \forall i \in \mathbb{L}\right\}$
- γ is quasilocal (resp. non-null) iff so are the $\gamma_{\{i\}}$

Comments

- Consistency condition (11) are automatically satisfied if
- Singletons come from a specification. Hence theorem shows that a specification is uniquely defined by singletons [Georgii's Theorem 1.33]

Comments

- Consistency condition (11) are automatically satisfied if
- Singletons come from a specification. Hence theorem shows that a specification is uniquely defined by singletons [Georgii's Theorem 1.33]
- Singletons come from a pre-existing measure μ :

$$
\gamma_{i}\left(\omega_{i} \mid \omega\right)=\lim _{n \rightarrow \infty} \frac{\mu\left(\omega_{V_{n}}\right)}{\mu\left(\omega_{V_{n} \backslash\{i\}}\right)}
$$

for an exhausting sequence of volumes $\left\{V_{n}\right\}$

Comments

- Consistency condition (11) are automatically satisfied if
- Singletons come from a specification. Hence theorem shows that a specification is uniquely defined by singletons [Georgii's Theorem 1.33]
- Singletons come from a pre-existing measure μ :

$$
\gamma_{i}\left(\omega_{i} \mid \omega\right)=\lim _{n \rightarrow \infty} \frac{\mu\left(\omega_{V_{n}}\right)}{\mu\left(\omega_{V_{n} \backslash\{i\}}\right)}
$$

for an exhausting sequence of volumes $\left\{V_{n}\right\}$

- Dachian and Nahapetian (2001) provided alternative construction (weaker non-nullness, stronger order-consistency)
- Reconstruction also with very weak non-nullness

Final comments

The general mathematical framework is clear enough:

- Gibbs and g have comparable but not identical theories
- General theory: partially ordered specifications

Final comments

The general mathematical framework is clear enough:

- Gibbs and g have comparable but not identical theories
- General theory: partially ordered specifications

What about practical considerations?

- In some cases one theory is applicable but not the other
- "Numerical" criteria to detect these cases?

Final comments

The general mathematical framework is clear enough:

- Gibbs and g have comparable but not identical theories
- General theory: partially ordered specifications

What about practical considerations?

- In some cases one theory is applicable but not the other
- "Numerical" criteria to detect these cases?
- If both theories applicable: "numerical efficiency"?

