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Abstract

We prove that the homotopy type of the Quillen complex of a finite soluble group at the prime
p # 2 is that of a wedge of spheres of possible different dimensions.
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Introduction

For a poset£ partially ordered setp the symbolA(P) is used to denote therder
complexof P; this is the simplicial complex whosedimensional simplices are the non-
empty chainsg < x1 < - - - < x¢ of P. For afinite groups and a prime number dividing
its order, theQuillen complexf G at p is defined as the order compleA,(G)), where
A, (G) denotes the poset of all non-trivial elementary abepesubgroups ofz, ordered
by set inclusion. Interest in Quillen compkexfor finite groups began with the influential
paper [8] of D. Quillen. A great amount of attention has received above all his famous
conjecture [8, 2.9], which states tha(.4,(G)) is a contractible complex if and only &
has a non-trivial normap-subgroup (see [3] and the references therein).
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In this paper we treat the, perhaps more general, problem of determining the homotopy
type of a Quillen complex. This problem is addressed by J. Pulkus and V. Welker in [7].
Here we make use of the same topological techniques, referring to the theory of diagrams
of spaces and homotopy colimits. We examimgreater detail the homotopy type of the
“upper intervals” of.A,(G), which was the hardest obstruction in [7]. By this analysis,
we are able to give a positive answer to a question raised by J. Thévenaz (as mentioned
in [7]), and we prove, in Theorem 21, that the homotopy type of the Quillen complex of a
finite soluble group and for odd prime numberss that of a wedge of spheres of possible
different dimensions. According to [9, Cdiary 4.17], insoluble groups may have Quillen
complexes whose homotopy type is not that of a wedge of spheres.

Notation. Our basic references are [1] for group theory, and [6,10] for topology. The no-
tation of the paper follows these books. In particular, we set some basic facts. For a poset
(P, >) and an element € P we denote byPs, the poseg € P | g > r}. Similarly de-

fined are the posetB.,, P<,, P.,. Amap f : P — Q between posets is said to be order
preserving if f (x) < f(y) whenevere < y in P. We reserve the symbe} for poset iso-
morphisms,~ for homotopy equivalencediween topological spaces, agdfor group
isomorphisms. The topological spaces we ardidgavith are simplicial complexes, thus

in particular CW-complexes; the basic facts of their theory are assumed as granted. For
two simplicial complexesi;, Az, we define thgoin, A1 x Ay, as in [10]; in particular,
Axd=0* A=A and A1 x Az is contractible if and only if at least one of the two
complexes is. Similarly we define tlveedge A1 v Ay, of simplicial complexes (and in
general of topological spaces). Note that tisisinambiguously defined if and only if the
spaces involved are path-connected, otheewve have to specify the points to which the
two complexes are wedged. This will be crucial in our wedge decomposition formulas
(Lemma 3 and its applications) where thedge of the spaces is not formed using a single
point, instead for each space in the wedgehage to declare a precise point to where it

is wedged to. Withs* is denoted, as usual, tikedimensional sphere, assumifig? to be

the empty set and® the set constituted by two disjoint points. The space constituted by

a unique single point is simply callazhe-single pointin order to simplify formulations

in this paper, an empty wedge of spheres is to be considered a one-single point. The sus-
pension of a spaca is denoted byS(A) and defined as® « A. The symboli indicates
disjoint unions of objects.

1. Topological tools

In this section we expose the topological methods we use for determining the homotopy
type of the Quillen complex. We follow the same track as J. Pulkus and V. Welker in [7],
which consists in making use of some techniques of the so-called theory of diagrams of
spaces and homotopy colimits. Our basic reference for this theory is the work [12].

Let (P, <) be a poset. AP, <)-diagram of topological spaceis a functorD from
(P, <) to the category of topological spaces. Fixing the notatior) ifs a diagram of
spaces on P, <), the space associated to the elemesnt P is denoted byD, and the
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morphism corresponding tp< r is denoted by/,, (thusd,, : D, — D, andifp < g <r,
dqp odrq = d,p and, for every € P, d,, is the identity map omD,).

The basic example is the following. Suppose Mat {X;};<; is a covering of a topo-
logical spaceX by a finite number of subspacé§. The intersection posef” is, by
definition, the partially ordered set of all the intersectidhs:= (), X; for J € I, with
reversed inclusion as order relation. Tietural diagram of space®” associated to the
poset P! is defined as follows: for every = X; € PY the spaceD, is just the sub-
spaceX 7, and forp < r the morphismi,, is the inclusion map.

Let D be an arbitrary diagram of spaces over a finite p@sethen toD there is as-
sociated a topological space called trmmotopy colimibf D and denoted byiocolimD
(for the explicit definition ofhocolimD we refer to [12, 1.3]). Given a finite coveririg
of a spaceX the homotopy direct limit of the diagraf®/ and the spac& are homotopy
equivalent. This is in fact the content of the following lemma, which for convenience we
state for simplicial complexes. The interested reader may find the proofs of this and the
next two lemmas in the appendix of [12].

Lemma 1 (Projection lemma [12, 1.6])etlf be a covering of the complek by a finite
number of subcomplexes and BY be the natural diagram of spaces associated. Then
hocolimDY ~ X.

Sometimes we need to modify the majpg and the spaceB, of a diagranD in a way
that the homotopy type dfocolimD remains unchanged. This can be done, with some
accuracy, by the use of the following lemma.

Lemma 2 (Homotopy lemma [12, 1.7])etD := (D,, d,;) andD’ := (D;,d;q) be two
diagrams of spaces on the same poBetAssume that for each € P there is a map
fr + D — Dy, such thatf, induces a homotopy equivalence betw@&grand D;. and that

forg <rin P,d;, o f; = f4 o drq. ThenhocolimD = hocolimD’.

Finally, if strong assumptions are guaranteed, the homotopy typecofimD can be
explicitly computed by the use of the following lemma.

Lemma 3 (Wedge lemma[12, 1.8]) etD := (D,, d;,) be a diagram of spaces over some
posetP, endowed with a unique maximal elemdntsuch that for every € P, g # 1,
there is a point, € D, such that,,(x) = ¢, for all » > g andx € D,. ThenhocolimD is
homotopy equivalent to

(Dy = AP_D) v \/ (DrxAP<), )

FEP<1

where the wedge is formed by identifying for ev;eg/ithe pointc, € D, x A(P,) with

r € Dj A(P<i).
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By these three steps, passing through the concept of homotopy colimit, the homotopy
type of the given space can be recognized via a formula, whose entries consist, roughly
speaking, in the covering subspaces and in the way they intersect each other.

A famous result, the so-called “Nerve Theorem,” whose first version seems to date back
to 1945 (see [5]), can be seen as a special consequence of the lemmas above. This treats in
fact the situation in which the arrangement obspaces gives rise to contractible or empty
intersections.

Theorem 4 (Nerve Theorem)Let A be a simplicial complex and |6t be a finite family of
subcomplexes which covets Suppose that every non-empty intersection of elemerfis of
is contractible. Themt and the intersection poset of the famffyare homotopy equivalent.

From the three lemmas aforementioned we extrapolate the following corollary. (This is
essentially a corollary to [4, Theorem 2.5]; another version of it is [7, 2.4].)

Corollary 5. Let f : P — Q be an order preserving map between the two finite paBets
and Q. Assume that

() Q is a meet semi-lattice with a unique least elentent
(ii) foreveryg e Q_s, A(f~1(Q<)) 2 A(FHOY:
(iii) for everyg € Q_, the complexA(f*l(ng)) is either contractible or a wedge of
ng-dimensional spheres, with< n, <n, if g <r in Q.

Then the order compleA (P) is homotopy equivalent to the wedge

(A(FHO) xAQ_p) vV (A(fHQ<y) * A(Q=y)). )

9€0 4

where forg € Q_ a fixed point, € A(f~1(Q«<y) € A(f "1 Q<)) * A(Q=y) is identi-
fied withg € A(F 10D * A(Q_g).

Lemma 6 (Fiber lemma [8, 1.6])Let f : P — Q be an order preserving map amongst the
finite posets? and Q. Suppose that all the uppélower) fibers £ ~1(0>.)(f 1 (Q<x)),
atx € Q, are contractible as topological spaces. Théinduces a homotopy equivalence
betweenA(P) and A(Q).

Let P be a poset and, y be two of its elements. If there exists a least upper bound
(greatest lower bound) of andy, this is denoted by Vv y (respectively byx A y). An
elementx of P is saidconjunctive(subjunctivg if for all y € P there existsc vy € P
(respectively there exists A y € P). The following is a useful criterion to prove that a
poset is contractible.

Lemma 7 [8, 1.5]. Suppose that is a conjunctive(subjunctivg element of the poset.
Then the order complex df is contractible.
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We set some basic terminology we use throughout. We say that a compsespher-
ical if it has the same homotopy type of a wedge of spheres of an appropriate dimension
(if this is, say the complex will be calle@-spherical). For simplicial complexes of finite
dimensiom > 0, the property of being-spherical is equivalent to beirig — 1)-connected
(in the sense of [8]). The complex is called avedge of spherésit has the same homo-
topy type as a collection of a finite number of s of possible different dimensions, all
joined together to a unigue common point. We admit an empty wedge of spheres to be a
one-point space.

Lemma8[10, I, 6.6] §" % §™ ~ gntm+l,

In the nextlemma we state some properties of the operations of join, wedge, and disjoint
union between topological spaces.

Lemma9. Let A, X, andY be simplicial complexes. The following halds

() X*Y)~ (Y *X);

(i) Ax(X*Y)>(AxX)xY;

(i) Ax(XVY)~(AxX)V(AxY);

(V) Ax(XUY)~(AxX)V(AxY)V (A*S0);
(V) S(XUuY)~S(X)VvS(Y)v st

Proof. For the commutative and the associative property of the join operation the reader
may consult [6, VIII, 62]. The distributive law between join and wedge and (iv) may be
proved by standard topology, as well as via the aforementioned techniques of diagrams of
spaces. (v) is a special case of (iv) with= $° and with the considerations of Lemma 8
(9459~ 81). o

The previous two results yield the following important fact:

Proposition 10. The class of wedges of spheres is closed under the operations of wedge,
join, and suspension.

In our forthcoming analysis of the Quillen complex of finite groups, we will make use
of following topological result. The proof proposed here is suggested by Sandro Buoncris-
tiano (private communication).

Proposition 11. Let X andY be two non-empty CW-complexes, witlsimply connected.
AssumeX Vv Y is homotopy equivalent to a wedge of spheres. TXidno is homotopy
equivalent to a wedge of spheres.

Proof. Let S be the wedge of spheres afid X v Y — S be the continuous map realizing
the homotopy equivalence. We let the spheres be numbered, and we dencﬁ;émﬂeljth
n-dimensional sphere df; we write
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In

5=\ Vs,

n j=1

meaning thatS consists of the one point wedge of exaaty0-spherest; 1-spheres, etc.
The map f induces isomorphisms between the integral coefficients homology groups;
namely for every natural integer we call

S i Hy(X VYY) —> Hy(S)

the group isomorphism induced bfybetween the:ith homology groups ok v Y andS.
The reduced homology of a wedge of spaces is the direct sum of the reduced homologies
of the spaces involved. In particular, for alt- 0,

Hy(X VY)=H,(X)® H,(Y)
and, sincef,, is a group isomorphism,
Hy(S) = fu (Hn(X)) ® fn (Hn(Y))~

Moreover, fromS =/, \/’;’:1 S% and the homology of the sphere, we have that

Hy(S)= P Ha(S))=2z". 3)

J=1itn

By Krill-Schmidt theorem, we can find a group automorphjgnof H,(S) such that
the subgroug, (f,(H,(X))) is the one generated by the fikst generators o, (S) in
formula (3) (we assumg, (H, (X)) = Z*, for some X k, < t,). Repeating this argument
for every dimension of the spheres ®fwe obtain a set of isomorphisnig,), with the
same property for eveny. There exists a continuous mgp S — S that induces this set

of isomorphisms. (Such a mapcan be constructed “piece by piece” as an application of
the fact that for any:-uple of integerg!1, I2, ..., I;) and for any dimensiom > 1, there

is a continuous map frors” to the Wedge\/f’=l S of the wished degreg on S, for all
i=1,...,h; see[10, 1V, 8].) LetU be the topological subspace ®tefined by

kn
u=\/\s
n =1
andr : S — U be the projection of ontoU. Then the map
mogofix:X—U

is continuous and such that it induces an isomorphism in homology. In fact, by construc-
tion, for everyn we have

Hy(X) = fa (Hn(X)) =gn (fn (Hn(X))) = H,(U).
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Moreover, sinceX is simply connected by assumption=0H1(X) = H1(U), thus in the
wedge decomposition df there are no circles, which means tliais simply connected

too. We can apply a version of Whitehead theorem for CW-complexes [10, VII, Section 6,
Theorem 25], and deduce th&itandU have the same homotopy type, proving tiais
homotopy equivalent to a wedge of spheresl

2. Applications of the topological toolsto the poset .A,(G)

The contents of this section are essentially the same as those in [7, Section 3]; we report
them here for reader’s convenience.

We recall that for any finite grou@ and any prime numbep, A,(G) denotes the
poset of all non-trivial elementary abeliagnsubgroups oG ordered by inclusion. With
£21(G) we indicate the subgroup @ generated by all the elements of orderlf N is
a normalp’-subgroup ofG, we use the “bar” notation to denote the quotient subgroups,
namely we writeH for the imageH N/N of a subgroupH of G under the epimorphism
7 :G — G/N. Note that ifA is an elementary abelign-subgroup oG, then its imaget
is isomorphic toA. Thereforer induces a mag from A,(G) to Ap(é) sending anyA
to A. We review some simple, but crucial, facts about the pdsgtG) and the magy .

Lemma 12. Let N be a normalp’-subgroup of a finite grou. Then

(i) A,(G) U {0}, with the unique minimal elemeftis a meet-semilattice.
(i) If A is an elementary abeliap-subgroup,A,(G)-4 = A,(CG(A))>4.
(iii) If A is not contained in21(Z(G)), then the order complex ofl,(G)- 4 is con-
tractible.
(iv) The mapf : A,(G) — A,(G), A+ A is surjective and order preserving.
(v) If A€ A,(G), the lower fiber off is equal tof ~1(A,(G) < 3) = Ap(NA).

Proof. Except for (iii), all these statements are part of [7, Lemma 3.1]. For (iii), note that
if A% $21(Z(G)),thenA21(Z(G)) is an elementary abelign-subgroup strictly contain-
ing A, thus an element ofl ,(G)- 4. Moreover, for any elemert of A,(G)- 4,

B - AR21(Z(G)) = BR21(Z(G))

is still an element ofd,(G)- 4. This shows that £21(Z(G)) is a conjunctive element of
A,(G)-4. By Lemma 7,A(A,(G)-4) is contractible. O

In order to apply Corollary 5 to the mayg between the poset® := 4,(G) and
0= Ap(ﬁ) U {0}, we need the following result which is a reformulation of a theorem
of Quillen [8, 11.2]. We warn the readerahthe hypothesis of solubility in this lemma
is fundamental. Whether the same holds iftsoluble groups is still an open problem
(see [8, 2.3] and the weaker conjecture in [2]).



646 F. Fumagalli / Journal of Algebra 283 (2005) 639-654

Lemma 13 [8, 11.2] Let p be any prime number and = NA be a finite p-nilpotent
soluble group, with elementary abelian SylgwsubgroupA. Then the Quillen complex
A(A,(G)) is either contractible(if C4(N) # 1) or Cohen—Macaulayand in particular
spherica) of dimensionrk(A) — 1.

We now prove the following homotopy type decomposition formula for the Quillen
complex of a group admitting a soluble norméisubgroup.

Lemma14[7, Theorem 1.1]Let G be a finite group an@v a soluble normap’-subgroup
of G. ThenA(A,(G)) is homotopy equivalent to the wedge

AAG) v\ (AA(NA) * A(AHG). 7). @
AeA,(G)

where for eachd € A, (G) an arbitrary chosen point; € A(A,(NA)) is identified with
A€ A(AH(G)).

Proof. For the proof apply Corollary 5 to the mappinfg: A,(G) — A,(G) U {0}. By
Lemma 12(i) and (iv) and Lemma 13 all the assumptions of Corollary 5 are fulfilled,
hence

A4,@)= \/ (A(f7HAP(G) 7)) * A(Ap(G). 7))
AcA,(G)U(0)

Lemma 12(v) and our conventiofix ¢ = A show the claimed formula. O

Formula (4) can be sometimes reduced aingpsified (for this see [7, Remark 3.4]);
nevertheless its meaning is directly connected with the homotopy type of the order complex
of an upper intervald,,(G)- 4. This will be analyzed in the next section.

3. Thehomotopy type of the order complexes of the upper intervals

In this section we abuse the notation by denoting the order complex of a poset with the
same letter of the poset itself. This is done in order to make more readable our formulas.
In the sequep will always denote alwdd prime number (unless differently specified).

Let A be an elementary abelignsubgroup of the finite grou@. In order to analyze
the homotopy type 08(A,(G)-4), by virtue of Lemma 12(ii), we can assurdecentral
inG.

The next lemma treats the case in whi@hs a p-group.

Lemma 15. Let P be a finite p-group of exponenp with derived subgroug®’ cyclic of
order p. ThenA,(P)~zp) is (rk(P) — rk(Z(P)) — 1)-spherical.
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Proof. Note thatP’ = @(P) < Z(P). If P’ = Z(P), the groupP is extraspecial and the
statement is the content of [8, Example 10.4]. Assume that Z(P). Let E/P’ be a
complement ofZ(P)/P’ in the elementary abelian group/P’. Then P is the central
productP = Z(P) o E. Note thatE is an extraspecigh-group, and that the mapping

Ap(E)sz(5) — Ap(P)>z(p), Ar— Z(P)A

realizes an isomorphism between the pos&f$E)-. z (k) and. A, (P)-z(py. Thus, by the
result for the extraspecial casd,, (P).zp) is (tk(E) — 2)-spherical. Finally, rkP) =
rk(E) + rk(Z(P)) — 1, and this completes the proofm

For arbitrary group& and for anyA € A,(G) U {1} we set
MAG):={XeSy(G)|A<X, X=021(X), D(X) <AL Z(X)}

(whereS,, (G) denotes the set of all non-trivigksubgroups of5).

Any subgroupX belonging toM 4(G) has nilpotency class at most 2. Sineés odd
andX is generated by elements of orgerX has exponeng [1, 23.11]. In particular, this
factimplies thatM 4 (G) is an order ideal, in the sense thatlitc X <Y andY € M4(G),
thenX too lies inM 4 (G) (this property fails ifp = 2 as Remark 18 shows).

Observe thatM1)(G) = A, (G).

Generally we write simply\ 4 for M 4(G).

Lemma 16. Let P be a finitep-group andA a central elementary abelian subgroup®f
If X1, Xo,..., X, aren > 1 maximal elements oM 4(P), thenZ(X1N X2N---N X,)
strictly containsA.

Proof. AssumeP is a counterexample of minimal order; &4, X2,..., X, ben > 1
maximal elements aM 4 (P), let Y be their intersection, and assuméey) = A. We may
suppose thaP is generated by the union of the subgroufys fori = 1,2,...,n. Set
Z>/A the center ofP/A. Note that, asX; /A is abelian for every, Y is contained inZ,.
Since every group itM 4 has exponenp, the same holds for. ThereforeY < £21(Z5).
Conversely, note that for evety the subgroup?1(Z2)X; lies in M,4. The maximality
of the X; implies that$21(Z2) < X;, and since this holds for all, Y = £21(Z2). Since
[X;, Y] < X; < A andP is generated by the subgroufis, [P, Y] < A. Therefore, asA
is central inP, [P, Y, P] = 1. By the 3-subgroups lemma [1, 8.7], it followB’, Y] = 1.
But P =@ (P),and so®(P)NY < Z(Y) = A. Now setS := (X1) p the normal core of
X1 in P (i.e., the largest normal subgroup Bfcontained inX1), andR := (SN @ (P))A.
Assume thatR strictly containsA. Being R a normal subgroup oP, the groupB/A :=
R/A N Z(P/A) is not trivial. Note thatB is normal inP and, asB < S < X3, it is of
exponentp. Moreover, it is easy to check that for evane 1,...,n, BX; lies in My.
The maximality of theX; implies thatB < X;, for everyi = 1,...,n. ThereforeB <
Y N®(P)A=A. ThusR = A, which meansS N @(P) < A. ThenS/A is central in
P/A. Moreover, asS is of exponentp, S < £221(Z2) =Y, and soS =Y. Beingn > 1,
it is Y # X3, thus, by the definition of normal cor&, coincides with the intersection
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X1nX§fN---nX§, for some elements, ... ., g; of P (s > 1). Obviously, the subgroups
X3 are maximal elements o¥1 4. But the subgroupX1, X{*, ..., X§*) is contained in the
normal closure o4 in P (i.e., the smallest normal subgroup®fcontainingXs), which,
being in ap-group, is a proper subgroup &f. By the inductive hypothesis it follows that
A is strictly contained irZ (Y), that is the desired contradiction.

Corollary 17. If P is a p-group andA a central elementary abelian subgroup ®f then
M4 (P) is contractible.

Proof. We show thatM 4 (P) conically contracts. This is obvious if it has just a unique
maximal element. Otherwise, by the previous lemma, all the maximal elemefts 6P)

do intersect in a common element which is easily seen to be conjunctivé 40P).
Lemma 7 completes the proofo

Remark 18. If p =2, the previous result fails. For instance, in the dihedral group of order
16 the maximal elements 8#1 z(p)(P) do intersectin a subgroup strictly containifigP),

but this is no more generated by prime order elements, and so it does naMig ip (P).

In this situationM zpy(P) is homotopy equivalent to a O-sphere.

We say that a finite grou@ satisfies ) if

for every A € A,(G) the suspensioB(A,(G)- 4) has the homotopy type of a wedge
of spheres.

In Proposition 20, we will prove that all finigoluble groups have this property for odd
prime numbers. We need the following lemma.

Lemma 19. Let G be a finite group such that every proper subgroupGo$atisfies(x).

Let A be a central elementary abeligmsubgroup ofG, and1 < X <Y < A. Then the
suspensiors((Mx)- 4) is homotopy equivalent to a wedge of spheres if and only if this
holds forS((My)-4). In particular, S(A4,(G)-4) is homotopy equivalent to a wedge of
spheres if and only iIB(M 4 (G)) is so.

Proof. Clearly it suffices to prove the lemma f&rof indexp in Y.

Let|Y : X| = p and choose a supplemeRitof Y in A, suchthaty N R= X. SinceA
is a central subgroup af, any element of M x). 4 lies also in(My)- 4, thus(Mx)- 4
injects into(My)- 4. Calli this injection. The lower fiber of an elemetitof (My)- 4 is

iy ={T € Mx)=a | T SU} = Mx(U))=4-
We claim that M x (U)) 4 is a posetisomorphicted,,(U/R)) /- In fact, the mapping

(Mx@))_, — (A,(U/R)) T+ T/R

>A/R’

is trivially order preserving and injective. To prove it is also surjective, note thEf K
is an elementary abelian subgrouplofR over A/R, thenT = £21(T), asT is contained
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in U whose exponent ig. Moreover, beingb (U) <Y, ®(T) < YN R =X, and soT
lies in Mx(U))>a. Thus(Mx(U))>a ~ (Ap(U/R))>a/r. In particular, sincey has
exponentp, (Mx(U))s 4 is never empty, and it is either contractibleZiftU/R) > A/R
(by Lemma 12(iii)), or it is(rk(U/R) — rk(A/R) — 1)-spherical (by Lemma 15). We apply
Corollary 5 to the mapping: (Mx)-4 — (My)>4. It yields the formula

Mx)sa = (My)sa Vv \/ (Ap(U/R)>asr * (My)=v), (5)
Ue(My)sa

where the wedge is made by identifying any elemiéndf (My). 4 with a specific point
of Ap(U/R)> /R ¥ (My)su-
Applying the suspension operator to formula (5), together with Lemma 9(iii), we obtain

SMx)>a2SMy)aav  \/  S(ApU/R)-a/r * (My)sv). (6)
Ue(My)sa

We first prove the implication “from bottom to top,” thus we assume 8@t x)- 4)
is homotopy equivalent to a wedge of spheres and we show the sa®@fdry )~ 4).

If S((Mx)-a) is contractible, by formula (6), it is immediate th8(My)- 4 is so.
Assume therefore th&((Myx)-4) is a non-empty wedge of spheresdf, C», ..., C
are the connected components @¥1y)- 4, by Lemma 9(v) iterated, the suspension
S((My)s4) is homotopy equivalent to

S(C1) vV S(C2) V- -V S(Ck) V \/ st
k=1

In particular, if all the connected componentg8fly).. 4 are contractible, theB((My)=4)
is a wedge of 1-dimensional spheres and we are done. Thus, assum€ ikaa
non-contractible connected component(éfly)- 4, and letC v D be the correspond-
ing connected component @fMx). 4 given by formula (5). By (6) we obtain that
S(C v D) Vv Z~S((Myx)-a) for some topological spacg. SinceC v D is connected,
S(C v D) is simply connected [10, VIII, 5, Corollary 3]. We can therefore apply Lemma 11,
and deduce th&(C v D) is homotopy equivalent to a wedge of spheres. By Lemma 9(iii),
S(C v D) ~ S(C) v S(D) and, finally, by Lemma 11 agai®(C) is a wedge of spheres,
proving our claim and the first part of the lemma.

To prove the opposite implication, let us assume 8(@1y)-. 4 is a wedge of spheres.
By formula (6) it is enough to show that féf € (My)- 4 the spaces

S(Ap(U/R)>a/r * (My)su)
are wedges of spheres. Set for simplidity := A,(U/R)>a/r * (My)-y. Note that

S(Dy) =~ Ap(U/R)>a/R ¥ S(My)su
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and thatA,(U/R)>4/r is either contractible onrk(U) — rk(A) — 1)-spherical by
Lemma 15. We can therefore limit our analysis to the subcomplety ). . More-
over, we restrict to the subgrougs for which Z(U) = A (otherwise A,(U/R)>4/r
conically contracts by Lemma 12(iii) and g9y too), and such thaiMy)-y is not
empty (otherwiseDy reduces tad,(U/R)-4/r). Let U be such a subgroup. We set
H:=(V|VeWMy)sy). UisnormalinH andU/Y < Z(H/Y). Let W be the sub-
group H'H?. We claim that[W,U] = 1. From[H,U] < Y < Z(H), it follows that
[H,U, H] = 1. Therefore, by the 3-subgroups lemrf#,, U] = 1. Moreover, foth € H
andu € U, [h, u] commutes both wittk andu, and, using the fact thdt has exponenp,

[AP,u] = [h,u)? =[h,uP]=[h, 1] =1

by which[H?, U] = 1 and so our claim follows. In particula® "\U < Z(U) = A, and so,
by the modularlawnW ANU = A. The groupH /W A is an elementary abeligngroup, we
choose in it a complemerk /WA of WU/W A. The posetgMy)-y and(My(K))-4
are isomorphic via the map

¢:My)sy — My(K))_,. T +— TnNK.

In fact, asH/A is the direct product//A x K/A, every elemen? € (My)-y can

be written asT = U(T N K). By this, one easily sees that the maps well-defined,
order preserving, and injective. To prove it is surjective too,Rebe any element of
(My(K))= 4, then, sinceU centralizesR moduloY, UR lies in (My)-y, moreover
d(UR)=URNK =R(UNK)=RA=R.Thus(My)-y ~ (My(K))- 4. Finally note
that, beingK a proper subgroup ofr, by assumptiors§(A4,(K)- 4) is homotopy equiv-
alent to a wedge of spheres. Sinkesatisfies the hypothesis of the lemma, we can use
the implication “from bottom to top” previously proved to deduce tBgiy (K))- 4 is a
wedge of spheres too. This completes the proof of the lemra.

Proposition 20. Finite soluble groups satisfy the propei).

Proof. AssumeG is a counterexample of minimum order and letbe an elementary
abelian p-subgroup ofG such thatS(A,(G)- 4) is not a wedge of spheres. Since the
suspension operator preserves these classes of spaces (Propositidp(1d), 4 is not

a wedge of spheres. By Lemma 12(ii},is a central subgroup af. SetN = 0, (G).

If N is not trivial setG = G/N. We apply Corollary 5 to the mapping : R — R
from A,(G)-4 to Ap(é)ﬂ. To show that all the assumptions are satisfied, choose

R € A,(G). ; and consider the lower fibgf_. This is

{S€Ap(G)on | S<R}={S€A,(G)oa |[NS<NR}=A,(NR)>4,

where R is a Sylow p-subgroup in the preimage @t. The posetd,(NR)- 4 is eas-
ily seen to be isomorphic tol,(NR/A), via the quotient map sending every element
T € A,(NR)>4 into T/A € A,(NR/A). Therefore, by Lemma 13, the 1‘ib@‘f<’%e is
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(rk(R) — 1)-spherical. All the hypotheses of Corollary 5 are satisfied, according with it,
we obtain the following homotopy equivalence:

Ap(G)aa=ApG).zv \/  (A(NR/A)xA,(G).g). (7)
ReA,(G)_7

whereR is a Sylowp-subgroup in the preimage & (this formula expresses the meaning
of [7, Remark 3.4]). Passing to the suspensions (together with Lemma 9(ii) and (iii))

S(Ap(G)=a) 2S(A,G)z) v \/  (Ap(NR/A)xS(A,(G)_ 7). (8)
EEAP(6)>Z

By our choice ofG and by Lemma 13, every term in the right-hand side of (8) is a wedge
of spheres, thus als®&(A,(G)-4) is.

ThereforeN = 1. As G is a soluble groug,(G) # 1. If G is a p-group, by Corol-
lary 17, M 4(G) is contractible, and so its suspension too. By Lemma 19, the space
S(A,(G)-4) must then be a wedge of spheres. Thus we assuirisenot ap-group. We
claim that M 4 (G) is contractible in this case too. By our reduction, the Fitting subgroup
of G consists just in0,(G), and soCs(0,(G)) < 0,(G) [1, 31.10]. SinceA is a cen-
tral elementary abeliap-subgroup ofG andG is not ap-group, the previous inequality
yields thatA is strictly contained inO,(G). Moreover, sincep is odd, anyp’-element
of G acts faithfully by conjugation om21(0,(G)) [1, 24.8], thusA is strictly contained
221(0,(G)). In particular, we have that1,(0,(G)) is not empty. IfM4(0,(G)) has
a unique maximal element, call B, otherwise letB be the center of the intersection of
all the maximal elements 0¥ 4(0,(G)), and note that it strictly contains in virtue of
Lemma 16. In any case is a normalp-subgroup ofG lying in M 4(G). For every sub-
groupC of B strictly containingA, set, for simplicity,L¢c := M4 (Cg(C/A)). LetV be an
arbitrary element oM 4 (G), then, asV is a p-group acting on the-groupB/ A, if we set
Cv/A :=Cgsa(V), this is not trivial, by which we have that lies in L¢, . This proves
that M 4(G) is covered by the subcomplexés (whenC varies among the subgroups
of B strictly containingA). Now note that, by the definition of ¢, C is a conjunctive
element ofLc. Lemma 7 therefore yields that the complex@s are all contractible.

If C1,Co,...,C, aren subgroups o strictly containingA, then

Loy NLe, NN Le, = L(C1,C0,..,Ca)»

which is still contractible sincéCi, Co, ..., C,) < B. Applying the Nerve Theorem 4,
we deduce thaiM 4(G) is homotopy equivalent to the intersection poset of the family
{Lc}a<cgp- This family has a minimum element, which £, and so the intersection
poset is contractible, proving our claim. Sinké4 (G) is contractible, so is its suspension,
and finally, by Lemma 195(A,(G)-4) is homotopy equivalent to a wedge of spheres.
This contradicts our assumption Ghand completes the proof.0



652 F. Fumagalli / Journal of Algebra 283 (2005) 639-654

4. The Quillen complex for soluble groups

Theorem 21. Let G be a finite soluble group ang an odd prime number dividing the
order of G. The Quillen complex af at p is homotopy equivalent to a wedge of spheres.

Proof. We can assumé,(G) = 1, otherwise2:(Z(0,(G))) is a conjunctive element of
the Quillen complex, which is contractible by Lemma 7.

Denote withN the subgroup),/(G) and callG the factor groupG/N. According to
Lemma 14,

A(A,(G)) \/ (A(Ap(NA)) * A(Ap(G)- 7)), 9)
AeA,(G)

where we used the fact thaﬁ(A,,(@)) is homotopy equivalent to a point, having
G a non-trivial normal p-subgroup. The significant contributions to formula (9) are
given by the non-contractible terms(A,(NA)) A(Ap(é)ﬂ), for which in partic-

ular A(A,(NA)) is, by virtue of Lemma 13, a non-empty wedge of some spheres of
dimension rkA) — 1 > 0. In considering the homotopy type of the order complex of
Ap(NA) Ap(5)>g in this case, we apply Lemmas 8 and 9(ii) and (iii); it follows that

A(Ap(NA) 5 A(A,©)_7) = (\V/ (SN2 5%)) + A(4,(©).7)
~\/ S*A=24 S(A(AH(G)_5)),

where, in this situation, all the spaces oe tight-hand side are wedged to a unique com-
mon point. By Propositions 20 and 10, the spadgel, (N A)) A(A,,(E)ﬂ) is therefore
homotopy equivalent to a wedge of spheres. Thus is every non-contractible termin (9), and
the proof of the theorem is completed.

Remarks.

(1) As stated in [9, Corollary 4.17], software computation ShOWSﬁ‘QEEM3(S]_3)) is not
torsion free. This fact implies that the Quillen complex at 3 of the symmetric group
S13 is not homotopy equivalent to a wedge of spheres.

(2) In[7, Section 5], two examples of solebyroups whose Quillen complex consists of
a wedge of spheres differentdimensions are described.

(3) Our definition of the class«f of groups, based on the suspensions of the upper in-
tervals and not directly on them, is motivated exclusively by the use of Whitehead
theorem in proving Proposition 11. Whitehead’s result does not hold without the as-
sumption of simply connectivity on the CW-complexes (see [11, IV, 7, Example 3]).
Of course, passing to the suspensions this hypothesis is immediately guaranteed. We
do not know if Poposition 11 holds without the assumption of simply connectivity.

If so, we could have defined) as the class of groups for which, for ale A4,(G)
the intervald, (G)- 4 is homotopy equivalent to a wedge of spheres. In this way, with
the same arguments used, we could have proved an analogous of Proposition 20, that
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is the homotopy type of any upper intervals,(G)- 4, for soluble groups and odd
primes, is the one of a wedge of spheresgos$sible different dimensions). We have

not been able to prove it, and at the moment the homotopy structure of these intervals
remains, even for soluble groups, uncless a consequencd ®roposition 20, and

the fact that for any spac¥ and any integet, H;(X) = H;11(S(X)), we know of
course that4,(G)- 4 have homology free groups. Moreover, in the césés a p-

group (p # 2) these upper intervals are indeed wedges of spheres. This is motivated
by the following lemma.

Lemma. Let p be an odd primepP a p-group andA < £21(Z(P)). Let X1, X2, ..., X\
be the maximal elements 6fl 4 (P), then

A(Ap(P)=a) =\ A(Ap(XD)=a).

i=1,....m

Proof. We apply the Nerve Theorem 4 to the coveriqgh(A,(X;)-)}/",; of
A(A,(P)-4). Note that any intersection of at least two different elements of this fam-
ily is contractible since, by Lemma 16, it possesses a conjunctive elemant.

This lemma reduces the analysis to th@roupsX; of exponentp such that modulo
their central subgroug are elementary abelian. With the same techniques exposed in this
paper, it can be proved that the homotopy type of the upper intetdglsy;)- 4, of such
a p-group (and therefore of evepyrgroup), is that of a wedge of spheres.
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