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Motivation: kinetically constrained spin models

Suppose each site of the lattice Z2 is either “empty” or “occupied”

, and
has an independent exponential clock which rings randomly at rate 1.

When a clock rings, the corresponding site updates (randomly) its state,
as long as it has “enough space” to do so.

If it updates, it becomes empty with probability p, and occupied with
probability 1− p, independently of all other events.

Example: The 2-neighbour (2-FA) model:
A site can update if at least two of its four nearest neighbours are empty.

Question: How long does it take for the

Note that this is a random variable, and is also a function of the initial
state, and of p. An interesting particular case is when the initial state is
chosen randomly (e.g., with density p of empty sites), and p→ 0.
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More motivation: the (zero-temperature) Ising model

Suppose each site of the lattice Z2 is either in state “+” or “−”

, and has
an independent exponential clock which rings randomly at rate 1.

When a clock rings, the corresponding site updates its state, depending on
the current state of its “neighbourhood”.

Example: The 2-neighbour model:
A site updates to agree with the majority of its four nearest neighbours; if
it has two neighbours in each state, then it chooses a new state randomly.

Suppose that the states of sites at time zero are chosen independently at
random, with density p of +s.

Question: What happens in the long run?

Conjecture: If p > 1/2 then the system “fixates” at +.

Only known when p > 1− 10−10
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the current state of its “neighbourhood”.

Example: The 2-neighbour model:
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it has two neighbours in each state, then it chooses a new state randomly.

Suppose that the states of sites at time zero are chosen independently at
random, with density p of +s.

Question: What happens in the long run?

Conjecture: If p > 1/2 then the system “fixates” at +.

Only known when p > 1− 10−10 (Fontes, Schonmann, Sidoravicius, 2002)
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A monotone model: bootstrap percolation

In either of the previous two models, suppose that we only allow sites to
change in one direction (from occupied to empty, or from − to +, say).
In other words, once a site is “infected”, it stays infected forever.
Example: The 2-neighbour model:
A site becomes infected if it has (at least) two infected neighbours.
(Note that the process is now deterministic!)
Let A = A0 denote the set of initially infected sites, and define

At+1 = At ∪
{
v ∈ Z2 : |N(v) ∩At| > 2

}
for each t > 0.
We say that A percolates if

[A] :=
⋃
t>0

At = Z2.

That is, if every site is eventually infected.
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The 2-neighbour model: an example
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The 2-neighbour model with random initial state

Recall that we say that A percolates if

[A] :=
⋃
t>0

At = Z2.

That is, if every site is eventually infected.

Suppose that the sites are initially infected independently at random with
probability p, and define the critical probability

pc(Z2, 2) := inf
{
p ∈ (0, 1) : Pp

(
A percolates

)
= 1

}
.

Question: What is pc(Z2, 2)?

Answer: pc(Z2, 2) = 0

Robert Morris Monotone cellular automata May 26, 2017



The 2-neighbour model with random initial state

Recall that we say that A percolates if

[A] :=
⋃
t>0

At = Z2.

That is, if every site is eventually infected.

Suppose that the sites are initially infected independently at random with
probability p, and define the critical probability

pc(Z2, 2) := inf
{
p ∈ (0, 1) : Pp

(
A percolates

)
= 1

}
.

Question: What is pc(Z2, 2)?

Answer: pc(Z2, 2) = 0

Robert Morris Monotone cellular automata May 26, 2017



The 2-neighbour model with random initial state

Recall that we say that A percolates if

[A] :=
⋃
t>0

At = Z2.

That is, if every site is eventually infected.

Suppose that the sites are initially infected independently at random with
probability p, and define the critical probability

pc(Z2, 2) := inf
{
p ∈ (0, 1) : Pp

(
A percolates

)
= 1

}
.

Question: What is pc(Z2, 2)?

Answer: pc(Z2, 2) = 0

Robert Morris Monotone cellular automata May 26, 2017



The 2-neighbour model with random initial state

Recall that we say that A percolates if

[A] :=
⋃
t>0

At = Z2.

That is, if every site is eventually infected.

Suppose that the sites are initially infected independently at random with
probability p, and define the critical probability

pc(Z2, 2) := inf
{
p ∈ (0, 1) : Pp

(
A percolates

)
= 1

}
.

Question: What is pc(Z2, 2)?

Answer: pc(Z2, 2) = 0 (!!)

Robert Morris Monotone cellular automata May 26, 2017



The 2-neighbour model with random initial state

Recall that we say that A percolates if

[A] :=
⋃
t>0

At = Z2.

That is, if every site is eventually infected.

Suppose that the sites are initially infected independently at random with
probability p, and define the critical probability

pc(Z2, 2) := inf
{
p ∈ (0, 1) : Pp

(
A percolates

)
= 1

}
.

Question: What is pc(Z2, 2)?

Answer: pc(Z2, 2) = 0 (van Enter, 1987)
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van Enter’s proof that pc(Z2, 2) = 0 (sketch)

S

The probability that the square fails to grow from size n× n to size
(n+ 2)× (n+ 2) is at most

4(1− p)n

and is therefore summable.

(To make the proof rigorous, sprinkle.)
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The 2-neighbour model on the torus Z2
n

We define the critical probability on an n× n torus to be

pc(Z2
n, 2) := inf

{
p ∈ (0, 1) : Pp

(
A percolates

)
> 1/2

}
.

van Enter’s proof shows that pc(Z2
n, 2)→ 0 as n→∞.

Theorem (Aizenman and Lebowitz, 1988)

pc(Z2
n, 2) = Θ

( 1
logn

)
.

This was the first major result on bootstrap percolation

; the proof is not
very complicated, but contains some key ideas that have played a crucial
role in the later development of the subject.
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Aizenman and Lebowitz’s proof (sketch)

The upper bound follows from a more careful analysis of van Enter’s
argument, so we will instead focus on the (more interesting) lower bound.

The key idea is to control the growth of critical droplets using an
algorithm called the rectangles process.

The rectangles process:

We begin with a collection of |A| rectangles, each consisting of a single
site of A. At each step of the process, we choose two rectangles that lie
within distance 2 of one another, and combine them to form a larger
(entirely infected) rectangle. We stop when we can no longer find such a
pair of rectangles.

The union of the final collection of rectangles is equal to [A].
Every rectangle R that appears at some point in the rectangles
process is internally filled by A, i.e., [A ∩R] = R.
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Aizenman and Lebowitz’s proof (sketch, continued)

Using the rectangles process, we can prove the following key lemma.

The Aizenman–Lebowitz Lemma
If A percolates in Z2

n, then there exists a rectangle R ⊂ Z2
n, with

logn 6 long(R) 6 2 logn,

that is “internally filled”, i.e., [A ∩R] = R.

Proof: Run the rectangles process until a rectangle with long(R) > logn
appears for the first time.

This rectangle is internally filled, by the
definition of the process. Moreover, it was obtained from two rectangles
with long(R) < logn, so we have long(R) 6 2 logn, as required.
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Aizenman and Lebowitz’s proof (sketch, final calculation)

The Aizenman–Lebowitz Lemma
If A percolates in Z2

n, then there exists a rectangle R ⊂ Z2
n, with

logn 6 long(R) 6 2 logn,

that is “internally filled”, i.e., [A ∩R] = R.

To finish the proof, we simply bound the expected number of such
rectangles.

To do so, note that if R is internally filled then it must contain
at least one element of A in each pair of consecutive rows or columns. If

p = ε

logn
for some small constant ε > 0, then we obtain

P
(
[A ∩R] = R

)
6
(
4p logn

)logn/2
6 (4ε)logn/2 6

1
n3 .
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The Aizenman–Lebowitz Lemma
If A percolates in Z2

n, then there exists a rectangle R ⊂ Z2
n, with

logn 6 long(R) 6 2 logn,

that is “internally filled”, i.e., [A ∩R] = R.

If
p = ε

logn
for some small constant ε > 0, then we obtain

P
(
[A ∩R] = R

)
6
(
4p logn

)logn/2
6 (4ε)logn/2 6

1
n4 .

There are n3(logn)O(1) choices for R, so by Markov’s inequality
P
(
A percolates

)
→ 0

as n→∞, as required.
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An application to the Ising model

Recall that the states of sites at time zero are chosen independently at
random, with density p of +s

, and when a clock rings a site updates to
agree with the majority of its four nearest neighbours; if it has two
neighbours in each state, then it chooses a new state randomly.

Theorem (Fontes, Schonmann and Sidoravicius, 2002)
If p > 1− 10−10 then the system fixates.

Combining the proof of this theorem with some more advanced techniques
from bootstrap percolation (see Balogh, Bollobás and M., 2009) one can
prove the following result in high dimensions.

Theorem (M., 2011)

If p > 1
2 and d > d0(p), then on Zd the system fixates.
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An application to kinetically constrained spin models

Recall that the states of sites at time zero are chosen independently at
random, with density p of “empty” sites

, and when a clock rings a site
updates randomly if at least two of its four nearest neighbours are empty.

Define
τ
(
Z2, 2

)
:= inf

{
t > 0 : the origin changes state

}
.

Theorem (Martinelli and Toninelli, 2017+)
There exist constants C > c > 0 such that

exp
(
c

p

)
6 τ

(
Z2, 2

)
6 exp

(( log(1/p)
)C

p

)
with high probability as p→ 0.

The lower bound is a straightforward consequence of the theorem of
Aizenman and Lebowitz (the upper bound is much more difficult).
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Sharp thresholds and higher dimensions

For the 2-neighbour bootstrap model, much more precise bounds are
known.

Theorem (Hartarsky and M., 2017+)

pc(Z2
n, 2) = π2

18 logn −
Θ(1)

(logn)3/2

Theorem (Balogh, Bollobás, Duminil-Copin and M., 2012)

pc(Zdn, r) =
(
λ(d, r) + o(1)

log(r−1) n

)d−r+1
.
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of the second term:
Theorem (Hartarsky and M., 2017+)

pc(Z2
n, 2) = π2

18 logn −
Θ(1)

(logn)3/2

For the 3-neighbour model in three dimensions, the threshold was
determined up to a constant factor by Cerf and Cirillo:

Theorem (Cerf and Cirillo, 1999)

pc(Z3
n, 3) = Θ(1)
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pc(Zdn, r) =
(
λ(d, r) + o(1)

log(r−1) n

)d−r+1
.

Robert Morris Monotone cellular automata May 26, 2017



Sharp thresholds and higher dimensions

For the 2-neighbour bootstrap model, much more precise bounds are
known. Finally, with Hartarsky, we have managed to determine the order
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The Bollobás–Smith–Uzzell model

We now turn our attention to some dramatic recent developments in the
study of bootstrap percolation, which were initiated a few years ago in a
remarkable paper of Béla Bollobás, Paul Smith, and Andrew Uzzell. They
studied the following large family of models:

Definition (The U -bootstrap process)
Let U = {X1, . . . , Xm} be an arbitrary finite collection of finite subsets of
Z2, and let A ⊂ Z2

n. Set A0 = A, and define, for each t > 0,

At+1 = At ∪
{
x ∈ Z2

n : x+X ⊂ At for some X ∈ U
}
.

One of the key insights of Bollobás, Smith and Uzzell was that the typical
global behaviour of the U-bootstrap process (with random initial set)
should be determined by the action of the process on discrete half-spaces.
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The Bollobás–Smith–Uzzell model

Definition (The U -bootstrap process)
Let U = {X1, . . . , Xm} be an arbitrary finite collection of finite subsets of
Z2, and let A ⊂ Z2

n. Set A0 = A, and define, for each t > 0,

At+1 = At ∪
{
x ∈ Z2

n : x+X ⊂ At for some X ∈ U
}
.

Definition (Bollobás, Smith and Uzzell)
We say that a two-dimensional update family U is:

supercritical if there exists C ∈ C that is disjoint from S,

critical if there exists C ∈ C that has finite intersection with S, and if
every C ∈ C has non-empty intersection with S,

subcritical if every C ∈ C has infinite intersection with S.
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.

Define S = S(U) ⊆ S1, the collection of stable directions, to be the set
S(U) :=

{
u ∈ S1 : [Hu]U = Hu
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where
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{
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}
.

Define S = S(U) ⊆ S1, the collection of stable directions, to be the set
S(U) :=

{
u ∈ S1 : [Hu]U = Hu

}
,

where
Hu :=

{
x ∈ Z2 : 〈x, u〉 < 0}

denotes the discrete half-plane whose boundary is perpendicular to u.
Let C denote the collection of open semicircles in S1. The following key
definition is due to Bollobás, Smith and Uzzell:

Definition (Bollobás, Smith and Uzzell)
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The Bollobás–Smith–Uzzell model

Definition (Bollobás, Smith and Uzzell)
We say that a two-dimensional update family U is:

supercritical if there exists C ∈ C that is disjoint from S,

critical if there exists C ∈ C that has finite intersection with S, and if
every C ∈ C has non-empty intersection with S,

subcritical if every C ∈ C has infinite intersection with S.

Theorem (BSU (supercritical & critical); BBPS (subcritical))
For every two-dimensional update family U ,

if U is supercritical then pc(Z2
n,U) = n−Θ(1).

if U is critical then pc(Z2
n,U) = (logn)−Θ(1).

if U is subcritical then pc(Z2,U) > 0.

Robert Morris Monotone cellular automata May 26, 2017



The Bollobás–Smith–Uzzell model

Definition (Bollobás, Smith and Uzzell)
We say that a two-dimensional update family U is:

supercritical if there exists C ∈ C that is disjoint from S,

critical if there exists C ∈ C that has finite intersection with S, and if
every C ∈ C has non-empty intersection with S,

subcritical if every C ∈ C has infinite intersection with S.

Note that this is a partition of the two-dimensional update families.

Theorem (BSU (supercritical & critical); BBPS (subcritical))
For every two-dimensional update family U ,

if U is supercritical then pc(Z2
n,U) = n−Θ(1).

if U is critical then pc(Z2
n,U) = (logn)−Θ(1).

if U is subcritical then pc(Z2,U) > 0.

Robert Morris Monotone cellular automata May 26, 2017



The Bollobás–Smith–Uzzell model

Definition (Bollobás, Smith and Uzzell)
We say that a two-dimensional update family U is:

supercritical if there exists C ∈ C that is disjoint from S,

critical if there exists C ∈ C that has finite intersection with S, and if
every C ∈ C has non-empty intersection with S,

subcritical if every C ∈ C has infinite intersection with S.

Note that this is a partition of the two-dimensional update families.
Note also that the 1-neighbour model is supercritical, the 2-neighbour
model is critical, and the 3-neighbour model is subcritical.

Theorem (BSU (supercritical & critical); BBPS (subcritical))
For every two-dimensional update family U ,

if U is supercritical then pc(Z2
n,U) = n−Θ(1).

if U is critical then pc(Z2
n,U) = (logn)−Θ(1).

if U is subcritical then pc(Z2,U) > 0.

Robert Morris Monotone cellular automata May 26, 2017



The Bollobás–Smith–Uzzell model

Definition (Bollobás, Smith and Uzzell)
We say that a two-dimensional update family U is:

supercritical if there exists C ∈ C that is disjoint from S,

critical if there exists C ∈ C that has finite intersection with S, and if
every C ∈ C has non-empty intersection with S,

subcritical if every C ∈ C has infinite intersection with S.

Note that this is a partition of the two-dimensional update families.
Note also that the 1-neighbour model is supercritical, the 2-neighbour
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Smith and Uzzell; the proof for subcritical families was obtained slightly
later by Balister, Bollobás, Przykucki and Smith.
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The threshold for critical models

With Bollobás, Duminil-Copin and Smith, we proved the following much
more precise bounds for critical update families:

Theorem (Bollobás, Duminil-Copin, M. and Smith, 2017+)
Let U be a critical two-dimensional update family.

If U is “balanced” then
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logn
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Difficulty and balance

Roughly speaking:

α is determined by the “difficulty” of growth in the “easiest direction”
an update family U is “balanced” if and only if growth under the
U-bootstrap process is (asymptotically) two-dimensional.

More precisely,
α := min

C∈C
max
u∈C

α(u),

where C again denotes the collection of open semicircles of S1, and

α(u) = min
{
|Z| : [Hu ∪ Z]U \Hu is infinite

}
if u is an isolated stable direction, and α(u) =∞ otherwise.

U is balanced if and only if there exists a closed semicircle such that
α(u) 6 α for every u ∈ C.
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Critical models: some examples
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Critical models: some examples

The 2-neighbour model: U consists of the 2-subsets of N , where

N =

S(U)1 1

1

1

This update family is balanced, and α = 1.
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Critical models: some examples

The anisotropic model: U consists of the 3-subsets of N , where

N =

S(U)1 1

2

2

This update family is unbalanced, and α = 1.
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Critical models: some examples

The Duarte model: U consists of the 2-subsets of N , where

N =

S(U)

∞

∞

1

∞
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This update family is unbalanced, and α = 1.
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The threshold for critical models

With Bollobás, Duminil-Copin and Smith, we proved the following much
more precise bounds for critical update families:

Theorem (Bollobás, Duminil-Copin, M. and Smith, 2017+)
Let U be a critical two-dimensional update family.

If U is balanced then

pc
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n,U

)
= Θ
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logn

)1/α
.

If U is unbalanced then
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Another application to kinetically constrained spin models

Recall that the states of sites at time zero are chosen independently at
random, with density p of “empty” sites.

Now, suppose that a site x
updates randomly when its clock rings if the set x+X is entirely empty
for some X ∈ U , and define

τ
(
Z2,U

)
:= inf

{
t > 0 : the origin changes state

}
.

We say that a critical update family U with difficulty α is rooted if there
exist two non-opposite directions, each of difficulty strictly greater than α.

Theorem (Martinelli, M. and Toninelli, 2017+)
For every critical unrooted update family U ,

τ
(
Z2,U

)
= exp

(
p−α

(
log(1/p)

)O(1))
with high probability as p→ 0.
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Another application to kinetically constrained spin models

We say that a critical update family U with difficulty α is rooted if there
exist two non-opposite directions, each of difficulty strictly greater than α.

Theorem (Martinelli, M. and Toninelli, 2017+)
For every critical unrooted update family U ,

τ
(
Z2,U

)
= exp

(
p−α

(
log(1/p)

)O(1))
with high probability as p→ 0.

Conjecture (Martinelli, M. and Toninelli, 2017+)
For every critical rooted update family U , there exists β > α such that

τ
(
Z2,U

)
= exp

(
p−β

(
log(1/p)

)O(1))
with high probability as p→ 0.
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Thank you!
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Universality for higher dimensions

Theorem (Balister–Bollobás–M.–Smith, 2017+)
Let U be a d-dimensional update family.

(a) If U is supercritical then pc(Zdn,U) = n−Θ(1),

(b) If U is critical then there exists r = r(U) ∈ {2, . . . , d} such that

pc(Zdn,U) =
( 1

log(r−1) n

)Θ(1)
,

(c) If U is subcritical then pc(Zd,U) > 0.

When r < d, the constant in the power is in general uncomputable (!!)
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