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INTRODUCTION

“Stein’s method”, as devised
by Charles Stein at the end
of the 60s, is a collection of
probabilistic techniques, for
measuring the distance be-
tween probability distribu-
tions, by means of character-
ising differential operators.

Stein’s motivation was to de-
velop an effective alternative
to Fourier methods, for deal-
ing with functionals of de-
pendent random variables.
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INTRODUCTION

* Applications of Stein’s method now span an enormous amount
of domains, e.g.: random matrices, statistics, biology, alge-
bra, mathematical physics, finance, geometry, ...

* Main features: quantitative, and “local to global”.

* In these lectures: my view of Stein’s method, with focus on
Gaussian random fields and random geometric graphs.
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SOME N AMES

A.D. Barbour E. Bolthausen F. Gotze
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CONVENTIONS

* From now on: everything is defined on a suitable triple

(Q, #,P)

* We write N ~ 4#7(0,1) for a standard Gaussian random
variable:

P(N € B) = /Be—yz/z\jzy?.

* Often: given a random element Y, we write Y3, Y, ... to indi-
cate a sequence of independent copies of Y.



THE (QUANTITATIVE) CENTRAL LIMIT THEOREM

Theorem (CLT & Berry-Esseen bound)

Let X1, X, ... be a sequence of independent and identically distributed
r.0.’s, such that E[Xq] = 0, and Var(Xy) = 1. Write

Sui=Xi+ -+ Xy

Then, as n — oo,

L Fery
Ay =P |—=S5,<z| — 0, e R.
=P | sess] - [ —o

Moreover,

CE|X,?
< — . i . .
Sl'zlp |An (Z)| = \/ﬁ (0 4 < Cophmal <0 48)




* Write the characteristic function f,(z) of n=1/2S, as a n-
product.

x Prove that
fu(z) — exp{—2%/2}, asn — oo,

by a direct analytical argument.
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SECOND PROOF: SWAPPING (LINDEBERG, TROTTER)

* For a smooth ¢, with red and blue independent, write
| Elgp(N)] — E[p(n /25,
= [Elp(n™ /2Ny + - -+ N,)
—E[p(n V(X1 4 -+ X,)]|.
* Deduce that:

]JE (N)] = Elg(n™"/25,,)

1/2N1 o+ N+ X1+ + Xy))

_]E¢(n*1/2(N1 +- N+ X+ F XH)) ,

and control each summand by a Taylor expansion.
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QUESTION

* What happens if the summands Xj, X», ... display some form
of dependence and/or the considered random element is
not a linear mapping ?

* Typical example: length, number of edges / triangles / con-
nected components / ... in a random geometric graph:

L

* Even more extreme: random graphs arising in combinato-
rial optimisation (MST, TSP, MM, ...)
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SETTING

* In what follows, I will mainly focus on one-dimensional
normal approximations in the 1-Wasserstein distance

Wi(e,e).
* Recall that
Wi(X,Y) := inf [E|A— B|
A~X;B~Y
= sup [E[h(X)] —E[(Y)]],
heLip(1)

whenever E|X|, E|Y| < oo.
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INGREDIENTS

In order to implement Stein’s method, one typically needs:

1. ALemma
2. A heuristic
3. An equation

4. Uniform bounds
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THE LEMMA

Stein’s Lemma
Let Z be a real-valued random variable. Then, Z ~ .#°(0,1) if and

only if
E[f(Z)] = E[Zf(Z)],

for every smooth f.

[Proof: (=) integration by parts. (<) method of moments (or
unicity of Fourier transform) ]
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THE HEURISTIC

Stein’s Heuristic
Assume Z is a real random variable such that

E[f(Z)] ~ E[Z f(Z)]
for a large class of smooth mappings f.

Then, the distribution of Z has to be close to Gaussian .




THE EQUATION

* For h € Lip(K) fixed and N ~ .#7(0,1), define the Stein’s
equation

f'(x) = xf(x) = h(x) —E[R(N)], x € R;
equivalent to

%e—wz F(x) = e 72 (h(x) — E[1(N)]).

* Every solution has the form
£ = ™2 42 [ (hy) ~E(V))e " 2ay, x € R

—o0

* Set
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THE BOUNDS

By direct inspection, one proves

Stein’s “Magic Factors” and Bounds
For every h € Lip(K), fj, € €', and

2
"N < 1/ =K.
Ifillee <4/ =

As a consequence, for X integrable,

WX N) = sup [E(R(X)] - El(N)]
€Lip

= sup [E[f(X)— Xfi(X)]|
heLip(1)

< sup [E[f'(X) - Xf(X)]|

frfr1<t
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AND NOw ?

* The name of the game is now to compare as sharply as
possible
E[f'(X)] and E[Xf(X)],

for every smooth mapping f.

* Several techniques: exchangeable pairs, dependency graphs,
zero-bias transforms, size-bias transforms, ...

16/39



A SIMPLE EXAMPLE: BACK TO THE CLT

x For a fixed n, write Z := n=V2(X; 4+ --- + X;), and Z =
Z —n"12X;.

* One has, by Taylor and independence,

E[Xf(2)] = E[X(f(2)- f(Z)] ~ E[X(Z - Z))f(2)]
nIPERCS (2)].

« It follows that

E[Zf(Z) —n*l/ZZJE (Xif(Z *1ZX2><f

* By the law of large numbers, E[Zf(Z)] ~ E[f'(Z)] for n
large, and using Stein’s bounds one deduces the CLT.
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SECOND ORDER POINCARE ESTIMATES

* Assume now g = (g1,...,84) ~ #7(0,1d.), and define

F= ll)(gll'--/gd)l
for some smooth ¢ : R? — R s.t. E[F] = 0 and Var(F) = 1.

* Remember the Poincaré inequality :

Var(F) < E[[| Vy(g)]%].
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SECOND ORDER POINCARE ESTIMATES

* It turns out that F verifies an exact integration by parts for-
mula:

E[Ff(F)] = E[f'(F)(V(3), ~VL "9 (2)) ],

where L~ is the pseudo-inverse of the Ornstein-Uhlenbeck
generator L = —(x, V) + A.

* Plugging this into Stein’s bound and applying once more
Poincaré yields that, for N ~ .47(0,1),

Wi(E,N) < \/Var((Vyp(g), ~VL1(g)))
< 2E[| Hess y(g) 4,14 x B[ V(g%

* This is a second order Poincaré inequality, — see Chatter-
jee (2007), Nourdin, Peccati and Reinert (2010), and Vidotto
(2017). Applications in random matrix theory & analysis of

fractional fields.
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BEYOND GAUSSIAN

hestivinn of Mathsmarict Statirics
VECTORE NOTES ONOGRABM SEHIES

Stein’s approach extends to much more gen-

SR s eral densities — for instance to elements of
the Pearson family. See Stein’s 1986 mono-
graph.
Poisson Approxima tion
In the discrete setting, the equivalent of s

Stein’s method is the Chen-Stein method.
See the monograph by Barbour, Holst and
Janson (1990).
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TwO EXAMPLES

In what follows, I will illustrate two striking applications of
Stein’s method, that are relevant in a geometric setting;:

(1) capturing the fluctuations of chaotic random variables, and

(2) quantifying second order interactions.

Both are connected to (generalized) integration by parts
formulae.

21/39



BERRY’S RANDOM WAVES (1977)

x Let E > 0. The Berry’s random wave model on R?, with
parameter E, written

Br = {Bg(x) : x € R%},

is defined as the unique (in law) centred, isotropic Gaussian
field on R? such that
02 02
AB+E-B =0, whereA:—z—i——z.
oxy  0x;
« Equivalently, E[Bs(x)Bz (y)] = Jo(VE|x —y|)) (Jo = Bessel
function of the 1st kind).

* Its high-energy local behaviour is conjectured to be a “uni-
versal model” for Laplace eigenfunctions on arbitrary man-
ifolds (Berry, 1977).

* Itis the local scaling limit of monochromatic random waves

on arbitrary manifolds (Canzani & Hanin, 2016).
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NODAL SETS

One is interested in the length L of the nodal set (components
are the nodal lines):

{0 N Q= {x € Q:Bg(x) =0},

where Q is e.g. a square of size 1, as E — oo.
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MEAN AND VARIANCE (BERRY, 2002)

= Berry (J. Phys. A, 2002) : semi-rigorous computations give
E[Lg] ~ VE, Var(Lg) ~ logE,
although the natural guess for the order of the variance is

~ VE. See Wigman (2010) for the spherical case.

* Such a variance reduction “... results from a cancellation whose
meaning is still obscure... ” (Berry (2002), p. 3032).

* Question: can one explain such a ‘cancellation phenomenon’,
and characterise second-order fluctuations, involving the
normalised length

¥ o Ly — E[Lg]

Lg: ?
Var(Lg)
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EXPLAINING THE CANCELLATION

% Starting from seminal contributions by Marinucci and Wig-
man (2010, 2011): geometric functionals of random Laplace
eigenfunctions on compact manifolds (e.g. tori and spheres)
can be studied by means of Wiener-It6 chaotic decomposi-
tions — and in particular by detecting specific domination
effects.

* Such geometric functionals include: lengths of level sets,
excursion areas, Euler-Poincaré characteristics, # critical
points, # nodal intersections. See several works by Cam-
marota, Dalmao, Marinucci, Nourdin, Peccati, Rossi, Wig-
man, ... (2010-2018).

* As first observed in Marinucci, Peccati, Rossi and Wigman
(2016 — for arithmetic waves) domination of a single “chaotic
projection” fully explains cancellation phenomena .
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VIGNETTE: WIENER CHAOS

* Consider a generic Gaussian field G = {G(u) : u € % }.

* Foreveryq=20,1,2.., set

P, := fs.{p(G(m),...,G(uﬁ) :d°p < q}.

Then: P; C Pyy1.
* Define the family of orthogonal spaces {C; : 4 > 0} as
Co=Rand C; := P; N Pqﬁl; one has

L*(0(G)) = P C,.

q=0

* C4 = gth Wiener chaos of G.



CHAOS AND INTEGRATION BY PARTS

* Elements of the Wiener chaos verify an exact integration
by parts formula: for every F € C,, every q > 2 and every
smooth f,

E[Ff(F)] = ;JEHIDFIZf’(F)],

where D is a generalized gradient (Malliavin derivative).
= This yields the striking inequality (Nourdin and Peccati, 2009):

[E[f'(F)] —E[Ff(F)]| < |fllVar(q || DF|*)"/?

< 1/ \/IEF4] 3E[F2]?
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A RIGID ASYMPTOTIC STRUCTURE

For fixed g > 2,let {F, : k > 1} C C,; (with unit variance).

* Nourdin and Poly (2013): If Fy = Z, then Z has necessarily a
density (and the set of possible laws for Z does not depend
on GG)

* Nualart and Peccati (2005): F, = Z ~ #°(0,1) if and only if
EF! — 3(=EZ*), and

Wi (F, Z) < \/E[F}] -3 (Nourdin and Peccati, 2009).

* Peccati and Tudor (2005): Componentwise convergence to
Gaussian implies joint convergence.

* Nourdin and Peccati (2009): F, = Z> — 1 if and only if EF; —
12EF? — —36.

* Nourdin, Nualart and Peccati (2015): given {H;} C Cp, then
Fy, Hy are asymptotically independent if and only if
Cov(H?, F?) — 0.
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STATEMENT

Theorem (Nourdin, Peccati and Rossi, 2017)
1. (Cancellation) For every fixed E > 0,

proj(Le | Cog41) =0, q>0,

and proj(Lg | Cy) reduces to a “negligible boundary term”, as
E — co.

2. (4" chaos dominates) Let E — oo. Then,

EE = pI‘Oj(ZE ’ C4) + 0]13(1>.
3. (CLT) As E — oo,
Lr = Z ~ N(0,1).
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OTHER M ANIFOLDS?

What about the high-energy
behaviour of random waves
on T? and 82 ?

Figures: A. Barnett, G. Poly and Z. Rudnick
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SOME RECENT FINDINGS

* Similarly to planar waves, the projection of the (renormal-
ized) nodal length on the second chaos disappears exactly,
and global fluctuations are dominated (in L?) by the projec-
tion on the 4th Wiener chaos.

* The nodal length of random spherical harmonics verifies a
Gaussian CLT (Marinucci, Rossi, Wigman (2017)).



SOME RECENT FINDINGS

* The nodal length of arithmetic random waves verifies a
non-central )(2 limit theorem (Marinucci, Rossi, Peccati, Wig-
man (2016)), and similar results hold for nodal intersections
(Dalmao, Nourdin, Peccati, Rossi, 2016), as well as for local
nodal lengths above the Planck scale (Benatar, Marinucci and
Wigman, 2017).

* Monochromatic random waves on general manifolds can
be coupled with Berry’s wave at small scales, so that the
local length fluctuations are Gaussian (Dierinckx, Nourdin,
Peccati, Rossi, 2018+).



POISSON SETTING

* For every t > 0, let
R?Y D A — 1;(A)

be a Poisson random measure with intensity ¢ x Leb.

* Malliavin calculus and Wiener Chaos are available for 7;: as
in the Gaussian framework, they combine admirably well
with Stein’s bounds.

* Stochastic analysis on the Poisson space is tightly connected
to add-one cost operators, defined for every x € R? and
every F = F(7) as

DyF(nt) == F(i1: + 6x) — F(171).
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BEYOND CHAOS

* The operators Dy are ersatz of gradients on the Poisson
space. In particular, one has the Poincaré inequality: for
every F = F(n;)

Var(F) < t x E /d(DxF)de.
JIR

* In this framework, several geometric quantities naturally
emerge for which there is no dominating “chaotic projec-
tion”: typically, characteristics of random graphs built from
some ‘intrinsic geometric rule” - like the nearest neighbour
graph, or graphs emerging in combinatorial optimization.
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SECOND ORDER INEQUALITIES AND STABILIZATION

* Second order Poincaré inequalities are available also in
this framework (Last, Peccati & Schulte (2015)):

Wi(E,N? < E U(DXP)‘*dx]

U(DF dx]xlE{// 2 F dxdy}

yielding that normality arises from “small local contribu-
tions”, and “vanishing second order interactions”.

* Such an estimate has recently been used to recover a gener-
alised notion of “stabilising geometric functionals” (Kesten
and Lee, 1996; Penrose and Yukich, 2001) — see Lachiéze-Rey,
Schulte and Yukich (2017).

* Applications to: Voronoi tessellations, radial graphs, volume
approximations, ...
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THANK YOU FOR YOUR ATTENTION!

Stochastic
~ Analysis for
 Poisson Point
- Processes

‘ Malliain Galculus, Wiener1t Chaos
 Expansions and Stocastc Geometry
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