SOME REMARKS ON GROUPS WITH NILPOTENT MINIMAL COVERS

R. A. BRYCE and L. SERENA

(January 16, 2007)

Abstract

A cover of a group is a finite collection of proper subgroups whose union is the whole group. A cover is minimal if no cover of the group has fewer members. It is conjectured that a group with a minimal cover of nilpotent subgroups is soluble. It is shown that a minimal counterexample to this conjecture is almost simple and that none of a range of almost simple groups are counterexamples to the conjecture.

2000MSC: 20D99

1. Introduction

A finite collection of proper subgroups of a group is a cover if its union is the whole group, irredundant if no proper sub-collection is also a cover. A minimal cover is irredundant and no collection of subgroups with fewer members is a cover. The earliest results on minimal covers appear in Cohn [6] and Tomkinson [17]. In [3] minimal covers of $\mathrm{GL}_{2}(q)$ and related groups are described. The articles of Maróti [11] and Holmes-Maróti [9] give deep

[^0]information about the size of minimal covers of the alternating and symmetric groups, and for a wide class of linear groups. In [8], [9] the sizes of minimal covers for a selection of sporadic simple groups are determined. Every finite group has, of course, an irredundant cover of abelian, even cyclic, subgroups. However the present authors showed in [4] that a group with a minimal cover of abelian subgroups is soluble of very restricted structure. In this note we collect some results on groups that admit a minimal cover with all members nilpotent, a nilpotent minimal cover in short, and we conjecture that such groups are soluble. As a first step towards a possible proof of this we show, in the next section, that if there is an insoluble group admitting a nilpotent minimal cover there is a finite, almost simple one.

In Section 3 we derive a number of conditions necessary in order that a group admit a nilpotent minimal cover. In Section 4 we limit the range of possible counter-examples to our conjecture by showing that the groups of certain classes of almost simple groups violate these conditions.

For ease of reference we list here two easy lemmas concerning a minimal cover $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ of a group G : proofs are left to the reader.

Lemma 1.1. If $N \unlhd G$, then either $G=A_{i} N$ for some i or $\left\{A_{i} N / N\right.$: $1 \leq i \leq n\}$ is a minimal cover for G / N.

Lemma 1.2. For $1 \leq i<j \leq n,\left\langle A_{i}, A_{j}\right\rangle=G$.

2. Minimal counterexample

Let G be an insoluble group with a nilpotent minimal cover, $\mathcal{A}=$ $\left\{A_{1}, \ldots, A_{n}\right\}$ say. Write D for the intersection of the cover so that $|G: D|$ is finite by a result of Neumann [13]. Since $C:=\operatorname{core}_{G}(D)$ is nilpotent, G / C is insoluble. Moreover G / C is finite, as it embeds in the symmetric group of degree $|G: D|$ and, by Lemma 1.1, $\left\{A_{i} C / C: 1 \leq i \leq n\right\}$ is a nilpotent minimal cover of G / C. We prove more.

Proposition 2.1. If there is an insoluble group admitting a nilpotent minimal cover there is a finite, almost simple one.

We suppose G to be a finite, insoluble group of smallest order admitting a nilpotent minimal cover $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Our proof that G is almost simple begins with two lemmas.

Lemma 2.2. G is monolithic with non-abelian monolith.

Proof. If W is an arbitrary minimal normal subgroup of G then G / W is soluble either because $W A_{i}=G$ for some i, and then $G / W \cong A_{i} / A_{i} \cap W$ is nilpotent; or because there is no such i and then $\left\{A_{i} W / W: 1 \leq i \leq n\right\}$ is a nilpotent minimal cover for G / W by Lemma 1.1 so, by the minimality of $G, G / W$ would be soluble. This shows at once that W is not abelian, or G would be soluble. If X is a minimal normal subgroup other than W, then $W \cap X=1$ and G embeds in $G / W \times G / X$ which would be soluble, a contradiction. We have therefore proved what was claimed.

Now let U be the monolith of G so that $U=S_{1} \times S_{2} \times \cdots \times S_{m}$ where $S_{1} \cong$ $S_{i}(1 \leq i \leq m)$ and S_{1} is non-abelian and simple. Moreover $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$ is a conjugacy class of G. If $m=1$ then G is almost simple, so suppose that $m>1$. We will denote by N the normaliser in G of S_{1}. Notice that $U \leq N \neq G$.

Lemma 2.3. If $A_{i} \not \leq N$ and $A_{i} \cap S_{1} \neq 1$ then $\left|A_{i}: A_{i} \cap N\right|$ and $\left|A_{i} \cap S_{1}\right|$ are powers of the same prime, p say; and p^{\prime}-elements of A_{i} are in N.

Proof. Since A_{i} is nilpotent there is a composition chain from $A_{i} \cap N$ to A_{i} : let V_{1} / V_{2} be one of its factors whose order, a prime, is p, say. A p element in $V_{1} \backslash V_{2}$ centralises each p^{\prime}-element of $S_{1} \cap A_{i}$ since A_{i} is nilpotent but, on the other hand, conjugates it into an S_{j} whose intersection with S_{1} is trivial. That is $A_{i} \cap S_{1}$ is a p-group. The same argument shows that all
factors in the chain above $A_{i} \cap N$ are of this same order p. Consequently $\left|A_{i}: A_{i} \cap N\right|$ is a power of p. Since $A_{i} \cap N$ is subnormal in A_{i} all p^{\prime}-elements of A_{i} are in N.

We resume the proof of Proposition 2.1. At most one of the $A_{i} \mathrm{~s}$ is in N by Lemma 1.2; and not all of the A_{i} s not in N intersect S_{1} trivially as S_{1} is not contained in an A_{j}. We re-number the $A_{i} \mathrm{~s}$, if necessary, so that $A_{i} \not \leq N(1 \leq i \leq n-1)$ and $A_{i} \cap S_{1} \neq 1(1 \leq i \leq r)$ where $r \leq n-1$.

Let us suppose, for now, that G / U is nilpotent. We write \mathcal{P} for the set of those primes that divide the indices $\left|A_{i}: A_{i} \cap N\right|(1 \leq i \leq r)$; and for $p \in \mathcal{P}$ let T_{p} / U be the Sylow p-subgroup of G / U. If $p\left|\left|A_{i}: A_{i} \cap N\right|\right.$ then $A_{i} \leq T_{p} N$ by Lemma 2.3; note that $T_{p} \unlhd G$ so that $T_{p} N$ is a subgroup. By Lemma 1.2 no two $A_{i} \mathrm{~s}$ are in the same $T_{p} N$ unless $T_{p} N=G$. That is either $|\mathcal{P}|=r$ or $|\mathcal{P}|=1$.

Now

$$
S_{1}=\left(S_{1} \cap A_{1}\right) \cup\left(S_{1} \cap A_{2}\right) \cup \cdots \cup\left(S_{1} \cap A_{r}\right) \cup\left(S_{1} \cap A_{n}\right)
$$

where the first r terms in the union are subgroups of prime-power order either all for the same prime or for r different primes. In the first case choose another prime, q say, dividing $\left|S_{1}\right|$, and then all Sylow q-subgroups of S_{1} are in $S_{1} \cap A_{n}$ yielding $S_{1} \leq A_{n}$, a contradiction to the nilpotence of A_{n}. In the second case for each $i \in\{1,2, \ldots, r\}$ there is a Sylow subgroup X_{i} of S_{1}, not containing $S_{1} \cap A_{i}$, but involving the same prime. Therefore $X_{i} \leq S_{1} \cap A_{n}$; and of course Sylow subgroups of S_{1} for all primes not in \mathcal{P} are all in $S_{1} \cap A_{n}$ so $S_{1} \leq A_{n}$, again a contradiction.

Hence G / U is not nilpotent and so $U A_{i} \neq G(1 \leq i \leq n)$. The subgroups $U A_{i} / U$ together form a nilpotent minimal cover of G / U so, by the minimality of $G, G / U$ is soluble. Theorem 11 of [4] gives the following information about such a group. Let Z / U be the hypercentre of G / U. Then G / Z is monolithic: let K / Z be its monolith, an elementary abelian t-group where
t is prime. G / K is cyclic of order co-prime to t. (The group G / Z is Frobenius.) Also $Z=U A_{i} \cap U A_{j}(1 \leq i<j \leq n)$; and one of the members of this cover is K / U; we will suppose it to be $U A_{n} / U$. The others are, modulo Z / U, the complements for K / U in G / U. Note too that $U \leq Z \leq U A_{i}$ gives

$$
\begin{equation*}
Z=U\left(Z \cap A_{i}\right)(1 \leq i \leq n) \text { and } Z=(Z \cap N)\left(Z \cap A_{i}\right) 1 \leq i \leq n . \tag{1}
\end{equation*}
$$

Case 1: $Z \not \geq N$.
Then $Z \cap A_{i} \not \leq N(1 \leq i \leq n)$. By Lemma $2.3\left|Z \cap A_{i}: A_{i} \cap Z \cap N\right|$ is a prime-power for some prime p and $S_{1} \cap A_{i}$ is a p-subgroup whenever $S_{1} \cap A_{i} \neq 1$. But (1) shows that

$$
|Z: Z \cap N|=\left|Z \cap A_{i}: A_{i} \cap Z \cap N\right|
$$

so p is the same for all i for which $S_{1} \cap A_{i} \neq 1$, meaning that S_{1} is a union of p-subgroups, a contradiction.

Case 2: $Z \leq N$.
First we prove a useful lemma.
Lemma 2.4. Let $H=V L$ be a Frobenius group where the kernel V is elementary abelian and L is a complement for V. Suppose L_{1}, L_{2} are proper subgroups of L whose indices in L are co-prime and where $L_{2} \unlhd H$. Let $1 \neq v \in V$. Then $\left\langle L_{1}, L_{2}^{v}\right\rangle=H$.

Proof. Write $T:=\left\langle L_{1}, L_{2}^{v}\right\rangle$. Modulo $V, H=T$ so T acts, by conjugation, irreducibly on V. Also $T \cap V \unlhd H$ so, if $T \cap V \neq 1, T=H$, as required. Suppose that $T \cap V=1$. Then $T \cap L \geq L_{1} \neq 1$ so $T=L$ as H is Frobenius; and then $\left[L_{2}, v\right] \leq\left\langle L_{2}, L_{2}^{v}\right\rangle \leq L \cap V=1$. However L_{2} contains every Sylow subgroup of H for primes dividing $\left|L: L_{1}\right|$ so there is a non-trivial normal subgroup of L with non-trivial centraliser in V contradicting that L acts faithfully and irreducibly on V.

Now $N \neq G$ as $m>1$ so no two of $\left\{A_{i}: 1 \leq i \leq n-1\right\}$ are in N; let us say $A_{i} \not \leq N(1 \leq i \leq n-2)$. We suppose that $S_{1} \cap A_{i} \neq 1(1 \leq i \leq s \leq n-2) ;$
note that $s \geq 2$ as S_{1} is not coverable by three or fewer of the $A_{i} \mathrm{~s}$. By Lemma 2.3 each $\left|A_{i}: A_{i} \cap N\right|(1 \leq i \leq s)$ is a prime-power. If two of these indices, say for $i=1,2$, were co-prime then, by Lemma 2.4 and working modulo Z,

$$
N \geq\left\langle N \cap A_{1}, N \cap A_{2}\right\rangle=G
$$

a contradiction. It follows that

$$
S_{1}=X_{1} \cup X_{2} \cup \cdots \cup X_{s} \cup\left(S_{1} \cap A_{n-1}\right) \cup\left(S_{1} \cap A_{n}\right)
$$

where $X_{j}(1 \leq j \leq s)$ are p-groups for the same prime p. Note that $p \neq t$. If $U A_{n}=K \not 又 N$, so that $A_{n} \not \leq N$, it follows from Lemma 2.3 that $S_{1} \cap A_{n}$ is a t-group (possibly trivial) S_{1} is insoluble so, by Burnside's Theorem, there is a prime q, different from both p, t, dividing $\left|S_{1}\right|$. All Sylow q subgroups of S_{1} are therefore in $S_{1} \cap A_{n-1}$ yielding $S_{1} \leq A_{n-1}$ contradicting the nilpotence of A_{n-1}. This leaves us to consider $U A_{n}=K \leq N$. But then $A_{i} \not \leq N(1 \leq i \leq n-1)$ by Lemma 1.2 so, using the argument at the beginning of this paragraph, we find that also $S_{1} \cap A_{n-1}$ is a p-group. Consequently all Sylow q-subgroups of S_{1} are in $S_{1} \cap A_{n}$ giving $S_{1} \leq A_{n}$, another contradiction.

This completes the proof of Proposition 2.1.

3. Further reduction

Next we derive a number of necessary conditions on finite groups admitting a nilpotent minimal cover. These will allow us to qualify further the almost simplicity of a minimum counter-example. Throughout $\mathcal{A}:=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a nilpotent minimal cover of a group G.

Lemma 3.1. The intersection of a nilpotent cover for an almost simple group is 1 .

Proof. Let G be almost simple with socle U. Now $C_{G}(U)=1$. If S were a Sylow p-subgroup of the non-trivial intersection of a nilpotent cover for G it would centralise every p^{\prime}-element of U and therefore centralise U, a contradiction.

The following lemma is well known; it was proved in [12], but we give a proof for the convenience of the reader.

Lemma 3.2. A finite abelian group with a partition is elementary.

Proof. Suppose that G is an abelian group with a partition $\left\{B_{i}: 1 \leq\right.$ $i \leq n\}$. Let $b \in B_{1}$ have prime order p. We prove that all elements of $G \backslash B_{1}$ have order p. If $a \in G \backslash B_{1}$, say $a \in B_{j}$ where $j>1$, then $a b \notin B_{1} \cup B_{j}$ so $a b \in B_{k}$ where $1 \neq k \neq j$. Now $a^{p}=(a b)^{p} \in B_{j} \cap B_{k}=1$ so all elements outside B_{1} have order p as, similarly, do all elements outside B_{2}. Therefore G has exponent p and is elementary.

Proposition 3.3. Let G be a finite group with trivial centre and a nilpotent minimal cover \mathcal{A}. Let p be a prime dividing $|G|$ and suppose that $P \in \operatorname{Syl}_{p}(G)$ is abelian and not normal in G. Then
(a) either P is elementary abelian but not of order p; or
(b) P is a Sylow p-subgroup of some A_{i} and
(i) $N_{G}(P)$ is a maximal subgroup of G;
(ii) $N_{G}(P)$ is strongly p-embedded in G (i.e. $\left|N_{G}(P) \cap N_{G}(P)^{g}\right|_{p}=1$ for all $\left.g \in G \backslash N_{G}(P)\right)$;
(iii) and $C_{G}(P)=A_{i}$.

Proof. Suppose that P is in no A_{i}; in particular P is not of order p. Using Lemma 1.2

$$
A_{i} \cap A_{j} \cap P \leq Z(G)=1
$$

That is, P admits a partition so, by Lemma 3.2, it is elementary.
Next suppose that P is not elementary or is of order p. Then P is a Sylow p-subgroup of A_{i} for some i. If $g \in G$ and $P^{g} \neq P$ then P^{g} is a Sylow p-subgroup of A_{j} for some $j \neq i$. Suppose that $N_{G}(P)$ is not a maximal subgroup of G so that $N_{G}(P)<M<G$ for some proper subgroup M of G. Choose $g \in M \backslash N_{G}(P)$. Then $M \geq\left\langle N_{G}(P), N_{G}(P)^{g}\right\rangle \geq\left\langle A_{i}, A_{j}\right\rangle=G$, a contradiction so $N_{G}(P)$ is maximal in G. Note that $N_{G}(P) \geq A_{i}$. Next note that, for $g \in G \backslash N_{G}(P), N_{G}(P)^{g}=N_{G}\left(P^{g}\right) \geq A_{j}$ for some $j \neq i$. We have $\left|N_{G}(P) \cap N_{G}\left(P^{g}\right)\right|_{p}=1$ because, if $1 \neq x \in N_{G}(P) \cap N_{G}(P)^{g}$, with $|\langle x\rangle|=p$, then $C_{G}(x) \geq\left\langle A_{i}, A_{j}\right\rangle=G$, a contradiction to $Z(G)=1$. So $N_{G}(P)$ is strongly p-embedded in G.

Now we prove that $C_{G}(P)=A_{i}$. Suppose, in order to obtain a contradiction, that A_{i} is contained properly in $C_{G}(P)$. There is a p^{\prime}-element $x \in C_{G}(P) \backslash A_{i}$. With $1 \neq a \in P, a x \notin A_{i}$ so $a x \in A_{j}$ for some $j \neq i$ yielding $a \in A_{j}$ and so $C_{G}(a) \geq\left\langle A_{i}, A_{j}\right\rangle=G$, another contradiction to $Z(G)=1$.

Corollary 3.4. Let G be a finite group with $Z(G)=1, \mathcal{A}$ a nilpotent minimal cover of G and let $P \in \operatorname{Syl}_{p}(G)$ be cyclic, or abelian but not elementary, and not normal in G. Then $C_{G}(P)$ is nilpotent and $N_{G}(P)$ is the unique maximal subgroup of G containing $C_{G}(P)$.

Proof. First $P \leq A_{i}$ for some i. Let $g \in G \backslash N_{G}(P)$. Then $P^{g} \leq A_{j}$ for some $j \neq i$ and therefore $A_{j}=C_{G}\left(P^{g}\right)=C_{G}(P)^{g}=A_{i}^{g}$. From this we see that

$$
\left\langle A_{i}, g\right\rangle \geq\left\langle A_{i}, A_{i}^{g}\right\rangle=\left\langle A_{i}, A_{j}\right\rangle=G .
$$

Consequently every proper subgroup of G containing A_{i} is contained in $N_{G}(P)$. In other words $N_{G}(P)$ is, as claimed, the unique maximal subgroup of G containing $C_{G}(P)$.

It is this result that allows us to see that various insoluble groups do not admit nilpotent minimal covers. In particular an almost simple group G with an abelian Sylow subgroup P which is cyclic or not elementary does not admit a nilpotent minimal cover if either $C_{G}(P)$ is not nilpotent or if $N_{G}(P)$ is not maximal.

Corollary 3.5. With the same hypotheses as in the last corollary each member of \mathcal{A} either contains a Sylow p-subgroup or is a p^{\prime}-group; those containing Sylow p-subgroups form a conjugacy class.

Since no group is the union of a conjugacy class of subgroups there are, under these hypotheses, p^{\prime}-subgroups in every nilpotent, minimal cover of the group.

4. Applications

Here we demonstrate the use of Corollary 3.4 in showing that several classes of potential minimal counter-examples to the solubility of a group with a nilpotent minimal cover are not, in fact, minimally coverable by nilpotent subgroups.

4.1. Symmetric Groups

Lemma 4.1. The alternating groups of degree $n \geq 5$ and the symmetric groups of degree $n \geq 4$ do not have nilpotent minimal covers.

Proof. If $P=\langle(123)\rangle \in \operatorname{Syl}_{3}\left(\mathrm{Alt}_{5}\right)$ then $C_{G}(P)=P \leq \operatorname{Sym}_{3} \cap \mathrm{Alt}_{4}$ and consequently there are two maximal subgroups of Alt ${ }_{5}$ containing $C_{G}(P)$. This contradicts Corollary 3.4, so Alt ${ }_{5}$ does not admit a nilpotent minimal cover. (In any case nilpotent subgroups of Alt ${ }_{5}$ are abelian so a nilpotent minimal cover would be an abelian minimal cover making Alt ${ }_{5}$ soluble by [4].)

Suppose now that $n \geq 6$ and denote Alt_{n} by G. Seeking a contradiction, we suppose that G does have a nilpotent minimal cover. Bertrand's Postulate ensures that there is a prime p satisfying $\frac{1}{2} n<p<n$. Note that $p \geq 5$ and that $2 p>n$ so $p^{2} \nmid|G|$. Let $P=\langle(12 \ldots p)\rangle \in \operatorname{Syl}_{p}\left(\operatorname{Alt}_{n}\right)$. Then, if H is the subgroup of permutations in Alt_{n} fixing each of $1,2, \ldots, p, C_{G}(P) \leq$ $\mathrm{Alt}_{p} \times H$. Consequently, since $\operatorname{Alt}_{p} \times H<G, \operatorname{Alt}_{p} \leq \operatorname{Alt}_{p} \times H \leq N_{G}(P)$, using Corollary 3.4 , contradicting the simplicity of Alt_{p}.

The proof for the symmetric groups with $n \geq 4$ is similar.

4.2. Suzuki Groups

Lemma 4.2. None of the Suzuki groups $S z(q)$ has a nilpotent minimal cover.

Proof. Let $G=S z(q)$ be a finite simple Suzuki group with $q=2^{2 m+1}$ and let $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ a nilpotent minimal cover of G. Let $S \in \operatorname{Syl}_{2}(G)$ and $N=N_{G}(S)$. Then $|N|=q^{2}(q-1)$ and N is a Hall subgroup of G (see [14]). The subgroups of order $q-1$ are cyclic Hall subgroups of G. Moreover if $|H|=q-1$, then $C_{G}(y)=H$ for all non-identity y in H. It follows by Proposition 3.3 that \mathcal{A} must contain all subgroups of order $q-1$ among its members. On the other hand N contains distinct subgroups H_{1}, H_{2} of order $q-1$. If $H_{1} \leq A_{1}, H_{2} \leq A_{2}$, say, then

$$
G=\left\langle A_{1}, A_{2}\right\rangle=\left\langle H_{1}, H_{2}\right\rangle \leq N,
$$

a contradiction. Therefore none of the simple Suzuki groups admits a nilpotent minimal cover

4.3. Linear groups

Theorem 4.3. Let $\mathrm{PSL}_{n}(q) \leq G \leq \mathrm{PGL}_{n}(q)$ where $n \geq 3$, or $n=2$ and $q \geq 4$. Then G admits no nilpotent minimal cover.

We will suppose, seeking a contradiction, that some such G does admit a nilpotent minimal cover and produce a contradiction. To this end let $\mathcal{A}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be a nilpotent minimal cover of G. We write Z for the centre of $\mathrm{GL}_{n}(q)$ and define \bar{G} and \bar{A}_{i}, subgroups of $\mathrm{GL}_{n}(q)$, by $\bar{G} / Z=G$ and $\bar{A}_{i} / Z=A_{i}(1 \leq i \leq n)$. Note that $\overline{\mathcal{A}}:=\left\{\bar{A}_{i}: 1 \leq i \leq n\right\}$ is a nilpotent, irredundant cover of \bar{G}. Denote by V the natural vector space on which $\mathrm{GL}_{n}(q)$ acts.

We will need in the proof of Theorem 4.3 the seemingly well known fact that whenever $P S L_{n}(q)$ is simple then G satisfying $P S L_{n}(q) \leq G \leq$ $P G L_{n}(q)$ is almost simple so, in particular, its centre is trivial; a proof follows easily from Theorem 9.9 of Suzuki [15]. This will be needed in the proof of Theorem 4.3, which we divide into cases according as $n \geq 4$ or $n<4$.

Case 1: $n \geq 4$. Suppose first of all that $q^{n-1}-1$ has a primitive prime divisor, p. Since $q-1=\left(q^{n}-1\right)-q\left(q^{n-1}-1\right)$ it follows that $p \nmid q^{n}-1$. Let V_{1} be a subspace of V with dimension one. Write $V=V_{1} \oplus V_{2}$ and let L be the Levi component of this decomposition of V in the stabiliser of the flag $\left(V_{1}, V\right)$: abstractly $L \cong \mathrm{GF}(q)^{\times} \times \mathrm{GL}\left(V_{2}\right)$.

Now let \bar{P} be the Sylow p-subgroup of a Singer cycle of GL $\left(V_{2}\right)$; on order considerations it is in $\mathrm{SL}\left(V_{2}\right)$. Extend its action to the whole of V via trivial action on V_{1}. Order considerations also show that \bar{P} is a Sylow p-subgroup of $\mathrm{GL}_{n}(q)$; it is in $\mathrm{SL}_{n}(q)$ and so it is a (cyclic) Sylow subgroup of \bar{G}.

If $h \in N_{\bar{G}}(\bar{P})$ then it is easy to see that $V_{1} h, V_{2} h$ both admit the action of \bar{P}. However V_{1}, V_{2} are non-isomorphic as \bar{P}-modules so are the unique proper, non-trivial submodules of $\left.V\right|_{\bar{P}}$. Therefore $V_{1} h=V_{1}$ and $V_{2} h=V_{2}$, so V_{1}, V_{2} are $N_{\bar{G}}(\bar{P})$-submodules of V. This shows that $N_{\bar{G}}(\bar{P}) \leq L \cap \bar{G}$.

Now $\bar{G} \not \leq L$ as $\mathrm{SL}_{n}(q) \not \leq L$. But Proposition 3.3 requires that $N_{G}(\bar{P} Z / Z)$ be maximal in G and so $N_{\bar{G}}(\bar{P})$ is maximal in \bar{G}. Therefore $N_{\bar{G}}(\bar{P})=L \cap \bar{G}$.

However

$$
\mathrm{SL}\left(V_{2}\right) \leq \mathrm{SL}_{n}(q) \cap L \leq L \cap \bar{G}=N_{\bar{G}}(\bar{P})
$$

a contradiction since $\bar{P} Z / Z$ is not normal in G.
If $q^{n-1}-1$ has no primitive prime divisor then, by Zsygmondy's Theorem, $n-1=6$ and $q=2$. That is $G=\mathrm{GL}_{7}(2) . G$ has a Sylow subgroup P of order 31 whose action splits V as $U \oplus W$ where $\operatorname{dim} U=5$ and on W the action of P is trivial. Therefore $C_{G}(P)$ contains a copy of $\mathrm{GL}_{2}(2)$ which is not nilpotent, contradicting Corollary 3.4; so Case 1 does not arise.
Case 2: $n \leq 3$. A Singer cycle of \bar{G} is the intersection of \bar{G} with a Singer cycle of $\mathrm{GL}_{n}(q)$. Every Singer cycle of \bar{G} is, of course, in some member of $\overline{\mathcal{A}}$. Denote by $\overline{\mathcal{A}}_{S}$ the subset of $\overline{\mathcal{A}}$ of those members containing a Singer cycle. Also let \mathcal{T} be the set of stabilisers in \bar{G} of one-dimensional subspaces of V.

Lemma 4.4. 1. Each $\bar{A} \in \overline{\mathcal{A}}_{S}$ contains exactly one Singer cycle. This Singer cycle has index at most 2 in \bar{A} and if its index is exactly 2 then $n=2$ and $q=2^{\beta}-1$ with $\beta \geq 3$.
2. $\bar{G}=\left(\cup \overline{\mathcal{A}}_{S}\right) \cup(\cup \mathcal{T})$ and no member of $\overline{\mathcal{A}}_{S}$ is omissible from this union.
(Here $\cup \overline{\mathcal{A}}_{S}$ denotes the union of the members of $\overline{\mathcal{A}}_{S}$ and $\cup \mathcal{T}$ the union of the members of \mathcal{T}.)

Proof. Let S be a Singer cycle of \bar{G} with $S \leq \bar{A} \in \overline{\mathcal{A}}_{S}$. Suppose firstly that $q^{n}-1$ has a primitive prime divisor, p say. Then, on order considerations, the Sylow p-subgroup \bar{P} of S is a Sylow subgroup of \bar{G}, even of $\mathrm{SL}_{n}(q) . \bar{A} \leq C_{\bar{G}}(\bar{P})$ since \bar{A} is nilpotent. As \bar{P} acts irreducibly on V, $S=C_{\bar{G}}(\bar{P})$ which is in \bar{A} so $S=\bar{A}$ confirming (1) in this case.

If, on the other hand, $q^{n}-1$ has no primitive prime divisor then, by Zsygmondy's Theorem, $n=2$ and $q=2^{\beta}-1$ for some $\beta \geq 3$. The Sylow 2subgroups of $\mathrm{SL}_{2}(q)$ and $\mathrm{GL}_{2}(q)$ are generalised quaternion and semidihedral
respectively (see pp. 142-3 of Carter and Fong [5]) of orders $2^{\beta+1}, 2^{\beta+2}$ so a Sylow 2-subgroup of \bar{G} is one or other of these. S has Sylow 2-subgroup C, cyclic of index two in a Sylow subgroup D of \bar{G} and is the unique cyclic subgroup of index 2 in $D . C$ acts irreducibly on V and so $S \leq C_{\bar{G}}(C) \leq S$, and that is $S=C_{\bar{G}}(C)$. Since \bar{A} is nilpotent S is of index at most 2 in \bar{A}. Since a Sylow 2-subgroup of \bar{G} has a unique cyclic subgroup of index $2, S$ is the only Singer cycle in \bar{A}. This completes the proof of (1).

Now the centraliser of an element acting irreducibly on V is a Singer cycle so lies in some $\bar{A} \in \overline{\mathcal{A}}_{S}$. On the other hand an element whose action on V is reducible is in some member of \mathcal{T}. This is obvious when $n=2$ so we may suppose that $g \in \mathrm{GL}_{3}(q)$ acts reducibly on V with U a two-dimensional, irreducible submodule. Write $g=g_{0} g_{1}$ where g_{0} is an s-element, supposing $q=s^{\delta}$, and g_{1} an s^{\prime}-element. Then $U\left(g_{0}-1\right)$ is a proper $\langle g\rangle$-submodule of U so it is zero; hence U is irreducible for $\left\langle g_{1}\right\rangle$. Then, by Maschke's Theorem, $V=U \oplus W$ where W admits the action of g_{1}. However, $W g_{0}$ admits g_{1} so, as the decomposition $\left.V\right|_{\left\langle g_{1}\right\rangle}=U \oplus W$ is unique, $W g_{0}=W$ meaning that W is a one-dimensional subspace of V stabilised by g. The non-omissibility of members of $\overline{\mathcal{A}}_{S}$ follows since no Singer cycle stabilises a one-dimensional subspace of V. This completes the proof of (2) and with it the proof of Lemma 4.4.

The following corollary comes immediately from Lemma 4.4.

Corollary 4.5. $\left|\overline{\mathcal{A}} \backslash \overline{\mathcal{A}}_{S}\right| \leq|\mathcal{T}|$.

We show now that this is false, under our continuing assumption that Theorem 4.3 is not true.

To this end consider all un-ordered pairs $\sigma=\{U, W\}$ of non-zero, complementary subspaces of V. Define an element a_{σ} of $\mathrm{SL}_{n}(q)$ as follows (supposing, for convenience, that $\operatorname{dim} U=1): a_{\sigma}$ is to act completely reducibly on V with $\left.a_{\sigma}\right|_{W}$ being a Singer element of $\mathrm{GL}(W)$ and $\left.a_{\sigma}\right|_{U}$ the scalar needed
to make $\operatorname{det} a_{\sigma}=1$.

Lemma 4.6. If a_{σ} is in $\bar{A} \in \overline{\mathcal{A}}$ then $\bar{A} \notin \overline{\mathcal{A}}_{S}$.

Proof. Suppose, on the contrary, that $\bar{A} \in \overline{\mathcal{A}}_{S}$. By Lemma 4.4 either \bar{A} is a Singer cycle or contains a unique Singer cycle S with index 2 . The first case does not occur as otherwise, by Clifford's Theorem, $\left.V\right|_{\left\langle a_{\sigma}\right\rangle}$ would be a direct sum of isomorphic irreducible modules which it is not. In the second case $n=2$ and a_{σ}^{2} generates the unique subgroup of S of order $(q-1) / 2$. But this is a subgroup of Z, a contradiction since $4 \nmid q-1$.

Lemma 4.7. If σ, τ are distinct pairs of complementary subspaces of V then there is no member of $\overline{\mathcal{A}}$ containing both a_{σ}, a_{τ}.

Proof. Suppose, to the contrary, that $a_{\sigma}, a_{\tau} \in \bar{A}$, a member of $\overline{\mathcal{A}}$, and write $H:=\left\langle a_{\sigma}, a_{\tau}\right\rangle$.

First suppose that $\left.V\right|_{H}$ is irreducible. Since $\left.V\right|_{\left\langle a_{\sigma}\right\rangle}$ is reducible, and since H is nilpotent, there is a composition factor K / L of H for which $a_{\sigma} \in L$, $\left.V\right|_{L}$ is reducible whilst $\left.V\right|_{K}$ is not. By Clifford's Theorem $\left.V\right|_{L}$ is completely reducible and, since $\left.V\right|_{\left\langle a_{\sigma}\right\rangle}$ has unique decomposition $U \oplus W$, this is also a decomposition of $\left.V\right|_{L}$. Moreover U, W are conjugate submodules for L, a contradiction if $n=3$.

So suppose $n=2$. Let $|K: L|=r$, a prime. The elements of $\operatorname{ker}_{L}(U)$ and $\operatorname{ker}_{L}(W)$ all have determinant one so they are the identity. Consequently L is cyclic, indeed $L=\left\langle a_{\sigma}\right\rangle$ since its order is $q-1$, the largest possible. $W=U \lambda$ for some r-element $\lambda \in K \backslash L$. Since a_{σ} acts as different scalars ℓ^{-1}, ℓ on U, W respectively λ, a_{σ} do not commute. Writing $U=\operatorname{GF}(q) u$:

$$
\left(u a_{\sigma}^{-1}\right) \lambda=(\ell u) \lambda=(u \lambda) a_{\sigma}=u\left(\lambda a_{\sigma} \lambda^{-1}\right) \lambda
$$

whence $u=u\left(\lambda a_{\sigma} \lambda^{-1} a_{\sigma}\right)$. That is $\lambda a_{\sigma} \lambda^{-1} a_{\sigma}=1$ so $\lambda a_{\sigma} \lambda^{-1}=a_{\sigma}^{-1}$. But then λ^{2} and a_{σ} commute entailing $r=2$ or else λ and a_{σ} commute. Also the
nilpotence of K demands $q-1=2^{\gamma}$ for some $\gamma \geq 2$. The order of $\mathrm{SL}_{2}(q)$ is therefore $2^{\gamma+1}\left(2^{\gamma-1}+1\right)\left(2^{\gamma}+1\right)$ so K is a Sylow 2-subgroup of $\mathrm{SL}_{2}(q)$ and therefore of H also. K is generalised quaternion when $\gamma>2$. In this case $\left\langle a_{\sigma}\right\rangle$ is the unique cyclic subgroup of index 2 in the unique Sylow 2-subgroup of H and, similarly, so is $\left\langle a_{\tau}\right\rangle$. Therefore $\left\langle a_{\sigma}\right\rangle=\left\langle a_{\tau}\right\rangle$ whence $\sigma=\tau$. When $\gamma=2, G$ is either $\operatorname{PSL}_{2}(5) \cong \operatorname{Alt}_{5}$ or $\mathrm{PGL}_{2}(5) \cong \operatorname{Sym}_{5}$ but in neither case does G have a nilpotent minimal cover, by Lemma 4.1.

It remains to treat the case when $\left.V\right|_{H}$ is reducible. We show first that it is completely reducible. Let us write $q=s^{\delta}$ where s is a prime. It will be enough to show that $s \nmid|H|$ and, that is, that $O_{s}(H)=1$ since \bar{A} is nilpotent. Suppose that X is a proper, non-zero submodule of $\left.V\right|_{H}$. Then V / X is irreducible for H since it is irreducible for $\left\langle a_{\sigma}\right\rangle$. Therefore $O_{s}(H)$ is in the kernel of both $X, V / X$ but not in the kernel of V. If $1 \neq h \in$ $O_{s}(H), v X \mapsto v(h-1)$ is a well-defined $\left\langle a_{\sigma}\right\rangle$-isomorphism $V / X \rightarrow X$, a contradiction. Hence $O_{s}(H)=1$ so, by Maschke's Theorem, $\left.V\right|_{H}=X \oplus Y$ for some H-submodule Y. But X and Y admit both a_{σ}, a_{τ} each of which gives a unique splitting of V. Therefore $\sigma=\tau$. The proof of Lemma 4.7 is complete.

There are more unordered pairs of complementary subspaces of V than there are subspaces of dimension one. Hence $\left|\overline{\mathcal{A}} \backslash \bar{A}_{S}\right|>|\mathcal{T}|$, a contradiction to Corollary 4.5. Thus our assumption that Theorem 4.3 was false is incorrect and Theorem 4.3 is established.
4.4. Sporadic simple groups In this section we give references from the literature to show that the sporadic simple groups do not have a nilpotent minimal cover. The idea is to indicate in each a Sylow subgroup P of prime order for which either $N_{G}(P)$ is not maximal or $C_{G}(P)$ is not nilpotent so as to invoke Corollary 3.4. In what follows C_{n} indicates a cyclic Sylow subgroup of order n in the group under consideration.

1. The Mathieu group $G=M_{11} \cdot|G|=2^{4} \cdot 3^{2} \cdot 5 \cdot 11 . N_{G}\left(C_{5}\right)$ is a Frobenius group of order 20 and is not maximal (see p. 211 in [16]).
2. The Mathieu group $G=M_{12} \cdot|G|=2^{6} \cdot 3^{3} \cdot 5 \cdot 11$ and $N_{G}\left(C_{5}\right)=C_{2} \times F$ where F is a Frobenius group of order 20; it is not maximal (see p. 212 in [16]).
3. The Mathieu group $G=M_{22} .|G|=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 . N_{G}\left(C_{5}\right)$ is a Frobenius group of order 20 and is not maximal (see p. 212 in [16].)
4. The Mathieu group $G=M_{23} .|G|=2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$ and $N_{G}\left(C_{5}\right)$ is a semi-direct product of C_{15} by C_{4} and is not maximal (see p. 213 in [16]).
5. The Mathieu group $G=M_{24} \cdot|G|=2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23 . N_{G}\left(C_{11}\right)$ is a Frobenius group of order 110 and it is not maximal (see p. 213 in [16]).
6. The Janko group $G=J_{1} \cdot|G|=2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 . C_{G}\left(C_{5}\right)=C_{5} \times D_{6}$ is the direct product of C_{5} and a dihedral group of order 6 and so it is not nilpotent (see p. 213 in [16]).
7. The Hall-Janko group $G=J_{2} \cdot|G|=2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7 . N_{G}\left(C_{7}\right)$ is a Frobenius group of order 42 and it is not maximal (see p. 214 in [16]).
8. The Janko group $G=J_{3} .|G|=2^{7} \cdot 3^{5} \cdot 5 \cdot 7 \cdot 17 \cdot 19 . N_{G}\left(C_{17}\right)$ is a Frobenius group of order $17 \cdot 8$ and it is not maximal (see p. 214 in [16]).
9. The Janko group $G=J_{4} .|G|=2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$. $C_{G}\left(C_{7}\right)=C_{7} \times \mathrm{Sym}_{5}$ is not nilpotent (see p. 215 in [16]).
10. The Conway group $G=C o_{3}|G|=2^{10} \cdot 3^{7} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23 . C_{G}\left(C_{7}\right) \cong$ $C_{7} \times \mathrm{Sym}_{3}$ is not nilpotent (see pp. 216 in [16]).
11. The Conway group $G=C o_{2} \cdot|G|=2^{18} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 \cdot 23 . N_{G}\left(C_{11}\right)$ is a Frobenius group of order 110 (see p. 216 in [16]); it is not maximal (see p. 154 in [7]).
12. The Conway group $G=C o_{1} .|G|=2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23$. $C_{G}\left(C_{11}\right)=C_{11} \times \mathrm{Sym}_{3}$ is not nilpotent (see p. 302 in [1]).
13. The Fischer group $G=F_{22} \cdot|G|=2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 . C_{G}\left(C_{7}\right) \cong$ $C_{7} \times \mathrm{Sym}_{3}$ is not nilpotent (see p. 251 in [2]).
14. The Fischer group $G=F_{23} \cdot|G|=2^{18} \cdot 3^{13} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 23$. $C_{G}\left(C_{13}\right) \cong C_{13} \times \mathrm{Sym}_{3}$ is not nilpotent (see p. 252 in [2]).
15. The Fischer group $G=F_{24}^{\prime} \cdot|G|=2^{21} \cdot 3^{16} \cdot 5^{2} \cdot 7^{3} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 29$. $C_{G}\left(C_{13}\right) \geq C_{13} \times \mathrm{Sym}_{3}$ so is not nilpotent (see p. 252 in [2]).
16. The Baby Monster $G=F_{2}$.

$$
|G|=2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47
$$

$C_{G}\left(C_{11}\right) \cong C_{11} \times \operatorname{Sym}_{5}$ is not nilpotent (see p. 217 in [7]).
17. The Fischer group (Monster) $G=F_{1}$.

$$
|G|=2^{46} \cdot 3^{20} \cdot 5^{9} \cdot 7^{6} \cdot 11^{2} \cdot 13^{3} \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 41 \cdot 47 \cdot 59 \cdot 71
$$

$C_{G}\left(C_{23}\right) \cong C_{23} \times \mathrm{Sym}_{4}$ is not nilpotent (see p. 234 in [7]).
18. The Higman-Sims group $G=H S .|G|=2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11 . N_{G}\left(C_{7}\right)$ is a Frobenius group of order 42 and it is not maximal (see p. 220 in [16]).
19. The Held group $G=H e .|G|=2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17 . N_{G}\left(C_{17}\right)$ is a Frobenius group of order 17.8 and it is not maximal (see p. 221 in [16]).
20. The Suzuki group $G=S u z . ~|G|=2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13 . C_{G}\left(C_{7}\right) \geq$ $C_{7} \times \mathrm{Alt}_{4}$ is not nilpotent (see p. 303 in [1]).
21. The McLaghlin group $G=M c .|G|=2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11 . N_{G}\left(C_{11}\right)$ is not maximal (see p. 100 in [7]).
22. The Lyons group $G=L y .|G|=2^{8} \cdot 3^{7} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 31 \cdot 37 \cdot 67$. $C_{G}\left(C_{7}\right) \simeq C_{7} \times S L_{2}(3)$ is not nilpotent (see p. 223 in [16]).
23. The Rudvalis group $G=R u .|G|=2^{14} \cdot 3^{3} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 29 . N_{G}\left(C_{29}\right)$ is a Frobenius group of order $29 \cdot 14$ (see p. 224 in [16]) and it is not maximal (see p. 126 in [7]).
24. The O^{\prime} Nan-Sims group $G=O^{\prime} N .|G|=2^{9} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 11 \cdot 19 \cdot 31$. $N_{G}\left(C_{11}\right)$ has order 110 (see p. 225 in [16]) and it is not maximal (see p. 132 in [7]).
25. The Thompson group $G=T h .|G|=2^{15} \cdot 3^{10} \cdot 5^{3} \cdot 7^{2} \cdot 13 \cdot 19 \cdot 31$. $N_{G}\left(C_{19}\right)$ is a Frobenius group of order $19 \cdot 18$ (see p. 225 in [16]) and it is not maximal (see p. 79 in [10]).
26. The Harada group G. $|G|=2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19 . C_{G}\left(C_{7}\right)=C_{7} \times \mathrm{Alt}_{5}$ is not nilpotent (see p. 226 in [16]).

References

[1] M. Aschbacher, Sporadic groups, Cambridge Tracts in Mathematics 104, C.U.P. 1994.
[2] M. Aschbacher, 3-transposition groups, Cambridge Tracts in Mathematics 124, C.U.P 1997.
[3] R. A. Bryce, V. Fedri and L. Serena, 'Subgroup coverings of some linear groups', Bull. Austral. Math. Soc. 60 (1999), 227-238.
[4] R. A. Bryce and L. Serena, 'A note on minimal coverings of groups by subgroups', J. Austral. Math. Soc. 71 (2001), 159-168.
[5] R. Carter and P. Fong, 'The Sylow 2-subgroups of the finite classical groups', J. Algebra 1 (1964), 139-151.
[6] J. E. Cohn, 'On n-sum groups', Math. Scand. 75 (1994), 45-58.
[7] J. H. Conway, R. T.Curtis, S. D. Norton, R. A. Parker and R. A. Wilson, An ATLAS of finite groups, O.U.P. 1985.
[8] P. E. Holmes, 'Subgroup coverings of some sporadic simple groups', J. Combin.Theory Ser. A 113 (2006), 1204-1213.
[9] P. E. Holmes and A. Maróti, 'Sets of elements that generate a linear or a sporadic simple group pairwise' (Preprint).
[10] S. A. Linton, 'The maximal subgroups of the Thompson group', J. London Math.Soc. (2) 39 (1989), 79-88.
[11] Attilla Maróti, , 'Covering symmetric groups with proper subgroups', J. Combin. Theory Ser. A 110 (2005), 97-111.
[12] G. A. Miller, 'Groups in which all operations are contained in a series of subgroups such that any two have only the identity in common', Bull. Am. Math. Soc. 12 (1906), 445-449.
[13] B. H. Neumann, 'Groups covered by finitely many cosets', Publ. Math. Debrecen 3 (1954), 227-242.
[14] M. Suzuki, 'On a class of doubly transitive groups', Ann. of Math. $7 \mathbf{7 5}$ (1962), 105145.
[15] Michio Suzuki, Group Theory I, Springer-Verlag, Berlin Heidelberg NewYork, 1982.
[16] S. A. Syskin, Abstract properties of the simple sporadic groups, Russian Math. Surveys 35 (1980), 209-246.
[17] M. J. Tomkinson,'Groups as the union of proper subgroups', Math.Scand. 81 (1994), 191-198.

Department of Mathematics	Dipartimento di Matematica "Ulisse Dini"
The Australian National University	Università degli Studi di Firenze
Canberra, A.C.T 0200	viale Morgagni, $67 / \mathrm{A}$
Australia	50134 Firenze
	Italia

[^0]: © XXXX Australian Mathematical Society 0263-6115/XX $\$$ A2.00 +0.00

