logo UniFi

Elisa Francini

professore associato di analisi matematica

Università degli Studi di Firenze

Dipartimento di Matematica e Informatica "Ulisse Dini"

Viale Morgagni 67/A, 50134 Firenze,
Tel: +39 055 2751406
E-mail: elisa.francini"at"unifi.it


Temi di ricerca  
  • Studio di proprietà geometriche di soluzioni di equazioni alle derivate parziali di tipo ellittico e parabolico.
  • Problemi mal posti e inversi, in particolare di quelli connessi alla tomografia per impedenza elettrica.

     

  • Pubblicazioni

    [28] E. Beretta, M.V. de Hoop, E. Francini, S. Vessella, Stable determination of polyhedral interfaces from boundary data for the Helmholtz equation. submitted arxiv

    [27] E. Beretta, E. Francini, A. Morassi, E. Rosset, S. Vessella, Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces., in print on Inverse Problems arxiv.

    [26] E. Beretta, E. Francini, S. Vessella, Uniqueness and Lipschitz stability for the identification of Lamé parameters from boundary measurements, Inverse Problems and Imaging, 8 (2014), 611-644. arxiv.

    [25] E. Beretta, E. Francini, S. Vessella, Size estimates for the EIT problem with one measurement: The complex case, Revista Matematica Iberoamericana, 30 (2014), 551-580. arxiv .

    [24] E. Beretta, E. Bonnetier, E. Francini, A.L. Mazzucato, Small volume asymptotics for anisotropic elastic inclusions Inverse Problems and Imaging, 6 (2012) 1-23, doi: 10.3934/ipi.2012.6

    [23] E. Beretta, E. Francini Lipschitz stability for the electrical impedance tomography problem: the complex case. , Communications in PDE, 36 (2011), 1723-1749, doi: 10.1080/03605302.2011.552930

    [22] E. Beretta, E. Francini, E. Kim, J. Lee Algorithm for the determination of a linear crack in an elastic body from boundary measurements , Inverse Problems 26 (2010) 085015 (13pp) doi:10.1088/0266-5611/26/8/085015

    [21] H. Ammari, E. Beretta, E. Francini, H. Kang, M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case. Journal de Mathématiques Pures et Appliquées 94 n.3 (2010), 322-339, doi:10.1016/j.matpur.2010.02.001

    [20] E. Beretta, Y. Capdeboscq, F. De Gournay, E. Francini, Thin cylindrical conductivity inclusions in a three-dimensional domain: polarization tensor and unique determination from boundary data, Inverse Problems 25 n.6 (2009) 065004 22pp

    [19] H. Ammari, E. Beretta, E. Francini, H. Kang, M. Lim, Optimization algorithm for reconstructing interface changes of a conductivity inclusion from modal measurements, Mathematics of Computation, 79 (2010), 1757-1777 .

    [18] E. Beretta, E. Francini, S. Vessella, Determination of a linear crack in an elastic body from boundary measurements - Lipschitz Stability, SIAM Journal of Mathematical Analysis, 40 (2008), 984--1002.

    [17] E. Beretta, E. Francini, An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities, SIAM Journal of Mathematical Analysis, 38 (2006), 1249--1261.

    [16] T. Hoft, E. Francini, F. Santosa, An inverse problem in nondestructive evaluation of spot-welds Inverse Problems , 22 (2006) 645-661.

    [15] H. Ammari, E. Beretta, E. Francini, Reconstruction of thin conductivity imperfections, II. The case of multiple segments, Applicable Analysis, Vol. 85, No.1-3, (2006), 87-105.

    [14] H. Ammari, E. Beretta, E. Francini, Reconstruction of thin conductivity imperfections Applicable Analysis, Vol. 83, No.1, (2004), 63-76.

    [13] E. Beretta, E. Francini, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of thin inhomogeneities. Contemporary Mathematics, vol. 333 (2003), 49-62.

    [12] E. Beretta, E. Francini, M. Vogelius Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis , Journal de Mathematiques Pures et Appliquee, Vol. 82, 10, (2003), 1277-1301.

    [11] E. Francini, Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map Inverse Problems , 16 (2000), 107-119.

    [10] A. Colesanti, E. Francini, P. Salani, Convexity and asymptotic estimates for large solutions of Hessian equations, Differential and Integral Equations, 13, (2000), 1459-1472.

    [9] E. Francini, Stability results for a linear parabolic noncharacteristic Cauchy problem, Journal of Ill-Posed and Inverse Problems, 8, n.3, (2000), 255-272.

    [8] V.L.Kamynin, E.Francini, Asymptotic behavior of solutions of some inverse problems for higher order parabolic equations , Russian Journal of Mathematical Physics, 6, n.4, (1999), 394-408.

    [7] F. De Vita, E. Francini, Commenti sui dati statistici universitari nell'ultimo trentennio, La matematica nella cultura e nella società, Boll. Unione Mat. Ital., (8) 1-A (1998), 111-120.

    [6] E. Francini, A. Greco, Blow-up in exterior domains: existence and star-shapedness, Zeitschrift fur Analysis und ihre Anwendungen , 17, (1998) n.2, 431-441.

    [5] V.L.Kamynin, M.Saroldi, E.Francini, Inverse Problems for Higher Order Parabolic Equations, Russian Mathematical Surveys, 53, n.4, (1998), 202-203.

    [4] V. Kamynin, E. Francini, An inverse problem for higher order parabolic equation, Mathematical Notes, 64, n.5, (1998), 590-599.

    [3] E. Francini, Starshapedness of level sets for solutions of nonlinear elliptic equations, Math. Nachr., 193 (1998), 49-56.

    [2] E. Francini, Starshapedness of level sets for solutions of nonlinear parabolic equations, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 28 (1995), 49-62.

    [1] E. Francini, Sul principio di massimo per l'angolo formato dal gradiente di soluzioni di equazioni ellittiche con una direzione fissata., Boll. Unione Mat. Ital., (7) 9-A (1995), 123-130.

    Home

    Ricerca

    Didattica