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INTRODUCTION

“Stein’s method”, as devised
by Charles Stein at the end
of the 60s, is a collection of
probabilistic techniques, for
measuring the distance be-
tween probability distribu-
tions, by means of character-
ising differential operators.

Stein’s motivation was to de-
velop an effective alternative
to Fourier methods, for deal-
ing with functionals of de-
pendent random variables.
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INTRODUCTION

? Applications of Stein’s method now span an enormous amount
of domains, e.g.: random matrices, statistics, biology, alge-
bra, mathematical physics, finance, geometry, ...

? Main features: quantitative, and “local to global”.

? In these lectures: my view of Stein’s method, with focus on
Gaussian random fields and random geometric graphs.
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CONVENTIONS

? From now on: everything is defined on a suitable triple

(Ω, F , P)

? We write N ∼ N (0, 1) for a standard Gaussian random
variable:

P(N ∈ B) =
∫

B
e−y2/2 dy√

2π
.

? Often: given a random element Y, we write Y1, Y2, ... to indi-
cate a sequence of independent copies of Y.
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THE (QUANTITATIVE) CENTRAL LIMIT THEOREM

Theorem (CLT & Berry-Esseen bound)
Let X1, X2, ... be a sequence of independent and identically distributed
r.v.’s, such that E[X1] = 0, and Var(X1) = 1. Write

Sn := X1 + · · ·+ Xn.

Then, as n→ ∞,

∆n(z) := P

[
1√
n

Sn ≤ z
]
−
∫ z

−∞

e−y2/2
√

2π
dy −→ 0, z ∈ R.

Moreover,

sup
z
|∆n(z)| ≤

C E|X1|3√
n

(
0.4 < Coptimal < 0.48

)
.
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FIRST PROOF: FOURIER (LYAPOUNOV, LÉVY)

? Write the characteristic function fn(z) of n−1/2Sn as a n-
product.

? Prove that

fn(z) −→ exp{−z2/2}, as n→ ∞,

by a direct analytical argument.
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SECOND PROOF: SWAPPING (LINDEBERG, TROTTER)

? For a smooth ϕ, with red and blue independent, write∣∣∣ E[ϕ(N)]−E[ϕ(n−1/2Sn)]
∣∣∣

=
∣∣∣E[ϕ(n−1/2(N1 + · · ·+ Nn))]

−E[ϕ(n−1/2(X1 + · · ·+ Xn)]
∣∣∣.

? Deduce that:∣∣∣ E[ϕ(N)]−E[ϕ(n−1/2Sn)]
∣∣∣

≤
n

∑
i=1

∣∣∣Eϕ(n−1/2(N1 + · · ·+ Ni + Xi+1 + · · ·+ Xn))

−Eϕ(n−1/2(N1 + · · ·+ Ni−1 + Xi + · · ·+ Xn))
∣∣∣,

and control each summand by a Taylor expansion.
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QUESTION

? What happens if the summands X1, X2, ... display some form
of dependence and/or the considered random element is
not a linear mapping ?

? Typical example: length, number of edges / triangles / con-
nected components / ... in a random geometric graph:

? Even more extreme: random graphs arising in combinato-
rial optimisation (MST, TSP, MM, ...)
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SETTING

? In what follows, I will mainly focus on one-dimensional
normal approximations in the 1-Wasserstein distance

W1(•, •).

? Recall that

W1(X, Y) := inf
A∼X ; B∼Y

E |A− B|

= sup
h∈Lip(1)

|E[h(X)]−E[h(Y)]|,

whenever E|X|, E|Y| < ∞.
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INGREDIENTS

In order to implement Stein’s method, one typically needs:

1. A Lemma

2. A heuristic

3. An equation

4. Uniform bounds
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THE LEMMA

Stein’s Lemma
Let Z be a real-valued random variable. Then, Z ∼ N (0, 1) if and
only if

E[ f ′(Z)] = E[Z f (Z)],

for every smooth f .

[Proof: (=⇒) integration by parts. (⇐=) method of moments (or
unicity of Fourier transform) ]
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THE HEURISTIC

Stein’s Heuristic
Assume Z is a real random variable such that

E[ f ′(Z)] ≈ E[Z f (Z)]

for a large class of smooth mappings f .

Then, the distribution of Z has to be close to Gaussian .
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THE EQUATION

? For h ∈ Lip(K) fixed and N ∼ N (0, 1), define the Stein’s
equation

f ′(x)− x f (x) = h(x)−E[h(N)], x ∈ R;

equivalent to

d
dx

e−x2/2 f (x) = e−x2/2(h(x)−E[h(N)]).

? Every solution has the form

f (x) = cex2/2 + ex2/2
∫ x

−∞
(h(y)−E[h(N)])e−y2/2 dy, x ∈ R.

? Set

fh(x) :=
∫ x

−∞
(h(y)−E[h(N)])e−y2/2 dy, x ∈ R.
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THE BOUNDS

By direct inspection, one proves

Stein’s “Magic Factors” and Bounds
For every h ∈ Lip(K), fh ∈ C 1, and

‖ f ′h‖∞ ≤
√

2
π

K.

As a consequence, for X integrable,

W1(X, N) = sup
h∈Lip(1)

∣∣∣E[h(X)]−E[h(N)]
∣∣∣

= sup
h∈Lip(1)

∣∣∣E[ f ′h(X)− X fh(X)]
∣∣∣

≤ sup
f : | f ′|≤1

∣∣∣E[ f ′(X)− X f (X)]
∣∣∣.
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AND NOW ?

? The name of the game is now to compare as sharply as
possible

E[ f ′(X)] and E[X f (X)],

for every smooth mapping f .

? Several techniques: exchangeable pairs, dependency graphs,
zero-bias transforms, size-bias transforms, ...
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A SIMPLE EXAMPLE: BACK TO THE CLT

? For a fixed n, write Z := n−1/2(X1 + · · · + Xn), and Zi =
Z− n−1/2Xi.

? One has, by Taylor and independence,

E[Xi f (Z)] = E[Xi( f (Z)− f (Zi))] ≈ E[Xi(Z− Zi) f ′(Z)]
= n−1/2E[X2

i f ′(Z)].

? It follows that

E[Z f (Z)] = n−1/2 ∑
i

E[Xi f (Z)] ≈ E[n−1 ∑
i

X2
i × f ′(Z)].

? By the law of large numbers, E[Z f (Z)] ≈ E[ f ′(Z)] for n
large, and using Stein’s bounds one deduces the CLT.
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SECOND ORDER POINCARÉ ESTIMATES

? Assume now g = (g1, ..., gd) ∼ Nd(0, Id.), and define

F = ψ(g1, ..., gd),

for some smooth ψ : Rd → R s.t. E[F] = 0 and Var(F) = 1.

? Remember the Poincaré inequality :

Var(F) ≤ E[‖∇ψ(g)‖2].
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SECOND ORDER POINCARÉ ESTIMATES

? It turns out that F verifies an exact integration by parts for-
mula:

E[F f (F)] = E
[

f ′(F)〈∇ψ(g),−∇L−1ψ(g)〉
]
,

where L−1 is the pseudo-inverse of the Ornstein-Uhlenbeck
generator L = −〈x,∇〉+ ∆.

? Plugging this into Stein’s bound and applying once more
Poincaré yields that, for N ∼ N (0, 1),

W1(F, N) ≤
√

Var(〈∇ψ(g),−∇L−1ψ(g)〉)

≤ 2E[‖ Hess ψ(g)‖4
op]

1/4 ×E[‖∇ψ(g)‖4]1/4.

? This is a second order Poincaré inequality, — see Chatter-
jee (2007), Nourdin, Peccati and Reinert (2010), and Vidotto
(2017). Applications in random matrix theory & analysis of
fractional fields.
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BEYOND GAUSSIAN

Stein’s approach extends to much more gen-
eral densities — for instance to elements of
the Pearson family. See Stein’s 1986 mono-
graph.

In the discrete setting, the equivalent of
Stein’s method is the Chen-Stein method.
See the monograph by Barbour, Holst and
Janson (1990).
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TWO EXAMPLES

In what follows, I will illustrate two striking applications of
Stein’s method, that are relevant in a geometric setting:

(1) capturing the fluctuations of chaotic random variables, and

(2) quantifying second order interactions.

Both are connected to (generalized) integration by parts
formulae.
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BERRY’S RANDOM WAVES (1977)

? Let E > 0. The Berry’s random wave model on R2, with
parameter E, written

BE = {BE(x) : x ∈ R2},
is defined as the unique (in law) centred, isotropic Gaussian
field on R2 such that

∆B + E · B = 0, where ∆ =
∂2

∂x2
1
+

∂2

∂x2
2

.

? Equivalently, E[BE(x)BE(y)] = J0(
√

E‖x− y‖) (J0 = Bessel
function of the 1st kind).

? Its high-energy local behaviour is conjectured to be a “uni-
versal model” for Laplace eigenfunctions on arbitrary man-
ifolds (Berry, 1977).

? It is the local scaling limit of monochromatic random waves
on arbitrary manifolds (Canzani & Hanin, 2016).
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NODAL SETS

One is interested in the length LE of the nodal set (components
are the nodal lines):

B−1
E ({0}) ∩Q := {x ∈ Q : BE(x) = 0},

where Q is e.g. a square of size 1, as E→ ∞.

Image: D. Belyaev (2016)
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CHLADNI PLATES (1787)
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MEAN AND VARIANCE (BERRY, 2002)

? Berry (J. Phys. A, 2002) : semi-rigorous computations give

E[LE] ∼
√

E, Var(LE) ∼ log E,

although the natural guess for the order of the variance is
∼
√

E. See Wigman (2010) for the spherical case.

? Such a variance reduction “... results from a cancellation whose
meaning is still obscure... ” (Berry (2002), p. 3032).

? Question: can one explain such a ‘cancellation phenomenon’,
and characterise second-order fluctuations, involving the
normalised length

L̃E :=
LE −E[LE]√

Var(LE)
?
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EXPLAINING THE CANCELLATION

? Starting from seminal contributions by Marinucci and Wig-
man (2010, 2011): geometric functionals of random Laplace
eigenfunctions on compact manifolds (e.g. tori and spheres)
can be studied by means of Wiener-Itô chaotic decomposi-
tions – and in particular by detecting specific domination
effects.

? Such geometric functionals include: lengths of level sets,
excursion areas, Euler-Poincaré characteristics, # critical
points, # nodal intersections. See several works by Cam-
marota, Dalmao, Marinucci, Nourdin, Peccati, Rossi, Wig-
man, ... (2010–2018).

? As first observed in Marinucci, Peccati, Rossi and Wigman
(2016 — for arithmetic waves) domination of a single “chaotic
projection” fully explains cancellation phenomena .
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VIGNETTE: WIENER CHAOS

? Consider a generic Gaussian field G = {G(u) : u ∈ U }.
? For every q = 0, 1, 2..., set

Pq := v.s.
{

p
(
G(u1), ..., G(ur)

)
: d◦p ≤ q

}
.

Then: Pq ⊂ Pq+1.
? Define the family of orthogonal spaces {Cq : q ≥ 0} as

C0 = R and Cq := Pq ∩ P⊥q−1; one has

L2(σ(G)) =
∞⊕

q=0

Cq.

? Cq = qth Wiener chaos of G.
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CHAOS AND INTEGRATION BY PARTS

? Elements of the Wiener chaos verify an exact integration
by parts formula: for every F ∈ Cq, every q ≥ 2 and every
smooth f ,

E[F f (F)] =
1
q

E[‖DF‖2 f ′(F)],

where D is a generalized gradient (Malliavin derivative).
? This yields the striking inequality (Nourdin and Peccati, 2009):

|E[ f ′(F)]−E[F f (F)]| ≤ ‖ f ′‖∞Var(q−1‖DF‖2)1/2

≤
√

q− 1
3q

√
E[F4]− 3E[F2]2.
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A RIGID ASYMPTOTIC STRUCTURE

For fixed q ≥ 2, let {Fk : k ≥ 1} ⊂ Cq (with unit variance).
? Nourdin and Poly (2013): If Fk ⇒ Z, then Z has necessarily a

density (and the set of possible laws for Z does not depend
on G)

? Nualart and Peccati (2005): Fk ⇒ Z ∼ N (0, 1) if and only if
EF4

k → 3(= EZ4), and

W1(Fk, Z) ≤
√

E[F4
k ]− 3 (Nourdin and Peccati, 2009).

? Peccati and Tudor (2005): Componentwise convergence to
Gaussian implies joint convergence.

? Nourdin and Peccati (2009): Fk ⇒ Z2 − 1 if and only if EF4
k −

12EF3
k → −36.

? Nourdin, Nualart and Peccati (2015): given {Hk} ⊂ Cp, then
Fk, Hk are asymptotically independent if and only if
Cov(H2

k , F2
k )→ 0.
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STATEMENT

Theorem (Nourdin, Peccati and Rossi, 2017)

1. (Cancellation) For every fixed E > 0,

proj(LE |C2q+1) = 0, q ≥ 0,

and proj(L̃E |C2) reduces to a “negligible boundary term”, as
E→ ∞.

2. (4th chaos dominates) Let E→ ∞. Then,

L̃E = proj(L̃E |C4) + oP(1).

3. (CLT) As E→ ∞,
L̃E ⇒ Z ∼ N(0, 1).
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OTHER MANIFOLDS?

What about the high-energy
behaviour of random waves
on T2 and S2 ?

Figures: A. Barnett, G. Poly and Z. Rudnick
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SOME RECENT FINDINGS

? Similarly to planar waves, the projection of the (renormal-
ized) nodal length on the second chaos disappears exactly,
and global fluctuations are dominated (in L2) by the projec-
tion on the 4th Wiener chaos.

? The nodal length of random spherical harmonics verifies a
Gaussian CLT (Marinucci, Rossi, Wigman (2017)).
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SOME RECENT FINDINGS

? The nodal length of arithmetic random waves verifies a
non-central χ2 limit theorem (Marinucci, Rossi, Peccati, Wig-
man (2016)), and similar results hold for nodal intersections
(Dalmao, Nourdin, Peccati, Rossi, 2016), as well as for local
nodal lengths above the Planck scale (Benatar, Marinucci and
Wigman, 2017).

? Monochromatic random waves on general manifolds can
be coupled with Berry’s wave at small scales, so that the
local length fluctuations are Gaussian (Dierinckx, Nourdin,
Peccati, Rossi, 2018+).
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POISSON SETTING

? For every t > 0, let

Rd ⊃ A 7→ ηt(A)

be a Poisson random measure with intensity t× Leb.
? Malliavin calculus and Wiener Chaos are available for ηt: as

in the Gaussian framework, they combine admirably well
with Stein’s bounds.

? Stochastic analysis on the Poisson space is tightly connected
to add-one cost operators, defined for every x ∈ Rd and
every F = F(η) as

DxF(ηt) := F(ηt + δx)− F(ηt).
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BEYOND CHAOS

? The operators Dx are ersatz of gradients on the Poisson
space. In particular, one has the Poincaré inequality: for
every F = F(ηt)

Var(F) ≤ t×E

∫
Rd
(DxF)2 dx.

? In this framework, several geometric quantities naturally
emerge for which there is no dominating “chaotic projec-
tion”: typically, characteristics of random graphs built from
some ‘intrinsic geometric rule’ – like the nearest neighbour
graph, or graphs emerging in combinatorial optimization.
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EXAMPLE: THE NEAREST NEIGHBOUR GRAPH
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SECOND ORDER INEQUALITIES AND STABILIZATION

? Second order Poincaré inequalities are available also in
this framework (Last, Peccati & Schulte (2015)):

W1(F, N)2 . E

[∫
(DxF)4 dx

]
+E

[∫
(DxF)2 dx

]
×E

[∫ ∫
(D2

x,yF)2 dxdy
]

,

yielding that normality arises from “small local contribu-
tions”, and “vanishing second order interactions”.

? Such an estimate has recently been used to recover a gener-
alised notion of “stabilising geometric functionals” (Kesten
and Lee, 1996; Penrose and Yukich, 2001) – see Lachièze-Rey,
Schulte and Yukich (2017).

? Applications to: Voronoi tessellations, radial graphs, volume
approximations, ...
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ADVERTISING & THANKS

THANK YOU FOR YOUR ATTENTION!
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