
Singular stochastic partial differential

equations

Giovanni Jona-Lasinio

Firenze, November 23, 2018

1 / 50



Abstract

Singular stochastic partial differential equations (SSPDE) first
appeared in rather special contexts like the stochastic quantization
of field theories or in the problem of crystal growth, the well known
KPZ equation. In the last decade these equations have been
intensely studied giving rise to an important branch of
mathematics possibly relevant for physics. This talk will review
some aspects and open problems in the subject.
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What is a stochastic equation?

dxt = b(xt)dt+ σ(xt)dwt (1)

wt is a Gaussian process with independent increments and
covariance

E(wtwt′) = min(t, t′) (2)

The typical trajectories of wt are continuous but not absolutely
continuous that is the length of any trajectory between t, t′ is
infinite. Furthermore they are not differentiable. Another way of
writing (1) is as an integral equation

xt = x0 +

∫ t

0
b(xs)ds+

∫ t

0
σ(xs)dws (3)

The last term, called a stochastic integral, requires some
specification.
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Stochastic integrals

The first idea is to interpret the expression
∫ t

0 σ(xs)dws as a
Stieltjes integral but this does not work due to the non-absolutely
continuous trajectories of the Wiener process. In fact any
approximation by finite sums would depend on where we evaluate
the integrand. There are two main notions of stochastic
integration due to Ito and Stratonovich.

Ito: ∫ t

0
gsdws = lim

n→∞

n∑
1

gsk(wsk+1
− wsk) (4)

Ito integral is very natural from a probabilistic standpoint but does
not obey the usual rules of calculus. The integrand is supposed to
depend only on the past history so it is independent of dwt.∫ t

0
wsdws =

1

2
(wt

2 − t) (5)
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Stratonovich:∫ t

0
gs ◦ dws = lim

n→∞

n∑
1

1

2
(gsk + gsk+1

)(wsk+1
− wsk) (6)

Stratonovich satisfies the usual rules so that∫ t

0
ws ◦ dws =

1

2
wt

2 (7)

but the integrand and the increment dw are not independent.
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Girsanov formula

This is an important formula which allows to relate the evolutions
associated to processes solutions of equations like (1) differing for
the term b(x). In particular if the noise is purely additive that is
σ = 1, takes the simple form

E(f(xt)) = E(f(wt) exp ζt) (8)

where

ζt =

∫ t

0
b(ws)dws −

1

2

∫ t

0
b2(ws)ds (9)

When we deal only with expectations like (8) we speak of weak
solutions of (1)
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The generator of a diffusion process

To an equation like (1) is associated a differential operator called
the generator

L = σ2(x)∂2
x + b(x)∂x (10)

When instead of the trajectories we deal with the transition
probabilities p(s, x, t, y), their evolution equations can be expressed
in terms of L and its formal adjoint. They are called the forward
and the backward Kolmogorov equations.

∂tp = ∂2
y(σ2(y)p)− ∂y(b(y)p) (11)

This equation was known to physicists as the Fokker-Planck
equation. The backward equation is

∂sp = −Lp = −σ2(x)∂2
xp− b(x)∂xp (12)
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Freidlin-Wentzell (F-W) theory

Given a stochastic ODE of the form, b(x) a Lipschitz function,

dxt = b(xt)dt+ εdwt (13)

and an absolutely continuous function φt, define the rate (or
action) functional

S0T (φ) =
1

2

∫ T

0
|φ̇t − b(φt)|2dt (14)

Then the following estimates hold for ε→ 0

I. For any δ, γ,K > 0 there exists ε0 > 0 such that

P (ρ0T (xε, φ) < δ) ≥ e−ε−2[S0T (φ)+γ] (15)

for 0 < ε ≤ ε0, T > 0, φ0 = x0 and T + S0T (φ) ≤ K. ρ is the
distance in the uniform norm.
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Define
Φ(s) = [φ : φ0 = x0, S0T (φ) ≤ s] (16)

II. For any δ, γ, s0 > 0 there exists ε0 > 0 such that

P (ρ0T (xε,Φ(s)) ≥ δ) ≤ e−ε−2[s−γ] (17)

for 0 < ε ≤ ε0, s < s0

From estimates I. and II.

e−ε
−2[S0T (φ)−γ] ≥ P (ρ0T (xε, φ) < δ) ≥ e−ε−2[S0T (φ)+γ] (18)

for 0 < ε ≤ ε0.
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Reformulation

Estimates I. and II. are equivalent to (Varadhan)

I’. For any open set A

limε→0ε
2 lnP (A) ≥ − inf[S0T (φ) : φ ∈ A] (19)

II’. For any closed set A

limε→0ε
2 lnP (A) ≤ − inf[S0T (φ) : φ ∈ A] (20)

In this formulation we say that the family of probability
distributions P parametrized by ε satisfies a large deviation
principle.
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Some non-singular stochastic PDEs

Stochastic quantization in one space dimension

∂tu =
∂2u

∂2x
− V ′(u) + εξ (21)

where
E(ξ(t, x)ξ(t′, x′)) = δ(t− t′)δ(x− x′)

with ξ(t, x) = ∂t∂xw(t, x), and w(t, x) the Brownian sheet.

Equation (21) can be written as an integral equation (mild form)

u = G ∗ u0 −
∫ t

0
G ∗ V ′(u) + εw (22)

G = (∂t − ∂2

∂2x
)−1(t, x, t′, x′) is the fundamental solution of the

heat equation.
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The stochastic Burgers equation in one dimension

∂tu = ν∆xu−
1

2
∂xu

2 + εξ (23)

We can rewrite (23) in mild form

u = G ∗ u0 −
1

2

∫ t

0
∂xG ∗ u2 + ε

∫ t

0
∂xG ∗ dw (24)

Using the Hopf-Cole tranformation u(t, x) = −2ν∂x lnψ(t, x) we
obtain

∂tψ = ν∂2
xψ −

ε

2ν
ψ ◦ ∂tw (25)
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KPZ equation

∂th = −λ(∂xh)2 + ν∂2
xh+D

1
2 ξ (26)

where ξ denotes space-time white noise which is the distribution
valued Gaussian field with correlation function

E(ξ(t, x)ξ(s, y)) = δ(t− s)δ(x− y) (27)

By denoting u = ∂xh we obtain

∂tu = ν∆xu− λ∂xu2 +D
1
2∂xξ (28)

that is a stochastic Burgers equation which has the form of a
conservation law.
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Equation (26) can be changed, introducing the Cole-Hopf
tranformation

z(x, t) = exph(x, t) (29)

into the stochastic heat equation with multiplicative noise

∂tz = ∂2
xz + zξ (30)
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Stochastic quantization in 2 and 3 dimensions

∂tφ = ∆φ−m2φ− gφ3 + ξ (31)

The stochastic quantization equation provides a dynamical
approach to the euclidean quantum field theory φ4

dµ(φ) = exp−V (φ)dµG(φ) (32)

where dµG(φ) is the Gaussian measure of covariance (−∆ +m2)−1

and V (φ) is the space integral of a fourth order monomial

V (φ) =
1

4

∫
dxφ4 (33)
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Scaling

Define

φ̄(t, x) = λ
d
2
−1φ(λ2t, λx)

Then (31) can be written

∂tφ̄ = ∆φ̄− λ2m2φ̄− λ4−dgφ̄3 + ξ̄ (34)

where ξ̄ has the same law as ξ.

This form suggests that at small distances the linear part
dominates for d < 4 and the non-linearity is a small perturbation.
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Equations (31) and (32) cannot be taken literally as they involve
powers of distributions. They have to be modified to become
mathematically meaningful. This is the renormalization problem.

In general there is not a unique way to renormalize. One follows
the experience gained with quantum field theory. For example in
two space dimensions it is enough to replace powers of the field
with the so called Wick products according to the rule

φn → : φn : = C
n
2Hn(C−

1
2φ) (35)

where Hn is the Hermite polynomial of order n and C = E(φ2), E
is the expectation with respect to the Gaussian measure dµG. The
requirement of physics is that measurable quantities should not
depend on the way you renormalize.
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Distribution valued stochastic fields

The field φ(x) is not a good stochastic variable as its moments in
space dimension d > 2 are infinite. However our problem requires
to deal with powers of φ, in particular with

∫
φ4dx. Luckily

: φn(x) : are good distribution valued stochastic variables.

They can be defined as follows. One regularizes φ by introducing a
cut-off κ in the fourier integral representation and showing that
the moments of φ(f) with respect to the measure dµG form a
Cauchy sequence so that

|| : φn(f) : − : φnκ(f) : ||p ≤ cf,pκ−ε
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Weak dynamics

We first transform (31) into a modified and renormalized equation

∂tφ = −(−∆− 1)ρφ+ (−∆ + 1)−1+ρ : φ3 : +ξ (36)

where ξ satisfies

E(ξ(t, x)ξ(s, y)) = δ(t− s)(−∆ + 1)−1+ρ(x, y) (37)

with 0 < ρ < 1. A mild version of (36) is

φt = Zt +

∫ t

0
ds exp[−(t− s)C−ρ]C1−ρ∗ : φ3 : (38)

where Zt is the solution of

dZt = −C−ρZt + ξ (39)
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The weak dynamics is defined by

Eφ0(f(φt)) ≡ Eφ0(f(Zt) exp ζt) (40)

with

ζt =

∫ t

0
(: Z3

s : dξs) (41)

−1

2

∫ t

0
ds(: Z3

s : C1−ρ : Z3
s :)

where φ0 is the initial condition and f(φ) is a functional of φ.

Ref: J-L, Mitter, CMP (1985)
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Strong dynamics
G. Da Prato, A. Debussche, The Annals of Probability, 31, 1900 (2003).

These authors showed that (36) for ρ = 1 has strong solutions in
an appropriate Besov space. The trick is to split the unknown into
two parts: φt = Yt + Zt where Zt is the stochastic convolution

Zt =

∫ t

−∞
e(t−s)C−1

dξ(s) (42)

Then they observe that Yt is smoother than φt and

: φk :=

k∑
l=0

C lkY
l : Zk−l : (43)

in this way the non-linearity is continuous in Y and the equation
takes the form

∂tY = (∆− 1)Y −
3∑
l=0

C l3Y
l : Z3−l : (44)
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Besov spaces

We recall their definition. For any q ∈ N and given the canonical
Fourier basis ek in A = [0, 2π]2 we set

δqu =
∑

2q−1<|k|≤2q

ukek

then for σ ∈ R, p ≥ 1, r ≥ 1 we define the Besov space

Bσp,r(A) = {u :
∑
q

2rqσ|δqu|rLp(A) <∞}

with norm
|u|Bσp,r(A) = (

∑
q

2rqσ|δqu|rLp(A))1/r (45)
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Fluctuating hydrodynamics
The macroscopic dynamics of diffusive systems is described by
hydrodynamic equations provided by conservation laws and
constitutive equations, that is equations expressing the current in
terms of the thermodynamic variables. More precisely on the basis
of a local equilibrium assumption, at the macroscopic level the
system is completely described by a local multicomponent density
ρ(t, x) and the corresponding local currents j(t, x){

∂tρ(t) +∇ · j(t) = 0

j(t) = J(ρ(t))
(46)

For diffusive systems the constitutive equation takes the form

J(ρ) = −D(ρ)∇ρ+ χ(ρ)E (47)

where the diffusion coefficient D(ρ) and the mobility χ(ρ) are d×d
symmetric and positive definite matrices, E is an external field.
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To study fluctuations, for example at constant temperature, one
adds to the current a fluctuating term j = J(ρ) + (2κT0 χij(ρ))

1
2 ξ,

ξ is a Gaussian random term with variance

E(ξi(t, x), ξj(t
′, x′)) = δ(t− t′)δ(x− x′)

κ is the Boltzmann constant and T0 the temperature.

The hydrodynamic equation takes the form

∂tρ+∇(J(ρ) + (2κT0 χij(ρ))
1
2 ξ) = 0 (48)

The noise is therefore multiplicative and there is an extra space
derivative.
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Large deviations

Heuristically the following large deviation formula can be obtained

P � exp
{
− 1

κT0

1

4

∫
dt

∫
dx
(
j−J(ρ)

)
·χ(ρ)−1

(
j−J(ρ)

)}
, (49)

j is the actual value of the current fluctuation, which is connected
to ρ by the continuity equation ∂tρ+∇ · j = 0, while J(ρ) is the
hydrodynamic current for the given value of ρ, and χ is the
mobility.

This formula can be proven for several lattice gas models, that is
for microscopic systems, and its application provides exact results
in all the cases where its has been tested.
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Large deviations for the invariant measure

From the previous formula the following variational expression of
the stationary large deviation rate follows

V (ρ) = inf
ρ(t),j(t) :
∇·j=−∂tρ

ρ(−∞)=ρ̄,ρ(0)=ρ

I[−∞,0](ρ, j) (50)

where

I[T0,T1](ρ, j) =
1

4

∫ T1

T0

dt

∫
Λ
dx [j − J(ρ)] · χ(ρ)−1[j − J(ρ)] (51)

and ρ̄ is the stationary solution of the hydrodynamic equations.
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The variational principle (50) can be solved exactly for some
models in particular for the boundary driven simple exclusion
process.

The result is the same one would obtain by applying formally the
Freidlin-Wentzell theory to (48)

Ref: Bertini, De Sole, Gabrielli, J-L, Landim, J. Stat. Phys. (2002)
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Large deviation functional for the density
The large deviation functional for the density can be obtained by
projection. We fix a path ρ = ρ(t, u), (t, u) ∈ [0, T ]×Λ. There are
many possible trajectories j = j(t, u), differing by divergence free
vector fields, such that the continuity equation is satisfied. By
minimizing I[0,T ](ρ, j) over all such paths j

I[0,T ](ρ) = inf
j :

∇·j=−∂tρ

I[0,T ](j) (52)

Let F be the external field which generates the current j according
to

j = −D(ρ)∇ρ+ χ(ρ)(E + F ) .

and minimize with respect to F . We show that the infimum above
is obtained when the external perturbation F is a gradient vector
field whose potential H solves

∂tρ = ∇ ·
(
D(ρ)∇ρ− χ(ρ)

[
E +∇H

])
(53)

which is a Poisson equation for H.
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Write
F = ∇H + F̃ (54)

We get

I[0,T ](j) =
1

4

∫ T

0
dt
{
〈∇H,χ(ρ)∇H〉+ 〈F̃ , χ(ρ)F̃ 〉

}
Therefore the infimum is obtained when F̃ = 0. Then I[0,T ](ρ) can
be written

I[0,T ](ρ) =
1

4

∫ T

0
dt
〈
∇H(t), χ(ρ(t))∇H(t)

〉
(55)

=
1

4

∫ T2

T1

dt
〈[
∂tρ+∇ · J(ρ)

]
K(ρ)−1

[
∂tρ+∇ · J(ρ)

]〉
where the positive operator K(ρ̂) is defined on functions
u : Λ→ R vanishing at the boundary ∂Λ by
K(ρ̂)u = −∇ ·

(
χ(ρ̂)∇u

)
.
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An example in one space dimension: the boundary driven
simple exclusion process

The fluctuating hydrodynamics equation is the stochastic heat
equation on the interval [−1, 1]

∂tρ = ∂2
xρ+ ∂x((2κT0ρ(1− ρ))

1
2 ξ) (56)

with
< ξ(t, x)ξ(s, y) >= δ(t− s)δ(x− y) (57)

and 0 ≤ ρ ≤ 1.

The space boundary conditions are ρ(−1) = ρ−, ρ(1) = ρ+
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The case of the simple exclusion
The large deviation functional V (ρ) can be calculated explicitely
simple exclusion process

V (ρ) = F (ρ) +

∫
[−1,1]

dx

{
(1− ρ)φ+ log

[
∇φ

∇ρ̄ (1 + eφ)

]}
(58)

when φ(x; ρ) solves
∆φ(x)

[∇φ(x)]2
+

1

1 + eφ(x)
= ρ(x) x ∈ (−1, 1) ,

φ(±1) = log ρ(±1)/[1− ρ(±1)] .

(59)

and

F (ρ) =

∫
[−1,+1]

dx{ρ log ρ+ (1− ρ) log(1− ρ)} (60)

Ref: Derrida, Lebowitz, Speer 2002; Bertini, De Sole, Gabrielli,
J-L, Landim 2002
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The theory of weak or strong solutions developed so far apparently
is not sufficient for equations like (56). An effort should be made
to derive microscopically fluctuating hydrodynamics in a spirit
similar to what Bertini and Giacomin did in 1997 for the KPZ
equation. This should help to give a mathematical meaning to (56)

Assuming that a theory of (56) is possible including large deviation
estimates, we would expect that the large deviation functional
coincides with (58). The experience we have so far with weak or
strong solutions of the stochastic quantization tells us that the
large deviation functional does not depend on the way the
equations are renormalized.

Ref: J-L, Mitter (1990); Hairer, Weber (2014)
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A linear singular equation
Dorfman, J., T. Kirkpatrick, and J. Sengers, 1994, Annu. Rev. Phys. Chem. 45, 213.

∂tφ = D∆φ+ ξ (61)

where

< ξ(t, x)ξ(t′, x′) >= (χ⊥∆⊥ + χ‖∆‖)δ(x− x′)δ(t− t′) (62)

We allow spatial anisotropy by having a different magnitude of the
noise in two different subspaces.

This equation has been proposed to model non-equilibrium long
range correlations of thermodynamics variables.
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Non-gradient examples

∂t~φ = ∆~φ− δV

δ~φ
+ ~F (~φ) + ~ξ (63)

The theory of weak solutions applies to an equation of this form in
d = 2 provided the gradient term dominates over the non-gradient
part for large values of |~φ|.

Ref: J-L, Seneor (1991)
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A special case of equation (63)

Let ~φ be a two component field and consider the equation

∂t~φ = (∆− 1)~φ+A(|~φ|)~φ+ ε~ξ (64)

where A(|~φ|) is the 2× 2 matrix∣∣∣∣∣ λ1(1− |~φ|2) − λ2(1− |~φ|2)

λ2(1− |~φ|2) λ1(1− |~φ|2)

∣∣∣∣∣
With this choice the gradient and non-gradient parts are
orthogonal.
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Renormalized equations

∂t~φ = −(−∆ + 1)ρ~φ+ (−∆ + 1)−1+ρ : A(|~φ|)~φ : +~ξ (65)

where

E(ξi(t, x)ξj(s, y)) = δijδ(t− s)(−∆ + 1)−1+ρ(x− y) (66)

with ρ < 1 and

: |~φ|2φ1 := φ3
1 − 3cφ1 + φ1(φ2

2 − c) =: φ3
1 : +φ1 : φ2

2 : (67)

: |~φ|2φ2 := φ3
2 − 3cφ2 + φ2(φ2

1 − c) =: φ3
2 : +φ2 : φ2

1 : (68)

c = C(x, x) = (−∆ + 1)−1(x, x)
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Stability condition

The condition of dominance of the gradient part in this case is
(ρ = 1)

−
∫ T

0
ds|| : AD(Zs)Zs : ||2 + λ

∫ T

0
ds|| : AND(Zs)Zs : ||2 < M

(69)
for an appropriate choice of λ, M is a positive constant. AD, AND
are the diagonal and non-diagonal parts of the matrix A.

A natural question is whether constraints are required in the
present theory of strong solutions.
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Some questions about large deviations in SSPDEs

Large deviations principles provide the asymptotic behavior of a
family of probability distributions when the intensity of the noise
vanishes. However to be useful in concrete problems, e.g. in
physics, one must estimate the intensity of the noise below which
one is asymptotic and also the errors involved.

In the case of SSPDEs, since the solutions are distributions, a
typical question one may ask is about the behavior of an average
of the field over a region, e.g. a sphere, of linear dimension L, that
is
∫

Λ dxφ(x).

A major difference with respect to the theory of stochastically
perturbed finite dimensional dynamical systems is that the
intensity of the noise depends on the size of the region.
Fluctuations are stronger on small scales. It will be important in
applications to know how the maximal intensity and the error
allowed in a problem scale with L.
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Large deviations for SSPDEs have been studied by J-L and Mitter
in the case of weak solutions (1990) and by Hairer and Weber for
strong solutions (2014). In our work we introduced the scale over
which the field has to be studied.
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Stochastic lyapunov functions

In the theory of ordinary stochastic differential equations if a
smooth function V (x) ≥ 0 satisfies

LV ≤ −c1V + c2 (70)

where L is the generator and ci ≥ 0, the solution is bounded in
probability. This property is called stochastic boundedness.

Is there an equivalent for SSPED’s ?

For the stochastic quantization with a regularized noise the L2

norm

||φ||22 =

∫
dxφ2(x) (71)

is a stochastic Lyapunov function which however does not make
sense if φ is a distribution.

40 / 50



A simulation of the renormalized equation
R.Benzi, G. Jona-lasinio, A. Sutera, J. Stat. Phys. 55, 505 (1989)

We consider the equation

∂tφ = ν∆φ−mφ− gφ3 + 3gCφ+ ε1/2ξ (72)

and its discretized version on a two-dimensional lattice

dφj,k = (ν/a2(∆φ)j,k)− µφj,k − gφ3
j,k)dt+ ε1/2/adwj,k (73)

where j, k = 1, ...., N , a is the lattice step and

µ = −m+ 3gC (74)
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For fixed finite C and sufficiently large g the quadratic potential
becomes a double well which is at the origin of a phase transition
in infinite volume as proved long ago by Glimm, Jaffe and Spencer.

In finite volume we expect the process to jump between the two
minima a fact that should be reflected by the invariant measure.
However, and this is the effect of interest, the appearance of
bimodality depends on the scale at which we observe the field. Due
to ultraviolet divergences the fluctuations of the field smeared over
a small space region will be so large as to conceal the double well.
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Denote by

ψ(M) =
1

M2

∑
j,k=1,2...,M

φj,k (75)

and by P (M, g) the stationary probability distribution of ψ(M) for
a given value of g and a = 1/16.

For M = N , ψ is the space average of φj,k, while for M = 1 is the
value of the field in one point. We take periodic boundary
conditions.
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An interesting feature is the absence of a bimodal distribution at
small scale. This property was proposed as a possible
interpretation of certain geophysical data.
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Cluster expansion in time
G. Jona-Lasinio, R. Seneor, J. Stat. Phys. 83, 1109 (1996)

We consider the model equation

φ̇ = −φ− λ : φ3 : +ẇ (76)

We want to calculate the T →∞ limit of

Eφ0(F (φT )eξT ) (77)

Then the following holds. Let φ0 be an arbitrary real number and
F a polynomial. For λ small enough

1 (77) can be expressesd as a convergent series uniformly in T

2 There exists a stationary measure µ such that∫
dµF1(φt1) · · ·Fn(φtn) = lim

T→∞
Eφ0(F1(φT+t1) · · ·Fn(φT+tn))

(78)
independently of φ0

48 / 50



The expansion is defined in such a way that one tries to decouple
intervals of time containing the final time T . To define the initial
step one introduces an interpolation parameter s ∈ [0, 1] and
defines the interpolating covariance for the OU process

C(s, t, t′) = [χ[T−1,T ](t)C(t, t′)χ[T−1,T ](t
′)

+(1− χ[T−1,T ])(t)C(t, t′)(1− χ[T−1,T ])(t
′)](1− s) + sC(t, t′)

together with the interpolating “final condition”

φ4
T (s) = φ4

T + (1− s)φ4
T−1

Then one introduces these interpolations in (77) obtaining Eφ0(s)

Eφ0(F (φT )eξT ) = Eφ0(s = 0) +

∫ 1

0
ds

d

ds
Eφ0(s) (79)

If I recall correctly similar ideas were proposed by Bricmont and
Kupiainen.
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Some home work

Provide a foundation, microscopic and macroscopic, to
fluctuating hydrodynamics

Extend the theory of strong solutions to non-gradient
equations where the deterministic part has non trivial
attractors. Is it possible to develop a notion of random
attractor, in the sense of Crauel and Flandoli 1994, for
singular stochastic PDEs?

Construct stochastic lyapunov functions for SSPDEs
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