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Hydrodynamic Scaling Limits

▸ Dynamics with conserved quantities: energy, momentum,
density, ..., these move slowly.

▸ The other quantities move fast, fluctuating around average
values determined by the conserved quantities (by local
equilibriums).

▸ Conserved quantities determine families of stationary
probability measures, Gibbs states, typically parametrized by
temperature, pressure.

▸ Corresponding to different paramenters there are different
partial equilibriums:

▸ mechanical equilibrium: constant pressure or tension profiles,
▸ thermal equilibrium: constant temperature profiles.

▸ These partial equilibriums may be reached at different time
scales: typically mechanical equilibrium is reached faster than
thermal equilibrium.
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Mechanical and Thermal equilibrium

▸ Mechanical Equilibrium is reached in hyperbolic time scales
(same rescaling of space and time), and is driven by Euler
system of equations (for a compressible gas). It involves the
ballistic evolution of the long waves (mechanical modes).

▸ When thermal conductivity is finite, Thermal Equilibrium is
reached later, in the diffusive time scales (time2 = space), and
temperature (or thermal energy) profiles evolve following heat
equation.

▸ If thermal conductivity is infinite, Thermal Equilibrium is
reached in a super-diffusive time scales
(timeα = space, α < 2), and typically temperature (or thermal
energy) profiles evolve following a fractional heat equation.
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Boundary Conditions

Extermal forces or heat bath acting microscopically at the boudary
on the system determine boundary conditions of the macroscopic
equations.

Most of non-equilibrium situation are obtained by

▸ changing boundary conditions in time

▸ applying boundary conditions corresponding to different
equilibrium states, obtaining dynamics that have
non-equilibrium stationary states (NESS).
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Chain of oscillators

ṙx(t) = px(t) − px−1(t), x = 1, . . . ,N

ṗx(t) = V ′
(rx+1(t)) −V ′

(rx(t)) x = 1, . . . ,N − 1

ṗN(t) = τ(t/N) −V ′
(rN(t))

p0(t) = 0.

EEEx =
p2
x

2
+V (rx)

ĖEEx = pxV
′
(rx+1) − px−1V

′
(rx)

We are interested in the macroscopic evolution of
(rx(t),px(t),EEEx(t)).
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ṗN(t) = τ(t/N) −V ′
(rN(t))

p0(t) = 0.

EEEx =
p2
x

2
+V (rx)
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Gibbs measures and Thermodynamic Entropy

For τ(t) = τ constant in time, a class of stationary measures is
given by the Gibbs measures at temperature β−1, tension τ

dµβ,τ,p =
N

∏
x=1

e−β(EEEx−τ rx)−G(β,τ)dpxdrx

Thermodynamic entropy is

S(u, r) = inf
τ,β

{−βτ r + βu − G(β, τ)}

β(u, r) = ∂uS(u, r), τ(u, r) = −β−1∂rS(u, r).
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Ergodicity (of the infinite system)

Consider the corresponding infinite dynamics:

ṙx(t) = px(t) − px−1(t),

ṗx(t) = V ′
(rx+1(t)) −V ′

(rx(t)) x ∈ Z

Theorem
(Fritz, Funaki, Lebowitz, PTRF 1994) Assume that a probability ν
is translation invariant, stationary, finite entropy density, and the
conditional measure ν(dp∣r) is exchangeable.
Then ν is a convex combination of Gibbs measures dµβ,τ,p.

▸ Chaoticity of the dynamics, due to the non-linearity of V ,
should give such ergodic property

▸ Adding conservative noise (stochastic collisions) to the
dynamics one obtain ergodicity.
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Hyperbolic Scaling, Euler equations

3 conserved quantities: we expect the weak convergence to the
hyperbolic system of PDE

1

N
∑
x

G(x/N)
⎛
⎜
⎝

rx(Nt)
px(Nt)
Ex(Nt)

⎞
⎟
⎠
Ð→
N→∞

∫

1

0
G(y)

⎛
⎜
⎝

r(y , t)
p(y , t)
e(y , t)

⎞
⎟
⎠
dy

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτ[u(t, y), r(t, y)]

∂te(t, y) = ∂y(τ[u(t, y), r(t, y)]p(t, y))

where u = e − p2/2 : internal energy.
and, for smooth solutions, the boundary conditions:

p(t,0) = 0, τ[u(t,1), r(t,1)] = τ(t)
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Euristics

take G ∶ [0,1]→ R with compact support in (0,1),

d

dt

1

N
∑
x

G(x/N)
⎛
⎜
⎝

rx(Nt)
px(Nt)
Ex(Nt)

⎞
⎟
⎠
=∑

x

G(x/N)
⎛
⎜
⎝

∇px−1(Nt)
∇V ′(rx(Nt))

∇ [px(Nt)V
′(rx(Nt)]

⎞
⎟
⎠

∼ −
1

N
∑
x

G ′
(x/N)

⎛
⎜
⎝

px(Nt)
V ′(rx(Nt))

px(Nt)V
′(rx(Nt)

⎞
⎟
⎠

assuming local equilibrium, we have

∼ −∫

1

0
G ′

(y)
⎛
⎜
⎝

p(t, y)
τ(u(t, y), r(t, y))

p(t, y)τ(u(t, y), r(t, y))

⎞
⎟
⎠
dy

Note that y ∈ [0,1] is the material (Lagrangian) coordinate.
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Results with conservative stochastic dynamics

▸ To prove some form of local equilibrium we need to add
stochastic terms to the dynamics (the deterministic non-linear
case is too difficult).

▸ Random exchanges of velocities between nearest neighbor
particles, conserve energy, momentum and volume, destroying
all other (possible) conservation laws. It provides the right
ergodicity property.

▸ With such noise in the dynamics, for smooth solutions the HL
is proven in:

▸ N. Even, S.O., ARMA (2014) (with boundary conditions),
▸ S.O., SRS Varadhan, HT Yau, CMP (1993) (periodic bc).
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Harmonic Oscillators Chain

This is an example of a non-ergodic dynamics:

V (r) = r2
/2

in fact it is a completely integrable dynamics:

q̇x = px , ṗx = ∆qx = qx+1 + qx−1 − qx ,

Take here x = 1, . . . ,N,

f̂ (k) =∑
x

fxe
i2πkx k ∈ {0,1/N, . . . , (N − 1)/N}

ω(k) = 2∣ sin(πk)∣ dispersion relation:

H =∑
x

EEEx =
1

2N
∑
k

[ω(k)2
∣q̂(k)∣2 + ∣p̂(k)∣2]

ψ̂(t, k) ∶= ω(k)q̂ (t, k) + i p̂ (t, k) .

d

dt
ψ̂(t, k) = −iω(k)ψ̂(t, k) ψ̂(t, k) = e−iω(k)tψ̂(0, k)
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Harmonic Oscillators Chain: Quantum Dynamics

px = −i∂qx = −i (∂rx+1 − ∂rx )

EEEx =
1

2
(p2

x + r2
x )

ak =
1

ω(k)
ψ̂(k), a∗k =

1

ω(k)
ψ̂(k)∗

H =∑
x

EEEx =
1

2N
∑
k

[ω(k)2
∣q̂(k)∣2 + ∣p̂(k)∣2]

=
1

2N
∑
k

ω(k)a∗kak

Heisenber evolution d
dtA(t) = i[H,A(t)]

ak(t) = e−iω(k)tak , a∗k(t) = e−iω(k)ta∗k .
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Harmonic Chain: Thermal Equilibrium (Classic case)

Consider the chain in thermal equilibrium: initial distribution with
covariances

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx ;px ′ ⟩⟩⟩ = 0,

for some inverse temperature β, while in mechanical local
equilibrium:

⟨⟨⟨ r[Ny](0) ⟩⟩⟩Ð→ r(0, y), ⟨⟨⟨ p[Ny](0) ⟩⟩⟩Ð→ p(0, y).
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Harmonic Chain: Thermal Equilibrium (classic case)

thermal equilibrium is conserved by the dynamics: for any t ≥ 0

⟨⟨⟨ rx(t); rx ′(t) ⟩⟩⟩ = ⟨⟨⟨ px(t);px ′(t) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx(t);px ′(t) ⟩⟩⟩ = 0,

Proof.
Thermal equilibrium is Fourier space is:

⟨⟨⟨ ψ̂(k,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′), ⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.

Consequently

⟨⟨⟨ ψ̂(k , t)∗; ψ̂(k ′, t) ⟩⟩⟩ = e i(ω(k)−ω(k
′))t

⟨⟨⟨ ψ̂(k ,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′),

⟨⟨⟨ ψ̂(k , t); ψ̂(k ′, t) ⟩⟩⟩ = e−i(ω(k)+ω(k
′))t

⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.
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Harmonic Chain: Thermal Equilibrium implies Euler
Equation limit

r[Ny](Nt) and p[Ny](Nt) converge weakly to the solution of the
linear wave equation

∂tr (y , t) = ∂yp (y , t), ∂tp (y , t) = ∂y r (y , t).

This is the Euler equation for this system since here τ(u, r) = r .

For the energy, because of the thermal equilibrium, for any t ≥ 0 :

⟨⟨⟨ EEEx(t) ⟩⟩⟩ = β−1
+

1

2
(⟨⟨⟨ px(t) ⟩⟩⟩

2
+ ⟨⟨⟨ rx(t) ⟩⟩⟩

2)

⟨⟨⟨ EEE[Ny](Nt) ⟩⟩⟩Ð→ e (y , t) = β−1
+

1

2
(p2

(y , t) + r2
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Quantum Harmonic Chain: Thermal Equilibrium

Initial density matrix ρβ, define

⟨⟨⟨ A ⟩⟩⟩ = tr (Aρβ)), ⟨⟨⟨ A;B ⟩⟩⟩ = ⟨⟨⟨ AB ⟩⟩⟩ − ⟨⟨⟨ A ⟩⟩⟩⟨⟨⟨ B ⟩⟩⟩

such that

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = Cβ(x−x
′
), ⟨⟨⟨ qx ;px ′ ⟩⟩⟩ =

i

2
δ(x−x ′)

Cβ(x) =
1

N
[β−1

+∑
k≠0

e2πikx
(

ωk

eβωk − 1
+
ωk

2
)] (1)

⟨⟨⟨ r[Ny](0) ⟩⟩⟩Ð→ r(0, y), ⟨⟨⟨ p[Ny](0) ⟩⟩⟩Ð→ p(0, y).

⟨⟨⟨ EEE[Ny] ⟩⟩⟩Ð→ e (y) = C̄(β) +
1

2
(p2

(y) + r2
(y)) ,

C̄(β) = ∫
1

0
ω(k) (

1

eβω(k) − 1
+

1

2
)dk ∼

β→0
β−1
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Quantum Harmonic Chain: Thermal Equilibrium implies
Euler Equation limit
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Harmonic Chain: Local Thermal Equilibrium is not
conserved

The argument fails dramatically if the system is not in thermal
equilibrium, even local thermal Gibbs

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = β−1
(
x

N
) δx ,x ′ , ⟨⟨⟨ qx(0);px ′(0) ⟩⟩⟩ = 0

(2)
is not conserved, and correlations between px(t) and rx(t) build
up in time.
No autonomous macroscopic equation for the energy!
There are infinite many conservation laws.
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Wigner distribution

ξ ∈ R, k ∈ [0,1],

ŴN(ξ, k, t) ∶=
2

N
⟨⟨⟨ ψ̂∗ (Nt, k −

ξ

2N
) ψ̂ (Nt, k +

ξ

2N
) ⟩⟩⟩

WN(y , k , t) = ∫ ŴN(t, η, k)e−i2πξy dη, y ∈ R,

In the limit it decompose in a thermal and a mechanical part:

lim
N→∞

ŴN(ξ, k, t) = Ŵth(ξ, k , t) + Ŵm(ξ, t) δ0(dk) (3)

The mechanical part Ŵm(ξ, t) is the Fourier transform of the
mechanical energy

Ŵm(ξ, t) = ∫
1

2
(p2

(y , t) + r2
(y , t)) e i2πξy dy ,
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Wigner distribution

For the thermal Wigner distribution it holds the transport equation:

∂tWth(y , k , t) +
ω′(k)

2π
∂yWth(y , k , t) = 0.

in fact for k ≠ 0

ŴN(ξ, k, t) ∶= e
i[ω(k− ξ

2N
)−ω(k+ ξ

2N
)]Nt

ŴN(ξ, k ,0)

∼
N→∞

e−iω
′(k)ξtŴth(ξ, k ,0)

W (t, y , k) =W (0, y −
ω′(k)

2π
t, k)

Phonon of wave number k moves freely with velocity ω′(k)
2π .
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Wigner distribution

Consequently the thermal energy ẽ(y , t) (i.e. temperature) evolves
non autonomously following the equation

∂t ẽ(y , t) + ∂yJ(y , t) = 0, J(y , t) = ∫ ω′(k)Wth(y , k , t) dk.

We say that the system is in local equilibrium if
Wth(y , k) = β

−1(y) constant in k .
Starting in thermal equilibrium means Wth(y , k,0) = β

−1 and
trivially Wth(y , k , t) = β

−1 for any t > 0.
But starting with local equilibrium, i.e. W (y , k,0) = β−1(y)
constant in k , we have a non autonomous evolution of ẽ(y , t).
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Harmonic Chain with Random Masses

The problem with the harmonic chain is that thermal waves of
wavenumber k move with speed ω′(k), if they are not uniformed
distributed (i.e. the system is not in thermal equilibrium), the
temperature profile will not remain constant, as it should be
following the Euler equations.

If the masses are random, the thermal modes remains localized
(frozen), by Anderson localization. This allows to close the energy
equation, without local equilibrium.
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Harmonic Chain with Random Masses

(F. Huveneers, C. Bernardin, S.Olla, 2017)

{mx} i.i.d. with absolutely continuous distribution,
0 < m− ≤ mx ≤ m+,
m = E(mx).

mx q̇x(t) = px(t), ṗx(t) = ∆qx(t), x = 1, . . . ,N

with q0 = q1 and qN+1 = qN as boundary conditions.
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Gibbs States, Local Gibbs States

The Gibbs states are characterized by three parameters: β > 0 and
p, r ∈ R. Its probability density writes

N

∏
x=1

e
−
βmx

2
( px

mx
−

p
m
)

2

−
β
2
(rx−r)2

Z(β,p, r ,mx)
.

We start with a local Gibbs state:

N

∏
x=1

e
−
β(x/N)mx

2
( px

mx
−

p(x/N)
m

)
2

−
β(x/N)

2
(rx−r(x/N))2

Z(β(x/N),p(x/N), r(x/N),mx)
.
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Harmonic Chain with Random Masses: hydrodynamic limit

Almost surely with respect to {mx}:

< r[Ny](Nt) >,< p[Ny](Nt) >,< EEE[Ny](Nt) >⇀ (r(y , t),p(y , t), e(y , t))

∂tr(t, y) =
1

m
∂yp(t, y)

∂tp(t, y) = ∂y r(t, y)

∂te(t, y) =
1

m
∂y (r(t, y)p(t, y))

with initial conditions:

r(y ,0) = r(y), p(y ,0) = p(y), e(y ,0) =
1

β(y)
+
p2(y)

2m
+
r2(y)

2
.
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Random Masses: Localization of Thermal Modes

Equation of motion can be written as

r̈x = −(∇
∗M−1

∇r)x (1 ≤ x ≤ N−1), p̈x = (∆M−1p)
x

(1 ≤ x ≤ N),

where Mx ,x ′ = δx ,x ′mx .

M−1/2
(−∆)M1/2ϕk

= ω2
k ϕ

k , k = 0, . . . ,N − 1.

ψk
=M−1/2ϕk , M−1∆ψk

= ω2
kψk

r(t) =
N−1

∑
k=1

(
⟨∇ψk , r(0)⟩

ωk
cosωkt + ⟨ψk ,p(0)⟩ sinωkt)

∇ψk

ωk
,

p(t) =
N−1

∑
k=0

(⟨ψk ,p(0)⟩ cosωkt −
⟨∇ψk , r(0)⟩

ωk
sinωkt)Mψk .
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Localization of Thermal Modes

Localization length ξk diverges with N:

ξ−1
k ∼ ω2

k ∼ (
k

N
)

2

,

only the modes k >
√
N are localized.

More precisely: for 0 < α < 1
2

E
⎛

⎝

N−1

∑
k=N1−α

∣ψk
xψ

k
x ′ ∣

⎞

⎠
≤ Ce−cN

−2α∣x−x ′∣.

This estimate is enough to prove that thermal modes remains
localized and do not move macroscopically.
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Random masses: Larger time scales

Assume for simplicity that we are in a mechanical equilibrium:

⟨⟨⟨ rx(0) ⟩⟩⟩ = 0, ⟨⟨⟨ px(0) ⟩⟩⟩ = 0,

(only thermal energy present)
but not in thermal equilibrium, then, for any α ≥ 1

< EEE[Ny](N
αt) > Ð→

N to∞
e (0, y) = C̄(β(y))

NO evolution for the temperature profile at any scale!

In particular, for α = 2 (diffusive scaling), thermal diffusivity is null.
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Open questions for the quantum case

▸ In order to deal with the anharmonic interaction, in the
classical case, conservative noise is added to obtain ergodicity
of the infinite dynamics (unique characterization of the
translational invariant stationary states)
( cf B. Nachtergaele, and H-T Yau, CMP 2003).
How to add conservative noise in the quantum dynamics in
order to obtain similar result?

▸ Boundary tension? More generally boundary conditions,
thermostat etc.
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entropy evolution

∂tr = ∂xp ∂tp = ∂xτ ∂te = ∂x(τp)

p(t,0) = 0, τ(r(1, t),u(1, t)) = τ(t)

U = e − p2/2, β = ∂S
∂U , τ = − 1

β
∂S
∂r

For smooth solutions:

d

dt
S(u(y , t), r(y , t)) = β (∂te − p∂tp) − βτ∂tr

= β (∂x(τp) − p∂xτ − τ∂xp) = 0

The evolution is isoentropic in the smooth regime.
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Shocks, contact discontinuities, weak solutions, entropy
solutions

Even starting with initial smooth profiles, hyperbolic non-linear
systems develops discontinuities:

▸ shocks: discontinuities in the tension profile,

▸ contact discontinuities: discontinuities in the entropy profile.

When this happens we have to consider weak solution, that
typically are not unique.
In order to select the right physical solutions, various properties
(maybe equivalent) have been introduced:

▸ entropy solutions

▸ viscosity solutions
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weak solutions

Consider a hyperbolic system of conservation laws

vt + f (v)x = 0,

a weak solution v(t, y) on an open set Ω ⊂ R2 satisfies, for any
function φ(t, y) ∈ C1 with compact support in Ω

∬
Ω
[φtv + φy f (v)]dy dt = 0

No continuity assumption is made on v .

In the Euler case, v = (r ,p, e), u = e − p2/2 and

f (v) = −
⎛
⎜
⎝

p
τ(u, r)
pτ(u, r)

⎞
⎟
⎠

Strictly Hyperbolic System: the Jacobian matrix Df has real
distinct eigenvalues.
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function φ(t, y) ∈ C1 with compact support in Ω

∬
Ω
[φtv + φy f (v)]dy dt = 0

No continuity assumption is made on v .
In the Euler case, v = (r ,p, e), u = e − p2/2 and

f (v) = −
⎛
⎜
⎝

p
τ(u, r)
pτ(u, r)

⎞
⎟
⎠

Strictly Hyperbolic System: the Jacobian matrix Df has real
distinct eigenvalues.
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weak solutions: Cauchy initial problem

A weak solution of

vt + f (v)x = 0, v(0, y) = v0(y),

is a weak solution of the Cauchy initial data problem
if t ∈ [0,T ]→ v(t, ⋅) is continuous in L1

loc.

unfortunately it may not be unique!

Existence proved only for v0 of bounded variation (Glimm,....).
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Entropic weak solutions

vt + f (v)x = 0, v(0, y) = v0(y), v(t, y) ∈ Rn

A C1 function η ∶ Rn → R is an entropy function with entropy flux
q ∶ Rn → R, if

Dη(v) ⋅Df (v) = Dq(v)

that implies for smooth solutions:

η(v)t + q(v)x = 0.

▸ n = 1: any convex non-linear η is an entropy function,

▸ n ≥ 3: ? It may nont exists

▸ For the Euler System: the thermodynamic entropy
η(v) = S(e − p2/2, r) is an entropy function.
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Entropic weak solution

vt + f (v)x = 0, v(0, y) = v0(y), v(t, y) ∈ Rn

An weak solution is entropy-admissible if

η(v)t + q(v)x ≤ 0

as distribution, for any entropy pair (η,q).

This implies that total entropy ∫ η(v(t, y))dy increase in time
(with no b.c. here).
Existence is proven only under bounded variation initial conditions.
The conjecture is that entropy-admissible solutions are unique.
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Vanishing viscosity solutions

v εt + f (v ε)x = εv
ε
xx ,

or more general
v εt + f (v ε)x = εΛ(v ε),

where Λ is a second order differential operator (eventually
non-linear).

If v ε converges in L1
loc as ε→ 0+, this is called a vanishing viscosity

solution.
Bianchini-Bressan (AoM, 2005): if initial data are of small BV,
limit exists unique and is BV and is an entropy solution,
(for linear viscosity).
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Isothermal Dynamics

▸ J. Fritz, Microscopic theory of isothermal elasticity, ARMA
2011, infinite volume

▸ S. Marchesani, S. Olla, Nonlinearity 2018, boundary
conditions.

The system is in contact with a heat bath that keeps it at a
constant temperature β−1.
Energy is not conserved anymore. Macroscopically we have a
p-system:

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτ[β, r(t, y)]

S. Olla - CEREMADE hyperbolic limits



Isothermal Dynamics

▸ J. Fritz, Microscopic theory of isothermal elasticity, ARMA
2011, infinite volume

▸ S. Marchesani, S. Olla, Nonlinearity 2018, boundary
conditions.

The system is in contact with a heat bath that keeps it at a
constant temperature β−1.
Energy is not conserved anymore. Macroscopically we have a
p-system:

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτ[β, r(t, y)]

S. Olla - CEREMADE hyperbolic limits



MIcroscopic isothermal dynamics

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

dr1 = Np1dt + NσN (V
′
(r2) − V ′(r1)) dt −

√

2β−1NσNdw̃1

dri = N(pi − pi−1)dt + NσN (V
′
(ri+1) + V ′(ri−1) − 2V ′(ri )) dt +

√

2β−1NσN(dw̃i−1 − dw̃i )

drN = N(pN − pN−1)dt + NσN (V
′
(rN−1) − V ′(rN)) dt +

√

2β−1Nσdw̃N−1

dp1 = N(V ′(r2) − V ′(r1))dt + NσN (p2 − p1) dt −
√

2β−1NσNdw1

dpi = N(V ′(ri+1) − V ′(ri ))dt + NσN (pi+1 + pi−1 − 2pi ) dt +
√

2β−1NσN(dwi−1 − dwi )

dpN = N(τ̄(t) − V ′(rN))dt + NσN (pN−1 − pN) dt +
√

2β−1NσNdwN−1,

,

lim
N→+∞

σN
N

= lim
N→∞

N

σN2
= 0.
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Isothermal dynamics, generator

G
τ̄(t)
N ∶= NL

τ̄(t)
N +NσN(SN + S̃N).

L
τ̄(t)
N =

N

∑
i=1

(pi−pi−1)∂ri+
N−1

∑
i=1

(V ′
(ri+1) −V ′

(ri))∂pi+(τ̄(t)−V
′
(rN))∂pN ,

SN ∶= −
N−1

∑
i=1

D∗
i Di , S̃N ∶= −

N−1

∑
i=1

D̃∗
i D̃i ,

Di ∶=
∂

∂pi+1
−

∂

∂pi
, D∗

i ∶= pi+1 − pi − β
−1Di

D̃i ∶=
∂

∂ri+1
−
∂

∂ri
, D̃∗

i ∶= V ′
(ri+1) −V ′

(ri) − β
−1D̃i .
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Initial distribution

The density f Nt with respect to µN = µNβ,0,0 solves the Fokker-Plank
equation

∂f Nt
∂t

= (G
τ̄(t)
N )

∗

f Nt .

Here (G
τ̄(t)
N )

∗

= −NL
τ̄(t)
N +N τ̄(t)pN +Nσ(SN + S̃N) is the adjoint

of G
τ̄(t)
N with respect to µN .

relative entropy

HN(f Nt ) ∶= ∫
R2N

f Nt log f Nt dµN

assume or the initial distribution

HN(f N0 ) ≤ CN.
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Limite Hydrodynamique

1

N
∑
x

G(x/N)(
rx(t)
px(t)

) Ð→
N→∞

∫

1

0
G(y)(

r(y , t)
p(y , t)

) dy

L2-valued weak solution of

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτβ[r(t, y)]

p(t,0) = 0, τ(r(t,1)) = τ̄(t),

in the sense

∫

∞

0
∫

1

0
(r(t, x)∂tϕ(t, x) − p(t, x)∂xϕ(t, x))dx dt = 0

∫

∞

0
∫

1

0
(p(t, x)∂tψ(t, x) − τβ(r(t, x))∂xψ(t, x))dx dt = 0

for all functions ϕ,ψ with compact support on R+ ∖ {0} × (0,1).
NO information on initial and boundary conditions, no entropy
condition.
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Vanishing viscosity

The heat bath interaction in the dynamics plays the role of a
microscopic viscosity, vanishing in the macroscopic limit.

The corresponding viscous equations would be:

⎧⎪⎪
⎨
⎪⎪⎩

∂tr
ε(t, x) − ∂xp

ε(t, x) = ε∂xxτβ(r
ε(t, x)) x ∈ (0,1)

∂tp
ε(t, x) − ∂xτβ(r

ε(t, x)) = ε∂xxp
ε(t, x),

with boundary conditions

pε(t,0) = 0, τ(r ε(t,1)) = τ̄(t), ∂xp
ε
(t,1) = 0, ∂x r

ε
(t,0) = 0,

Note the non-linear viscosity term.
As ε→ 0 boundary layers may appear.
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The p-system

It is usually difficult to control bounds in the vanishing viscosity
ε→ 0,
Bressan-Bianchini can do it for the BV if viscosity is taken linear.
For the p-system with no boundaries

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτβ[r(t, y)]

can be proven existence of L∞ weak solutions (Di Perna), and L2

valued solutions (Schearer, Serre-Shearer).

When boundaries are present, it is less clear how to define weak
solutions that are not of BV.
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Viscosity solutions with boundary values

One proposal would be to take L2 limits as ε→ 0 of

⎧⎪⎪
⎨
⎪⎪⎩

∂tr
ε(t, x) − ∂xp

ε(t, x) = ε∂xxτβ(r
ε(t, x)) x ∈ (0,1)

∂tp
ε(t, x) − ∂xτβ(r

ε(t, x)) = ε∂xxp
ε(t, x),

pε(t,0) = 0, τ(r ε(t,1)) = τ̄(t), ∂xp
ε
(t,1) = 0, ∂x r

ε
(t,0) = 0,

The non-linearity in the viscosity gives the right
entropy production.
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Entropy production and Clausius inequality

Let v ε(t, y) = r ε(t, y),pε(t, y). Free energy at time t:

F(v ε(t)) = ∫
1

0
[
pε(t, y)2

2
+ Fβ(r

ε
(t, y))] dy , ∂rFβ(r) = τβ(r),

F(v ε(t))−F(v(0)) =W (t)

− ε∫
t

0
ds ∫

1

0
dy [(∂yτβ(r

ε
(s, y)))

2
+ (∂xp

ε
(s, y))2

]

≥W (t)

where W (t) is the work done by the boundary force τ(t).
So we expect that this particular limit generates the right entropy
solutions.
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Various remarks

▸ For scalar equations (one conserved quantity) the theory of
boundary conditions is much simpler, and boundary layers do
not depend on the detalis of the approximation
(Bardos-Leroux-Nedelec, F. Otto), and there is a good
definition of boundary entropy condition.

▸ Hydrodynamic limit for one conserved quantity (Burgers
equation) with boundary conditions have been proven by
Bahadoran (from ASEP).

▸ There exists extention to systems of the boundary entropy
condition (Chen-Frid), but with BV solutions.

S. Olla - CEREMADE hyperbolic limits



Various remarks

▸ For scalar equations (one conserved quantity) the theory of
boundary conditions is much simpler, and boundary layers do
not depend on the detalis of the approximation
(Bardos-Leroux-Nedelec, F. Otto), and there is a good
definition of boundary entropy condition.

▸ Hydrodynamic limit for one conserved quantity (Burgers
equation) with boundary conditions have been proven by
Bahadoran (from ASEP).

▸ There exists extention to systems of the boundary entropy
condition (Chen-Frid), but with BV solutions.

S. Olla - CEREMADE hyperbolic limits



Various remarks

▸ For scalar equations (one conserved quantity) the theory of
boundary conditions is much simpler, and boundary layers do
not depend on the detalis of the approximation
(Bardos-Leroux-Nedelec, F. Otto), and there is a good
definition of boundary entropy condition.

▸ Hydrodynamic limit for one conserved quantity (Burgers
equation) with boundary conditions have been proven by
Bahadoran (from ASEP).

▸ There exists extention to systems of the boundary entropy
condition (Chen-Frid), but with BV solutions.

S. Olla - CEREMADE hyperbolic limits



Compensated compactness

▸ The Fritz’s approach that we use is based on a stochastic
version of the compensated compactness lemma of
Tartar-Murat. This was used by Di Perna to prove existence
of vanishing viscosity limits in p-systems.

▸ This is a trick to prove that weak limit of viscous solutions
v ve are actually strong limit, which is also the main problem
in hydrodynamic limits from microscopic dynamics.

▸ Unfortunately the trick works only when one has many (at
least two) entropy pairs ((η1,q1), (η2,q2)). This restrict the
trick to 2x2 systems of conservation law, cannot be used for
the Euler equation 3x3, where we know only the
thermodynamic entropy as mathematical entropy.
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Compensated compactness

ηj(v
ε
)t + qj(v

ε
)x ∈ compact set inH−1, j = 1,2

then

η1(v
ε
)q2(ε

ε
) − η2(v

ε
)q1(v

ε
) converge weakly in L∞,

and this is enough to establish the strong convergence of v ε.

S. Olla - CEREMADE hyperbolic limits


