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Introduction g-measures Gibbs measures

Issues

The issue

A signal with a stochastic component is detected

· · · ω−n−1 ω−n · · · ω−1 ω0 ω1 · · · ωn ωn+1 · · ·

ωi belongs to some finite “alphabet” A
E.g. biological signals:

I Spike sequence of a neuron, A = {0, 1}
I DNA string, A = {A,C,G, T}

Basic tenets
Stochastic description due to signal variability

Full description = probability measure µ on AZ

Key issue: efficient characterization of µ.
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Process aproach

First approach: Transition probabilities

Machine-learning approach:

I Use first part of the train to develop “rules” to predict rest

I By recurrence: enough to predict next bit given “history”

That is, estimate the conditional probabilities w.r.t. past

P (Xn | Xn−1, Xn−2, . . .)

through its law, defined by a function g such that

P
(
X0 = ω0

∣∣ X−1
−∞ = ω−1

−∞
)

= g
(
ω0

∣∣ ω−1
−∞
)

Look for µ determined by (consistent with) this g:

µ
(
X0 = ω0

∣∣ X−1
−∞ = ω−1

−∞
)

= g
(
ω0

∣∣ ω−1
−∞
)
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Process aproach

Regular g-measures

Relevant transitions expected to be insensitive to farther past:

g is a regular g-function if ∀ε > 0∃n ≥ 0 such that

sup
ω,σ

∣∣∣g
(
ω0

∣∣ σ−n−1 ω
−n−1
−∞

)
− g
(
ω0

∣∣ σ−1
−∞
)∣∣∣ < ε (1)

I (1) is equivalent to g(ω0 | · ) continuous in product topology

I Additional, not very relevant, non-nullness condition

A probability measure µ is a regular g-measure if it is
consistent with some regular g-function

Signal µ thought as a process: past determines future
(causality)
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Gibbs approach

Fields point of view

If the full train is available, why use only the past?

Learn to predict a bit using past and future!

Xn determined by finite-window probabilities

P(Xn | Xn−1, Xn−2, . . . ;Xn+1, Xn+2, . . .)

through conditional laws determined by a function γ s.t.

P
(
X0 = ω0

∣∣ X{0}c = ω{0}c
)

= γ
(
ω0

∣∣ ω{0}c
)

Specification: γ satisfying certain compatibility condition
Look for µ determined by (consistent with) this γ:

µ
(
X0 = ω0

∣∣ X{0}c = ω{0}c
)

= γ
(
ω0

∣∣ ω{0}c
)
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Gibbs approach

Quasilocal measures

A specification γ is quasilocal if ∀ε > 0 ∃n,m ≥ 0

∣∣γ
(
ω0

∣∣ ωm−nσ[n,m]c
)
− γ
(
ω0

∣∣ ω{0}c
)∣∣ < ε (2)

for every σ, ω

I (2) is equivalent to γ(ω0 | · ) continuous in product topology

I Gibbs specifications are, in addition, strongly non-null

A probability measure µ is a quasilocal (Gibbs) measure if it
is consistent with some quasilocal (Gibbs) specification

Signal µ thought as non-causal or with anticipation
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Comparison

Questions, questions

Signals best described as processes or as Gibbs?

Both setups give complementary information:

I Processes: ergodicity, coupling, renewal, perfect simulation

I Fields: Gibbs theory

Are these setups mathematically equivalent?

Is every regular g-measure Gibbs and viceversa?

What is more efficient: One or two-side conditioning?
Efficiency vs interpretation?
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History

Prehistory

I Onicescu-Mihoc (1935): chains with complete
connections

I Existence of limit measures in non-nul cases
I → random systems with complete connections (book by

Iosifescu and Grigorescu, Cambridge 1990)

I Doeblin-Fortet (1937):
I Taxonomy: A or B, dep. on continuity and non-nullness
I Existence of invariant measures
I Suggested: uniqueness of invariant measures (coupling!).

Completed by Iosifescu (1992)

I Harris (1955): chains of infinite order
I Framework of D-ary expansions
I Weaker uniqueness condition
I Cut-and-paste coupling
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History

More recent history
I Keane (1972): g-measures (g-functions), existence and

uniqueness

I Ledrapier (1974): variational principle

I Walters (1975): relation with transfer operator theory

I Lalley (1986): list processes, regeneration, uniqueness

I Berbee (1987): uniqueness

I Kalikow (1990):
I random Markov processes
I uniform martingales

I Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari,
Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson,
Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo,
Sidoravicius, Theodorescu, . . .
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Lacroix, Maillard, Öberg, Pollicott, Quas, Stanflo,
Sidoravicius, Theodorescu, . . .



Introduction g-measures Gibbs measures

History

More recent history
I Keane (1972): g-measures (g-functions), existence and

uniqueness

I Ledrapier (1974): variational principle

I Walters (1975): relation with transfer operator theory

I Lalley (1986): list processes, regeneration, uniqueness

I Berbee (1987): uniqueness

I Kalikow (1990):
I random Markov processes
I uniform martingales

I Berger, Bramson, Bressaud, Comets, Dooley, F, Ferrari,
Galves, Grigorescu, Hoffman, Hulse, Iosifescu, Johansson,
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Differences with Markov

Differences with Markov: Invariance

I Invariant measures: on space of trajectories (not just on A)

µ(x0) =
∑

y

g
(
x0

∣∣ y
)
µ(y)

−→ µ(x0) =

∫
g
(
x0

∣∣ x−1
−∞
)
µ(dx−1

−∞)

I Conditioning is over measure zero events:
{
X−1
−∞ = x−1

−∞
}

I Importance of “µ-almost surely”
I Properties must be essential = survive measure-zero changes
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Differences with Markov

Differences with Markov: Phase diagrams

There may be several invariant measures

I Not due to lack of ergodicity (non-null transitions)

I Different histories can lead to different invariant measures

I Analogous to statistical mechanics:

Many invariant measures = 1st order phase transitions

Issues are, then, similar to those of stat mech:

I How many invariant measures? (= phase diagrams)

I Properties of measures? (mixing, extremality, ergodicity)

I Uniqueness criteria

I Simulation?
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Formal definitions

Transition probabilities
Basic structure:

I Space AZ with product σ-algebra F (and product topo)

I For Λ ⊂ Z, FΛ = {events depending on ωΛ} ⊂ F

Definition

(i) A family of transition probabilities is a measurable function

g
(
·
∣∣ ·
)

: A×An−1
−∞ −→ [0, 1]

such that
∑

x0∈A g
(
x0

∣∣ x−1
−∞
)

= 1

(ii) µ is a process consistent with g
(
·
∣∣ ·
)

if

µ({x0}) =

∫
g
(
x0

∣∣ y−1
−∞
)
µ(dy)
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x0∈A g
(
x0

∣∣ x−1
−∞
)

= 1

(ii) µ is a process consistent with g
(
·
∣∣ ·
)

if

µ({x0}) =

∫
g
(
x0

∣∣ y−1
−∞
)
µ(dy)
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General results

General results (no hypotheses on g)
Let

I G(g) =
{
µ consistent with g

}

I F−∞ :=
⋂
k∈ZF(−∞,k] (tail σ-algebra)

Theorem

(a) G(g) is a convex set

(b) µ is extreme in G(g) iff µ is trivial on F−∞
(µ(A) = 0, 1 for A ∈ F−∞)

(c) µ is extreme in G(g) iff

lim
Λ↑Z

sup
B∈FΛ−

∣∣µ(A ∩B)− µ(A)µ(B)
∣∣ = 0 , ∀A ∈ F

(d) Each µ ∈ G(g) is determined by its restriction to F−∞
(e) µ 6= ν extreme in G(g) =⇒ mutually singular on F−∞
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General results

Construction through limits

Let P[m,n] be the “window transition probabilities”

g[m,n]

(
xnm
∣∣ xm−1
−∞

)
:=

g
(
xn
∣∣ xn−1
−∞
)
g
(
xn−1

∣∣ xn−2
−∞
)
· · · g

(
xm
∣∣ xm−1
−∞

)

Theorem
If µ is extreme on G(g), then for µ-almost all y ∈ AZ,

g[−`,`]
(
xnm
∣∣ y−`−1
−∞

)
−−−→
`→∞ µ

(
{xnm}

)

for all xnm ∈ A[m,n] (no hypotheses on g)



Introduction g-measures Gibbs measures

General results

Construction through limits

Let P[m,n] be the “window transition probabilities”

g[m,n]

(
xnm
∣∣ xm−1
−∞

)
:=

g
(
xn
∣∣ xn−1
−∞
)
g
(
xn−1

∣∣ xn−2
−∞
)
· · · g

(
xm
∣∣ xm−1
−∞

)

Theorem
If µ is extreme on G(g), then for µ-almost all y ∈ AZ,

g[−`,`]
(
xnm
∣∣ y−`−1
−∞

)
−−−→
`→∞ µ

(
{xnm}

)

for all xnm ∈ A[m,n] (no hypotheses on g)



Introduction g-measures Gibbs measures

General results

Regular g-measures

Definition
A measure µ on AZ is regular (continuous) if it is consistent
with regular transition probabilities

Theorem (Palmer, Parry and Walters (1977))

µ is a regular g-measure if and only if the sequence µ
(
ω0

∣∣ ω−1
−n
)

converges uniformly in ω as n→∞

Theorem
If g is regular (continuous), then every limj g[`j ,−`j ]

(
·
∣∣ y−`j−1
−∞

)

defines a g-measure.
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Uniqueness

Continuity rates
Uniqueness conditions: continuity and non-nulness hypotheses

I The continuity rate of g:

vark(g) := sup
x,y

∣∣∣g
(
x0

∣∣ x−1
−∞
)
− g
(
x0

∣∣ x−k−1 y
−k−1
−∞

)∣∣∣

I The log-continuity rate of g:

vark(log g) := sup
x,y

log
g
(
x0

∣∣ x−1
−∞
)

g
(
x0

∣∣ x−k−1 y
−k−1
−∞

)

I The ∆-rate of g:

∆k(g) := inf
x,y

∑

x0

[
g
(
x0

∣∣ x−1
−∞
)
∧ g
(
x0

∣∣ x−k−1 y
−k−1
−∞

)]
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Uniqueness

Non-nullness hypotheses

I g is weakly non-null if

∑

x0

inf
y
g
(
x0

∣∣ y−1
−∞
)
> 0

I g is (strongly) non-null if

inf
x0,y

g
(
x0

∣∣ y−1
−∞
)
> 0

[Doeblin-Fortet:

I Chain of type A: for g continuous and weakly non-null

I Chain of type B: for g log-continuous and non-null]
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Criteria

Uniqueness criteria (selected)

I Doeblin-Fortet (1937 + Iosifescu, 1992): g non-null and

∑

k

vark(g) <∞

I Harris (1955): g weakly non-null and

∑

n≥1

n∏

k=1

(
1− |E|

2
vark(g)

)
= +∞

I Berbee (1987): g non-null and

∑

n≥1

exp
(
−

n∑

k=1

vark(log g)
)

= +∞
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Criteria

Uniqueness criteria (cont.)

I Stenflo (2003): g non-null and

∑

n≥1

n∏

k=1

∆k(g) = +∞,

I Johansson and Öberg (2002): g non-null and

∑

k≥1

var2
k(log g) < +∞
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Criteria

Comments

Leaving non-nullness aside, criteria are not fully comparable

Rough comparison:

I Doeblin-Fortet: vark ∼ 1/k1+δ

I Harris–Stenflo: vark ∼ 1/k

I Johansson-Öberg: vark ∼ 1/k1/2+δ
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Criteria

Criterion of a different species

Let
oscj(g) := sup

x=y off j

∣∣∣g
(
x0

∣∣ x−1
−∞
)
− g
(
x0

∣∣ y−1
−∞
)∣∣∣

Then (F-Maillard, 2005) there is a unique consistent chain if

∑

j<0

δj(g) < 1

I One-sided version of Dobrushin condition in stat. mech.

I This criterion is not comparable with precedent ones

I In particular no non-nullness requirement!
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Non-uniqueness

Examples of non-uniqueness

I First example: Bramson and Kalikow (1993):

vark(g) ≥ C/ log |k|

I Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg
criterion is sharp: For all ε > 0 there exists g with

∑

k<0

var2+ε
k (g) <∞ and |G(P )| > 1

I Hulse (2006): One-sided Dobrushin criterion is sharp: For
all ε > 0 there exists g with

∑

k<0

osck(g) = 1 + ε and |G(P )| > 1
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criterion is sharp: For all ε > 0 there exists g with

∑

k<0

var2+ε
k (g) <∞ and |G(P )| > 1

I Hulse (2006): One-sided Dobrushin criterion is sharp: For
all ε > 0 there exists g with

∑

k<0

osck(g) = 1 + ε and |G(P )| > 1



Introduction g-measures Gibbs measures

Non-uniqueness

Examples of non-uniqueness

I First example: Bramson and Kalikow (1993):

vark(g) ≥ C/ log |k|

I Berger, Hoffman and Sidoravicius (1993): Johansson-Öberg
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History

Gibbs measures: Historic highlights

Prehistory:

I Boltzmann, Maxwell (kinetic theory): Probability weights

I Gibbs: Geometry of phase diagrams

History:

I Dobrushin (1968), Lanford and Ruelle (1969): Conditional
expectations

I Preston (1973): Specifications

I Kozlov (1974), Sullivan (1973): Quasilocality and
Gibbsianness
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Introduction g-measures Gibbs measures

Statistical mechanics motivation

Equilibrium

Issue: Given microscopic behavior in finite regions, determine
the macroscopic behavior

Basic tenets:

(i) Equilibrium = probability measure

(ii) Finite regions = finite parts of an infinite system

(iii) Exterior of a finite region = frozen external condition

(iv) Macroscopic behavior = limit of infinite regions
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Statistical mechanics motivation

Equilibrium = Probability kernels

Set up: Product space Ω = AL

System in Λ b L described by a probability kernel γΛ( · | · )

γΛ(f | ω) = equilibrium value of f
when the configuration outside Λ is ω

Equilibrium in Λ = Equilibrium in every Λ′ ⊂ Λ.

Equilibrium value of f in Λ = expectations in Λ′ with Λ \ Λ′

distributed according to the Λ-equilibrium

γΛ(f | ω) = γΛ

(
γΛ′(f | · )

∣∣∣ ω
)

(Λ′ ⊂ Λ b L)
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Statistical mechanics motivation

Specifications

Definition
A specification is a family γ = {γΛ : Λ b L} of probability
kernels γΛ : F × Ω −→ [0, 1] such that

(i) External dependence: γΛ(f | ·) is FΛc-measurable

(ii) Frozen external conditions: Each γΛ is proper,

γΛ(h f | ω) = h(ω) γΛ(f | ω)

if h depends only on ωΛc

(iii) Equilibrium in finite regions: The family γ is consistent

γ∆ γΛ = γ∆ if ∆ ⊃ Λ
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Introduction g-measures Gibbs measures

Statistical mechanics motivation

Consistency

Definition
A probability measure µ on Ω is consistent with γ if

µγΛ = µ for each Λ b L

(DLR equations = equilibrium in infinite regions)

Remarks

I Several consistent measures = first-order phase transition

I Specification ∼ system of regular conditional probabilities

I Difference: no apriori measure, hence conditions required
for all ω rather than almost surely

I Stat. mech.: conditional probabilities −→ measures
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Introduction g-measures Gibbs measures

General results

General results (no hypotheses on γ)
Let

I G(γ) =
{
µ consistent with γ

}

I F∞ :=
⋂

ΛbLFΛc (σ-algebra at infinity)

Theorem

(a) G(γ) is a convex set

(b) µ is extreme in G(γ) iff µ is trivial on F∞
(µ(A) = 0, 1 for A ∈ F∞)

(c) µ is extreme in G(γ) iff

lim
Λ↑Z

sup
B∈FΛ−

∣∣µ(A ∩B)− µ(A)µ(B)
∣∣ = 0 , ∀A ∈ F

(d) Each µ ∈ G(γ) is determined by its restriction to F∞
(e) µ 6= ν extreme in G(γ) =⇒ mutually singular on F∞
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Introduction g-measures Gibbs measures

General results

Construction through limits

Theorem
If µ is extreme on G(γ), then for µ-almost all σ ∈ Ω,

γ∆

(
ωΛ

∣∣ σ∆c

)
−−−→
∆→L µ

(
{ωΛ}

)

for all ω ∈ Ω (no hypotheses on γ)



Introduction g-measures Gibbs measures

General results

Quasilocality

Definition
A measure µ on AL is quasilocal (continuous) if it is consistent
with a quasilocal specification

Theorem
µ is quasilocal if and only if the sequence µ

(
ω0

∣∣ ω−1
−n ω

m
1

)

converges uniformly in ω as n,m→∞

Theorem
If γ is quasilocal, then every limj γΛj

(
·
∣∣ σΛc

j

)
, with Λj → L,

defines a consistent measure.
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Stat Mech

Link with statistical mechanics

Definition
A specification γ is

I non-null if infσ γΛ

(
ωΛ

∣∣ σΛc

)
> 0 for ω ∈ Ω,Λ b L

I Gibbs if it is quasilocal and non-null

Theorem (Kozlov)

A specification is Gibbsian iff it has the Boltzmann form

γ
(
ωΛ

∣∣ ωΛc

)
= exp

{
−
∑

A∩Λ 6=∅
φA(ωA)

}
/Norm. ,

where {φA} (interaction) satisfy

∑

A30

‖φA‖∞ < ∞ .
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Phase transitions

Uniqueness and non-uniqueness

Uniqueness results

I Berbee:
∑

n≥1 exp
(
−∑n

k=1 vark(log γ)
)

= +∞
I Dobrushin:

∑
j<0 δj(g) < 1

Non-uniqueness results

I Fifty years of rigorous stat mech

I Markov models: Non-uniqueness in two or more dimensions
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Signal description: Process or Gibbs?
II. Relation between approaches

Contributors: S. Berghout (Leiden)
A. van Enter (Groningen)
S. Gallo (São Carlos),
G. Maillard (Aix-Marseille),
E. Verbitskiy (Leiden)

Florence in May, 2017



Issues Positive Negative Other

The questions

The issues

(I) Given a measure µ on AZ

I Is it always both a g and a Gibbs measure?

I If yes, which are the pros and cons of each point of view?

(II) Are g-functions and specifications in correspondance?

I Same uniqueness regions?

I Same phase diagrams?

(III) Can theoretical aspects be “imported”?

I Variational approach

I Large deviations
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The maps

Mathematical formalization

Mathematically, there are three natural questions:

(Q1) Is there a map b : g −→ γg such that G(g) = G(γg)?

(Q2) Is there a map c : γ −→ gγ such that G(γ) = G(gγ)?

(Q3) If so, are these map mutual inverses:

bc = id = cb
[
γg

γ
= γ , gγ

g
= g
]
?

True for Markov (A finite)
[Georgii, Chapter 3, uses eigenvalues]
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Positive answer to (Q1)

Construction of the map b

How would you construct a map b : g −→ γg?

Natural answer:

γg[k,`]
(
ω`k
∣∣ σ
)

= lim
n→∞

g[k,n]

(
ω`k σ

n
`+1

∣∣ σk−1
−∞
)

g[k,n]

(
σn`+1

∣∣ σk−1
−∞
)

Need to guarantee that the limit exists for all σ

Definition
A g function has good future if

I g is non-null and

I
∑

j δj(g) <∞
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Positive answer to (Q1)

Denote
I ΘGF :=

{
g has GF

}

I Π :=
{
γ quasilocal

}

I Π1 :=
{
γ : |G(γ)| = 1

}

Theorem (g  specification)

The previous prescription defines a map

b : ΘGF → γ
g 7→ γg

which satisfies

(a) G(g) ⊂ G(γg)

(b) b restricted to b−1(Π1) is one-to-one.

Thus, if g ∈ b−1(Π1),

G(g) = G(γg) = {µg}
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Positive answer to (Q2)

Construction of the map c

The natural prescription is

gγ
(
ω0

∣∣ σ−1
−∞
)

= lim
n→∞

γ[0,n]

(
ω0

∣∣ σ−1
−∞ ξ

∞
n+1

)

provided that, for each σ,

I the limit exists and

I the limit is independent of ξ

Denote

I ΘHUC =
{

g:
∑

j δj(g) < 1
}

I ΠHUC :=
{
γ :
∑

j δj(γ) < 1
}

Dobrushin condition provides hereditary uniqueness:

Uniqueness on each (infinite) Λ for any σΛc
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Positive answer to (Q2)

Theorem (specification  g)

The previous prescription defines a map

c : ΠHUC → ΘHUC

γ 7→ gγ

which satisfies

(a) G(fγ) = G(γ) = {µγ}
(b) The map c is one-to-one.
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Positive answer to (Q3)

Invertibility of the maps

Proofs of previous theorems yield bounds on δj(γ
g) and δj(g

γ)

Denote

I ΘEXP =
{
g : ∃ a > 1 s.t. limj→−∞ a|j| δj(g) = 0

}

I ΠEXP =
{
γ : ∃ a > 1 s.t. limj→∞ aj δj(γ) = 0

}

Theorem (LIS ! specification)

(a) b ◦ c = Id over c−1(ΘGF), and G(gγ) = G(γ) = {µγ}
(b) c ◦ b = Id over b−1(ΠHUC) and G(γf ) = G(f) =

{
µf
}

(c) b and c establish a one-to-one correspondence between
ΘEXP and ΠEXP that preserves the consistent measure.
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Negative answer to (Q1)

A regular g that is not Gibbs

A = {0, 1}; denote ω = ω−1
−∞

Consider g-functions of the form

g(1 |ω) = p`(ω)

where

I `(ω) = number of 0’s before first 1 looking backwards:

`(ω) = min{j ≥ 0: ω−j−1 = 1}

I {pi}i≥0 ∈ (0, 1) satisfy

inf
i≥0

pi = ε > 0 , p∞ = lim
i→∞

pi .



Issues Positive Negative Other

Negative answer to (Q1)

A regular g that is not Gibbs

A = {0, 1}; denote ω = ω−1
−∞

Consider g-functions of the form

g(1 |ω) = p`(ω)

where

I `(ω) = number of 0’s before first 1 looking backwards:

`(ω) = min{j ≥ 0: ω−j−1 = 1}

I {pi}i≥0 ∈ (0, 1) satisfy

inf
i≥0

pi = ε > 0 , p∞ = lim
i→∞

pi .
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Negative answer to (Q1)

Regularity

Non-nullness: g( · | · ) ≥ ε ∧ 1− ε
Continuity:

sup
ω−1
−k=σ−1

−k

∣∣∣g
(
1
∣∣ ω
)
− g
(
1
∣∣ σ
)∣∣∣

= sup
∣∣∣g
(
1
∣∣ 0−1
−kω

−k−1
−∞

)
− g
(
1
∣∣ 0−1
−kσ

−k−1
−∞

)∣∣∣
.

= sup
l,m≥k

|pl − pm|

−→
k

0
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Negative answer to (Q1)

Properties of the process

For all choices of sequences pi as above

I There exists a unique stationary chain µ compatible with g

I µ is supported on infinitely many 1’s with intervals of 0’s

I µ is a renewal chain with visible renewals

I µ can be perfectly simulated

For all practical purposes, chains are as regular as they can be
Nevertheless, for some choices of pi the chains are not Gibbsian.

Cause: problem when conditioning on “all 0”



Issues Positive Negative Other

Negative answer to (Q1)

Properties of the process

For all choices of sequences pi as above

I There exists a unique stationary chain µ compatible with g

I µ is supported on infinitely many 1’s with intervals of 0’s

I µ is a renewal chain with visible renewals

I µ can be perfectly simulated

For all practical purposes, chains are as regular as they can be
Nevertheless, for some choices of pi the chains are not Gibbsian.

Cause: problem when conditioning on “all 0”



Issues Positive Negative Other

Negative answer to (Q1)

Properties of the process

For all choices of sequences pi as above

I There exists a unique stationary chain µ compatible with g

I µ is supported on infinitely many 1’s with intervals of 0’s

I µ is a renewal chain with visible renewals

I µ can be perfectly simulated

For all practical purposes, chains are as regular as they can be
Nevertheless, for some choices of pi the chains are not Gibbsian.

Cause: problem when conditioning on “all 0”



Issues Positive Negative Other

Negative answer to (Q1)

Main result

Theorem
There exist choices of {pi}i≥0 as above for which the sequences

[
µ
(
X0 = ω0

∣∣ X−i−1 = 1, X−1
−i = 0j−i, X

j
1 = 0j1, Xj+1 = 1

)]
i,j≥1

does not converge as i, j →∞.

In particular µ(0 | · ) is essentially discontinuous at ω = 0+∞
−∞
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Proof of no Q1

Proof of main result

It is based on the following

Claim

µ
(
X0 = ω0

∣∣ X−i−1 = 1, Xj
−i = 0j−i, Xj+1 = 1

)

is determined by the ratio

j−1∏

k=0

1− pk
1− pk+i

.

Thus, discontinuity at 0+∞
−∞ ≡ pk s.t. this ratio oscillates
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Proof of no Q1

Proof (cont.)
Economical way: Define pk = 1− (1− p∞)ξvk so that

j−1∏

k=0

1− pk
1− pk+i

= ξ
∑j−1
k=0(vk−vk+i)

Choose vk → 0, but such that
∑j

k=0 vk oscillates

Example: ξ ∈ (1, (1− p∞)−2) and

vk =
(−1)rk

rk
with rk = inf

{
i ≥ 1:

i∑

j=1

j ≥ k + 1

}

First terms:

−1 ,
1

2
,

1

2
, −1

3
, −1

3
, −1

3
,

1

4
,

1

4
,

1

4
,

1

4
, . . .
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Proof of no Q1

Proof of the claim

µ
(
X−i−1 = 1, Xj

−i = 0j−i, Xj+1 = 1
)

= µ
(
X−i−1 = 1

)
µ
(
Xj−1
−i = 0j+1

−i , Xj = 1
∣∣ X−i−1 = 1

)

= µ
(
X−i−1 = 1

) i+j∏

k=0

(1− pk) pi+j+1

Analogously

µ
(
X−i−1 = 1, X−1

−i = 0−1
−i , X0 = 1, Xj−1

1 = 0j−1
1 , Xj+1 = 1

)

= µ
(
X−i−1 = 1

)( i−1∏

k=0

(1− pk)pi
)(j−1∏

k=0

(1− pk)pj
)
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Proof of no Q1

Proof of the claim (cont.)

Hence

µ
(
X0 = 0

∣∣ X−i−1 = 1, Xj
−i = 0j−i, Xj+1 = 1

)

=

∏i+j
k=0(1− pk)pi+j+1∏i−1

k=0(1− pk)pi
∏j−1
k=0(1− pk)pj +

∏i+j
k=0(1− pk)pi+j+1

=

[
1 +

pi pj
(1− pi+j) pi+j+1

j−1∏

k=0

1− pk
1− pk+i

]−1

∼
[

1 +
p∞

(1− p∞)

j−1∏

k=0

1− pk
1− pk+i

]−1



Issues Positive Negative Other

Negative answer to (Q2)

A Gibbs that is not regular g
[Bissacot, Endo, van Enter and Le Ny (2017)]

Consider Dyson models:

I A = {−1, 1}, L = Z
I Specification defined by

γ{0}
(
σ0

∣∣ σ{0}c
)

= exp
[
β
∑

j∈Z 6=0

σ0 σj
|j|α

]/
Norm.

for 1 < α < 2

At low temperature there is a phase transition:

G(γ) = {µ+, µ−} with µ± = lim
n→∞

γ[−n,n](· | ±)

Theorem
Let α∗ = 3− log 3

log 2 ∈ (1, 2). Then, for each α ∈ (α∗, 2) the

measures µ± are not regular g at low enough temperatures.
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Sketch of the argument

First ingredient of the argument: Interfaces
Crucial! [Cassandro, Merola, Picco and Rozikov (2014)]

Argument for µ+: Let α∗ < α < 2 and T low enough

Under Dobrushin boundary conditions:

σi =

{
−1 i ≤ −1
+1 i ≥ L+ 1

an interface develops at I∗ ∼ L/2 such that

I Mostly “−1” in [0, I∗) and “+1” on (I∗, L]

I Probability of displacing interface ∼ e−cL
2−α

γ[0,L]

(
|I∗ − (L/2)| > εL

∣∣ −+
)
≤ f(ε)L e−cL

2−α
(1)
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Sketch of the argument

Second ingredient: Wetting

Flipping the left “−” beyond −N has an energy cost of at most

∑

i∈[0,L]
j≤−N

1

|i− j| ∼
L

Nα−1

negligible w.r.t. RHS of (1) if N is grows superlinearly with L:

L

Nα−1
= o(1) (2)

Consequence: ∃ δ > 0 s.t. for each ε

µ+
(
ωi
∣∣ (−1)−1

−N
)
≤ −δ , i ∈ [0, (1− ε)L/2] (3)

for L large enough and N as in (2)
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Sketch of the argument

Third ingredient: Energy cost of alternating

Alternating spins in [−L1, 0] have a L1-independent energy cost

max
ω

∑

i∈[−L1,−1]
j 6∈[−L1,−1]

(1)i

|i− j|α ωj ≤ c (4)

with c independent of L1. From (1), (3) and (4):

µ+
(
ω0

∣∣∣ (ωalt)−1
−L1

(−1)−L1−1
−N−L1

)
≤ −δ (5)

for L large enough as long as L/Nα−1 = o(1) and L1 = o(L).
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Sketch of the argument

Conclusion

Analogously, conditioning on “+” in [−N,−1]:

µ+
(
ω0

∣∣∣ (ωalt)−1
−L1

(+1)−L1−1
−N−L1

)
≥ δ (6)

Hence, for L large enough

∣∣∣µ+
(
ω0

∣∣∣ (ωalt)−1
−L1

(+1)−L1−1
−N−L1

)

− µ+
(
ω0

∣∣∣ (ωalt)−1
−L1

(−1)−L1−1
−N−L1

)∣∣∣ > 2δ

Left-conditioning is not quasilocal (discontinuous w.r.t. past)
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Necessary and sufficient conditions

Review of additional issues and results
I. When a regular g is Gibbs

Theorem
A regular g-measure is Gibbs iff the sequence

n∏

i=1

g
(
ωi
∣∣ ωi−1

1 σ0 ω
−1
−∞
)

g
(
ωi
∣∣ ωi−1

1 η0 ω
−1
−∞
)

converges, ∀σ0, η0, uniformly on ω, as n→∞
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Reversible measures

II. Reversibility

Relation between left- and right-conditioning?

Definition
A regular g-measure is reversible if it is continuous w.r.t. the
future:

sup
ω,σ

∣∣∣µ
(
ω0

∣∣ σn1 ω∞n+1

)
− µ

(
ω0

∣∣ σ∞1
)∣∣∣ < ε

Theorem
A regular g-measure µ is reversible iff the sequence

n∏

i=1

g
(
ωi
∣∣ ωi−1

0

)

g
(
ωi
∣∣ ωi−1

1

)

converges uniformly on ω, as n→∞, to a fction free of zeros
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Known examples

Overview of examples

I ∃ non-reversible measures (example is also non-Gibbs)

I ∃ reversible g-measures with different left and right
continuity rates

I The above g- but non-Gibbs measure is reversible
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III. Singletons vs interval kernels

Transitions vs kernels

Asymmetry in conditional kernels:

I g-measures determined by single-time transitions
g
(
·
∣∣ ω−1
−∞
)

I Gibbs measures determined by full specifications{
γΛ

(
·
∣∣ ωΛc

)
: Λ b Z

}

To put approaches on a common ground

I g −→ left-interval specifications (LIS)

I specifications −→ γ{0} plus order-consistency
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III.1 LIS

Left-interval specifications

g-functions admit a specification-like framework. Denote

I J = set of bounded intervals in Z
I If [a, b] ∈ J , mΛ := b,

I F≤Λ := F(−∞,b]
I FΛ− := F(−∞,a−1]

The iterated-conditioning formula

g[m,n]

(
ωnm

∣∣ ωn−1
−∞
)

= g
(
ωm

∣∣ ωm−1
−∞

)
g
(
ωm−1

∣∣ ωm−2
−∞

)
· · · g

(
ωn
∣∣ ωn−1
−∞
)

defines a family of probability kernels G = {gΛ : Λ ∈ J } s.t.
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III.1 LIS

Definition of LIS

(i) Increasing measurability: gΛ : F≤mΛ × Ω −→ [0, 1]

(ii) Dependence on past: gΛ(f | · ) is FΛ−-measurable

(iii) Properness: For Λ ∈ J and f F≤Λ-measurable,

gΛ(h f | ω) = h(ω) gΛ(f | ω)

if h depends only on ωΛ−

(iv) Consistency: For ∆,Λ ∈ J : ∆ ⊃ Λ,

g∆ gΛ = g∆ over F≤mΛ

Properties (i)–(iv): left interval-specification (LIS)
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III.1 LIS

Comments

Knowledge of the LIS G is equivalent to knowledge of g

In particular G(G) = G(g):

µ gΛ = µ ∀Λ ∈ J ⇔ µ g = µ

Observations:

I Unlike specifications, kernels apply to different σ-algebras

I Kernels only for intervals

I Nevertheless the theory for specifications can be adapted

I Generalization: L partially ordered (POS)
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III.2 Specifications from singletons

From singletons to specifications (general L)

Would like to generate kernels from the singletons γ{i}
However, not any family of singletons is admissible

Choice of internal regions lead to compatibility conditions

Let us start with two sites:

I The consistency γ{i,j} = γ{i,j} γ{i} implies

γ{i,j}
(
σiσj

∣∣ ω
)

= γ{i}
(
σi
∣∣ σj ω{j}c

)
γ{i,j}

(
σj
∣∣ ω
)

(7)

I On the other hand γ{i,j} = γ{i,j} γ{j} implies

γ{i,j}
(
σiσj

∣∣ ω
)

= γ{j}
(
σj
∣∣ σi ω{i}c

)
γ{i,j}

(
σi
∣∣ ω
)

(8)
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III.2 Specifications from singletons

From (7)–(8)
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III.2 Specifications from singletons

Order-consistency condition

Using, instead, (8) we similarly arrive to the i↔ j expression:

γ{i,j}
(
σiσj

∣∣ ω
)

=
γ{j}

(
σj
∣∣ σi ω{i}c

)

∑

σj

γ{j}
(
σj
∣∣ σi ω{i}c

)

γ{i}
(
σi
∣∣ σj ω{j}c

)
(10)

RHS of (9) = RHS of (10) =⇒ order-consistency condition:
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III.2 Specifications from singletons

The reconstruction theorem

Further compatibility conditions from other Λ b L?

Miracle! (11) is enough

Theorem
If (11) hold for all i, j ∈ L, ω ∈ Ω (denominators ¿ 0!), then

I ∃ exactly one γ with the given single-site kernels, defined by

γΛ∪Γ

(
σλσΓ

∣∣ ω
)

=
γΓ

(
σΓ

∣∣ σΛ ωΛc

)

∑

σΓ

γΓ

(
σΓ

∣∣ σΛ ωΛc

)

γΛ

(
σΛ

∣∣ σΓ ωΓc
)

I Furthermore, such γ satisfies:
I G(γ) =

{
µ : µγ{i} = µ ∀ i ∈ L

}
I γ is quasilocal (resp. non-null) iff so are the γ{i}
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III.2 Specifications from singletons

Comments

I Consistency condition (11) are automatically satisfied if
I Singletons come from a specification. Hence theorem shows

that a specification is uniquely defined by singletons
[Georgii’s Theorem 1.33]

I Singletons come from a pre-existing measure µ:

γi
(
ωi

∣∣ ω
)

= lim
n→∞

µ(ωVn
)

µ(ωVn\{i})

for an exhausting sequence of volumes {Vn}
I Dachian and Nahapetian (2001) provided alternative

construction (weaker non-nullness, stronger
order-consistency)

I Reconstruction also with very weak non-nullness
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Conclusion

Final comments

The general mathematical framework is clear enough:

I Gibbs and g have comparable but not identical theories

I General theory: partially ordered specifications

What about practical considerations?

I In some cases one theory is applicable but not the other

I “Numerical” criteria to detect these cases?

I If both theories applicable: “numerical efficiency”?
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