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An undirected weighted graph

Let G = (V ,E ) be a locally finite connected graph with vertex set
V and set E of undirected edges.

You can think of

I your favorite graph,

I a finite box in Zd , or

I the integer lattice Zd .

Every edge e ∈ E is given a weight ae > 0. The simplest case
consists in constant weights

ae = a for all e ∈ E .



Edge-reinforced random walk

Edge-reinforced random walk is a stochastic process (Xt)t∈N0 on G
defined as follows:

I The process starts in a fixed vertex 0 ∈ V : X0 = 0

I At every time t it jumps to a nearest neigbor i of the current
position Xt with probability proportional to the weight of the
edge between Xt and i .

I Each time an edge is traversed, its weight is increased by one.



Edge-reinforced random walk - formal definition

Let wt(e) denote the weight of edge e at time t. We define
(Xt)t∈N0 and (wt(e))e∈E ,t∈N0 simultaneously as follows:

I Initial weights: w0(e) = ae for all e ∈ E

I Starting point: X0 = 0

I Linear reinforcement:

wt(e) = ae +
t−1∑
s=0

1{Xs ,Xs+1}=e , t ∈ N, e ∈ E .

I Probability of jump:

P(Xt+1 = i |(Xs)0≤s≤t) =
wt({Xt , i})∑
e∈E :Xt∈e wt(e)

1{Xt ,i}∈E ,

t ∈ N, i ∈ V .



Linear reinforcement

The probability to jump to a neighboring point is proportional to
the edge weight.

The reinforcement is linear in the number of edge crossings:

wt(e) = ae + kt(e),

where

I wt(e) = weight of edge e at time t,

I ae = initial weight,

I kt(e) = number of traversals of edge e up to time t.



Motivation

I Edge-reinforced random walk was introduced by Persi
Diaconis in 1986. He came up with the model when he was
walking randomly through the streets of Paris and traversing
the same streets over and over again.

I Othmer and Stevens used edge-reinforced random walk as a
simple model for the motion of myxobacteria. These bacteria
produce a slime and prefer to move on their slime trail.
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The Polya urn
Consider edge-reinforced random walk on the following graph:

e

f

The process of the edge weights (wt(e),wt(f ))t∈N0 behaves as
follows:

I w0(e) = a, w0(f ) = b

I Each time an edge is picked, its weight is increased by 1.

This is a Polya urn process:

I Consider an urn with a red and b blue balls.

I We draw a ball and return it to the urn with an additional ball
of the same color.

I

{
wt(e)
wt(f )

}
corresponds to the number of

{
red
blue

}
balls in

the urn after t drawings.
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An urn with polynomial reinforcement

I Consider an urn with a red and b blue balls.

I Let

{
kt(e)
kt(f )

}
denote the number of

{
red
blue

}
balls drawn

from the urn up to time t. Set

{
wt(e) = (a + kt(e))α

wt(f ) = (b + kt(f ))α

}
,

where α > 0 is fixed.

I The probability to draw a red ball at time t is given by

wt(e)

wt(e) + wt(f )
.



The urn with polynomial reinforcement

The probability to draw k + 1 red balls at the beginning equals

aα

aα + bα
· (a + 1)α

(a + 1)α + bα
· (a + 2)α

(a + 2)α + bα
· · · (a + k)α

(a + k)α + bα
.

The probability to draw only red balls is given by

P(only red) =
∞∏
i=0

(a + i)α

(a + i)α + bα
=
∞∏
i=0

(
1− bα

(a + i)α + bα

)
.

Hence P(only red) > 0 if and only if

∞∑
i=0

bα

(a + i)α + bα
<∞ ⇐⇒

∞∑
i=1

1

iα
<∞ ⇐⇒ α > 1.

In this sense, α = 1 which corresponds to linear reinforcement is
the critical case.
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Random walk with superlinear edge-reinforcement

Random walk with superlinear edge-reinforcement is a stochastic
process (Xt)t∈N0 on a graph G defined as follows:

I Initial weights: ae , e ∈ E

I Starting point: X0 = 0

I kt(e) = number of traversals of edge e up to time t

I Superlinear reinforcement:

wt(e) = (ae + kt(e))α, t ∈ N, e ∈ E

for some α > 1.

I Probability of jump:

P(Xt+1 = i |(Xs)0≤s≤t) =
wt({Xt , i})∑
e∈E :Xt∈e wt(e)

1{Xt ,i}∈E ,

t ∈ N, i ∈ V .



Random walk with superlinear edge-reinforcement

Theorem (Limic-Tarrès 2006, Cotar-Thacker 2016)

On any graph of bounded degree, random walk with superlinear
edge-reinforcement gets stuck on one edge almost surely.
I.e. eventually, the random walk jumps back and forth on the same
edge.

In particular, in the urn with superlinear reinforcement (α > 1) we
will eventually draw balls from the same color.
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Exchangeability
Consider edge-reinforced random walk on the following graph:

e

f

with w0(e) = a, w0(f ) = b.

Each time an edge is picked, its weight is increased by 1.

Let Yt ∈ {e, f } be the edge chosen by the random walk at time t.

Lemma
The sequence (Yt)t∈N0 is exchangeable: For all n ∈ N and any
permutation π on {0, 1, . . . , n},

(Yt)0≤t≤n and (Yπ(t))0≤t≤n are equal in distribution.

Moral: It does not matter in which order the edges are traversed,
only the number of traversals is important.
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Exchangeability - a proof

Let n ∈ N, yt ∈ {e, f }, 0 ≤ t ≤ n − 1,

k :=|{t ∈ {0, . . . , n − 1} : yt = e}| = number of traversals of e,

n − k =|{t ∈ {0, . . . , n − 1} : yt = f }| = number of traversals of f .

Then, the probability that the random walk chooses the edges yt is
given by

P(Yt = yt ∀0 ≤ t ≤ n − 1) =

∏k−1
t=0 (a + t)

∏n−k−1
t=0 (b + t)∏n−1

t=0 (a + b + t)
.

This probability depends only on the number of traversals of the
edges, but not on the order of the yt .
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Asymptotic behavior

Lemma
Let

αn(e) :=
kn(e)

n

be the proportion of crossings of edge e up to time n.

As n→∞ it converges almost surely to a random limit with a
Beta(a, b)-distribution.

The Beta(a, b)-distribution has the density

ϕa,b(x) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1− x)b−1, x ∈ (0, 1).

For a = b = 1 this is the uniform distribution.
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Asymptotic behavior - a rough idea of the argument

Using exchangeability, we have for k ∈ {0, . . . , n}

P

(
αn(e) =

k

n

)
=

(
n

k

)∏k−1
t=0 (a + t)

∏n−k−1
t=0 (b + t)∏n−1

t=0 (a + b + t)
.

In the special case a = b = 1 this simplifies to

P

(
αn(e) =

k

n

)
=

(
n

k

)
k!(n − k)!

(n + 1)!
=

1

n + 1
.

This can be used to prove weak convergence to a uniform
distribution. For the almost sure convergence, one can use a
martingale argument.
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De Finetti’s theorem: a mixture of i.i.d. processes
e

f

Theorem
The sequence of chosen edges is a mixture of i.i.d. sequences
where the probability x to choose edge e is distributed according
to a Beta(a, b)-distribution.

More formally: Let Qx denote the law of an i.i.d. sequence where{
e
f

}
is chosen with probability

{
x

1− x

}
. Then, one has for

any event A

P((Yt)t∈N0 ∈ A) =

∫ 1

0
Qx((Yt)t∈N0 ∈ A)ϕa,b(x) dx .

This follows from de Finitti’s theorem. It is not hard to check it
directly.
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De Finetti’s theorem: a mixture of i.i.d. processes

e

f

In particular, the probability to traverse edge e precisely k times up
to time n is given by

P(kn(e) = k) =

∫ 1

0
Qx(kn(e) = k)ϕa,b(x) dx

=

(
n

k

)∫ 1

0
xk(1− x)n−k ϕa,b(x) dx
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Three points in a line

Consider linearly edge-reinforced random walk on the following
graph with w0(e) = a, w0(f ) = b:

e f0−1 1

I When the random walk jumps from 0 to 1, it needs to return
to 0 in the next step.

I When it returned to 0, the weight of f increased by 2.

Hence, the decision where to jump from 0 can be modelled by the
following variant of a Polya urn:

I Consider an urn with a red and b blue balls.

I We draw a ball and return it to the urn with two additional
balls of the same color.
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The Polya urn where we add two balls

Let Polya(a, b, `) denote the Polya urn process with

I initially a red and b blue balls,

I where in each step we return the ball together with ` balls of
the same color.

Polya(a, b, 2) and Polya

(
a

2
,

b

2
, 1

)
have the same distribution.

Reason: The finite dimensional distributions agree, e.g.

Pa,b,2(Y0 = e,Y1 = e) =
a

a + b
· a + 2

a + b + 2
=

a
2

a+b
2

·
a
2 + 1

a+b
2 + 1

=P a
2
, b
2
,1(Y0 = e,Y1 = e)
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The Polya urn

More generally, for any ` > 0,

Polya(a, b, `) and Polya

(
a

`
,

b

`
, 1

)
have the same distribution.

Hence, when we consider Polya(a, b, 1), then

{
small
large

}
initial

weights a, b correspond to

{
strong
weak

}
reinforcement.
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Edge-reinforced random walk on Z
Consider edge-reinforced random walk on Z starting at 0 with
constant initial weights ae = a for all edges e.

Assume the random walker is at i ∈ Z and it jumps from i to i + 1.
If it comes back to i at some later time, it comes back from the
right and the weight of the edge {i , i + 1} has increased by 2.

Decisions whether to go left or right are independent for different
vertices.

Thus, we can put independent Polya urns at the vertices:

Polya(a, a + 1, 2)
d
= Polya

(
a
2 ,

a+1
2 , 1

)
at i ≤ −1,

Polya(a, a, 2)
d
= Polya

(
a
2 ,

a
2 , 1
)

at i = 0,

Polya(a + 1, a, 2)
d
= Polya

(
a+1
2 , a2 , 1

)
at i ≥ 1,

In order to decide whether the random walk jumps left or right we
draw a ball from the Polya urn.
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Edge-reinforced random walk on Z

Using that the Polya urn is a mixture of i.i.d. sequences, we
conclude:

Lemma
Edge-reinforced random walk on Z has the same distribution as a
random walk in a random environment where the environment is
given by independent Beta-distributed jump probabilities.



Edge-reinforced random walk on Z
More formally: For p = (pi )i∈Z with pi ∈ (0, 1), let Q0,p denote the
distribution of the Markovian random walk on Z starting at 0 with
transition probabilities given by

Q0,p(Xt+1 = i + 1|Xt = i) =pi ,

Q0,p(Xt+1 = i − 1|Xt = i) =1− pi ,

i ∈ Z, t ∈ N0.

Let

µ0,a =
⊗
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Beta
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The law of edge-reinforced random walk on Z is given by

Perrw
0,a ((Xt)t∈N0 ∈ A) =

∫
(0,1)Z

Q0,p((Xt)t∈N0 ∈ A)µ0,a(dp)

for any event A.
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Edge-reinforced random walk on Z

Theorem
For all constant initial weights, edge-reinforced random walk on Z
is recurrent. Even more, it is a unique mixture of positive recurrent
Markov chains.



Edge-reinforced random walk on a binary tree

A similar construction can be done for any tree.

Pemantle used this to prove a phase transition for the binary tree.

Theorem (Pemantle 1988)

There exists ac > 0 such that edge-reinforced random walk on the
binary tree with constant initial weights a has the following
properties:

I For 0 < a < ac , edge-reinforced random walk is recurrent.
Almost all its paths visit every vertex infinitely often. Even
more, it is a mixture of positive recurrent Markov chains.

I For a > ac , edge-reinforced random walk is transient. Almost
all its paths visit every vertex at most finitely often.
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Partial exchangeability

Lemma
Edge-reinforced random walk is partially exchangeable:
The probability to traverse a finite path depends only on the
starting point and on the number of crossings of the undirected
edges.

The following theorem is due to Diaconis-Freedman 1980.

Theorem (De Finetti’s theorem for Markov chains)

If a process is partially exchangeable and it comes back to its
starting point with probability one, then it is a mixture of reversible
Markov chains.

Using a Borel-Cantelli argument, one can verify the recurrence
assumption for edge-reinforced random walk on any finite graph.
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Reversible Markov chains

A Markov chain (Xt)t∈N0 on V is reversible if it fulfills the detailed
balance condition: there exists a reversible measure π such that for
all i , j ∈ V one has

π(i)p(i , j) = π(j)p(j , i),

where p(i , j) denote the transition probabilities.

An irreducible Markov chain is reversible if and only if it is a
random walk on an undirected weighted graph: Put weight

x{i ,j} := π(i)p(i , j)

on the edge between i and j .

Thus, to describe the mixing measure for edge-reinforced random
walk on a finite graph, we can describe a measure on edge weights
xe , e ∈ E .
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Edge-reinforced random walk as a mixture
For x = (xe)e∈E ∈ (0,∞)E , let Q0,x denote the distribution of the
random walk on the graph G with weights xe on the undirected
edges e ∈ E starting at 0. I.e.

Q0,x(Xt+1 = i |(Xs)0≤s≤t) =
x{Xt ,i}∑

e∈E :Xt∈e xe
1{Xt ,i}∈E ,

t ∈ N, i ∈ V .

Theorem
For edge-reinforced random walk on any finite graph with any
initial weights a = (ae)e∈E , there exists a unique probability
measure µ0,a on the set (0,∞)E of edge weights such that for all
events A, one has

Perrw
0,a (A) =

∫
(0,∞)E

Q0,x(A)µ0,a(dx).
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Description of the mixing measure

I Let e0 ∈ E be a reference edge with 0 ∈ E0.

I dv = vertex degree of v

I xv =
∑

e∈E :v∈e xe
I T = set of spanning trees of G

Theorem (Magic formula)

The mixing measure µ0,a for the edge-reinforced random walk on a
finite graph with constant initial weights a and starting point 0 is
given by

µ0,a(dx) =

1

z

√
x0
∏

e∈E xa
e∏

v∈V x
(adv+1)/2
v

√∑
T∈T

∏
e∈T

xe δ1(dxe0)
∏

e∈E\{e0}

dxe
xe

with a normalizing constant z and dxe the Lebesgue measure on
(0,∞).



The mixing measure

The mixing measure was described explicitly by

I [Coppersmith-Diaconis, 1986] (The first paper about
reinforced random walks, unpublished.)

I [Keane-R., 2000] (The first paper of my Ph.D. thesis.)

I [Merkl-Öry-R., 2008]

I [Sabot-Tarrès-Zeng 2016]

I ...

It is called “Magic formula”. The name is due to Janos Engländer.



Consequences of the mixure of Markov chains

I The dependence structure of the edge weights in the magic
formula is not easy.

I It took almost 20 years before the magic formula was used to
prove results about edge-reinforced random walks.

Finally, it enabled proofs of many results, among others, recurrence
and asymptotic properties of the process

I for Z× G with a finite graph G and arbitrary constant initial
weights [Merkl & R., 2005-2009],

I for a diluted version of Z2 with small initial weights
[Merkl & R., 2009].
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Results for ladders

Consider edge-reinforced random walk on Z× G with a finite
graph G with constant initial weights.

Theorem (Merkl & R. 2008)

Edge-reinforced random walk on Z× G is recurrent. Even more, it
is a unique mixture of positive recurrent Markov chains.

I Let µ denote the mixing measure.

I For i ∈ V , let xi =
∑

e∈E :i∈e xe

Theorem (Merkl & R. 2008)

There exists a constant c > 0 such that for µ-almost all x one has

xi ≤ x0 exp(−c |i |)

for all but finitely many i ∈ V .
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Results for ladders

Theorem (Merkl & R. 2008)

There exist constants c1, c2, c3 > 0 such that the following hold for
edge-reinforced random walk on Z× G with constant initial
weights.

For all t ∈ N0 and all i ∈ V , one has

Perrw
0,a (Xt = i) ≤ c1e−c2|i |.

Perrw
0,a

(
max
0≤s≤t

|Xs | ≤ c3 log t for all but finitely many t

)
= 1

Perrw
0,a (τi < τ0) ≤ c1e−c2|i |
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Connection with the vertex-reinforced jump process

In 2011 Sabot and Tarrès found a connection between
edge-reinforced random walk and the vertex-reinforced jump
process which turned out to be very useful.

I Consider a locally finite, undirected graph G = (V ,E ) with
edge weights We > 0, e ∈ E .

I The vertex-reinforced jump process Y = (Yt)t≥0 is a process
in continuous time where given (Ys)s≤t the particle jumps
from site i to a neighbor j with rate

WijLj(t),

where

Lj(t) = 1 +

∫ t

0
1{Ys=j} ds

is the local time at j with offset 1.
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The vertex-reinforced jump process as a mixture

Theorem (Sabot-Tarrès 2011)

On any finite graph, the discrete-time process Ỹ associated with
the vertex-reinforced jump process is a mixture of reversible
Markov chains.

There is a unique probability measure PW
0 on (0,∞)E , depending

on the starting point 0 and the weights W = (We)e∈E of the
vertex-reinforced jump process such that for any event A ⊆ V N0 ,
one has

Pvrjp
0,W (Ỹ ∈ A) =

∫
(0,∞)E

Q0,x(A)PW
0 (dx).
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The mixing measure for the vertex-reinforced jump process

Theorem (Sabot-Tarrès 2011)

The mixing measure PW
0 can be described by putting on the edge

{i , j} the weight
Wije

ui+uj

with (ui )i∈V distributed according to (a marginal of) Zirnbauer’s
supersymmetric (susy) hyperbolic non-linear sigma model.

The supersymmetric hyperbolic non-linear sigma model was
introduced by Zirnbauer in 1991 in a completely different context.



The supersymmetric hyperbolic non-linear sigma model

I Zirnbauer writes that it may serve as a toy model for studying
diffusion and localization in disordered one-electron systems.

I It is a statistical mechanics model with a Hamiltonian like in
the Ising model except that the spin variables are much more
complicated.

I It is tractable because of its (super-)symmetries.



A new representation of the mixing measure for
edge-reinforced random walk

Theorem (Sabot-Tarrès 2011)

On any finite graph, the edge-reinforced random walk X is a
mixture of the law of the discrete-time process Ỹ associated to the
vertex-reinforced jump process if one takes We , e ∈ E ,
independent and Gamma(ae)-distributed.

Then, for any event A ⊆ V N0 , one has

Perrw
0,a (X ∈ A) =

∫
(0,∞)E

Pvrjp
0,W (Ỹ ∈ A)

∏
e∈E

Γae (dWe)

=

∫
(0,∞)E

∫
Q0,(Wije

ui+uj ){i,j}∈E
(A)µW ,susy

0 (du)
∏
e∈E

Γae (dWe),

where µW ,susy
0 denotes the law of Zirnbauer’s model.
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Consequences for edge-reinforced random walk

This connection allowed to transfer results from the susy model to
edge-reinforced random walk.

Consider edge-reinforced random walk on Zd with constant initial
weights. There is a phase transition between recurrence and
transience.

I [Sabot-Tarrès 2011]
recurrence for d ≥ 2 for small initial weights

I [Disertori-Sabot-Tarrès 2014]
transience for d ≥ 3 and large initial weights

[Angel-Crawford-Kozma 2012]
gave an alternative proof for the recurrence part without using the
connection to the non-linear supersymmetric sigma model.
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Recurrence of edge-reinforced random walk on Z2

Theorem (Sabot-Zeng 2015)

On Z2, edge-reinforced random walk is recurrent for all constant
initial weights.

The proof is not easy.

Key ingredients:

I a martingale

I an estimate from [Merkl & R., 2008]:

Let τi denote the first hitting time of i . Then, there exists
α > 0 such that for all i ∈ Z2

Perrw
0,a (τi < τ0) ≤ ‖i‖−α∞ .
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Estimate for the hitting probability
There exists α > 0 such that for all i ∈ Z2

Perrw
0,a (τi < τ0) ≤ ‖i‖−α∞ .

Let Bn = [−n, n]2 ∩ Z2.
The probability to hit the boundary of Bn before returning to the
origin for the edge-reinforced random walk is given by

Perrw
0,a (τ∂Bn < τ0) ≤

∑
i∈∂Bn

Perrw
0,a (τi < τ0) ≤ cn · n−α

with a constant c .
For recurrence one needs

lim
n→∞

Perrw
0,a (τ∂Bn < τ0) = 0.

This is garanteed only for α > 1, which is not known.
However, the argument of Sabot and Tarrès worked with α > 0.
They needed decay of the weights to get a contradiction.
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Estimate for the hitting probability
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Method of proof

It is crucial that we have a mixture of reversible Markov chains.

Consider the Markovian random walk with law Q0,x .
A reversible measure is given by

πi =
∑

e∈E :i∈e
xe .

If we can show that the edge weights are summable∑
e∈E

xe <∞⇒
∑
i∈V

πi <∞

the random walk is positive recurrent.

Decay of the weights gives also bounds on the escape probability of
the random walk.
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Method of proof

Hard part of the proof: Bound the edge weights.

I for ladders: transfer operator

I symmetry for finite pieces with periodic boundary conditions

I Best method nowadays: use the supersymmetric sigma model.



Thank you for your attention!
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