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Abstract

In this paper we develop the theory of computing the nonabelian tensor squares of
polycyclic groups. The nonabelian tensor square G⊗G of any group G is isomorphic
to a subgroup K of the derived subgroup of a cover group ν(G). We develop a
general commutator calculus in K that models computations in G ⊗ G. We show
that if G is polycyclic, then the cover group ν(G) is also polycyclic, and we give
a finite presentation for ν(G) based on a presentation for G. We are then able
to describe a finite generating set for K, and hence for G ⊗ G, without needing
a polycyclic presentation for ν(G). We apply our results in two ways. We first
develop an algorithm that can be implemented within a computer algebra system,
such as GAP (Groups, Algorithms and Programming), to compute the nonabelian
tensor square of any polycyclic group. Second, we use the commutator calculus and
structural results for the cover group ν(G) to directly compute the nonabelian tensor
squares for the free nilpotent groups of class 3 and finite rank. The computations for
the free nilpotent groups of class 3 were guided by examining the structure of the
nonabelian tensor squares of such groups of small rank that were found by computer
calculation.
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1 Introduction

The nonabelian tensor square H ⊗H of the group H is the group generated
by the symbols g ⊗ h, where g, h ∈ H, subject to the relations

gg′ ⊗ h = (gg′ ⊗ gh)(g ⊗ h) and g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′)
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for all g, g, h, h′ ∈ H, where hg = hgh−1 is conjugation on the left. For con-
sistency, we define the commutator [h, g] of group elements h and g to be
hgg−1.

By computing the nonabelian tensor square we mean finding a standard or
simplified presentation for the nonabelian tensor square. One approach to
computing the nonabelian tensor square for a finite group, used by Brown,
Johnson and Robertson [7], is to start with the finite presentation given by the
definition above and simplify the presentation using Tietze transformations.
The simplified presentation is then examined to determine the isomorphism
type of the nonabelian tensor square. This method was used in [7] to compute
the nonabelian tensor square for each nonabelian group of order at most 30.
Since the presentation given by the definition of H ⊗ H has |H|2 generators
and 2·|H|3 relations, this method is limited to groups of relatively small order.

A second approach to computing the nonabelian tensor square of a group H
involves the group ν(H).

Definition 1 Let be H be a group with presentation 〈H|R〉 and let Hϕ be an
isomorphic copy of H via the mapping ϕ : h 7→ hϕ for all h ∈ H. We define
the group ν(H) to be

ν(H) = 〈H,Hϕ | R,Rϕ, x[g, hϕ] =[xg, (xh)ϕ] = xϕ

[g, hϕ], ∀x, g, h ∈ H〉. (1)

The groups H and Hϕ can be isomorphically embedded into ν(H) [14]. Hence
we overload the labels H and Hϕ to also denote the natural isomorphic copies
of H and Hϕ in ν(H).

The group ν(H) was independently investigated by Rocco [24] and Ellis and
Leonard [14]. This group ν(H) can be found earlier (see [15]) in the language
of crossed modules. The motivation for studying ν(H) is the following result
found in both [24] and [14].

Theorem 2 Let H be a group. The map φ : H⊗H → [H,Hϕ]�ν(H) defined
by φ(g ⊗ h) = [g, hϕ] for all g and h in H is an isomorphism.

Both papers [24] and [14] provide structural results for ν(H) that are summa-
rized in the following theorems.

Theorem 3 ([24]) Let H be a group.

(i) If H is finite then ν(H) is finite.
(ii) If H is a finite p-group then ν(H) is a finite p-group.
(iii) If H is nilpotent of class c then ν(H) is nilpotent of class at most c+ 1.
(iv) If H is solvable of derived length d then ν(H) is solvable of derived length

at most d+ 1.
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Theorem 4 ([14]) Let H be a group.

(i) The group ν(H) is isomorphic to ((H ⊗H) oH) oH.
(ii) Let ι : [H,Hϕ] → ν(H) be the natural inclusion map and let ξ : ν(H) →

H ×H be the homomorphic extension of the map sending the generator
h ∈ H of ν(H) to (h, 1) and the generator hϕ ∈ Hϕ of ν(H) to (1, h).
Then

1 −−−→ [H,Hϕ]
ι−−−→ ν(H)

ξ−−−→ H ×H −−−→ 1 (2)

is a short exact sequence.

If H is finite, then one can find a finite presentation for ν(H) using (1), and by
Theorem 3(i) we know that ν(H) is finite. The problem then becomes one of
finding a concrete representation of ν(H) such that the subgroup [H,Hϕ] can
be computed. For example, if H is a finite p-group, then by Theorem 3(ii) a
polycyclic representation of ν(H) can be found using a p-quotient algorithm.
For an arbitrary finite group, coset enumeration can be employed to find a
permutation representation of ν(H).

Computer implementations for computing the nonabelian tensor square for a
finite group G by finding the subgroup [H,Hϕ] of ν(H) can be found in [14]
using CAYLEY, in Ellis [13] using Magma [6], and by McDermott [21] and
Rocco [25] using GAP [17].

The goal of this paper is to provide an analysis of the group ν(H) for H
an arbitrary group (finite or infinite) and use this analysis as a vehicle for
computing H ⊗ H and other homological functors. We then specialize this
general analysis to polycyclic groups. Our results for polycyclic groups are
summarized in the following theorem.

Theorem 5 Let G be a polycyclic group with a finite presentation 〈H | R〉
and polycyclic generating set G. Then

(i) The nonabelian tensor square G⊗G is polycyclic.
(ii) The group ν(G) is polycyclic.
(iii) The group ν(G) has a finite presentation that depends only on H, R and

G.
(iv) The nonabelian tensor square G⊗G is generated by the set

{g±1 ⊗ h±1 | g, h in G}.

Our general results define a presentation of ν(H) relative to a structure defined
for any group H (infinite or finite) and provide a general commutator calculus
for working in the normal subgroup [H,Hϕ] of ν(H). These general results
provide a two-fold approach to computing the nonabelian tensor square of a
polycyclic group G. The first approach allows for effective hand calculations
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within the subgroup [G,Gϕ] of ν(G), supported by the general commutator
calculus we develop. Given a specific polycyclic group G, the second approach
is to use computer methods to compute the nonabelian tensor square G⊗G by
directly computing a polycyclic presentation of ν(G) and then computing the
subgroup of [G,Gϕ] of ν(G). This is possible even for infinite polycyclic groups
using the GAP package Polycyclic [10] and a polycyclic quotient algorithm,
for example nq [23], when G is nilpotent.

In the outline below we indicate the steps we follow to obtain the results
described above and briefly describe applications of those results.

In Section 2 we show that the nonabelian tensor square G⊗G of a polycyclic
group G is polycyclic. In proving this result, we provide structure results for
two abelian groups J2(G) and Γ(G/G′) related to the nonabelian tensor square.

In Section 3 we provide a list of commutator identities for working in the
normal subgroup [H,Hϕ] of ν(H) for an arbitrary group H. We then show
that for each finite normal series of H, including the trivial series H�1, there
is a corresponding presentation (not necessarily finite) of ν(H). In the case
whenH is polycyclic, any polycyclic series ofH leads to a finite presentation of
ν(H). As noted above, one application of ν(H) is that it contains a subgroup
isomorphic to H ⊗ H. The group ν(H) also contains an isomorphic copy of
the tensor center of H (Definition 22), which is a central subgroup of H.

We conclude Section 3 by developing a corresponding theory for computing
the nonabelian exterior square of a group, which is a factor group of the
nonabelian tensor square. We define the group τ(H) of ν(H) (Definition 19),
which is a factor group of ν(H). The group τ(H) plays a similar role to ν(H),
in that the normal subgroup [H,Hϕ] of τ(H) is isomorphic to the nonabelian
exterior square H ∧H of H. The group τ(H) can also be used to compute the
exterior center of H, which is also a central subgroup of H. Computing the
exterior center is of interest because it determines exactly when a group H is
capable, that is, whether H is a central factor of some group K.

Section 4 focuses on computing G ⊗ G when G is polycyclic. In this section
we find a generating set for [G,Gϕ] relative to a given polycyclic generating
set of G. We apply our results to compute the nonabelian tensor square of the
infinite dihedral group by hand. We then develop an algorithm for computing
G⊗G when G is polycyclic.

In Section 5, we conclude the paper with an application of our results to
finding the nonabelian tensor square of the free nilpotent groups of class 3
and rank n. Using a computer implementation of the algorithm developed in
Section 4, we compute G⊗G for G free nilpotent of class 3 and n = 3, 4, 5, 6.
Using these direct computations to guide us and specializing the commutator
identities of [G,Gϕ] found in Section 3 to nilpotent of class 3 groups, we fully

4



describe the nonabelian tensor square of an arbitrary nilpotent of class 3 rank
n group.

Theorem 6 Let G be a free nilpotent group of class 3 and rank n. Then
G⊗G is the direct product of a nilpotent of class 2 group minimally generated
by n(n− 1) elements and a free abelian group of rank

f(n) =
n(3n3 + 14n2 − 3n+ 10)

24
.

Prior to the results presented in this paper, the only approach to computing
the nonabelian tensor square of an infinite group H involved computing a
crossed pairing Φ : H ×H → L for some group L by hand and showing that
its lift Φ∗ : H ⊗ H → L is an isomorphism. See [5] for more details, defini-
tions and a complete description of this method. The only computer assistance
related to this method for infinite groups known to the authors involves sym-
bolic checking to confirm whether a proposed mapping is indeed a crossed
pairing. The crossed pairing method is not an algorithm since it first requires
one to guess an appropriate group L and conjecture a crossed pairing. A com-
puter algorithm that takes an infinite group and finds a group isomorphic to
its nonabelian tensor square was thought not to exist; reducing the infinite
presentation given in the Definition 1 to a finite presentation required often
difficult hand calculations.

Checking that a proposed mapping is a crossed pairing by hand is manageable
when the nonabelian tensor square is abelian (see for example [1] and [3]). This
verification becomes significantly more difficult when the nonabelian tensor
square is not abelian. For example, the nonabelian tensor square of the free
2-Engel group of rank n is nilpotent of class 2. The tensor square of the rank
3 case and then the general rank n ≥ 3 case was computed using the crossed
pairing method in two papers [2] and [5], which required 30 published pages.
By contrast, the more complex case of computing the nonabelian tensor square
of the free nilpotent groups of class 3 and rank n is completed in a few pages
in Section 5 using the techniques we develop in the earlier sections. Moreover,
the nonabelian tensor square of these groups can be computed directly for a
given rank, using a computer implementation of Algorithm 28. A simple GAP
implementation of this algorithm is given in the last section.

2 The nonabelian tensor square of a polycyclic group

In this section we show that if G is polycyclic then G ⊗ G is polycyclic, and
hence G⊗G has a finite presentation. The question then becomes finding such
a finite presentation, which will be the topic of Section 4.
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Let H be any group. Then H ⊗H is a central extension of H ′ and J2(H) (see
[7]) and we have the exact sequence

0 −−−→ J2(H) −−−→ H ⊗H
κ−−−→ H ′ −−−→ 1, (3)

where κ(g ⊗ h) = [g, h].

An immediate consequence of (3) is the following proposition.

Proposition 7 Let X be a class of groups that is closed under forming exten-
sions and let H be any group. If J2(H) and H ′ are X-groups, then H ⊗H is
an X-group.

Polycyclic groups are closed under forming extensions and taking subgroups.
Suppose G is a polycyclic group. Then G′ is polycyclic. If we can show that
J2(G) is polycyclic, then G⊗G is polycyclic by Proposition 7. The following
exposition shows that J2(G) is polycyclic.

Given an abelian group A, the Whitehead universal quadratic functor ΓA is
the abelian group with generators γa, for all a ∈ A, and defining relations

γ(a−1) = γa and γ(abc)γaγbγc = γ(ab)γ(bc)γ(ca)

for all a, b, c ∈ A. This group was introduced by Whitehead in Sections 5 and
6 of [28]. The following theorem captures the results we need.

Theorem 8 ([28]) Let A be an abelian group.

(i) If A is finitely generated then ΓA is finitely generated.

(ii) If A is free abelian of rank n then ΓA is free abelian of rank
(
n+1

2

)
.

We denote the nth dimensional integral homology group of a group H by
Hn(H). In [7] we find the following exact sequence:

H3(H) −−−→ Γ(Hab)
ψ−−−→ J2(H)

φ−−−→ H2(H) −−−→ 0, (4)

where Hab = H/H ′.

Lemma 9 Let H be a finitely presented group. Then J2(H) is finitely gener-
ated.

PROOF. Let H be a finitely presented group. Then H2(H) is a finitely gen-
erated abelian group [27], as is Γ(Hab) by Theorem 8(i). Hence both H2(H)
and Γ(Hab) are polycyclic (see [26], Chapter 1, Lemma 4). Since the sequence
(4) is exact, the image of ψ is equal to the kernel of φ and hence the kernel
of φ is polycyclic. Therefore J2(H) is an extension of two polycyclic groups.
It follows that J2(H) is polycyclic and therefore is finitely generated. 2
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We conclude with our desired result.

Proposition 10 Let G be a polycyclic group. Then G⊗G is polycyclic.

PROOF. Let G be a polycyclic group. Then G′ is polycyclic and G is finitely
presented. By Lemma 9 we have that J2(G) is polycyclic. Hence G ⊗ G is
polycyclic by Proposition 7. 2

3 The groups ν(G) and τ(G)

The theme of L.-C. Kappe’s paper [20] titled Nonabelian tensor products of
groups: the commutator connection is the similarity between the definitional
relations of the nonabelian tensor square and the basic commutator expansion
formulas. In this section we realize this connection explicitly by showing that
all tensor computations for a group H can be translated into commutator
computations within the subgroup [H,Hϕ] of ν(H). Moreover, if H is solvable
or nilpotent we have structural results for ν(H) that also assist with these
commutator computations. The commutator identities for [H,Hϕ] listed in
Lemmas 11 – 14 below are found in Rocco [24]. Rocco uses right conjugation
in his formalizations, which is nonstandard for most of the literature related
to nonabelian tensor products. While both formulations are equivalent, for
consistency we translate Rocco’s identities to the corresponding identities that
hold using conjugation from the left.

Lemma 11 Let H be a group. The following relations hold in ν(H):

(i) [h3,h
ϕ
4 ][h1, h

ϕ
2 ] = [h3,h4][h1, h

ϕ
2 ] and [hϕ

3 ,h4][h1, h
ϕ
2 ] = [h3,h4][h1, h

ϕ
2 ] for all h1,

h2, h3, h4 in H;
(ii) [hϕ1 , h2, h3] = [h1, h2, h

ϕ
3 ] = [hϕ1 , h2, h

ϕ
3 ] and [h1, h

ϕ
2 , h3] = [hϕ1 , h

ϕ
2 , h3] =

[h1, h
ϕ
2 , h

ϕ
3 ] for all h1, h2, h3 in H;

(iii) [h, hϕ] is central in ν(H) for all h in H;
(iv) [h1, h

ϕ
2 ][h2, h

ϕ
1 ] is central in ν(H) for all h1, h2 in H;

(v) [h, hϕ] = 1 for all h in H ′.

Lemma 12 Let H be a group and let xi, yi, for i = 1, . . . , s, be elements of H.
For z =

∏s
i=1[xi, yi], define z̃ to be

∏s
i=1[x

ϕ
i , yi]. Then the following identities

hold in ν(H):

(i) [hϕ
1 ,h2]z̃ = [h1,h2]z̃ for all h1, h2 in H;

(ii) z̃[h1, h
ϕ
2 ] = z[h1, h

ϕ
2 ] for all h1, h2 in H;

(iii) [z, hϕ] = [z̃, h] for all h in H.
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Lemma 13 Let H be a group and let a, b and x be elements of H such that
[x, a] = 1 = [x, b]. Then in ν(H),

[a, b, xϕ] = 1 = [[a, b]ϕ, x].

Lemma 14 Let H be a group and let x and y be elements of H that commute.
Then in ν(H),

(i) [xn, yϕ] = [x, yϕ]n = [x, (yϕ)n] for all integers n;
(ii) If x and y are torsion elements of H of orders o(x) and o(y) (respectively)

in H, then the order of [x, yϕ] in ν(H) divides the greatest common divisor
of o(x) and o(y).

The following lemma records additional identities that will be used in the
sequel.

Lemma 15 Let h1, h2, h3 and h4 be elements of a group H. Then in ν(H)

(i) [[h1, h
ϕ
2 ], [h2, h

ϕ
1 ]] = 1;

(ii) [[h1, h2], [h3, h4]
ϕ] = [[h1, h

ϕ
2 ], [h3, h

ϕ
4 ]];

(iii) [hn1 , h
ϕ
2 ] · [h2, (h

n
1 )ϕ] = [h1, (h

n
2 )ϕ] · [hn2 , (h1)

ϕ] = ([h1, h
ϕ
2 ][h2, (h1)

ϕ])n;
(iv) [h1, (h

n
2h

m
3 )ϕ] · [hn2hm3 , h

ϕ
1 ] = ([h1, h

ϕ
2 ][h2, h

ϕ
1 ])n · ([h1, h

ϕ
3 ][h3, h

ϕ
1 ])m;

(v) [hn1h
m
2 , h

ϕ
3 ] · [h3, (h

n
1h

m
2 )ϕ] = ([h1, h

ϕ
3 ][h3, h

ϕ
1 ])n · ([h2, h

ϕ
3 ][h3, h

ϕ
2 ])m;

(vi) h1 [h2, h
ϕ
3 ] = hϕ

1 [h2, h
ϕ
3 ]

PROOF. Lemma 11(iv) states that the product [h1, h
ϕ
2 ] · [h2, h

ϕ
1 ] is in the

center of ν(H). Therefore

1 = [[h1, h
ϕ
2 ] · [h2, h

ϕ
1 ], [h2, h

ϕ
1 ]]

= [h1,h
ϕ
2 ][[h1, h

ϕ
2 ], [h2, h

ϕ
1 ]] · [[h2, h

ϕ
1 ], [h2, h

ϕ
1 ]]

= [h1,h
ϕ
2 ][[h1, h

ϕ
2 ], [h2, h

ϕ
1 ]].

Hence [[h1, h
ϕ
2 ], [h2, h

ϕ
1 ]] = 1.

By Lemma 11(i) we have [h1,h
ϕ
2 ][h3, h

ϕ
4 ] = [h1,h2][h3, h

ϕ
4 ]. Hence

[[h1, h
ϕ
2 ], [h3, h

ϕ
4 ]] · [h3, h

ϕ
4 ] = [[h1, h2], [h3, h

ϕ
4 ]] · [h3, h

ϕ
4 ],

and therefore [[h1, h
ϕ
2 ], [h3, h

ϕ
4 ]] = [[h1, h2], [h3, h

ϕ
4 ]]. Now by Lemma 11(ii)

[[h1, h2], [h3, h
ϕ
4 ]] = [[h3, h

ϕ
4 ], [h1, h2]]

−1 = [[hϕ3 , h
ϕ
4 ], [h1, h2]]

−1

= [[h1, h2], [h3, h4]
ϕ].

We prove identity (iii) by induction on n. For n = 1 there is nothing to show.
Suppose the result is true for n = k. Using the induction hypothesis and
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Lemma 11(iv) for n = k + 1 we have

[hk+1
1 , hϕ2 ] · [h2, (h

k+1
1 )ϕ] = [hk1h1, h

ϕ
2 ] · [h2, (h

k
1h1)

ϕ]

= hk
1 [h1, h

ϕ
2 ] · [hk1, h

ϕ
2 ] · [h2, (h

k
1)
ϕ] · (hk

1)ϕ

[h2, h
ϕ
1 ]

= hk
1 [h1, h

ϕ
2 ] · hk

1 [h2, h
ϕ
1 ] · [hk1, h

ϕ
2 ] · [h2, (h

k
1)
ϕ]

= hk
1 ([h1, h

ϕ
2 ][h2, h

ϕ
1 ]) · ([h1, h

ϕ
2 ][h2, h

ϕ
1 ])k

= [h1, h
ϕ
2 ] · [h2, h

ϕ
1 ] · ([h1, h

ϕ
2 ][h2, h

ϕ
1 ])k

= ([h1, h
ϕ
2 ][h2, h

ϕ
1 ])k+1.

A similar argument gives [h1, (h
k
2)
ϕ] · [hk2, (h1)

ϕ] = ([h1, h
ϕ
2 ][h2, h

ϕ
1 ])k.

To prove identity (iv) we use (iii) and Lemma 11(iv) as follows:

[h1, (h
n
2h

m
3 )ϕ] · [hn2hm3 , h

ϕ
1 ] = [h1, (h

n
2 )ϕ] · (hn

2 )ϕ

[h1, (h
m
3 )ϕ] · (hn

2 )ϕ

[hm3 , h
ϕ
1 ] · [hn2 , h

ϕ
1 ]

= [h1, (h
n
2 )ϕ] · [hn2 , h

ϕ
1 ] · [h1, (h

m
3 )ϕ] · [hm3 , h

ϕ
1 ]

= ([h1, h
ϕ
2 ][h2, h

ϕ
1 ])n · ([h1, h

ϕ
3 ][h3, h

ϕ
1 ])m.

The proof of (v) is similar to (iv).

Finally, to prove (vi) we use Lemma 11(ii) as follows:

h1 [h2, h
ϕ
3 ] = [h1, [h2, h

ϕ
3 ]] · [h2, h

ϕ
3 ]

= [h2, h
ϕ
3 , h1]

−1 · [h2, h
ϕ
3 ]

= [h2.h
ϕ
3 , h

ϕ
1 ]−1 · [h2, h

ϕ
3 ]

= [hϕ1 , [h2.h
ϕ
3 ]] · [h2, h

ϕ
3 ]

= hϕ
1 [h2, h

ϕ
3 ].

2

We will apply the commutator calculus of these lemmas to computing the
nonabelian tensor squares of infinite polycyclic groups in Sections 4 and 5.
Let G be a polycyclic group. In Section 4 we determine a finite generating
set for the subgroup [G,Gϕ] of ν(G) independent of any presentation of ν(G).
Hence, in this case, we are able to use the commutator calculus above to
compute the structure of [G,Gϕ] ∼= G ⊗ G (Theorem 2) directly using only
general structural results about ν(G).

Since the presentation of H⊗H given in Definition 1 becomes computationally
intractable for all but small finite groups, our next goal is to find conditions
for when a presentation for ν(H) is small (finite) so that we can devise an
algorithm to compute [H,Hϕ] using ν(H), even when H is a large finite or
infinite group.
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Definition 16 Let H be a group and let H = Hn � · · · � H1 � H0 = 1 be a
subnormal series for H. Let Ti denote a transversal for Hi−1 in Hi and let Hi

denote a lift of a generating set for Hi/Hi−1 to Ti. Set

Li =

Hi if Hi/Hi−1 is abelian

Ti otherwise.

Then the set LH relative to the subnormal series H = Hn� · · ·�H1 �H0 = 1
is defined as

LH = ∪ni=1Li.

Note for any nonabelian groupH thatH = LH relative to the subnormal series
H�1. IfH is polycyclic with some polycyclic seriesH = Hn�· · ·�H1�H0 = 1
and associated polycyclic generating sequence H, then LH relative to this series
is H.

The following theorem relates the set LH to ν(H).

Theorem 17 Let H be a group with presentation 〈H | R〉 and let S be any
subnormal series of H. Then ν(H) is given by the following presentation:

ν(H) = 〈H,Hϕ | R,Rϕ,x[a, bϕ] = [xa, (xb)ϕ], x
ϕ

[a, bϕ] = [xa, (xb)ϕ],

∀a, b ∈ H, ∀x ∈ LH relative to S〉. (5)

PROOF. Let J be the set of words {z[g, hϕ]·[zg, (zh)ϕ]−1} in the free product
H ∗Hϕ such that z ∈ H ∗Hϕ and g, h ∈ H. The set J is a normal subset of
H ∗Hϕ and we claim that

ν(H) ∼= H ∗Hϕ/〈J〉.

This claim reduces to demonstrating that the words of J can be written as con-
jugates of the relators of ν(H) given in the presentation (1). Set W (z, g, h) =
z[g, hϕ] · [zg, (zh)ϕ]−1. For x and y in H ∗Hϕ and a and b in H we have

W (xy, a, b) = xy[a, bϕ] · [xya, (xyb)ϕ]−1

= x
(
y[a, bϕ][ya, (yb)ϕ]−1[ya, (yb)ϕ]

)
· [xya, (xyb)ϕ]−1

= xW (y, a, b) · x[ya, (yb)ϕ] · [xya, (xyb)ϕ]−1

= xW (y, a, b) ·W (x, ya, yb).

Continuing the expansion we see that W (xy, a, b) can eventually be written
as the product of conjugates of words of the form W (w, g, h) or W (wϕ, g, h)
for w in H. But these words are just the relators of ν(H).
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Theorem 2.2.8 of [21] states that given LH relative to some subnormal series
for H, the set J is normally generated by the relators given in presentation (5).
That is, the normal closure of these words generate all of J as required. 2

Let G be any polycyclic group with polycyclic generating sequence G. Taking
LG to be G, we see that ν(G) is finitely presented. In Section 4 we will use
this fact to devise an algorithm for computing [G,Gϕ].

We conclude this section by using ν(H) to define a useful factor group of the
nonabelian tensor square of a group H and two important central subgroups
of H. These groups will be investigated in a future publication.

Note first by Lemma 11(iii) that the subgroup ∇(H) = 〈h ⊗ h | h ∈ H〉 is a
central subgroup of H ⊗H.

Definition 18 Let H be any group. Then the nonabelian exterior square H∧ H
of H is defined to be

H ∧H = H ⊗H/∇(H).

For g and h in H we denote the coset (g ⊗ h)∇(H) by g ∧ h.

The subgroup [H,Hϕ] is a fully invariant subgroup of ν(H). Hence ν(H)
contains a normal subgroup isomorphic to ∇(H).

Definition 19 Let H be any group. Then we define τ(H) to be the quotient
group ν(H)/φ(∇(H)), where φ : H ⊗H → [H,Hϕ] is defined in Theorem 2.

Since φ isomorphically embeds ∇(H) in ν(H), it follows that

[H,Hϕ]/φ(∇(H)) ∼= H ∧H.

This isomorphism is realized by the mapping φ̂ : H ∧H → [H,Hϕ]/φ(∇(H))
defined by φ̂(g ∧ h) = [g, hϕ]φ(∇(H)) for all g, h in H. We will denote
[H,Hϕ]/φ(∇(H)) by [H,Hϕ]τ(H). The following proposition is now evident.

Proposition 20 Let H be any group. The map

φ̂ : H ∧H → [H,Hϕ]τ(H) � τ(H)

defined by φ̂(g ∧ h) = [g, hϕ]τ(H) is an isomorphism.

For any finitely generated group H, the subgroup ∇(H) is finitely generated,
as the next lemma shows.

Lemma 21 Let H be a group generated by H. Then ∇(H) is generated by
the set

{h⊗ h | h ∈ H} ∪ {(h⊗ h′)(h′ ⊗ h) | h, h′ ∈ H}

11



PROOF. Let x be an element of H. Then x = hα1
1 · · ·hαn

n , where hi ∈ H and
αi ∈ Z for i = 1, . . . , n. We will show that

[x, xϕ] =
∏

1≤i≤n
[hi, h

ϕ
i ]
α2

i ·
∏

1≤j<i≤n
([hi, h

ϕ
j ][hj, h

ϕ
i ])

αiαj (6)

by induction on n. For n = 1 we have [x, xϕ] = [hα1
1 , (h

α1
1 )ϕ] = [h1, h

ϕ
1 ]α

2
1 by

Lemma 14(i). Suppose the result is true for n = k. Then for n = k + 1 we
write x = hα1

1 · · ·hαk
k h

αk+1

k+1 = y · hαk+1

k+1 . It follows from Lemma 11(iii) and (iv)
and Lemma 15(vi) that

[x, xϕ] = [y · hαk+1

k+1 , (y · h
αk+1

k+1 )ϕ]

= y
(
[h
αk+1

k+1 , y
ϕ] · yϕ

[h
αk+1

k+1 , (h
αk+1

k+1 )ϕ]
)
· [y, yϕ] · yϕ

[y, (h
αk+1

k+1 )ϕ]

= [h
αk+1

k+1 , y
ϕ] · [y, (hαk+1

k+1 )ϕ] · [y, yϕ] · [hαk+1

k+1 , (h
αk+1

k+1 )ϕ].

Now by repeated use of Lemma 15(iv) we have

[h
αk+1

k+1 , y
ϕ] · [y, (hαk+1

k+1 )ϕ] = [h
αk+1

k+1 , (h
α1
1 · · ·hαk

k )ϕ] · [hα1
1 · · ·hαk

k , h
αk+1

k+1 ]

=
∏

1≤j≤k
([hk+1, h

ϕ
j ][hj, hk+1)

ϕ])αk+1αj .

Applying the induction hypothesis, we have

[x, xϕ] =
∏

1≤j≤k
([hk+1, h

ϕ
j ][hj, hk+1)

ϕ])αk+1αj ·
∏

1≤i≤k
[hi, h

ϕ
i ]
α2

i ·
∏

1≤j<i≤k
([hi, h

ϕ
j ][hj, h

ϕ
i ])

αiαj · [hk+1, (hk+1)
ϕ]α

2
k+1 .

Since all factors are in the center of ν(H) we obtain the product (6).

It now follows that ∇(H) is generated by

{h⊗ h | h ∈ H} ∪ {(h⊗ h′)(h′ ⊗ h) | h, h′ ∈ H}.

This completes the proof. 2

Let H = 〈H|R〉 be any group. Given LH relative to some subnormal series of
H, we obtain by Lemma 21, the presentation

τ(H) = 〈H,Hϕ | R,Rϕ,x[a, bϕ] = [xa, (xb)ϕ], x
ϕ

[a, bϕ] = [xa, (xb)ϕ],

[a, aϕ], [a, bϕ][b, aϕ] ∀a, b ∈ H, ∀x ∈ LH〉. (7)

If H is finitely presented and LH is a finite set, then (7) gives a finite presen-
tation for τ(H). In particular, for any polycyclic group G the group τ(G) is
finitely presented.

12



Definition 22 Let H be a group. The nonabelian tensor center Z⊗(H) and
nonabelian exterior center Z∧(H) are subgroups of H defined respectively by

Z⊗(H) = 〈h ∈ H | g ⊗ h = 1H⊗H for all g ∈ H〉 and

Z∧(H) = 〈h ∈ H | g ∧ h = 1H∧H for all g ∈ H〉.

Ellis [16] shows that the tensor center Z⊗(H) is a characteristic and central
subgroup of H. Similarly, the exterior center Z∧(H) of H is a central and
characteristic subgroup of H. The tensor center of H can be characterized as
the largest subgroup A of H such that (H/A) ⊗ (H/A) ∼= H ⊗ H [16]. The
exterior center is equal to Z∗(H), the epicenter of H [12]. Groups with trivial
epicenters are called capable [4].

The tensor center and exterior center of a group H can be alternatively de-
scribed relative to ν(H) and τ(H), respectively.

Theorem 23 Let H be any group. Then

Z⊗(H) ∼= H ∩ Z(ν(H)) and Z∧(H) ∼= H ∩ Z(τ(H)),

where H on the right hand side of each equation is interpreted as the natural
isomorphic copy of H in ν(H) and τ(H) respectively.

PROOF. Let H be a group generated by H. Then by (5) we have that ν(H)
is generated by H ∪ Hϕ. Suppose h ∈ Z⊗(H). Then [h, xϕ] = 1ν(H) for all
x ∈ H. In particular, all h in Z⊗(H) commute with all gϕ in Hϕ. Since
Z⊗(H) is central in H , we have [h, g] = 1ν(H) for all g in H. Hence h is in
the center of ν(H), since it commutes with all of its generators. Therefore
Z⊗(H) is contained in H ∩ Z(ν(H)). Suppose h ∈ H ∩ Z(ν(H)). Then we
have [h, xϕ] = 1ν(H) for all x in H. Therefore by the definition of the tensor
center, h ∈ Z⊗(H) and H ∩Z(ν(H)) is contained in Z⊗(H). The equality for
the exterior center holds by a similar argument. 2

4 Computing G⊗G when G is polycyclic

In Section 2 we showed that if G is polycyclic, then G ⊗ G is polycyclic. It
follows that G ⊗ G has a polycyclic presentation. The goal of this section is
finding such a polycyclic presentation so that the structure of G ⊗ G can be
investigated. Finding a polycyclic presentation and determining the structure
of G ⊗ G can be done by computing in ν(G). These computations can be
completed using computer methods or by hand. Hand calculations are aided
by Proposition 25, which gives a complete description of a set of generators
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of [G,Gϕ], so that the commutator calculus developed in Section 3 can be
applied. Our computer methods rely on the structure of ν(G).

The following proposition is the starting point for our algorithm for computing
the nonabelian tensor squares of polycyclic groups.

Proposition 24 If G is polycyclic then ν(G) is polycyclic.

PROOF. Let G be a polycyclic group. Then G×G is polycyclic. By Propo-
sition 10, G ⊗ G ∼= [G,Gϕ] is polycyclic. Hence, by Theorem 4, ν(G) is an
extension of two polycyclic groups and therefore is also polycyclic. 2

The following result allows us to explicitly write down a finite generating set
for [G,Gϕ] in terms of a polycyclic generating set of G, independent of the
polycyclic presentation of ν(G). This extends Rocco’s result Theorem 2.1 [25]
for finite solvable groups to all polycyclic groups.

Proposition 25 Let G be a polycyclic group with a polycyclic generating se-
quence g1, . . . , gk. Then [G,Gϕ], a subgroup of ν(G), is generated by

[G,Gϕ] = 〈[gi, gϕi ], [gεi , (g
ϕ
j )
δ]〉

and [G,Gϕ]τ(G), a subgroup of τ(G), is generated by

[G,Gϕ]τ(G) = 〈[gεi , (g
ϕ
j )
δ]〉

for 1 ≤ i, j ≤ k, i 6= j, where

ε =

1 if |gi| <∞
±1 if |gi| = ∞

and δ =

1 if |gϕj | <∞
±1 if |gϕj | = ∞.

Our proof of Proposition 25 requires the following lemma, which generalizes
Lemma 8.39 of [19] from finite polycyclic groups to all polycyclic groups.

Lemma 26 Let G be a polycyclic group with subgroups A and B having poly-
cyclic generating sets a1, . . . , an and b1, . . . , bm respectively. If G = 〈A,B〉
then [A,B] is generated by [aεi , b

δ
j ], where 1 ≤ i ≤ n, 1 ≤ j ≤ m,

ε =

1 if |ai| <∞
±1 if |ai| = ∞

and δ =

1 if |bj| <∞
±1 if |bj| = ∞.

PROOF. [Proof of Proposition 25] Let G be a polycyclic group with a poly-
cyclic generating sequence g1, . . . , gk. From the generators and relations of
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ν(G) we see that ν(G) = 〈G,Gϕ〉. By Lemma 14(i), we have [gni , (g
ϕ
i )
m] =

[gi, g
ϕ
i ]
nm for all integers n,m. Hence by Lemma 26, [G,Gϕ] is generated as

claimed. The generating set for [G,Gϕ]τ(G) follows immediately from Lemma
26. 2

Proposition 25, coupled with the commutator calculus from Section 3, provides
enough information in principle to compute the nonabelian tensor square of
any polycyclic group. As an example, we compute D ⊗ D, the nonabelian
tensor square of the infinite dihedral group

D = 〈a, b | a2, ab = b−1〉. (8)

Beuerle and Kappe [3] compute the nonabelian tensor squares for all the infi-
nite metacyclic groups. For the infinite dihedral group they obtain the follow-
ing result.

Theorem 27 ([3]) Let D denote the infinite dihedral group. Then

D ⊗D ∼= C2 × C2 × C2 × C0,

where C0 denotes the infinite cyclic group.

We will prove Theorem 27 using our commutator calculus.

By Proposition 25 we have that D⊗D is isomorphic to the subgroup [D,Dϕ]
of ν(D) generated by the set

{[a, aϕ], [b, bϕ], [a, (bϕ)±1], [b±1, aϕ]}.

We first show that the generators [a, (bϕ)−1] and [b−1, aϕ] can be written in
terms of the other four generators. By the relations of D and Lemma 11(ii),
we have that

[a, b−ϕ] = b−1

[a, bϕ]−1

= [b−1, [a, bϕ]−1] · [a, bϕ]−1

= [b−1, [a, b]−ϕ] · [a, bϕ]−1 (9)

= [b−1, (b−2)−ϕ] · [a, bϕ]−1

= [b, bϕ]2 · [a, bϕ]−1.

By a similar derivation we have

[b−1, aϕ] = [b, bϕ]2 · [b, aϕ]−1.

Hence [D,Dϕ] is generated by the set

{[a, aϕ], [b, bϕ], [a, bϕ], [b, aϕ]}.
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By Lemma 11(iii), the commutators [a, aϕ] and [b, bϕ] are central in ν(D). The
generators [a, bϕ] and [b, aϕ] commute by Lemma 15(i). Hence D⊗D ∼= [D,Dϕ]
is abelian.

We will now show that [a, aϕ], [b, bϕ], and [a, bϕ][b, aϕ] all have order 2 and
that [a, bϕ] has infinite order. Moreover, each of these generators is nontrivial.
It follows that D ⊗D ∼= C2 × C2 × C2 × C0.

Using Lemma 14(i) and Lemma 15(iii) we have

1 = [a2, aϕ] = [a, aϕ]2;

1 = [a2, bϕ][b, (a2)ϕ] = ([a, bϕ][b, aϕ])2.

Using (9) we see that

1 = [a2, bϕ] = a[a, bϕ] · [a, bϕ]
= [a, (ab)ϕ] · [a, bϕ] = [a, b−ϕ] · [a, bϕ]
= [b, bϕ]2 · [a, bϕ]−1 · [a, bϕ] = [b, bϕ]2.

Suppose [a, bϕ]n = 1 for some n ≥ 1. Then under the mapping κ of (3) we
have

κ([a, bϕ]n) = κ([a, bϕ])n = [a, b]n = 1,

which is a contradiction since [a, b] has infinite order in D. Hence [a, bϕ] has
infinite order.

Proposition 24 provides the basis for a computer implementation for comput-
ing the nonabelian tensor square and exterior tensor square of a polycyclic
group G. The main problem is to find a polycyclic presentation for ν(G).
If this can be done, then the subgroup [G,Gϕ] ∼= G ⊗ G can be computed
and its structure examined. Putting these steps together we get the following
algorithm.

Algorithm 28 Given a finite presentation for the polycyclic group G = 〈G |
R〉 with polycyclic generating sequence G, the nonabelian tensor square G⊗G
is computed by the following procedure.

(1) Construct a finite presentation of ν(G) from G, R and G using (5).
(2) Compute a polycyclic presentation for ν(G) (Proposition 24).
(3) Return the subgroup [G,Gϕ] of ν(G) as a polycyclic group (Theorem 2).

GAP has methods for constructing finitely presented groups as needed in step
(1). The GAP package Polycyclic [10] can be used to effectively compute
with finite and infinite polycyclic groups. For example, this package can be
used to compute the subgroup [G,Gϕ] in step (3). Step (2) can be completed
by employing some type of polycyclic quotient algorithm.
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We attempted to use an experimental GAP package Ipcq [9] to find a poly-
cyclic presentation of ν(D), where D is the infinite dihedral group. The pro-
gram requested more than 12 gigabytes of memory before failing. We are
uncertain whether the problem is inherent to the algorithm or in its imple-
mentation.

Since this work was initiated, another approach to computing the nonabelian
tensor and exterior square has been developed. By exploiting the fact that
both the nonabelian tensor and exterior square are central extensions, Eick and
Nickel [11] can effectively compute these squares for many infinite polycyclic
groups, including D. Their work may supersede our more direct computational
approach, at least for the nonnilpotent polycyclic groups; however, as Eick and
Nickel point out, their method is less efficient for nilpotent groups.

For finitely generated nilpotent groups, step (2) in the algorithm above reduces
to using a nilpotent quotient algorithm, since by Theorem 3, if G is nilpotent,
then ν(G) is nilpotent. The nq package [23] of GAP can find a polycyclic
presentation of ν(G) as needed. Moreover, Theorem 3 gives a class bound for
ν(G), which makes finding this quotient easier. The run times of our GAP
implementation of Algorithm 28 using nq are tabulated in Section 5. This
implementation is listed in Section 6. Timing results with our implementation
when applied to nilpotent groups is at least an order of magnitude faster than
those of [11].

In the next section we will use the theoretical results of Section 3 to compute
the nonabelian tensor square of the free nilpotent groups of class 3 and rank
n. Our GAP implementation of Algorithm 28 motivated this analysis in that
we were able to compute examples of small rank from which relations for the
general case could be determined.

5 Free nilpotent groups of class 3 with finite rank

In this section we apply our results to compute the nonabelian tensor square
of the free nilpotent group of class 3 and rank n, which we will denote as Gn.
Table 1 below records information about the structure of the nonabelian ten-
sor square of Gn for n = 3, 4, 5, 6, as computed using the GAP implementation
of our algorithm listed in Section 6. Table 1 shows that the nonabelian tensor
square of Gn is a direct product N ×A, where N is nilpotent of class 2 and A
is free abelian of the stated rank. These computations were performed using
an ordinary laptop with 1GB of RAM running Linux. The GAP workspace
used was 500MB; run times listed are nq run time/GAP run time in millisec-
onds with wall clock time approximately the sum of the two times. These
computer calculations prompted conjectures that became theoretical results
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n Class of Gn ⊗Gn Minimal Generators of N Rank of A Run time

3 2 6 26 240/388

4 2 12 69 3388/2644

5 2 20 150 36870/15841

6 2 30 286 553270/84733

Table 1
Run times to compute Gn ⊗Gn

in the analysis given in this section.

We begin with some observations about the commutator calculus in ν(Gn).

Note first of all from Theorem 3 we have that ν(Gn) is nilpotent of class at
most 4. In fact, when n > 2, the group ν(Gn) must have class exactly 4.
Otherwise ν(Gn)

′ would be abelian, which implies that Gn ⊗ Gn is abelian,
a contradiction, since we know that the nonabelian tensor square of the free
2-Engel group of rank n > 2, a homomorphic image of Gn, is nilpotent of class
2 [2,5]. By direct computation we have that ν(G2) is nilpotent of exactly class
4 even though G2 ⊗G2 is abelian.

We start our computation of Gn⊗Gn by specializing the commutator calculus
presented in Section 3 to groups of class 3. First we extend Lemma 11(ii).

Lemma 29 Suppose that the group G is nilpotent of class 3. Then in ν(G)
the identity [g, hϕ, k] = [gϕ, h, k] holds for all g, h, k ∈ G.

PROOF. By Lemma 11(iv), [[g, hϕ] · [h, gϕ], k] = 1 in ν(G) for all g, h, k ∈ G.
Since ν(G) is nilpotent of class at most 4, the product expands linearly, that
is, [g, hϕ, k] · [h, gϕ, k] = 1. Hence [g, hϕ, k] = [h, gϕ, k]−1 = [gϕ,h]−1

[gϕ, h, k] =
[gϕ, h, k]. 2

Corollary 30 Suppose the group G is nilpotent of class 3. Then in ν(G) the
six commutators of Lemma 11(ii) are all equal.

As a consequence, when G is nilpotent of class at most 3, ϕ may be removed
and introduced as is convenient within weight three and weight four commu-
tators in ν(G) whenever, both in the initial commutator and in the resulting
commutator, at least one of the terms is in G and at least one is in Gϕ. We
use this property in the sequel without further reference.

Lemma 31 Suppose that G is a nilpotent group of class at most 3. Then for
all g, h, k ∈ G the following identities hold in ν(G):
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(i) [[g, h]−1, kϕ] = [[g, h], kϕ]−1;

(ii) [[g, h], k−ϕ] = [[g, h, k], kϕ]−1 · [[g, h], kϕ]−1;

(iii) [[g, h]−1, k−ϕ] = [[g, h, k], kϕ] · [[g, h], kϕ];

(iv) [g−1, hϕ] = [[g, h, g], gϕ]−1 · [[g, h], gϕ]−1 · [g, hϕ]−1;

(v) [g, h−ϕ] = [[g, h, h], hϕ]−1 · [[g, h], hϕ]−1 · [g, hϕ]−1; and

(vi) [g−1, h−ϕ] = [[g, h, g], gϕ] · [[g, h, h], gϕ][[g, h, h], hϕ][[g, h], gϕ] · [[g, h], hϕ] · [g, hϕ].

PROOF. Although (i)-(iii) are special cases of (iv)-(vi), we use the former
to prove the latter. From the fact that ν(G) is nilpotent of class at most 4, we
have [[g, h]−1, kϕ] = [g,h]−1

[[g, h], kϕ]−1 = [[g, h], kϕ]−1, that is, (i) holds. For
the proof of (ii) we use Corollary 30:

[[g, h], k−ϕ] = k−ϕ

[[g, h], kϕ]−1

= [k−ϕ, [[g, h], kϕ]−1] · [[g, h], kϕ]−1

= [kϕ, [[g, h], kϕ]] · [[g, h], kϕ]−1

= [[[g, h], kϕ], kϕ]−1 · [[g, h], kϕ]−1

= [[g, h, k], kϕ]−1 · [[g, h], kϕ]−1,

which proves (ii). By (i) and (ii), [[g, h]−1, k−ϕ] = [[g, h], k−ϕ]−1 = [[g, h, k], kϕ]·
[[g, h], kϕ], that is, (iii) holds. Next, using (ii),

[g−1, hϕ] = g−1

[g, hϕ]−1

= [g−1, [g, hϕ]−1] · [g, hϕ]−1

= [[g, hϕ]−1, g−1]−1 · [g, hϕ]−1

= [g,hϕ]−1

[[g, hϕ], g−1] · [g, hϕ]−1

= [[g, hϕ], g−1] · [g, hϕ]−1

= [[g, h], g−ϕ] · [g, hϕ]−1

= [[g, h, g], gϕ]−1 · [[g, h], gϕ]−1 · [g, hϕ]−1,

which proves (iv). We also use (ii) to prove (v):

[g, h−ϕ] = h−ϕ

[g, hϕ]−1

= [h−ϕ, [g, hϕ]−1] · [g, hϕ]−1

= [[g, hϕ]−1, h−ϕ]−1 · [g, hϕ]−1

= [g,hϕ]−1

[[g, hϕ], h−ϕ] · [g, hϕ]−1

= [[g, hϕ], h−ϕ] · [g, hϕ]−1

= [[g, h], h−ϕ] · [g, hϕ]−1

= [[g, h, h], hϕ]−1 · [[g, h], hϕ]−1 · [g, hϕ]−1.
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Finally,

[g−1, h−ϕ] = [[g, h−1, g], gϕ]−1 · [[g, h−1], gϕ]−1 · [g, h−ϕ]−1

= [[g, h, g], gϕ] · [[g, h−ϕ], gϕ]−1 · [g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]
= [[g, h, g], gϕ] · [[[g, h, h], hϕ]−1 · [[g, h], hϕ]−1 · [g, hϕ]−1, gϕ]−1·

[g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]
= [[g, h, g], gϕ] · [[[g, h], hϕ]−1 · [g, hϕ]−1, gϕ]−1·

[g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]
= [[g, h, g], gϕ] · ( [[g,h],hϕ]−1

[[g, hϕ]−1, gϕ] · [[[g, h], hϕ]−1, gϕ])−1·
[g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]

= [[g, h, g], gϕ] · ( [g,hϕ]−1

[[g, hϕ], gϕ]−1 · [[g,h],hϕ]−1

[[[g, h], hϕ], gϕ]−1)−1

[g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]
= [[g, h, g], gϕ] · [[[g, h], hϕ], gϕ][[g, hϕ], gϕ]·

[g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]
= [[g, h, g], gϕ] · [[g, h, h], gϕ][[g, h], gϕ]·

[g, hϕ] · [[g, h], hϕ] · [[g, h, h], hϕ]
= [[g, h, g], gϕ] · [[g, h, h], gϕ][[g, h, h], hϕ][[g, h], gϕ] · [[g, h], hϕ] · [g, hϕ],

which proves (vi). 2

Our description of the structure of the nonabelian tensor squares of the free
nilpotent groups of class 3 finite rank n makes use of basic commutators
(see [18]). Fix F to be the free group of rank n with generating set X =
{x1, x2, . . . , xn}. The particular collection of basic commutators on X depends
on an arbitrary choice of ordering of those commutators. The orderings cho-
sen for the basic commutators of weights 1 and 2 completely determine the
set of basic commutators on X of weight no more than 4. For the weight 1
commutators on X we choose the natural ordering x1, x2, . . . , xn. For the basic
commutators of weight 2 on X, namely those of form [xi, xj] with j < i, we
use right lexicographic ordering based on the subscripts: [xi, xj] < [xk, xl] if
j < l or if j = l and i < k. With this ordering the basic commutators of weight
3 on X have form

[xi, xj, xk], where j < i and j ≤ k, (10)

and the basic commutators of weight 4 on X have the forms

[[xi, xj], [xk, xl]], where j < i, l < k and l ≤ j, and if j = l then i > k (11)

and
[xi, xj, xk, xl], where j < i and j ≤ k ≤ l. (12)

Denote by M(n,w) the number of basic commutators of rank n and weight
w. The value of M(n,w) is computed by Witt’s formula (see [18]), which for
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w = 1, 2, 3, and 4 gives:

M(n, 1) = n;

M(n, 2) =

(
n

2

)
= n(n− 1)/2;

M(n, 3) = 2

(
n

3

)
+ 2

(
n

2

)
= n(n2 − 1)/3;

M(n, 4) = n2(n2 − 1)/4.

A fundamental property of basic commutators is that the basic commutators
of weight w on X form a basis for the free abelian group γw(F )/γw+1(F ) ([18]).

Set Gn
∼= F/γ4(F ) to be the free nilpotent group of class 3 and rank n,

generated by g1, . . . , gn, where gi = xiγ4(F ). The group Gn has a polycyclic
generating sequence consisting of all the basic commutators of weights 1, 2 and
3 on the generating set {g1, . . . , gn}, that is, consisting of the natural images
in G of the basic commutators of weights 1, 2 and 3 on X.

Our goal is to prove that Gn ⊗ Gn is a direct product of the form N × A,
where N is a nilpotent group of class 2 and A is free abelian. We accomplish
this by first computing the nonabelian exterior square Gn ∧ Gn, which is a
homomorphic image of Gn ⊗ Gn. The nonabelian exterior square Gn ∧ Gn is
isomorphic to the derived subgroup of the Schur cover of Gn (Corollary 2,[7]).
Since the Schur cover of Gn is the free nilpotent group F/γ5(F ) of class 4 and
rank n, the following lemma describes the form of Gn ∧Gn.

Lemma 32 Let Vn be the free nilpotent group of class 4 and rank n generated
by v1, . . . , vn. Then the derived subgroup V ′

n of Vn has the form

V ′
n
∼= N × A

where N is free nilpotent of class 2 and rank M(n, 2) and A is free abelian of
rank M(n, 3) +M(n, 4)−M(M(n, 2), 2).

PROOF. The derived subgroup of Vn is nilpotent of class 2 and is gener-
ated by a set of basic commutators of weights 2, 3, and 4 on the generators
v1, . . . , vn, that is, it is generated by the natural images in Vn of a set basic
commutators of weights 2, 3 and 4 on X. Any abelian subgroup of a free
nilpotent group is free abelian [22]. In particular, the center of V ′

n is a free
abelian group of rank M(n, 3) + M(n, 4). The subgroup N of Vn generated
by the basic commutators of weight 2 is a normal free nilpotent subgroup
of V ′

n of class 2 and rank M(n, 2). The derived subgroup of N is therefore
free abelian of rank M(M(n, 2), 2). Since N ′ is in the center of V ′

n, it fol-
lows that Z(V ′

n) is isomorphic to N ′ × A, where A is free abelian of rank

21



M(n, 3) +M(n, 4)−M(M(n, 2), 2). Moreover, N ∩ A is trivial, because oth-
erwise the center of N would have rank larger than M(M(n, 2), 2), a contra-
diction. Therefore V ′

n is the direct product of N and A. 2

We now classify the generators of Gn ⊗Gn and relate them to Gn ∧Gn
∼= V ′

n.

Definition 33 In the group [Gn, G
ϕ
n] the following commutators of weights

2, 3 and 4 are said to be of basic type:

(i) [gi, g
ϕ
j ], if [xi, xj] is a basic commutator on X.

(ii) [gi, gj, g
ϕ
k ], if [xi, xj, xk] is a basic commutator on X.

(iii) [gi, gj, gk, g
ϕ
l ], if [xi, xj, xk, xl] is a basic commutator on X.

(iv) [[gi, gj], [gk, gl]
ϕ], if [[xi, xj], [xk, xl]] is a basic commutator on X.

Every element g of Gn can be written in the form

g =
∏

1≤i≤n
gαi
i

∏
1≤j<i≤n

[gi, gj]
βi,j

∏
1≤j<i<k≤n

[gi, gj, gk]
ρi,j,k [gk, gj, gi]

σi,j,k

∏
1≤j<i≤n

[gi, gj, gj]
γi,j [gi, gj, gi]

δi,j,

where the αi, βi,j, ρi,j,k, σi,j,k, γi,j and δi,j are integers, and we therefore have a
polycyclic generating set

{gi | 1 ≤ i ≤ n} ∪
{[gi, gj] | 1 ≤ j < i ≤ n} ∪
{[gi, gj, gk], [gk, gj, gi] | 1 ≤ j < i < k ≤ n} ∪ (13)

{[gi, gj, gj], [gi, gj, gi] | 1 ≤ j < i ≤ n}

for Gn.

Recall from Theorem 25 that the subgroup [Gn, G
ϕ
n]
∼= Gn ⊗ Gn of ν(Gn) is

generated by commutators [gε, (hϕ)δ], where g and h are elements of a poly-
cyclic generating sequence for Gn and ε, δ ∈ {−1, 1}. By Lemma 31 we need
only retain commutators of the form [g, hϕ], where g and h are elements of a
polycyclic generating sequence for Gn. Thus we consider which among the pos-
sible such commutators of elements (13) and their images under ϕ are needed
to generate [Gn, G

ϕ
n]. Certainly only resulting commutators of weight at most

4 need be considered; also by Corollary 30 we need consider only commutators
in which the weight of g is at least the weight of hϕ. Among these generators
lie all the commutators of basic type of weights 2, 3 and 4.
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The commutative diagram

0 0y y
H3(Gn) −−−→ Γ(Gab

n )
ψ′−−−→ J2(Gn)

π′−−−→ H2(Gn) −−−→ 0y1

y y
0 −−−→ ∇(Gn)

ψ−−−→ [Gn, G
ϕ
n]

π−−−→ V ′
n −−−→ 1,yκ yκ′

G′
n

1−−−→ G′
ny y

1 1

(14)

follows from [8] and [7] where each sequence is exact and all extensions are
central. We have substituted [Gn, G

ϕ
n] for the nonabelian tensor product Gn⊗

Gn and V ′
n for the nonabelian exterior square Gn ∧Gn. The natural mapping

π, which maps the generators of [Gn, G
ϕ
n] to V ′

n via

[gi, g
ϕ
i ] → 1Vn , 1 ≤ i ≤ n,

[gi, g
ϕ
j ] → [vi, vj], 1 ≤ i, j ≤ n, i 6= j,

[gi, gj, g
ϕ
k ] → [vi, vj, vk], 1 ≤ i, j, k ≤ n,

[[gi, gj], [gk, gl]
ϕ] → [[vi, vj], [vk, vl]] and

[gi, gj, gk, g
ϕ
l ] → [vi, vj, vk, vl], 1 ≤ i, j, k, l ≤ n,

is an epimorphism. Every basic commutator in V ′
n on v1, . . . , vn has a preimage

in [Gn, G
ϕ
n] that is a commutator of basic type of the same weight. Hence the

central subgroup of [Gn, G
ϕ
n] generated by the commutators of basic type of

weights 3 and 4 isomorphically embeds into the center of V ′
n, which is free

abelian of rank M(n, 3) +M(n, 4).

The abelianization Gab
n of Gn is free abelian of rank n. Let η be the natural

mapping fromGn → Gab
n . Then there is a epimorphism θ : Gn⊗Gn → Gab

n ⊗Gab
n

defined by x⊗ y → η(x)⊗ η(y) (see [7]). Now Gab
n ⊗Gab

n is free abelian of rank
n2, with standard basis {η(gi) ⊗ η(gj) | 1 ≤ i, j ≤ n}. Choose alternately as
basis for Gab

n ⊗Gab
n the collection

η(gi)⊗ η(gi), 1 ≤ i ≤ n,

η(gi)⊗ η(gj), 1 ≤ j < i ≤ n and

(η(gi)⊗ η(gj))(η(gj)⊗ η(gi)), 1 ≤ j < i ≤ n.

Hence the generators of ∇(Gn) (see Lemma 21) map under θ to the distinct
basis elements of a free abelian group and therefore they generate a free abelian
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group of rank n+
(
n
2

)
=
(
n+1

2

)
. Therefore, in ν(Gn) the generators [gi, g

ϕ
i ] for

1 ≤ i ≤ n are all nontrivial central elements of infinite order, as are the
products [gi, g

ϕ
j ][gj, g

ϕ
i ] for 1 ≤ j < i ≤ n. Since ker(π) = ψ(∇(Gn)) and we

have shown that the rank of ker(π) is at least equal to the rank of Γ(Gab
n ),

we conclude that in fact ψ is injective and that ker(π) is free abelian of rank(
n+1

2

)
. These observations have the following consequences:

Proposition 34 Let Gn be the free nilpotent group of class 3 and rank n.
Then

(i) The map H3(Gn) → Γ(Gab
n ) in diagram (14) is the zero map;

(ii) Γ(Gab
n ) ∼= ∇(Gn); and

(iii) J2(Gn) ∼= Γ(Gab
n )⊕H2(Gn).

Corollary 35 Let Gn be the free nilpotent group of class 3 and rank n. Then
J2(Gn) is a free abelian group of rank

n(n+ 1)(n2 − n+ 2)

4
.

PROOF. The result follows immediately from the facts that Γ(Gab
n ) is free

abelian of rank
(
n+1

2

)
, the Schur multiplier H2(Gn) of Gn is free abelian of

rank n2(n2−1)
4

and(
n+ 1

2

)
+
n2(n2 − 1)

4
=
n(n+ 1)(n2 − n+ 2)

4
.

2

Let A be the central subgroup of [Gn, G
ϕ
n] generated by the elements [gi, g

ϕ
i ]

for 1 ≤ i ≤ n, the commutators of basic type of weight 3 and those of weight
4 of type (iii) in Definition 33 on the generating set {g1, . . . , gn}. Since these
generators are independent, A is a free abelian group of rank

M(n, 3) +M(n, 4)−M(M(n, 2), 2) +M(n, 1) =
n(n+ 5)(3n2 − n+ 2)

24
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where we make use of the fact that π(A) = A in H ′
n.

Let N be the normal subgroup of [Gn, G
ϕ
n] generated by [gi, g

ϕ
j ] for 1 ≤ i, j ≤ n

with i 6= j.

By Lemma 15(i) and Corollary 30 the relations

[[gi, g
ϕ
j ], [gj, g

ϕ
i ]] = 1 (15)
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for 1 ≤ i, j ≤ n, i 6= j and

[[gi, gj], [gk, gl]
ϕ] = [[gi, gj], [gl, gk]

ϕ]−1

= [[gj, gi], [gk, gl]
ϕ]−1 (16)

= [[gk, gl], [gi, gj]
ϕ]−1

for 1 ≤ i, j, k, l ≤ n, i 6= j, k 6= l hold in N . The relations (16) reflect the fact
that the commutators of basic type of weight 2 in N suffice to generate N ′.
Note that the images of the relations (15) and (16) hold trivially in π(N ).
Since it is nilpotent of class 2, the structure of N is given by the group Wn

described in Example 36.

Example 36 Let Un be a free nilpotent group of class 2 of rank n(n − 1)
generated by the elements ui,j, 1 ≤ i, j ≤ n, i 6= j. Set R to be the set of the
following words for all i, j, k, l for 1 ≤ i, j, k, l ≤ n with i 6= j and k 6= l:

[ui,j, uj,i], [ui,j, uk,l][ui,j, ul,k], [ui,j, uk,l][uj,i, uk,l]

for all generators of Un. We set Wn = Un/R.

We have now established the main theorem of this section, which Theorem 6
from Section 1 summarizes.

Theorem 37 Let Gn be a free nilpotent group of class 3 and rank n. Then
Gn ⊗ Gn

∼= Wn × A where Wn is the group in Example 36 and A is the free
abelian group of rank

f(n) =
n(n+ 5)(3n2 − n+ 2)

24
.

6 GAP Implementation

The following is a simple GAP implementation of Algorithm 28 for nilpotent
groups.

##

## GAP -- Groups, Algorithms and Programming Version 4.4.9 [17]

## Implementation to compute G\otimes G for G a nilpotent group

##

## Input: G a nilpotent group represented as a PcpGroup

## Output: G\otimes G as a PcpGroup

##

## Dependencies: GAP Packages Polycyclic [11] and nq [23]

##

TensorSquare :=

function(G)

local FP, # Free product G*G^\varphi

lg,rg, # Generators of the left and right base groups of

# G*G^\varphi
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pairs, # Generators of the left and right base group paired up

lcj, lcomm, # Helper functions for left conjugation and commutation

nurel, # Helper function to create relation pairs for nu(G)

mingp, # Positions of the minimal generating set of G relative

# to the polycyclic generating set (Igs)

class, # Nilpotency class of G

nu, # Finite presentation of nu(G)

LG, RG, # Images of the generators of the left and right base

# groups in nu(G) as a finitely presented group

epi, # Epimorphism from nu(G)-> polycyclic presentation of

# nu(G)

LSG, RSG; # left and right base groups as subgroups of the

# polycyclic presentation of nu(G)

## Check to see if G is nilpotent and a Pcp group

##

if not (IsPcpGroup(G) and IsNilpotent(G)) then

Error("Error: G must be a nilpotent pcp group \n");

fi;

## Define functions for left conjugation and commutation

##

lcj := function (a,b) return a*b*a^-1; end;

lcomm := function(a,b) return lcj(a,b)*b^-1; end;

## Define a function to create the relation for \nu(G)

## {^X}[a,b]=[{^x}a,({^x^\phi}b)^\varphi]

## where X=x (if i=1) or X=x^\phi (if i=2).

##

nurel := function(x,a,b,i)

return lcj(x[i],lcomm(a,b)) / lcomm(lcj(x[1],a),lcj(x[2],b));

end;

## Create the free product G*G^\varphi and record the class of G

##

FP := FreeProduct(G,G);

class := NilpotencyClassOfGroup(G);

## Record the positions in the polycyclic generating set (Igs) of

## the minimal generators of the group

##

mingp := List(MinimalGeneratingSet(G), i->Position(Igs(G),i));

if fail in mingp then

Error("Error: Minimal generating set must be in the Igs");

fi;

## Image of the Igs (polycyclic generating set) of each base group

## in the underlying free group of the free product FP. And pair

## them up as needed to create the relations of nu(G).

##

lg := List(Igs(G), g->UnderlyingElement(Image(Embedding(FP,1),g)));

rg := List(Igs(G), g->UnderlyingElement(Image(Embedding(FP,2),g)));

pairs := List([1..Length(lg)],i->[lg[i],rg[i]]);

## Create a finite presentation of nu(G)

##

nu := FreeGroupOfFpGroup(FP)/Concatenation(RelatorsOfFpGroup(FP),

ListX(pairs,lg{mingp},rg{mingp},[1,2], nurel) );

## Record the images of the generators of the left and right base

## groups in nu(G) as a finitely presented group.

##

LG := List(lg, g->ElementOfFpGroup(FamilyObj(nu.1),g));

RG := List(rg, g->ElementOfFpGroup(FamilyObj(nu.1),g));

## Create an isomorphism from the finite presentation of nu(G) to

## the polycyclic presentation for nu(G) using the known

## nilpotency bound on nu(G).
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##

epi := NqEpimorphismNilpotentQuotient(nu, class+1);

## Obtain the images of the left and right base groups in the

## polycyclic presentation of nu(G)

##

LSG := Subgroup(Image(epi),List(LG,g->Image(epi,g)));

RSG := Subgroup(Image(epi),List(RG,g->Image(epi,g)));

## Return [G,G^\phi] which is isomorphic to the tensor square

##

return CommutatorSubgroup(LSG,RSG);

end;
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