

Stein's Method and Stochastic Geometry

Giovanni Peccati (Luxembourg University)

Firenze — 16 marzo 2018

INTRODUCTION

"Stein's method", as devised by Charles Stein at the end of the 60s, is a collection of probabilistic techniques, for measuring the distance between probability distributions, by means of characterising differential operators.

Stein's motivation was to develop an effective alternative to **Fourier methods**, for dealing with functionals of **dependent** random variables.

INTRODUCTION

- Applications of Stein's method now span an enormous amount of domains, e.g.: random matrices, statistics, biology, algebra, mathematical physics, finance, geometry, ...
- * Main features: quantitative, and "local to global".
- In these lectures: my view of Stein's method, with focus on Gaussian random fields and random geometric graphs.

Some Names

L.H.Y. Chen

A.D. Barbour

E. Bolthausen

F. Götze

L. Goldstein

G. Reinert

I. Nourdin

S. Chatterjee

CONVENTIONS

* From now on: everything is defined on a suitable triple

$$(\Omega, \mathscr{F}, \mathbb{P})$$

* We write $N \sim \mathcal{N}(0, 1)$ for a standard Gaussian random variable:

$$\mathbb{P}(N \in B) = \int_B e^{-y^2/2} \frac{dy}{\sqrt{2\pi}}.$$

* Often: given a random element Y, we write $Y_1, Y_2, ...$ to indicate a sequence of independent copies of Y.

THE (QUANTITATIVE) CENTRAL LIMIT THEOREM

Theorem (CLT & Berry-Esseen bound)

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed *r.v.'s*, such that $\mathbb{E}[X_1] = 0$, and $\mathbf{Var}(X_1) = 1$. Write

 $S_n := X_1 + \cdots + X_n.$

Then, as
$$n \to \infty$$
,
 $\Delta_n(z) := \mathbb{P}\left[\frac{1}{\sqrt{n}}S_n \le z\right] - \int_{-\infty}^z \frac{e^{-y^2/2}}{\sqrt{2\pi}} \, dy \longrightarrow 0, \quad z \in \mathbb{R}.$

Moreover,

$$\sup_{z} |\Delta_n(z)| \leq \frac{C \operatorname{\mathbb{E}} |X_1|^3}{\sqrt{n}} \quad \Big(0.4 < C_{\mathrm{optimal}} < 0.48 \Big).$$

FIRST PROOF: FOURIER (LYAPOUNOV, LÉVY)

- * Write the characteristic function $f_n(z)$ of $n^{-1/2}S_n$ as a *n*-product.
- * Prove that

$$f_n(z) \longrightarrow \exp\{-z^2/2\}, \text{ as } n \to \infty,$$

by a direct analytical argument.

SECOND PROOF: SWAPPING (LINDEBERG, TROTTER)

* For a smooth φ , with red and blue independent, write

$$\mathbb{E}[\varphi(\mathbf{N})] - \mathbb{E}[\varphi(n^{-1/2}S_n)] \Big|$$

= $\Big| \mathbb{E}[\varphi(n^{-1/2}(N_1 + \dots + N_n))] - \mathbb{E}[\varphi(n^{-1/2}(X_1 + \dots + X_n))] \Big|.$

* Deduce that:

$$\left| \mathbb{E}[\varphi(\mathbf{N})] - \mathbb{E}[\varphi(n^{-1/2}S_n)] \right|$$

$$\leq \sum_{i=1}^n \left| \mathbb{E}\varphi(n^{-1/2}(N_1 + \dots + N_i + X_{i+1} + \dots + X_n)) - \mathbb{E}\varphi(n^{-1/2}(N_1 + \dots + N_{i-1} + X_i + \dots + X_n)) \right|,$$

and control each summand by a Taylor expansion.

QUESTION

- What happens if the summands X₁, X₂, ... display some form of dependence and/or the considered random element is not a linear mapping ?
- * Typical example: length, number of edges / triangles / connected components / ... in a **random geometric graph**:

* Even more extreme: random graphs arising in **combinatorial optimisation** (MST, TSP, MM, ...) Setting

* In what follows, I will mainly focus on **one-dimensional normal approximations** in the 1-Wasserstein distance

 $\mathbf{W}_1(\bullet, \bullet).$

* Recall that

$$\mathbf{W}_{1}(X,Y) := \inf_{A \sim X; B \sim Y} \mathbb{E} |A - B|$$

=
$$\sup_{h \in \text{Lip}(1)} |\mathbb{E}[h(X)] - \mathbb{E}[h(Y)]|,$$

whenever $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$.

INGREDIENTS

In order to implement Stein's method, one typically needs:

- 1. A Lemma
- 2. A heuristic
- 3. An equation
- 4. Uniform bounds

Stein's Lemma

Let Z be a real-valued random variable. Then, $Z \sim \mathcal{N}(0,1)$ if and only if

 $\mathbb{E}[f'(Z)] = \mathbb{E}[Zf(Z)],$

for every smooth f.

[**Proof**: (\Longrightarrow) integration by parts. (\Leftarrow) method of moments (or unicity of Fourier transform)]

Stein's Heuristic

Assume Z is a real random variable such that

 $\mathbb{E}[f'(Z)] \approx \mathbb{E}[Zf(Z)]$

for a large class of smooth mappings f.

Then, the distribution of Z has to be close to Gaussian.

THE EQUATION

★ For $h \in \text{Lip}(K)$ fixed and $N \sim \mathcal{N}(0,1)$, define the Stein's equation

$$f'(x) - xf(x) = h(x) - \mathbb{E}[h(N)], x \in \mathbb{R};$$

equivalent to

$$\frac{d}{dx}e^{-x^2/2}f(x) = e^{-x^2/2}(h(x) - \mathbb{E}[h(N)]).$$

* Every solution has the form

$$f(x) = ce^{x^2/2} + e^{x^2/2} \int_{-\infty}^{x} (h(y) - \mathbb{E}[h(N)])e^{-y^2/2} \, dy, \ x \in \mathbb{R}.$$

* Set

$$f_h(x) := \int_{-\infty}^x (h(y) - \mathbb{E}[h(N)]) e^{-y^2/2} \, dy, \quad x \in \mathbb{R}.$$

The Bounds

By direct inspection, one proves

Stein's "Magic Factors" and Bounds *For every* $h \in \text{Lip}(K)$ *,* $f_h \in \mathscr{C}^1$ *, and*

$$\|f_h'\|_{\infty} \le \sqrt{\frac{2}{\pi}} K.$$

As a consequence, for X integrable,

$$\begin{aligned} \mathbf{V}_{1}(X,N) &= \sup_{h \in \operatorname{Lip}(1)} \left| \mathbb{E}[h(X)] - \mathbb{E}[h(N)] \right| \\ &= \sup_{h \in \operatorname{Lip}(1)} \left| \mathbb{E}[f'_{h}(X) - Xf_{h}(X)] \right| \\ &\leq \sup_{f : |f'| \leq 1} \left| \mathbb{E}[f'(X) - Xf(X)] \right|. \end{aligned}$$

 \star The name of the game is now to compare as sharply as possible

 $\mathbb{E}[f'(X)]$ and $\mathbb{E}[Xf(X)]$,

for every smooth mapping f.

* Several techniques: exchangeable pairs, dependency graphs, zero-bias transforms, size-bias transforms, ...

A SIMPLE EXAMPLE: BACK TO THE CLT

- * For a fixed *n*, write $Z := n^{-1/2}(X_1 + \dots + X_n)$, and $Z^i = Z n^{-1/2}X_i$.
- * One has, by Taylor and independence,

$$\mathbb{E}[X_i f(Z)] = \mathbb{E}[X_i (f(Z) - f(Z^i))] \approx \mathbb{E}[X_i (Z - Z^i) f'(Z)]$$

= $n^{-1/2} \mathbb{E}[X_i^2 f'(Z)].$

* It follows that

$$\mathbb{E}[Zf(Z)] = n^{-1/2} \sum_{i} \mathbb{E}[X_i f(Z)] \approx \mathbb{E}[n^{-1} \sum_{i} X_i^2 \times f'(Z)].$$

* By the law of large numbers, $\mathbb{E}[Zf(Z)] \approx \mathbb{E}[f'(Z)]$ for *n* large, and using Stein's bounds one deduces the CLT.

SECOND ORDER POINCARÉ ESTIMATES

* Assume now $g = (g_1, ..., g_d) \sim \mathcal{N}_d(0, \text{Id.})$, and define $F = \psi(g_1, ..., g_d)$,

for some smooth $\psi : \mathbb{R}^d \to \mathbb{R}$ s.t. $\mathbb{E}[F] = 0$ and $\operatorname{Var}(F) = 1$.

* Remember the **Poincaré inequality** :

 $\mathbf{Var}(F) \leq \mathbb{E}[\|\nabla \psi(g)\|^2].$

SECOND ORDER POINCARÉ ESTIMATES

* It turns out that *F* verifies an exact integration by parts formula:

$$\mathbb{E}[Ff(F)] = \mathbb{E}\Big[f'(F)\langle \nabla \psi(g), -\nabla L^{-1}\psi(g)\rangle\Big],$$

where L^{-1} is the **pseudo-inverse of the Ornstein-Uhlenbeck** generator $L = -\langle x, \nabla \rangle + \Delta$.

★ Plugging this into Stein's bound and applying once more Poincaré yields that, for $N \sim \mathcal{N}(0, 1)$,

$$\begin{aligned} \mathbf{W}_{1}(F,N) &\leq \sqrt{\mathbf{Var}(\langle \nabla \psi(g), -\nabla L^{-1}\psi(g) \rangle)} \\ &\leq 2\mathbb{E}[\|\operatorname{Hess}\psi(g)\|_{op}^{4}]^{1/4} \times \mathbb{E}[\|\nabla \psi(g)\|^{4}]^{1/4} \end{aligned}$$

 This is a second order Poincaré inequality, — see Chatterjee (2007), Nourdin, Peccati and Reinert (2010), and Vidotto (2017). Applications in random matrix theory & analysis of fractional fields.

BEYOND GAUSSIAN

Stein's approach extends to much more general densities — for instance to elements of the **Pearson family**. See Stein's 1986 monograph.

In the discrete setting, the equivalent of Stein's method is the **Chen-Stein method**. See the monograph by Barbour, Holst and Janson (1990).

In what follows, I will illustrate two striking applications of Stein's method, that are relevant in a **geometric setting**:

- (1) capturing the fluctuations of chaotic random variables, and
- (2) quantifying second order interactions.

Both are connected to (generalized) **integration by parts formulae**.

BERRY'S RANDOM WAVES (1977)

* Let E > 0. The **Berry's random wave model** on \mathbb{R}^2 , with parameter *E*, written

$$B_E = \{B_E(x) : x \in \mathbb{R}^2\},\$$

is defined as the unique (in law) centred, isotropic Gaussian field on \mathbb{R}^2 such that

$$\Delta B + E \cdot B = 0$$
, where $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$.

- * Equivalently, $\mathbb{E}[B_E(x)B_E(y)] = J_0(\sqrt{E}||x-y||)$ (J_0 = Bessel function of the 1st kind).
- Its high-energy local behaviour is conjectured to be a "universal model" for Laplace eigenfunctions on arbitrary manifolds (Berry, 1977).
- * It is the local scaling limit of **monochromatic random waves** on arbitrary manifolds (Canzani & Hanin, 2016).

NODAL SETS

One is interested in the length L_E of the **nodal set** (components are the **nodal lines**):

$$B_E^{-1}(\{0\}) \cap \mathcal{Q} := \{x \in \mathcal{Q} : B_E(x) = 0\},\$$

where Q is e.g. a square of size 1, as $E \to \infty$.

Image: D. Belyaev (2016)

Chladni Plates (1787)

MEAN AND VARIANCE (BERRY, 2002)

* Berry (J. Phys. A, 2002) : semi-rigorous computations give

 $\mathbb{E}[L_E] \sim \sqrt{E}$, $\operatorname{Var}(L_E) \sim \log E$,

although the natural guess for the order of the variance is $\sim \sqrt{E}$. See Wigman (2010) for the spherical case.

- * Such a variance reduction "... *results from a cancellation whose meaning is still obscure...*" (Berry (2002), p. 3032).
- * **Question:** can one explain such a 'cancellation phenomenon', and characterise second-order fluctuations, involving the normalised length

$$\widetilde{L}_E := rac{L_E - \mathbb{E}[L_E]}{\sqrt{\operatorname{Var}(L_E)}} ?$$

EXPLAINING THE CANCELLATION

- Starting from seminal contributions by Marinucci and Wigman (2010, 2011): geometric functionals of random Laplace eigenfunctions on compact manifolds (e.g. tori and spheres) can be studied by means of Wiener-Itô chaotic decompositions and in particular by detecting specific domination effects.
- * Such geometric functionals include: lengths of level sets, excursion areas, Euler-Poincaré characteristics, # critical points, # nodal intersections. See several works by Cammarota, Dalmao, Marinucci, Nourdin, Peccati, Rossi, Wigman, ... (2010–2018).
- * As first observed in *Marinucci, Peccati, Rossi and Wigman* (2016 for arithmetic waves) domination of a single "chaotic projection" fully explains **cancellation phenomena**.

VIGNETTE: WIENER CHAOS

- ★ Consider a generic Gaussian field $\mathbb{G} = \{G(u) : u \in \mathscr{U}\}.$
- * For every q = 0, 1, 2..., set

$$P_q := \overline{\mathbf{v}.\mathbf{s}.} \Big\{ p\big(G(u_1), ..., G(u_r)\big) : d^\circ p \leq q \Big\}.$$

Then: $P_q \subset P_{q+1}$.

★ Define the family of orthogonal spaces { $C_q : q \ge 0$ } as $C_0 = \mathbb{R}$ and $C_q := P_q \cap P_{q-1}^{\perp}$; one has

$$L^2(\sigma(\mathbb{G})) = \bigoplus_{q=0}^{\infty} C_q.$$

* $C_q = q$ th Wiener chaos of G.

CHAOS AND INTEGRATION BY PARTS

★ Elements of the Wiener chaos verify an exact integration by parts formula: for every $F \in C_q$, every $q \ge 2$ and every smooth f,

$$\mathbb{E}[Ff(F)] = \frac{1}{q} \mathbb{E}[\|DF\|^2 f'(F)],$$

where *D* is a **generalized gradient** (Malliavin derivative).

* This yields the striking inequality (Nourdin and Peccati, 2009):

$$\begin{aligned} |\mathbb{E}[f'(F)] - \mathbb{E}[Ff(F)]| &\leq \|f'\|_{\infty} \operatorname{Var}(q^{-1} \|DF\|^2)^{1/2} \\ &\leq \sqrt{\frac{q-1}{3q}} \sqrt{\mathbb{E}[F^4] - 3\mathbb{E}[F^2]^2} \end{aligned}$$

A RIGID ASYMPTOTIC STRUCTURE

For fixed $q \ge 2$, let $\{F_k : k \ge 1\} \subset C_q$ (with unit variance).

- ★ Nourdin and Poly (2013): If $F_k \Rightarrow Z$, then Z has necessarily a density (and the set of possible laws for Z does not depend on G)
- ★ *Nualart and Peccati* (2005): $F_k \Rightarrow Z \sim \mathcal{N}(0,1)$ if and only if $\mathbb{E}F_k^4 \rightarrow 3(=\mathbb{E}Z^4)$, and

 $\mathbf{W}_1(F_k, Z) \leq \sqrt{\mathbb{E}[F_k^4] - 3}$ (Nourdin and Peccati, 2009).

- * *Peccati and Tudor (2005)*: **Componentwise convergence** to Gaussian implies **joint convergence**.
- * Nourdin and Peccati (2009): $F_k \Rightarrow Z^2 1$ if and only if $\mathbb{E}F_k^4 12\mathbb{E}F_k^3 \to -36$.
- * Nourdin, Nualart and Peccati (2015): given $\{H_k\} \subset C_p$, then F_k , H_k are **asymptotically independent** if and only if $\mathbf{Cov}(H_k^2, F_k^2) \to 0$.

Theorem (Nourdin, Peccati and Rossi, 2017)

1. (Cancellation) For every fixed E > 0,

$$\operatorname{proj}(L_E \mid C_{2q+1}) = 0, \quad q \ge 0,$$

and $\operatorname{proj}(\widetilde{L}_E | C_2)$ reduces to a "negligible boundary term", as $E \to \infty$.

2. (4th chaos dominates) Let $E \to \infty$. Then,

$$\widetilde{L}_E = \operatorname{proj}(\widetilde{L}_E \mid C_4) + o_{\mathbb{P}}(1).$$

3. (CLT) As $E \rightarrow \infty$,

$$\widetilde{L}_E \Rightarrow Z \sim N(0,1).$$

OTHER MANIFOLDS?

What about the high-energy behaviour of random waves on \mathbb{T}^2 and \mathbb{S}^2 ?

Figures: A. Barnett, G. Poly and Z. Rudnick

- Similarly to planar waves, the projection of the (renormalized) nodal length on the second chaos disappears exactly, and global fluctuations are dominated (in L²) by the projection on the 4th Wiener chaos.
- * The nodal length of random spherical harmonics verifies a **Gaussian CLT** (*Marinucci, Rossi, Wigman* (2017)).

Some Recent Findings

- * The nodal length of arithmetic random waves verifies a **non-central** χ^2 **limit theorem** (*Marinucci, Rossi, Peccati, Wig-man* (2016)), and similar results hold for nodal intersections (*Dalmao, Nourdin, Peccati, Rossi,* 2016), as well as for local nodal lengths above the Planck scale (*Benatar, Marinucci and Wigman,* 2017).
- * **Monochromatic random waves** on general manifolds can be coupled with Berry's wave at small scales, so that the local length fluctuations are Gaussian (*Dierinckx, Nourdin, Peccati, Rossi,* 2018+).

★ For every t > 0, let

$$\mathbb{R}^d \supset A \mapsto \eta_t(A)$$

be a **Poisson random measure** with intensity $t \times \text{Leb}$.

- * Malliavin calculus and Wiener Chaos are available for η_t : as in the Gaussian framework, they combine admirably well with Stein's bounds.
- ★ Stochastic analysis on the Poisson space is tightly connected to **add-one cost operators**, defined for every $x \in \mathbb{R}^d$ and every $F = F(\eta)$ as

$$D_x F(\eta_t) := F(\eta_t + \delta_x) - F(\eta_t).$$

BEYOND CHAOS

* The operators D_x are ersatz of gradients on the Poisson space. In particular, one has the **Poincaré inequality**: for every $F = F(\eta_t)$

$$\operatorname{Var}(F) \leq t \times \mathbb{E} \int_{\mathbb{R}^d} (D_x F)^2 dx.$$

 In this framework, several geometric quantities naturally emerge for which there is no dominating "chaotic projection": typically, characteristics of random graphs built from some 'intrinsic geometric rule' – like the nearest neighbour graph, or graphs emerging in combinatorial optimization.

EXAMPLE: THE NEAREST NEIGHBOUR GRAPH

EXAMPLE: THE NEAREST NEIGHBOUR GRAPH

SECOND ORDER INEQUALITIES AND STABILIZATION

* **Second order Poincaré inequalities** are available also in this framework (*Last, Peccati & Schulte* (2015)):

$$\mathbf{W}_{1}(F,N)^{2} \lesssim \mathbb{E}\left[\int (D_{x}F)^{4} dx\right] \\ + \mathbb{E}\left[\int (D_{x}F)^{2} dx\right] \times \mathbb{E}\left[\int \int (D_{x,y}^{2}F)^{2} dx dy\right],$$

yielding that normality arises from "small local contributions", and "vanishing second order interactions".

- * Such an estimate has recently been used to recover a generalised notion of "stabilising geometric functionals" (Kesten and Lee, 1996; Penrose and Yukich, 2001) see Lachièze-Rey, Schulte and Yukich (2017).
- * Applications to: Voronoi tessellations, radial graphs, volume approximations, ...

ADVERTISING & THANKS

THANK YOU FOR YOUR ATTENTION!

