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The character table and the subgroup lattice of a finite group are both examples of struc-
tures that contain significant information about the group in a condensed form. Another
interesting combinatorial object associated with a finite group is its frame, the retract of
its subgroup lattice under the action of its inner automorphism group. Specifically, the
frame Fr (G) of a group G is the partially-ordered set (poset, for short) consisting of the
conjugacy classes(∗) [H] of subgroups H of G with the relation � of partial order defined
by the rule

[H] � [L] if and only if H ≤ Lg for some g ∈ G.

This investigation grew out of an attempt to distinguish soluble from insoluble finite groups
by properties of their frames. It revealed several interesting lattice-like structures inside
the frame of a finite soluble group, and we felt they merited exposure in a separate paper,
even though they played only a minor role in our attempted characterization.

In the light of Hall’s celebrated characterization of finite soluble groups by the existence
of Sylow p-complements, it seems natural to begin such an investigation by looking at the
Hall systems inside the frames of such groups. After setting the scene in Section 1 with
some easy examples of frames of soluble and insoluble groups, we discuss the conjugacy
classes of Hall subgroups in the frame of a finite soluble group G in Section 2. These form
a well-behaved sublattice in Fr (G) isomorphic with the lattice of subsets of σ(G), the set
of prime divisors of |G|. This sublattice evidently coincides with Fr (G) if and only if G
has square-free order, in which case Fr (G) is a hypercube (which is the name we give to
the lattice of subsets of some set). We show that these are the only groups whose frames
are hypercubes.

The subgroups that are Hall subgroups of a normal subgroup generalise the notion of Hall
subgroups; they are called normally embedded subgroups and inside the subgroup lattice
of a finite soluble group, they have some striking properties. In Section 3 we show that
the conjugacy classes of normally-embedded subgroups form another well-behaved lattice
inside the frame of a soluble group. It is an open question whether this lattice, or indeed the
lattice generated by conventional Hall subgroups, can be identified solely from knowledge
of the abstract poset of a frame without reference to the underlying finite soluble group.

Since our work on Hall subgroups and the closely-related normally-embedded subgroups
proved to be inconclusive in settling the soluble/insoluble divide, we turned our attention
to the behaviour of maximal subgroups, whose behaviour is well known to be distinctive
in soluble groups. It turns out that the conjugacy classes of maximal subgroups are indeed
embedded in a ‘soluble’ frame in a special way. How they are embedded is described in

(∗) We use [H] to denote the conjugacy class {Hg | g ∈ G} of H in G.
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Section 4, where we show, in particular, that they generate a sublattice of Fr (G) when G
is soluble.

Our investigation raised more questions than it solved, and we devote the concluding
Section 5 to discussing some of these. In a separate paper we will exploit some of our
results to characterize soluble groups by their frames (ref. ?).

All groups considered are finite.

1. Some Examples of Frames of Finite Groups

If H is a subgroup of a group G, the interval (1, H) in the subgroup lattice of G coincides
with the subgroup lattice of H. But because of subgroup fusion, the same cannot be said
of intervals ([1], [H]) in the frames of groups. For instance the frame of an elementary
abelian group V4 of order four coincides with its subgroup lattice and in particular has
three minimal elements (see the encircled part of the left-hand figure below). But within
the poset Fr (A4), the interval ([1], [V4]) is a chain with only one minimal element (as
shown inside the oval in the right-hand figure below).

A4

Z3

V4

1

Z2Z2Z2

[A4]

[Z3]

[V4]

[1]

[Z2]

The subgroup lattice of A4 The frame of A4

Thus, in order to study subgroup structure in frames, we need to take account of the way
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the frame of a group is modified by fusion when it is viewed as a subgroup of another
group.

(1.1) Definitions.

(a) If (P,�) is a poset, a subset S of P is called an ideal of P provided that

if s ∈ S and x ∈ P with x � s, then x ∈ S.

(b) Let H be a subgroup of a group G. The interval ([1], [H]) of Fr (G), consisting of all
G-conjugacy classes [L] with 1 ≤ L ≤ H, is evidently an ideal of Fr (G). We will call it
the G-frame of H and denote it by Fr G(H). We will use the term relative frame as a
generic description of the G-frames of H for various groups G.

(1.2) Example. Let H be a subgroup of a finite group G.
Assume that the G-frame Fr G(H) of H is a square as shown
in the diagram to the right. Then |H| = pq, for suitable
primes p and q, and if p = q, then H is elementary abelian.

[H]

x

[1]

y

Proof. Since the nodes x and y are minimal elements, they correspond to subgroups of
prime orders p and q.

Case 1: p = q. In this case H is a p-group, and since a group of order pn has subgroups of
order pi for all i ∈ {1, 2, . . . , n}, it follows that n = 2. If H were cyclic, it would contain a
unique subgroup of order p, which is not the case here. Therefore H is elementary abelian
of order p2.

Case 2: p 6= q. In this case |H| = paqb. If a or b were bigger than 1, H would have a
proper Sylow subgroup S which would itself have a proper non-trivial subgroup T . These
would form part of a chain 1 ≺ [T ] ≺ [S] ≺ [H] of length ≥ 3 in Fr G(H). Since Fr G(H)
patently has no such chain, we have a = b = 1.
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(1.3) Example. Let H be a subgroup of a finite group G,
and assume that the G-frame Fr G(H) of H is the non-modular
poset with 5 elements shown in the diagram to the right. Then

(a) |H| = p2q, where p and q are distinct primes
with q an odd divisor of p + 1, and

(b) H has a normal elementary-abelian Sylow p-
subgroup U (of order p2) and a Sylow q-subgroup
V (of order q) acting faithfully and irreducibly
upon U .

Furthermore, if G = H, then G ∼= A4.

For all choices of primes p and q satisfying the stated conditions,
there exists a group G with a subgroup H such that Fr G(H)
is the given poset.

[H]

[1]

[U]

[V]
[W]

Proof. Inspection of the pictured poset shows that Fr G(H) has two G-conjugacy classes of
minimal subgroups [V ] and [W ] (with V and W subgroups of H), and so |H| has at most
two prime divisors, p and q say. Since the maximal chains of subgroups of a p-group have
equal length, H cannot be a p-group; therefore we can suppose that |V | = p 6= q = |W |.
The poset diagram shows that the subgroup U has no subgroups of order q; it is therefore a
p-group of order p2 (since it has a maximal chain of subgroups of length 2) and is necessarily
abelian. Moreover, because it is maximal, U is a Sylow p-subgroup of H. Likewise W is a
Sylow subgroup of order q, and it follows that |H| = p2q, as claimed.

Next we exploit the fact, also evident from the poset diagram, that H has no subgroup of
order pq. Since H is soluble, it has a minimal normal subgroup, N say. Observe that we
cannot have |N | = p or q, for then one of NW and NV would have order pq. Therefore
|N | = p2, and it follows that N = U is a normal elementary-abelian subgroup of H acted
upon irreducibly by W . It follows from Theorem B,9.8 of [2] that q divides p2 −1 but does
not divide p − 1. Therefore the prime q is odd and divides p + 1, as asserted. Finally, if
G = H, the subgroup W must permute the p + 1 subgroups of U order p in a transitive
orbit; therefore q = p + 1. Consequently p = 2 and q = 3, and it follows that G ∼= A4.

Now let p and q be distinct primes, with q an odd divisor of p + 1. We describe two
examples of pairs (G, H) with H a subgroup of G for which the poset diagram for Fr G(H)
has the pictured form. First let G denote the semidirect product of the additive group
U = GF(p2)+ of the Galois field of p2 elements by its multiplicative group B = GF(p2)×

of order p2 − 1 (see Proposition B,12.9 of [2] for details). Let W denote the subgroup of
order q in the cyclic group B, and set H = UW , a proper subgroup of G. Since B acts
transitively on the non-identity elements of U , it permutes the subgroups of order p in G
in a single orbit, and so, if V is a subgroup of U of order p, it follows that V and W are the
only minimal elements of Fr G(H). Since W acts irreducibly on U , there are no subgroups
of order pq in H. Hence the poset diagram for Fr G(H) has the desired form.
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In the above example, G is soluble and H E G. We now describe a second example with
G insoluble and H 6E G. Let A be a vector space of dimension n (≥ 3) over GF(p), and
form the semidirect product G of A by B = GL(n, p), with the natural action the general
linear group B on A. Let W be a subgroup of B of order q. Since B acts non-trivially
on A, it follows from Maschke’s theorem and the analysis of Theorem B,9.8 of [2] that the
restricted module AW has a simple submodule U of dimension 2. Set H = UW . Since
B permutes the one-dimensional subspaces of A transitively, it is not hard to see that the
poset diagram for Fr G(H) again has the desired form.

(1.4 ) Remark. If isomorphic subgroups of a group H are conjugate in H, no fusion can
take place when H is embedded as a subgroup of a group G and so its G-frame coincides
with its frame.

As can be seen from the picture of
its frame on the right, the alter-
nating group A5 is an example of
a group with this property. Thus

Fr G(A5) ∼= Fr (A5)

for all groups G that contain a copy
of A5 as a subgroup.

[A4]

[V4]

[Z2] [Z3]

[D6]

[Z5]

[D10]

[1]

[A5]

(1.5) Example. Let G be a group with Fr (G) isomorphic to Fr (A5), so that it has the
Hasse diagram shown below. Then G ∼= A5.

[G]

[H]

[U]

[1]

[V] [W]

[K]

[R]

[L]
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The nodes of Fr (A5) have been labelled in the style [X ] where X denotes a subgroup of
the unknown group G. Let p, q and r denote the prime orders of the minimal subgroups
V, W, and R respectively. We break the proof into a number of short steps.

Step 1: G is simple.

Proof. First observe that the maximal elements [H] and [K] have no infimum, and so G
cannot be soluble by Theorem 5.7 below. Inspection of the above Hasse diagram shows
that, for every proper non-trivial subgroup X of G, the posets of the intervals (1, [X ])
and ([X ], G) are either chains, or squares, or copies the non-modular poset of Example
1.3 and these three types of posets, as relative frames, all belong to soluble groups; this
follows from the analysis of Examples 1.2 and 1.3 and the obvious fact that chains belong
to cyclic groups of prime-power order. If X were normal in G, it would follow that both
X and G/X are soluble and hence that G itself is soluble, a possibility we have just ruled
out. Hence G is simple.

Step 2: H ∼= A4 , p = 2, and q = 3.

Proof. Note that the G-frame Fr G(H) of H is the non-modular poset of Example 1.3
and by the analysis of that Example, it follows that |H| = p2q and that H has a normal
elementary-abelian Sylow p-subgroup U of order p2 complemented by a Sylow q-subgroup
W of order q.

We claim that the prime r is distinct from both p and q. If r were equal to p, the subgroup
L would be a p-group, and in the frame of G, the elements [U ] and [L] would each sit
below the conjugacy class of Sylow p-subgroups of G. But [G] is the least upper bound of
[U ] and [L], and this would imply that G is a p-group, which is not the case. Therefore
r 6= p, and a similar argument shows that r 6= q. It follows from Example 1.2 that L has
order pr and hence that R ∈ Sylr(G). Consequently |G| = p2qr.

Next we show that p is the smallest prime dividing |G|. Suppose, for a contradiction, that
q is the smallest. Since the automorphism group Aut(Zq) of a cyclic group of order q has
order q − 1, it follows that the Sylow q-subgroup W of G is contained in the centre of its
normalizer; then, by a theorem of Burnside, G has a normal q-complement, contradicting
Step 1. Consequently q is not the smallest prime divisor of |G|. Likewise neither is r, and so
p is indeed the smallest prime divisor; in particular, p + 1 ≤ q. However, from the analysis
of Example 1.3 we know that q divides p + 1 and hence that q ≤ p + 1. Consequently
q = p + 1, and it follows that p = 2 and q = 3. Therefore the subgroup H has order 12
and is evidently a copy of A4.

Step 3: |G| = 60.

Proof. It is clear from the Hasse diagram that U ∈ Syl2(G), W ∈ Syl3(G), and R ∈
Sylr(G). Since |G| = 22 · 3 · r, the subgroup L, which has order 2r by Example 1.2,
therefore has index 6. Let x be an element of order r in L. Under the permutation
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representation of G by left multiplication on the six left cosets of L (faithful by Step 1),
the element x fixes L and permutes the other five cosets with at least one non-trivial cycle.
Since r is prime and does not divide 6, it follows that r = 5.

Step 4: G ∼= A5.

Proof. We now obtain a permutation representation of G on the 5 cosets of H, which is
again faithful by Step 1. Since A5 is the only subgroup of order 60 in S5, the desired
conclusion now follows.

This raises the question whether all non-abelian finite simple groups are characterized by
their frames.

2. Hall Systems in the Frames of Finite Soluble Groups

Philip Hall’s well-known characterization states that a finite group G is soluble if and only
if it has a Sylow p-complement for each prime p ∈ σ(G), the set of primes dividing |G|.
If |σ(G)| = s, the set of all intersections(†) of a complete set of p-complements of G (one
for each p ∈ σ(G)) forms a so-called Hall system of G consisting of 2s Hall π-subgroups
Gπ of G, one for each subset π of σ(G). Furthermore, G has a unique conjugacy class of
Hall π-subgroups, and every π-subgroup of G is contained in some Hall π-subgroup of G.
It follows that the map

(2.α) µG : π 7→ [Gπ]

is an injection from the power set P(σ(G)) of all subsets of σ(G) into Fr (G). Moreover,
when P(σ(G)) is seen as a poset partially ordered by inclusion, the map µ = µG is order-
preserving because evidently

[Gπ] � [Gρ] if and only if π ⊆ ρ.

The minimal elements of P(σ(G)) are mapped to the conjugacy classes [Gp] of Sylow p-
subgroups of G. Hence, for the map µG to be surjective, each of these [Gp] must be a
minimal element of Fr (G), and the Sylow subgroups of G must all have prime order, or
equivalently, G must have square-free order. On the other hand, if |G| is square-free, every
subgroup of G is a Hall subgroup, and then the map µG is surjective. Thus we have proved:

(2.1) Lemma. Let G be a finite soluble group. The map µG defined above in (2.α) is
surjective if and only if G has square-free order. In this case Fr (G) is order-isomorphic
to the poset of subsets of the set σ(G).

(2.2) Definition. A hypercube is a poset that is order-isomorphic to the poset (in fact,
lattice) of subsets of some set, partially ordered by inclusion.

(†) including the empty intersection, which by convention is equal to G.
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(2.3) Proposition. The frame of a finite group G is a hypercube if and only if G has
square-free order.

Proof. The sufficiency is clear from Lemma 2.1. To prove the necessity, suppose that
G is a finite group for which Fr (G) is a hypercube, noting for induction purposes that
every interval of a hypercube is also a hypercube. Among the minimal subgroups of G,
let K be one of maximal (prime) order, p say. If L is a minimal subgroup of order q
such that [L] 6= [K], then [K] and [L] form two nodes of a square in Fr (G); therefore K
and a suitable conjugate of L are contained in a subgroup H of order pq by Example 1.2.
Since p ≥ q, an easy application of Sylow’s theorem shows that K E H. It follows that
K is normalised by a conjugate of each minimal subgroup of G. But since Fr (G) is a
hypercube, any set of representatives of the conjugacy classes of minimal subgroups must
generate G, and therefore K E G.

Since Fr (G/K) is a hypercube, we can argue by induction on |G| that G/K has square-free
order, and if p does not divide |G/K|, we are done. If, on the other hand, p divides |G|,
then K is contained in a Sylow p-subgroup P of G of order p2 whose G-frame Fr G(P ) is a
square; P therefore contains a second minimal subgroup K of order p and by the argument
of the previous paragraph, K E G. If K = 〈x〉 and K = 〈y〉, then 〈xy〉 is a subgroup of P
which is conjugate neither to K nor to K, and this possibility is ruled out by the fact that
Fr G(P ) does not contain 3 minimal elements. Therefore G has square-free order.

Remark: In [3], Philip Hall shows that groups all of whose subgroups are complemented
are characterized as groups isomorphic to subgroups of direct products of groups of square-
free order; in particular, groups of square-free order are soluble.

Terminology. Let (P,�) be a poset. If S is a subset of P , the axioms of a partially-
ordered set ensure that (S,�) is also a poset, although not necessarily an ideal in the sense
of Definition 1.1 (a). If (S,�) has an additional property as a poset, we shall say the subset
S has this property in P ; for example, if (S,�) is a lattice, we shall say that ‘S is a lattice
in P ’. Now it is quite possible that the supremum s∨ t in S of two elements s, t ∈ S is not
the supremum of s and t in P : for the supremum of s and t in P may either not exist or
it may exist and be different from s ∨ t. For example, consider the two squares depicted
below, which are both instances of lattices in Fr (A5) (see the diagram in Remark 1.4).
In the left-hand lattice the join [Z2] ∨ [Z3] is equal to [A5], whereas [Z2] and [Z3] have no
supremum in Fr (A5), and in the right-hand lattice the join [Z2]∨ [Z5] is again [A5], while
the supremum of [Z2] and [Z5] in Fr (A5) is [D10].
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[A5]

[1]

[Z3][Z2]

[A5]

[1]

[Z5][Z2]

To exclude such possibilities, we introduce the idea of ‘rigid embedding’

(2.5) Definitions. Recall that an upper (lower) semi-lattice is a poset in which every
pair of elements has a supremum (infimum), and that a lattice is a poset which is both an
upper and a lower semi-lattice. Let S be an upper (lower) semi-lattice in a poset P . We
say that S is rigidly-embedded in P if all pairs s and t ∈ S have a supremum (infimum) in
P which coincides with the supremum s ∨ t (infimum s ∧ t) in S. For a rigidly-embedded
lattice both these conditions should hold.

Let π and ρ be subsets of σ(G). Since the supremum (respectively infimum) of the pair
[Gπ] and [Gρ] in Fr (G) is [Gπ∪ρ] (respectively [Gπ∩ρ]), the image of µG is a sublattice of
Fr (G) with unions and intersections preserved. Thus, in the terminology of Definitions
2.5 we have the following proposition:

(2.6) Proposition. The conjugacy classes of Hall subgroups of a finite soluble group G
form a rigidly-embedded sublattice of Fr (G) order-isomorphic to the hypercube P(σ(G)).

(2.7) Question. Can the Hall subgroups be identified in the frame of a finite soluble
group?

The meaning of this question needs to be made more precise. Although the image of the
map µG defined in (2.α) is always a rigidly-embedded hypercube in Fr (G), there may
be several distinct hypercubes of the right size in Fr (G). For instance, inspection of the
poset drawn in Example 1.3 shows that there are two distinct rigidly-embedded squares in
the frame of A4. Can both of these arise as the image of µG for suitable groups G having
the same frame as A4? In fact, the answer is ‘no’ in this case, as the analysis of Example
1.3 shows, but we need to be careful. We will therefore interpret Question 2.7 as follows.
If there is an order-isomorphism

θ : Fr (G) → Fr (H), do the maps θ ◦ µG = µH have the same image?

A stronger version of the question might call for a systematic method, an algorithm de-
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pending only on the isomorphism type of the frame, for locating the image of µG within
the frame of G, for it seems that the only hope of answering the question affirmatively
would be to find such an algorithm.

If the Hall systems of a soluble group were discernable in the poset of its frame, the
conjugacy classes of its Sylow subgroups could be identified as the minimal elements of
the rigidly-embedded hypercube that is the image of µ. If P ∈ Sylp(G) and |P | = pa, the
exponent a is the length of a maximal chain in Fr G(P ), an invariant of this relative poset.
Thus, for a soluble group G of order pa1

1 pa2

2 . . . pas

s , we would be able to read off from its
frame the sequence (a1 , a2 , . . . , as) of exponents in the prime decomposition of its order.

Terminology. If G is a finite group of order pa1

1 pa2

2 . . . pas

s whose distinct prime divisors
p1 , p2 , . . . , ps have been numbered so that a1 ≥ a2 ≥ · · · ≥ as ≥ 1, then we define the
order exponent of G to be the sequence:

oe(G) = (a1 , . . . , as) .

A positive answer to Question 2.7 would therefore imply that two groups G and H with
the isomorphic frames must satisfy oe(G) = oe(H). This situation prompts another useful
notion for studying the influence of frames.

(2.8) Definitions. (a) The frame closure Fr Cl (X) of a class X of finite groups is defined
to be the class of all groups whose frames are among the frames of X-groups; thus

Fr Cl (X) = (G | ∃ X ∈ X such that Fr (G) ∼= Fr (X)).

If X = Fr Cl (X), we will say that the class X is framed. The analysis of Example 1.5 shows
that the class (A5) of groups isomorphic to A5 is framed.

(b) Let a = (a1 , . . . , as) be a sequence (an ordered s-tuple) of natural numbers ai sat-
isfying a1 ≥ a2 ≥ · · · ≥ as ≥ 1. We define an associated class Fa of finite groups as
follows:

Fa = (G is a finite group | oe(G) = a).

A positive answer to Question 2.7 would imply, in the terminology of Definition 2.8(a),
that each class Fa of groups with a given exponential order a is framed. Although we have
only limited evidence, we hazard the following conjecture.

(2.9) Conjecture. Let a = (a1 , . . . , as) be an ordered s-tuple of natural numbers ai

satisfying a1 ≥ a2 ≥ · · · ≥ as ≥ 1. Then Fa is framed.

Proposition 2.3 shows that the conjecture is true for sequences of the form a = (1, 1, . . . , 1).
It has also been proved for sequences with s = 1; indeed, in [1] Rolf Brandl proves the
stronger result that, for any prime p, the class of non-cyclic finite p-groups is framed. Since
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the frame closure of the class (Zpn) consists of all cyclic groups of order qn for some prime
q, it follows from Brandl’s theorem that the class

⋃

primes p

Sp

of groups of prime power order is also framed. (Here Sp denote the class of p-groups.)

We bring this section to a close by proving Conjecture 2.9 for the special case a = (2, 1),
in other words, for groups of order p2q for distinct primes p and q.

(2.10) Proposition. Let p and q be distinct primes, and let G be a group of order p2q.
Let P denote the poset Fr (G).

(a) P has a unique element x satisfying the following conditions:

• x is a maximal element of P ;

• all the maximal chains of P joining [1] to x have length two;

• there is a unique minimal element y of P not lying below x.

(b) The image of µ = µG is uniquely determined by µ(p) = x and µ(q) = y.

(c) If Fr (H) = Fr (G), there exist primes p and q such that |H| = p2q.

Proof. First observe that G is soluble by Burnside’s paqb-Theorem.

(a) The possible orders of maximal subgroups of G are p2, pq, and q. It is easy to see
that the conjugacy class of Sylow p-subgroups of G satisfies the conditions described in all
three bullet points and is therefore a candidate for x. We proceed to rule out the other
two possibilities, first noting that a subgroup of order q is minimal and therefore cannot
sit at the top of a chain of length two.

We show next that if G has a subgroup V of order pq, the condition described in the
third bullet point fails to be satisfied when x = [V ]. Since Fr G(V ) contains a unique
G-conjugacy class of subgroups of order p, it will suffice to show the following.

Assertion (⋆): Assume that G has a subgroup V of order pq.
Then G has either precisely one or at least three conjugacy
classes of subgroups of order p.

Let U ∈ Sylp(G). If U is cyclic, G evidently has just one conjugacy class of subgroups of
order p. Therefore suppose that U is elementary abelian.

Case 1: U E G. In this case, the subgroup K = U ∩V is a normal Sylow p-subgroup of V ,
and since U is abelian, K E UV = G. Since U is completely reducible by Maschke’s
theorem, there exists a second normal subgroup K of G such that U = K × K. If
K = 〈k〉 and K = 〈k〉, then [K], [K], and [〈kk〉] are three distinct G-conjugacy classes
of subgroups of order p, assertion (⋆) holds in this case.
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Case 2: U 6E G. Let N be a minimal normal subgroup of G, and first suppose that N is a
p-group, necessarily contained in U . Since U non-normal and is abelian, we have |N | = p
and the normal subgroup CG(N) properly contains the maximal subgroup U ; therefore
CG(N) = G in this case. Since U is non-cyclic, it follows that G = N × W , where W is
a normal subgroup of G of order pq with no normal Sylow p-subgroup. Let N = 〈k〉. If
〈k〉 ∈ Sylp(W ), then the G-conjugacy class [〈k〉] is contained in W , and it follows as before

that [N ], [〈k〉], and [〈kk〉] are three distinct G-conjugacy classes of subgroups of order p.

We consider finally in Case 2 the possibility that N has order q, and note that CU (N),
being centralized by N and U , lies in the centre of G. If CU (N) = 1, the subgroup U
acts faithfully on N and is therefore cyclic, which wehave supposed not to be the case.
Therefore CU (N) 6= 1 and so G contains a normal subgroup of order p, the situation
already dealt with in the preceding paragraph.

Thus we have justified Assertion (⋆) and ruled out x = [V ]. Therefore x = [U ] is the
unique solution satisfying all three bullet points. This proves Part (a).

(b) It follows at once from the analysis of Part (a) that x and y correspond respectively
to the conjugacy classes of Sylow p-subgroups and Sylow q-subgroups of G, and Assertion
(b) is clear.

(c) Let X be a subgroup of H for which [X ] = x. If the minimal elements of Fr (H)
below x are conjugacy classes of subgroup of the same prime order, p say, then X is a
p-group, necessarily of order p2 by the chain-length hypothesis. On the other hand, if X
has subgroups of orders p and r with p 6= r, these must be Sylow subgroups of X , and
the chain-length hypothesis forces |X | = pr. In any case, the order of X is the product
of two not-necessarily-distinct primes p and r. Suppose the element y corresponds to a
conjugacy class of subgroups of prime order q. If p, q, and r were distinct, then G would
have square-free order, and by Proposition 2.3 its frame would be a hypercube; but then
each of its three maximal elements would be squares and none of them would satisfy the
third bullet condition. Therefore at least two of the primes p, q, and r are the same. The
possibility that all three primes are the same is ruled out by Brandl’s theorem cited above;
for if H had prime-power order, the hypothesis Fr (H) = Fr (G) would imply that G also
had prime-power order, which is not the case.

Having exhausted all other possibilities, we are left with the conclusion that |H| = p2q
with p and q distinct primes, as claimed.

(2.11) Corollary. The class F(2,1) is framed.

3. A Lattice for Normally-Embedded Subgroups

In this section we aim to show that the conjugacy classes of normally-embedded subgroups
of a finite soluble group G form a rigidly-embedded lattice in Fr (G). But first we want
to show that frames of groups are not themselves lattices in general. It is clear from the
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Hasse diagram of A5 displayed in (1.3) that [A4] and [D6] have no infimum (greatest lower
bound), and so Fr (A5) is certainly not a lattice. We will now describe an example of a
soluble group whose frame is also not a lattice.

(3.1) Example. There exists a soluble group of order 24 · 5 whose frame is not a lattice.

Proof. Let V denote the additive group of the Galois field GF(24) viewed as an F2-vector
space of dimension 4. Let b be an element of order 5 in the multiplicative group GF(24)×,
which is cyclic of order 15. Since 0 = b5 − 1 = (b − 1)(b4 + b3 + b2 + b + 1) and b 6= 1, we
have b4 + b3 + b2 + b = −1 = 1. Setting c = b + b−1, we see that

c3 = (b + b−1)3 = b3 + 3b + 3b−1 + b−3 = b3 + b + b4 + b2 = 1,

and hence that c is an element of GF(24) of multiplicative order 3. We regard V as an
F2B-module with B = 〈b〉 acting fixed-point-freely by right multiplication. Let G = V B,
the semi-direct product of V by B with this action. The formula

S(n, r) =
(pn − 1)(pn − p) · · · (pn − pr−1)

(pr − 1)(pr − p) · · · (pr − pr−1)

for the number S(n, r) of subspaces of dimension r in a vector space of dimension n over the
Galois field Fp = GF(p), and the fact that B acts both irreducibly and fixed-point-freely
on V , together show that:

• G has 3 conjugacy classes of one-generator subgroups in V , each with 5 elements;

• G has 7 conjugacy classes two-generator subgroups in V , each with 5 elements.

Let v be a non-identity element of V . Since c evidently permutes the 3 conjugacy classes
of one-generator subgroups in V cyclically, a set of class representatives can be chosen to
be 〈v〉, 〈vc〉, and 〈vc2〉, using additive notation for the module V . We then obtain the
following representatives of the 7 conjugacy classes two-generator subgroups in V :

1. 〈v, vb〉

5. 〈v, vbc2〉

2. 〈v, vb2〉

6. 〈vc, vb2c〉

3. 〈v, vc〉

7. 〈vc, vb2c2〉

4. 〈v, vb2c〉

The element c fixes the conjugacy class of the subgroup numbered 3 (since right multi-
plication by c sends 〈v, vc〉 to 〈vc, vc2〉 = 〈vc, v(c + 1)〉 = 〈vc, vc + v〉 = 〈vc, v〉), and
permutes the remaining 6 classes of subgroups in two orbits of length 3. For example, c
sends the subgroup numbered 1 to 〈vc, vbc〉 which belongs to the same conjugacy class as
〈vc, vbc〉b2 = 〈vb2c, vb3c〉 = 〈v(b3+b), v(b4+b2)〉, since c = b+b−1. But 〈v(b3+b), v(b4+b2)〉
contains v(b3 + b) + v(b4 + b2) = v(b4 + b3 + b2 + b) = v, and so 〈vc, vbc〉b2 = 〈v, vb2c〉. It
follows that c sends the class of subgroup 1 to the class of subgroup 4. Similar calculations
show that the action of c permutes these classes as follows:

(

1 2 3 4 5 6 7
4 6 3 7 2 5 1

)

.
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Using this permutation and the obvious fact that, in the frame of G, the conjugacy class
of 〈v〉 lies below the conjugacy classes of just the first five 2-generator subgroups in V , we
obtain the following incidence relations for the conjugacy classes of 〈v〉, 〈vc〉, 〈vc2〉 and the
two-generator subgroups 1 – 7:

1 2 3 4 5 6 7

v 1 1 1 1 1 0 0
vc 0 1 1 1 0 1 1
vc2 1 0 1 0 1 1 1

Inspection of this incidence table reveals that, in Fr (G), each pair of minimal elements
has 3 conjugacy classes of two-generator subgroups lying over it; therefore Fr (G) is not a
lower semi-lattice and so certainly not a lattice. A dual calculation shows that Fr (G) is
not an upper semi-lattice either.

We now recall the definitions of some standard embedding properties of subgroups that
are especially fruitful in the study of finite soluble groups.

(3.2) Definitions. Let H be a subgroup of a finite group G.

(a) We say that H is normally embedded in G (and write H ne G) if every Sylow subgroup
of H is a Sylow subgroup of some normal subgroup of G.

(b) We say that H is pronormal in G (and write H pr G) if for all g ∈ G, the subgroup
〈H, Hg〉 contains an element x such that Hg = Hx, that is to say, if H and any conjugate
of H are already conjugate in their join.

(c) If G is soluble and Σ is a Hall system of G, we say that Σ reduces into H (and write
Σ ց H) if, for all π ⊆ σ(G), the Hall π-subgroup Gπ in Σ satisfies H ∩ Gπ ∈ Hallπ(H).

Here is a summary of some of the salient facts about pronormal and normally-embedded
subgroups of a finite soluble group. A fuller account of their properties can be found in
Sections 6 and 7 of Chapter 1 on [2].

(3.3) Some Known Facts. Let G be a finite soluble group, and let Σ be a Hall system
of G.

(a) A normally-embedded subgroup of G is pronormal in G (7.2(b) of [2]).

(b) A conjugate of a pronormal subgroup is pronormal (immediate from definition).

(c) A subgroup H is pronormal in G if and only if Σ reduces into exactly one conjugate of
H (6.6 of [2]).

(d) The set Ne (Σ) defined as follows:

Ne (Σ) = {U ≤ G | U ne G and Σ ց U}
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forms a lattice (a sublattice of the subgroup lattice of G) in which the join and meet
operations are respectively ‘permutable product’ and ‘intersection’ of subgroups (7.9 of
[2]).

(e) The set Ne (Σ) contains a unique member of each conjugacy class of normally-embedded
subgroups of G (by Parts (a) and (c)).

We will also need two important results due to Fischer that are stated in full and proved
in I,6.9 and I,6.12 of [2]. Here we amalgamate them in a format tailored to our later needs.

(3.4) Fischer’s Theorem. Let H1 , H2 , . . . , Hs be a set of pronormal subgroups of a
finite soluble group G into each of which a given Hall system Σ of G reduces.

(a) Let S denote the set of all subgroups of the form

〈Hg1

1 , Hg2

2 , . . . , Hgs

s 〉

for all choices of g1 , g2 , . . . , gs ∈ G. Then the minimal elements of the poset S, partially
ordered by inclusion, form a conjugacy class of pronormal subgroups of G; furthermore,
the join 〈H1 , H2 , . . . , Hs〉 is the unique member of this class into which Σ reduces and
is, in particular, pronormal.

(b) Suppose there exist elements g1 , g2 , . . . , gs ∈ G such that each pair of the subgroups
Hg1

1 , Hg2

2 , . . . , Hgs

s is permutable, and set

L = Hg1

1 Hg2

2 . . .Hgs

s and J = 〈H1 , H2 , . . . , Hs〉.

Then J = H1H2 . . .Hs and J is conjugate to L in G.

Our aim is to show that the conjugacy classes of normally-embedded subgroups of a finite
soluble group form a rigidly-embedded lattice in its frame.

(3.5) Lemma. Let Σ be a Hall system of a finite soluble group G. Then the map ν :
Ne (Σ) → Fr (G) sending a normally-embedded subgroup H of G to its G-conjugacy class
[H] is an order-preserving injection (in other words, an order-monomorphism).

Proof. We first show that ν is injective. Let H and K be subgroups in Ne (Σ) such that
ν(H) = ν(K). The [H] = [K], in other words, H is conjugate to K. Since ΣցH and Σց
K, and since H and K are pronormal subgroups of G by (3.3)(a), it follows from (3.3)(c)
that H = K. Therefore ν is injective.

It is clear from the definition of the order � in Fr (G) that ν(H) = [H] � [J ] = ν(J)
whenever a subgroup H is contained in a subgroup J , and so ν preserves orders, as claimed.

(3.6) Theorem. Let Σ be a Hall system of a finite soluble group G. The set of conjugacy
classes of normally-embedded subgroups of G (that is to say, the image ν(Ne (Σ))) forms
a rigidly-embedded lattice in Fr (G).
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Proof. Let U , V be normally-embedded subgroups of G such that ΣցU and Σց V . We
begin by showing that, for all choices of elements x and y in G

(3.α) Ux ∩ V y is conjugate to a subgroup of U ∩ V.

Since Ux ∩ V y is conjugate to U ∩ V yx−1

, it will suffice to show that

(3.β) U ∩ V g is conjugate to a subgroup of U ∩ V.

for all g ∈ G.

Let p | |G| and let P be the Sylow p-subgroup in Σ. Set

P1 = P ∩ U, P1 = P ∩ U, and P3 = P1 ∩ P2 = P ∩ (U ∩ V ).

Since Σ reduces into U and V , by (3.3)(d) it also reduces into U ∩ V . Therefore

P1 ∈ Sylp(U), P2 ∈ Sylp(V ), and P3 ∈ Sylp(U ∩ V ).

Let Σ⋆ be a Hall system of G that reduces into U ∩ V g, and let P ⋆ denote the Sylow
p-subgroup in Σ⋆. The key step in the proof is to show that the Sylow p-subgroup (U ∩
V g) ∩ P ⋆ of U ∩ V g is contained in a conjugate of a Sylow p-subgroup of U ∩ V lying in
P ⋆, in other words that

(3.γ) if P0 = U ∩ V g ∩ P ⋆, then ∃ x ∈ G such that P0 ≤ P x
3 ≤ P ⋆.

Since U and V are normally embedded, there exist normal subgroups N1 and N2 of G such
that Pi ∈ Sylp(Ni) for i = 1, 2. Set N = N1∩N2. Since N E G, we have P1∩N ∈ Sylp(N),
and therefore P1 ∩ N = P ∩ N ; similarly P2 ∩ N = P ∩ N . It follows that P1 ∩ N =
(P1 ∩N)∩ (P2 ∩N) = (P1 ∩P2)∩N = P1 ∩P2 = P3 because P1 ∩P2 ⊆ N1 ∩N2 = N . We
have therefore shown that

(3.δ) P3 ∈ Sylp(N1 ∩ N2).

As a p-subgroup of U , our P0 is contained in a conjugate of P1 and therefore lies in N1.
Furthermore, as a p-subgroup of V g, our P0 is also contained in a conjugate of P g

2 and
therefore lies in N2. Consequently P0 is contained in the Sylow p-subgroup P ⋆ ∩ (N1 ∩N2)
of N1 ∩ N2, and this is conjugate to P3 by (3.δ). We have justified the assertion labelled
(3.γ).

We will now refresh our notation. Let σ(G) = {p1 , p2 , . . . , ps}, and let Pi be the Sylow pi-
subgroup contained in the Hall system Σ∩U∩V of U∩V . (These newly defined Pi should
not be confused with the symbols Pi used earlier in the proof.) Then U ∩V = P1P2 . . . Ps ,
the permutable product of the subgroups in its Sylow basis. It follows from (3.γ) that

∃ x1 , x2 , . . . , xs ∈ G such that U ∩ V g ⊆ W = 〈P x1

1 , P x2

2 , . . . , P xs

s 〉,
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and where the Hall system Σ⋆ of G reduces into each P xi

i for i ∈ {1, 2, . . . , s}. Since each of
the subgroups P xi

i is a Sylow subgroup of a normal subgroup of G, it is pronormal in G. We
can now apply Fischer’s Theorem 3.4 (b) with Hi = P xi

i and gi = x−1
i for i = 1, 2, . . . , s

to conclude that W is conjugate to U ∩ V . This justifies the assertion labelled (3.β) and
with it also (3.α).

If [L] is a lower bound for [U ] and [V ] in Fr (G), then L ≤ Ux and L ≤ V y for suitable
x, y ∈ G. By (3.α) there exists an element z ∈ G such that Lz ≤ U ∩ V , whence [L] �
[U ∩V ]. Therefore [U ∩V ] is the infimum of [U ] and [V ] in Fr (G), and, of course, [U ∩V ]
belongs to the image of ν by (3.3)(d).

We now turn our attention to the existence of a supremum (least upper bound) for [U ]
and [V ] in Fr (G). If [U ] � [T ] and [V ] � [T ], then 〈Ux, V y〉 ≤ T for suitable x, y ∈ G.
Since Σ ց U and Σ ց V and U and V are pronormal in G by (3.3)(a), we can deduce
from Fischer’s theorem 3.4 (a) that some conjugate of 〈U, V 〉 is contained in 〈Ux, V y〉 and
hence that [〈U, V 〉] � [T ]. By (3.3)(d) the product UV = 〈U, V 〉 is a normally-embedded
subgroup of G and ΣցUV ; it follows that [UV ] belongs to ν(Ne (Σ)) and is the supremum
for [U ] and [V ] in Fr (G).

This completes the proof that the lattice ν(Ne (Σ)) is rigidly embedded in the frame of G.

We have been unable to decide whether the rigidly-embedded lattice of conjugacy classes
of normally-embedded subgroups of G can be identified poset-theoretically in Fr (G). For
a p-group it can, because then ‘normally-embedded’ means ‘normal’, and Mainardis shows
in [5] that the normal subgroup lattice of a finite p-group is determined poset-theoretically
by its frame. In general, however, normal subgroups are not determined by the frame of a
group . For instance, the two groups of order 6 both have square frames, and Z6 has four
normal subgroups while S3 has only three. However, all four subgroups of S3 are normally
embedded.

4. Making Ready

In the Section 5 we will study subgroups U of a finite soluble group G that are the
intersections of certain maximal subgroups — the prefrattini subgroups are examples of
such subgroups — with a view to showing that their image under the map U 7→ [U ] behaves
well in the frame of G. In this section we develop some preparatory machinery to pave the
way.

(4.1) Definition. Let p be a prime. A maximal subgroup M of a group G is said to
be p-maximal if the index |G : M | is a power of p. It is well known that every maximal
subgroup of a p-soluble is either p-maximal or else has index prime to p.

We recall the definition of the socle Soc(G) of a group G as the product of its minimal
normal subgroups and note the fact that it is the direct product of a suitable subset of
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them. The notation M <· G will mean that M is a maximal subgroup of G, and as usual
φ(G) denotes the Frattini subgroup, the intersection of all the maximal subgroups of G.

(4.2) Proposition. Let p be a prime, and let G be a p-soluble group with Op′(G) =
φ(G) = 1. Let Q ∈ Hallp′(G), and put Q0 = Q ∩ Op,p′(G) and N = NG(Q0). Let

K = [Soc(G), Q0],

and assume that G 6= Soc(G). Then the following conclusions hold:

(a) 1 6= K E G and N complements K in G.

(b) If M is a maximal subgroup of G containing Q but not K, then N ≤ M .

(c) N =
⋂

{M <· G | Q ≤ M and MK = G}.

(d) The complements to K in G form a conjugacy class of G.

Proof. We first note some immediate consequences of the hypotheses. Since Op′(G) = 1,
the Fitting subgroup is a p-group, and since φ(G) = 1, it coincides with Soc(G), which is
therefore elementary abelian and completely reducible as an FpG-module. Furthermore,
since Op′, p(G), which coincides with Soc(G), contains its centralizer, Soc(G) is a self-
centralizing normal subgroup of G. The hypothesis that G 6= Soc(G) implies that Soc(G)
is a proper subgroup of Op,p′(G) and therefore that Q0 6= 1. Since Soc(G) is abelian and
is not centralized by Q0, we have

1 6= [Soc(G), Q0] = [Soc(G), Soc(G)Q0] = [Soc(G), Op,p′(G)] E G.

It follows that K is a non-trivial normal subgroup of G which is a product of non-central
minimal normal p-subgroups of G.

(a) Observe that Q0 ∈ Hallp′(KQ0) and that KQ0 = Op(Op,p′(G)) by A,12.4 of [2]; thus
the subgroup KQ0 is normal in G, and we can apply the Frattini argument to conclude
that G = NG(Q0)Q0K = NK. Furthermore,

N ∩ K = NK(Q0) ≤ CK(Q0) ≤ CSoc(G)(Q0) ∩ [Soc(G), Q0] = 1

by A,12.4 of [2] again, and therefore N complements K in G.

(b) Since K is a product of minimal normal subgroups of G, the hypothesis MK = G
implies that one of these, U say, in not contained in M . Therefore MU = G and M∩U = 1.
Since U ≤ K = [K, Q0], we have CU (Q0) = 1.

Let n ∈ N and write n = mu with m ∈ M and u ∈ U . Then Q0 = (Q0)
mu, and

therefore (Q0)
u−1

= (Q0)
m ≤ M since Q0 ≤ Q ≤ M by hypothesis. Let g ∈ Q0. Then

ugu−1 ∈ u(Qo)u
−1 ≤ M and so [g, u−1] = g−1(ugu−1) ∈ M . However, the normality of

U implies that (g−1ug)u−1 ∈ U , and therefore [u−1, g] ∈ M ∩ U = 1. Since g was an
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arbitrary element of Q0 , it follows that u ∈ CU (Q0) = 1. Therefore n = m ∈ M and we
have shown that N ≤ M , as claimed.

(c) Set

(4.α) I =
⋂

{M <· G | Q ≤ M and MK = G}.

Let U be a minimal normal subgroup of G contained in K. Since φ(G) = 1, there is a
maximal subgroup M of G not containing U ; such an M satisfies MK = G, and by the
conjugacy of p-complements in p-soluble groups, we can assume that Q ≤ M . Since N ≤ I
by Part (b), we have IK ≥ NK = G by Part (a), and as K is abelian, it follows that
I ∩ K E KI = G. By definition of I, the normal subgroup I ∩ K is contained in every
maximal subgroup of G satisfying MK = G. Since maximal subgroups of G either contain
K or satisfy MK = G, it follows that I ∩K is contained in every maximal subgroup of G.
The hypothesis φ(G) = 1 implies that I ∩ K = 1, and by the Dedekind law we then have
I = I ∩ G = I ∩ NK = N(I ∩ K) = N , as asserted.

(d) Let C be a complement to K in G. The intersection S = C∩Op,p′(G) is a p-complement
of Op,p′(G) and is therefore conjugate to Q0. Since C ≤ NG(S), a conjugate Cg of C lies
in NG(Q0) = N , and by order considerations Cg = N .

The next lemma is an analogue for p-soluble groups of Theorem A,16.6 of [D-K].

(4.3) Lemma. Let p be a prime, and let L and M be inconjugate p-maximal subgroups
of a p-soluble group G. Then

(i) LM = G, and

(ii) if CoreG(L) 6⊆ M , then L ∩ M is a p-maximal subgroup of M .

Proof. Recall that the core of a subgroup of G is the intersection of its conjugates in G.
If X is a p-maximal subgroup of a p-soluble group G, then G/CoreG(X) has a unique
minimal normal subgroup R/CoreG(X), which is a p-chief factor of G complemented by
X . Furthermore, all complements of R/CoreG(X) are conjugate to X in G.

Set T = CoreG(L), and let R/T be the unique minimal normal subgroup of G/T . Since
M is not conjugate to L, it does not complement R/T , and so either T 6≤ M or R ≤ M .
In the first case, LM ≤ TM = G, while in the second case, LM ≤ LR = G. This justifies
Part (i).

If T 6≤ M , then TM = G, and there exists a p-chief factor U/V of G complemented by
M with U ≤ T . By the Dedekind law, (L ∩ M)U = L, and so under the isomorphism
mV 7→ mU from M/V to G/U , the subgroup (L∩M)/V is mapped to (L∩M)U/U = L/U ,
which is a p-maximal subgroup of G/U . It follows that (L∩M)/V is a p-maximal subgroup
of M/V , and therefore L ∩ M is p-maximal in M , as asserted in Part (ii).
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(4.4) Lemma. Let K be a product of minimal normal p-subgroups of a p-soluble group
G. Let M1 , M2 , . . . , Mr be a set of p-maximal subgroups of G which satisfy the condition:

(4.β) (
⋂r

i=1 Mi) ∩ K = 1.

Then the set {M1 , M2 , . . . , Mr} contains a subset whose intersection complements K in
G.

Proof. We argue by induction on r, the number of maximal subgroups. If one of the
maximal subgroups Mi contains K, we can omit it from the list without changing the
hypotheses; therefore assume that MiK = G for i = 1, . . . , r. Let Mi ∩ K = Ri, a normal
subgroup of G, and label the Mi’s so that set {Ri}

s
i=1 is minimal subject to the condition:

⋂s

i=1 Ri = 1.

This minimal requirement implies that Ri 6= Rj when i 6= j and therefore that MiRj = G.
If s = 1, then K is a minimal normal subgroup of G complemented by M1 and we are
done. Therefore suppose that s ≥ 2.

Evidently (
⋂s

i=1 Mi) ∩ K =
⋂s

i=1 Ri = 1 and so the set M1 , M2 , . . . , Ms also satisfies
Condition (4.β). Moreover, setting M = M1 and R = R1, we see from Lemma 4.3 that
{M ∩ Mi}s

i=2 is a set of s − 1 maximal subgroups of M satisfying the condition:

(4.γ) (
⋂s

i=2(Mi ∩ M)) ∩ R = 1.

Since R is a completely-reducible normal subgroup of G, it is a product of certain minimal
normal subgroups of G, and because G = MK and K is abelian, these are also minimal
normal subgroups of M . Therefore we can apply induction with M in place of G and R
in place of K to conclude that the intersection of a suitably-labelled subset {M ∩ Mi}

t
i=2

of the set {M ∩ Mi}s
i=2 complements R in M and hence also complements K in G. Since

⋂t

i=2(M ∩ Mi) =
⋂t

i=1 Mi, we have the desired conclusion.

(4.5) Corollary. Let {Mi}r
i=1 be a set of p-maximal subgroups of a p-soluble group G,

each containing a given p-complement Q of G, and assume that Q 6= 1. Assume further
that

⋂r

i=1 Mi contains no non-trivial normal subgroup of G. This assumption implies, in
particular, that Op′(G)φ(G) = 1, and so in accordance with the notation of Proposition
4.2, we set

Q0 = Q ∩ Op,p′(G), K = [Soc(G), Q0], and N = NG(Q0).

Then the subscripts for the Mi’s can be so chosen that

(a)
⋂t

i=1 Mi = N , and

(b) Mj ∩ N is a p-maximal subgroup of N for j = t + 1, . . . , r.

Proof. Our assumptions imply that K 6= 1 and therefore that K is not contained in all the
Mi’s. Hence we can renumber the Mi’s so that for some integer t ≥ 1 we have

MiK = G for i = 1, . . . , t and K ≤ Mi for i = t + 1, . . . , r.
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It follows from the assumption that 1 is the only normal subgroup of G common to all the
Mi’s that

(4.δ)
(

⋂t

i=1 Mi

)

∩ K = 1,

and so by Lemma 4.4 the intersection of a suitable subset of {Mi}t
i=1 complements K in

G. But by Part (b) of Proposition 4.2, the subgroup N = NG(Q0) is contained in each
of M1 , . . . , Mt. Since N complements K by Part (a) of Proposition 4.2, Assertion (a) of
this Corollary now follows.

Since (Mj ∩ N)K/K = Mj/K <· G/K = NK/K for j = t + 1, . . . , r, the isomorphism
between G/K and N implies that Mj∩N is a p-maximal subgroup of N , which is Assertion
(b).

Since maximal subgroups are pronormal, Part (a) of the next result can be seen as an
analogue of the fact that, in finite soluble groups, a Hall system reduces into a unique
conjugate of a pronormal subgroup.

(4.6) Lemma. (a) Let p be a prime and let M be a maximal subgroup of a p-soluble
group G. If g ∈ G and M ∩ Mg contains a p-complement Q of G (or equivalently, if
|G : (M ∩ Mg)| is a power of p), then M = Mg.

(b) If Σ is a Hall system of a soluble group G and M <· G, there is a unique conjugate of
M into which Σ reduces.

Proof. (a) If Q ≤ M∩Mg, then Q and Qg−1 are p-complements of M . By the conjugacy of
p-complements, there exists an element m ∈ M such that Qm = Qg−1, and so gm ∈ NG(Q).
If M E G, certainly M = Mg. On the other hand, if M 6E G, then NG(Q) ≤ M by Lemma
I,6.5 of [2] — for although the lemma is stated and proved only for soluble groups, the
proof given there works equally well for p-maximal subgroups M of a p-soluble group. It
follow that gm, and hence g itself, is in M , and we conclude that M = Mg.

(b) Since M is p-maximal for some prime p, it contains a Sylow p-complement of G; thus
some conjugate Mg of M contains the p-complement in Σ. Since Σ ց Mg if and only if
Mg contains the p-complement of Σ, the assertion of uniqueness in Part (b) now follows
from Part (a).

(4.7) Notation.

(a) If M = {M1 , M2 , . . . , Mt} is a set of subgroups of G, we denote their intersection by

I(M) =
⋂t

i=1 Mi .

(b) Let M = {M1 , M2 , . . . , Mt} be a set of p-maximal subgroups of a p-soluble group G,
and let Q be a p-complement of G. For i = 1, . . . , t let (Mi)

gi be the unique conjugate of
Mi that contains Q (assured by Lemma 4.6). Then MQ will denote the set

MQ = {(M1)
g1 , (M2)

g2 , . . . , (Mt)
gt}.
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(c) Likewise, if M = {M1 , M2 , . . . , Mt} is a set of maximal subgroups, and Σ a Hall
system, of a soluble group G, then MΣ will denote the uniquely determined set

MΣ = {(M1)
g1 , (M2)

g2 , . . . , (Mt)
gt}s

of conjugates into each of which Σ reduces.

(4.8) Proposition. Let p be a prime. Let M = {M1 , M2 , . . . , Mt} be a set of pairwise-
inconjugate p-maximal subgroups of a p-soluble group G, and let Q ∈ Hallp′(G). Then
I(M) is conjugate to a subgroup of I(MQ).

Proof. We argue by induction on |G|. Let R denote the core of I(M) in G. Then
{Mi/R} is a set of pairwise-inconjugate p-maximal subgroups of G/R, and if R 6= 1,

it follows by induction that I(M)/R =
(

⋂t

i=1(Mi/R)
)

is conjugate to a subgroup of
(

⋂t

i=1(Mi/R)giR
)

= I(MQ)/R, where the elements gi are those derived in (4.7)(b). Lift-

ing this statement to G yields the desired conclusion in this case. Therefore suppose that
R = 1 and, in particular, that Op′(G)φ(G) = 1 since Op′(G)φ(G) is contained in all
p-maximal subgroups of G.

If G = Soc(G), then G is an elementary abelian p-group and the conclusion of the Lemma
is obvious. We can therefore suppose that G satisfies the hypotheses of Proposition 4.2 and
adopt the notation of that result; in particular, we set Q0 = Q∩Op,p′(G), K = [Soc(G), Q0],
and N = NG(Q0), recalling that (i) K 6= 1, (ii) Q ≤ N , and (iii) N complements K in G.

Since I(M) is core-free, we can suppose, for some s ≥ 1, that the Mi have been labelled
so that

MiK = G for i = 1, . . . , s and K ≤ Mi for i = s + 1, . . . , t.

Since (
⋂s

i=1 Mi)∩K is a normal subgroup of G, it is contained in the core of I(M) and is
therefore trivial. Hence M1 , M2 , . . . , Ms is a set of maximal subgroups of G satisfying the
hypotheses of Lemma 4.4. Since K is completely reducible, the conclusion of that Lemma
tells us that (

⋂s

i=1 Mi) is contained in a complement to K in G and is therefore conjugate
to a subgroup of N by Part (d) of Proposition 4.2. Thus we can find an element x ∈ G
such that

(
⋂s

i=1(Mi))
x

=
⋂s

i=1(Mi)
x ≤ N.

For i = s + 1, . . . , t we have K ≤ (Mi)
x = ((Mi)

x ∩ N)K by the Dedekind law. The
isomorphism between N and G/K implies that (Mi)

x ∩ N is a p-maximal subgroup of N
and that (Mi)

x ∩ N is not conjugate to (Mj)
x ∩ N when i 6= j. If, according to (4.7)(b),

elements gi are chosen so that Q ≤ (Mi)
gi for i = 1, 2, . . . , t, observe that (Mi)

gi ∩ N is
the unique N -conjugate of (Mi)

x ∩ N which contains Q. By induction
(

⋂t

i=s+1(Mi)
x
)

∩ N =
⋂t

i=s+1((Mi)
x ∩ N)

is conjugate by an element n ∈ N to a subgroup of

⋂t

i=s+1((Mi)
gi ∩ N) = N ∩

(

⋂t

i=s+1(Mi)
gi

)

=
⋂t

i=1(Mi)
gi
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since the subgroup
(M1)

g1 ∩ (M2)
g2 ∩ . . . ∩ (Ms)

gs

not only contains N = NG(Q0) by Part (c) of Proposition 4.2, but actually equals N by
Lemma 4.4. Thus
(

⋂t

i=1 Mi

)xn

= (
⋂s

i=1(Mi)
x)

n
∩
(

⋂t

i=s+1(Mi)
x
)n

leNn ∩
(

⋂t

i=s+1(Mi)
x
)n

≤
⋂t

i=1(Mi)
gi

in other words, (I(M))xn ⊆ I(MQ), which is the desired conclusion.

(4.9) Proposition. Let p be a prime, and let Q be a p-complement of a p-soluble group G.
Let M = {M1 , M2 , . . . , Mt} be a set of distinct p-maximal subgroups of G containing Q
(so that M = MQ in the above notation of 4.9 (a)). Then I(M) is a pronormal subgroup
of G containing Q.

Proof. If I(M) contains a non-trivial normal subgroup R of G, the result follows easily by
induction on the group order applied to the set {M1/R, M2/R, . . . , Mt/R} of p-maximal
subgroups of G/R, for the conclusion that I(M)/R is pronormal in G/R implies that
I(M) is pronormal in G. Since normal subgroups are certainly pronormal the conclusion
of the Proposition is trivially true if G is abelian We may therefore assume that

(i) Op′(G)φ(G) = 1,

(ii) K 6= 1 in the notation of Proposition 4.2, and

(iii) that the labels have been chosen (with s ≥ 1) so that

⋂s

i=1 Mi = N = NG(Q0) and K ≤ Mj for j = s + 1, . . . , t.

As in the proof of Proposition 4.8, the subgroups Mi ∩ N are p-maximal in N . If H =
⋂t

i=1 Mi, then H =
⋂t

i=s+1(Mi ∩ N), and by induction H is a pronormal subgroup of N .
We will now deduce that H is pronormal in G.

Let g ∈ G. We must find an element x ∈ 〈H, Hg〉 such that Hg = Hx. Write g = nk
with n ∈ N and k ∈ K. The subgroup Q0 = Q∩Op,p′(G), as a Hall subgroup of a normal
subgroup, is certainly pronormal in G, and so there exists an element z ∈ 〈Q0, (Q0)

k〉 such
that (Q0)

k = (Q0)
z. Since

〈Q0, (Q0)
k〉 = 〈Q0, (Q0)

nk〉 ≤ 〈H, Hg〉,

we have z ∈ 〈H, Hg〉 and therefore

(4.ǫ) 〈H, Hgz−1

〉 ≤ 〈H, Hg〉.

Because Nk = NG((Q0)
k) = NG((Q0)

z) = Nz, we have kz−1 ∈ NG(N) = N , and therefore
k = n0z for some n0 ∈ N . But gz−1 = nkz−1 = nn0zz−1 = nn0 ∈ N , and from (4.ǫ) can
deduce that

〈H, Hnn0〉 ≤ 〈H, Hg〉.
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But our inductive conclusion that H is pronormal in N then tells us that 〈H, Hnn0〉 contains
an element y such that Hnn0 = Hy. Setting x = yz, we conclude that x ∈ 〈H, Hg〉 and
that

Hx = Hyz = Hnn0z = Hnk = Hg,

as desired.

We recall that a subgroup U of a finite soluble group G is called system permutable if G has
a Hall system Σ such that US = SU for all S ∈ Σ. A brief discussion of their properties
can be found on pages 230 – 34 of [2]. The following characterization of system permutable
subgroups is due to Avinoam Mann:

(4.10) Lemma. A subgroup U of a finite soluble group G is system permutable if and
only if it can be written as an intersection of the form

(4.ζ) U =
⋂r

i=1 Ui ,

where Ui is a subgroup of pi-power index in G and {p1 , p2 , . . . , pr} is a set of distinct
primes dividing |G|.

Proof. First suppose that U is a Σ-permutable subgroup of G. If σ(G) = {p1 , p2 , . . . , ps},
let Gpi be the pi-complement in Σ, and set Ui = UGpi , which is a subgroup of G by our
supposition. Evidently U ≤ Ui, and so

U ⊆
⋂s

i=1 Ui .

If np denotes the highest power of the prime p dividing a natural number n, we have

|Ui|p =

(

|U ||Gpi |

|U ∩ Gpi |

)

p

=
|U |p|Gpi |p
|U ∩ Gpi |p

= |U |p

and it follows that the order of a Sylow pi-subgroup of
⋂r

i=1 Ui is at most |U |p. Hence

|U | ≥ |
⋂r

i=1 Ui| and therefore U =
⋂r

i=1 Ui .

Conversely, let U be a subgroup of the form indicated by Equation 4.ι, and by adjoining
additional Ui = G to the intersection if necessary, suppose without loss of generality that
σ(G) = {p1 , p2 , . . . , pr}. Because the subgroups Ui have pairwise coprime indices, we
have |U |pi

= |Ui|pi
. For 1 = 1, 2, . . . , r let Gpi be a Sylow pi-complement of Ui , and note

that Gpi is also a Sylow pi-complement of G. Since U and Gpi have coprime indices in
Ui , the subgroup U permutes with Gpi for each value of i. From I,4.26 of [2] we can then
deduce that U permutes with the Hall system of G generated by the complement basis
{Gpi}r

i=1 of G.

5. Maximal subgroups in the Frame of a Soluble Group
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Some striking properties of their maximal subgroups set soluble finite groups apart from
insoluble ones. The tractable structure of the primitive soluble groups is one reason for
this (see Section 15 of Chapter A of [2]). In this section we study subgroups that are the
intersections of certain maximal subgroups of a finite soluble group and investigate how
their conjugacy classes behave in its frame.

(5.1) Proposition. Let M = {M1 , M2 , . . . , Mr} and M = {M1 , M2 , . . . , Ms} be
two sets of p-maximal subgroups of a p-soluble group G, each of them containing a given
p-complement Q of G. Let H =

⋂r

i=1 Mi and H =
⋂s

i=1 M i. Then

(a) 〈H, H〉 = HH, and

(b) HH =
⋂

{M <· G | HH ≤ M}.

Proof. We argue by induction on |G|.

Case 1: There exists a minimal normal subgroup T of G contained in H.

If T is also contained in H, induction applied to the quotient group G/T yields the state-
ment (a) 〈H, H〉/T = (HH)/T , and (b) (HH)/T =

⋂

{M/T <· G/T | (HH)/T ≤ M/T}.
Lifting these statements to G gives the desired conclusions.

If, on the other hand, T is not contained in H, it is not contained in one of the maximal
subgroups in M, say T 6≤ M1. In this case, T is an elementary abelian p-subgroup
complemented by M1 for some prime p. Since the distinct subgroups M1 , M2 , . . . , Mr all
contain Q, by Lemma 4.6(a) they are pairwise inconjugate. It then follows from Lemma
4.4(b) that the subgroup Mi ∩ M1 is a p-maximal subgroup of M1 containing Q for i =
2, . . . , r, and evidently ∩r

i=2(Mi ∩ M1) = H. Likewise, M i ∩ M1 is a p-maximal subgroup
of M1 containing Q for i = 1, . . . , s and

⋂s

i=1(M i ∩ M1) = H ∩ M1. Since |M1| < |G|, by
induction we have

(a) 〈H, (H ∩ M1)〉 = H(H ∩ M1), and

(b) H(H ∩ M1) =
⋂

{L <· M1 | H(H ∩ M1) ≤ L}.

Since H(H ∩M1) is a subgroup of G, so also is H(H ∩M1)T , which is equal to HH by the
Dedekind law. Therefore 〈H, H〉 = HH. Under the isomorphism between M1 and G/T ,
we see that LT <· G when L <· M1, and that HH is equal to

H(H ∩ M1)T = (
⋂

{L <· M1 | H(H ∩ M1) ≤ L})T =
⋂

{LT | H(H ∩ M1) ≤ L <· M1}.

Thus HH is the intersection of the maximal p-subgroups of G that contain it, and this
completes the proof in Case 1.

A symmetric argument applies when H contains a non-trivial normal subgroup of G.
Therefore we are left with the following situation.

Case 2: CoreG(H) = CoreG(H) = 1.
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In this case, Op′(G)φ(G) = 1 and so F (G) = Soc(G) is a product of minimal normal
p-subgroups of G. Adopting the notation of Proposition 4.2 with Q0 = Q ∩ Op,p′(G),
N = NG(Q0) and K = [Soc(G), Q0], we also have

(5.α) (
⋂r

i=1 Mi) ∩ K = 1 and
(
⋂s

i=1 M i

)

∩ K = 1

By Corollary 4.5 the maximal subgroups can be renumbered so that

(5.β)
⋂t

i=1 Mi =
⋂t

i=1 M i = N,

and so that for i = t +1, . . . , r and j = t +1, . . . , s the subgroups Mi ∩N and M j ∩N are
p-maximal subgroups of N all containing the p-complement Q of N . Moreover, we have

H =
⋂r

i=t+1(Mi ∩ N) and H =
⋂s

i=t+1(M i ∩ N)

Since |N | < |G|, we can apply induction to the two sets

{(Mt+1∩N) , (Mt+2∩N) , . . . , (Mr∩N)} and {(M t+1∩N) , (M t+2∩N) , . . . , (Ms∩N)}

of p-maximal subgroups of N to deduce that

(a∗) 〈H, H〉 = HH and (b∗) HH =
⋂

{L <· N | HH ≤ L}

By the Dedekind law, it follows from (b∗) that HH is equal to

(5.γ) N ∩
(
⋂

{LK | HH ≤ L <· N}
)

=
(

⋂t

i=1 Mi

)

∩
(
⋂

{LK | HH ≤ L <· N}
)

and since LK <· G when L <· N , we conclude from (5.γ) that HH is the intersection of
p-maximal subgroups of G.

(5.2) Notation. Let Σ be a Hall system of a finite soluble group G. We will use MSΣ(G)
to denote the set of all maximal subgroups of G into which Σ reduces, and IMSΣ(G)
denote the set of all intersections of subsets of these maximal subgroups; thus

IMSΣ(G) = {J ≤ G | ∃ M1 , . . . , Mj ∈ MSΣ(G) such that J =
⋂j

i=1 Mi}.

Evidently MSΣ(G) ⊆ IMSΣ(G), and the convention that G is the ‘empty’ intersection
means that G ∈ IMSΣ(G).

(5.3) Lemma. Let Σ be a Hall system of a finite soluble group G, and let J ∈ IMSΣ(G).
If T E G, then JT ∈ IMSΣ(G)

Proof. By induction we can suppose without loss of generality that T is a minimal normal
subgroup of G. By hypothesis G has maximal subgroups M1 , M2 , . . . , Mj into each of
which Σ reduces such that

J = M1 ∩ M2 ∩ . . . ∩ Mj ,
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If T ≤ J , the result is trivially true. We can therefore suppose that one of the Mi’s,
without loss of generality say M1 , does not contain T . Since M1 complements T in G, it
follows from Lemma 4.6 that

Mi ∩ M1 is a maximal subgroup of M1 for i = 2, . . . , j.

and hence that each T (Mi ∩ M1) is a maximal subgroup of G. Using the fact that

T ∩ ((Mi ∩ M1)(Mk ∩ M1)) = 1 = (T ∩ (Mi ∩ M1))(T ∩ (Mk ∩ M1)),

for all 1 ≤ i, k ≤ j, we can repeatedly apply of Lemma A,1.2 of [2] to show that

j
⋂

i=2

T (Mi ∩ M1) = T

(

j
⋂

i=2

Mi ∩ M1

)

= TJ = JT.

By I,4.22 of [2] we know that Σ reduces into each maximal subgroup T (Mi ∩ M1) of G,
and so JT ∈ IMSΣ(G), as claimed.

(5.4) Proposition. Let p be a prime, let Σ be a Hall system of a finite soluble group G,
and let Q be the p-complement in Σ. Assume that IMSΣ(G) contains two subgroups of
the form QP and QP , where P and P are p-groups such that P g ≤ P for some g ∈ G.
Then QP ≤ QP .

Proof. We proceed by induction on |G|, following the well-trodden paths of earlier proofs.
By hypothesis there exist p-maximal subgroups M1 , M2 , . . . , Mr and M1 , M2 , . . . , M r

of G containing Q such that

QP = M1 ∩ M2 ∩ . . . ∩ Mr and QP = M1 ∩ M2 ∩ . . . ∩ Mr .

Let R = Op′(G)φ(G) and note that R ≤ QP ∩QP . If R 6= 1, the result follows by an easy
induction argument applied to G/R. Therefore we can suppose that Op′(G)φ(G) = 1. In
accordance with the notation of Proposition 4.2, we set

Q0 = Q ∩ Op,p′(G), K = [Soc(G), Q0], and N = NG(Q0),

and since the result is trivially true when G = Soc(G), we can also suppose that K 6= 1.

If the core of QP is non-trivial, it contains a minimal normal subgroup A of G, which is
necessarily a p-group because Op′(G) = 1 and which is therefore contained in P . Then
A ≤ P g ≤ P , and we can apply induction to the subgroups QP/A and P/A in G/A to
conclude that QP/A ≤ QP/A; in this case the result is clear.

If the normal subgroup CoreG(QP ) 6= 1, it contains a minimal normal p-subgroup B of
G, and B is therefore contained in P . By Lemma 5.3, the subgroup QPB belongs to
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IMSΣ(G), and evidently (PB)g = (P )gB ≤ P . Applying induction to the subgroups
QPB/B and P/B in G/B, we conclude that QPB/B ≤ QP/B, and the result again
follows. Hence we can suppose that CoreG(QP ) = 1. By Corollary 4.5 the subscripts for
the Mi’s and M i’s can be chosen, with t, t ≥ 1, so that

(a)
⋂t

i=1 Mi =
⋂t

i=1 M i = N , and

(b) Mj ∩ N and Mk ∩ N are p-maximal subgroups of N for j = t + 1, . . . , r and
k = t + 1, . . . , r.

It follows that QP and QP both belong to IMSΣ∩N (N) and, in particular, that P g ≤ N .

Now recall that N complements K in G, and write g = kn with n ∈ N and k ∈ K. Since
P ≤ N ∩ Ng−1

= N ∩ Nk−1

, the elementary fact that

k−1 ∈ CG(N ∩ Nk−1

)

implies that k centralizes P and hence that P g = Pn. The hypotheses of the Proposition
are now satisfied by the subgroups QP and QP ∈ IMSΣ∩N (N), and since |N | < |G|, we
conclude by induction that QP ≤ QP , as desired.

(5.5) Proposition. Let Σ be a Hall system of a finite soluble group G, and let J and J ∈
IMSΣ(G). Then

(a) J is a system permutable subgroup of G,

(b) J ∩ J ∈ IMSΣ(G),

(c) 〈J, J〉 = JJ , and

(d) JJ ∈ IMSΣ(G).

(e) The prefrattini subgroup of G associated with Σ is the unique smallest element of
IMSΣ(G).

Proof. Let J and J ∈ IMSΣ(G). By definition there exist two sets of maximal sub-
groups M = {M1 , M2 , . . . , Mj} and M = {M1 , M2 , . . . , M

j
} of G into each of which

Σ reduces such that

J = M1 ∩ M2 ∩ . . . ∩ Mj and J = M1 ∩ M2 ∩ . . . ∩ M j .

Let p ∈ σ(G), the set of primes dividing |G|, and let M(p) (respectively M(p)) denote the
set of p-maximal subgroups in M (respectively M); they are the ones that contain the
p-complement Q in Σ. Let P ∗ denote the Sylow p-subgroup in Σ, and set

J(p) =
⋂

M∈M(p)

M and P = P ∗ ∩ J(p),
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with the usual convention that J(p) = G when M(p) = ∅; define J(p) and P analogously.
By I,4.22(a) of [2] a Hall system that reduces into a set of subgroups also reduces into their
intersection; therefore Σ reduces into J(p) and, in particular, P ∈ Sylp(J(p)). Furthermore,
since

J =
⋂

p∈σ(G)

J(p) and J =
⋂

p∈σ(G)

J(p),

Σ reduces into J and J . It also reduces into

J ∩ J = M1 ∩ M2 ∩ . . . ∩ Mj ∩ M1 ∩ M2 ∩ . . . ∩ M
j
,

whence J ∩ J ∈ IMSΣ(G), as claimed in Assertion (b).

Since the subgroups J(p) have p-power index in G, Mann’s characterization in Proposition
4.10 implies that J and J are system permutable subgroups of G and thus justifies Assertion
(a).

Since Σ reduces into J(p) and J(p), we have J(p) = PQ = QP and J(p) = PQ = QP .
Therefore J(p)J(p) = PPQ and by Proposition 5.1 (a) the subset J(p)J(p) is a subgroup
of G. Since PP ⊆ P ∗, we have PP ∩ Q ⊆ P ∗ ∩ Q = 1; therefore |PPQ| = |PP ||Q| and
it follows that PP is a Sylow p-subgroup of PPQ = J(p)J(p). Since PP ≤ P ∗ ≤ J(q) for
all q 6= p, we have

(5.δ) PP ∈ Sylp

(

⋂

s∈σ(G)(J(s)J(s))
)

.

But evidently PP ≤ 〈J, J〉 ≤
⋂

s∈σ(G)(J(s)J(s)), and so PP ∈ Sylp(〈J, J〉). Let np denote

the highest power of the prime p dividing a natural number n. Since Σց (J ∩J), we have
P ∩ P ∈ Sylp(J ∩ J), and therefore

|JJ |p =
|J |p|J |p

|J ∩ J |p
=

|P ||P |

|P ∩ P |
= |PP | = |〈J, J〉|p.

It follows that |〈J, J〉| = |JJ |, and Assertion (c) is proved.

It now follows from (5.δ) that the two subgroups JJ and
⋂

s∈σ(G)(J(s)J(s)) have the

same order and are therefore equal. Hence by Proposition 5.1 (b) we have

JJ =
⋂

s∈σ(G)(J(s)J(s)) =
⋂

s∈σ(G)

(
⋂

{M <· G | J(s)J(s) ≤ M}
)

and since J(s) ≤ M <· G implies that Σ ց M , we conclude that JJ ∈ IMSΣ(G), as
claimed in Assertion (d).

(e) This final assertion follows from V, 5.17 of [2], which characterizes the prefrattini
subgroup of G associated with Σ as the intersection of all maximal subgroups of G into
which Σ reduces.

The following theorem follows immediately from Proposition 5.5.
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(5.6) Theorem. Let Σ be a Hall system of a finite soluble group G. The set IMSΣ(G)
is a sublattice of the subgroup lattice of G; the join of two subgroups in this sublattice is
their permutable product; its smallest element is the prefrattini subgroup associated with
Σ.

This theorem has significant consequences for the structure of the frame of a finite soluble
group. Recall that the map [ ] sends a subgroup U of G to the conjugacy class [U ] =
{Ug | g ∈ G} of G; [ ] can be regarded as a map from a given set S of subgroups of G
to the frame Fr (G) of G, and if S is partially ordered by inclusion, the definition of the
partial order � ensures [ ] that the map

[ ] : (S,⊆) → (Fr (G),�)

is order-preserving.

(5.7) Theorem. Let Σ be a Hall system of a finite soluble group G. The map

[ ] : IMSΣ(G) → Fr (G)

is injective and its domain is order-isomorphic to its image, which is therefore a lattice
in Fr (G). As a lower semi-lattice, this image in rigidly embedded in Fr (G) and has the
conjugacy class of prefrattini subgroups as its unique minimal element.

Proof. Let J, J ∈ IMSΣ(G). We begin by showing that

(5.ǫ) J ≤ J if and only if [J ] � [J ].

noting that if J ≤ J , then certainly [J ] � [J ]. Suppose that [J ] � [J ]. Then Jg ≤ J for
some g ∈ G by definition of �. Let p | |G|, let P ∈ Sylp(J), and choose P ∈ Sylp(J) such

that P g ≤ P .

By definition of J and J there exist a sets

M = {M1 , M2 , . . . , Mj} and M = {M1 , M2 , . . . , M j}

of maximal subgroups Mi and M i of G into each of which Σ reduces such that

(5.ζ) J = M1 ∩ M2 ∩ . . . ∩ Mj and J = M1 ∩ M2 ∩ . . . ∩ M
j
.

When p | |G|, let M(p) (respectively M(p)) denote the set of p-maximal subgroups in M
(respectively M); they are the ones that contain the p-complement Q of Σ. Set

J(p) =
⋂

M∈M(p)

M and J(p) =
⋂

M∈M(p)

M,
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with the usual convention that J(p) = G when M(p) = ∅. Of course, J(p) and J(p) both
belong to IMSΣ(G). Since J is the intersection of the subgroups J(p) over the distinct
primes p dividing |G|, and since |G : J(p)| is coprime with |G : J(q)| when p 6= q, we have
P ∈ Sylp(J(p)) and therefore J(p) = QP , where Q is the p-complement in Σ. Likewise,

J(p) = QP , and since P g ≤ P , we can deduce from Proposition 5.4 that J(p) ≤ J(p).
Since this holds for all prime divisors p of |G|, it follows that

J =
⋂

p∈σ(G)

J(p) ≤
⋂

p∈σ(G)

J(p) = J,

and the assertion labelled (5.ǫ) above is justified. It follows immediately that if J and J
are elements of IMSΣ(G) with [J ] = [J ], then J = J and so the map [ ] is injective.
Assertion (5.ǫ) shows further that the partial order induced on the image of [ ] in Fr (G)
is exactly corresponds to the partial order on its domain, which means that the subposet
of Fr (G) generated by this image is isomorphic to IMSΣ(G) and is therefore a lattice,
as claimed in the Theorem.

We show next that [J ] (as defined in (5.ζ) above) is the infimum of the set

{[M1], [M2], . . . , [Mj ]}

in Fr (G), first noting that [J ] certainly is a lower bound for this set. Let [L] be an arbitrary
lower bound for this set. By definition of the partial order on Fr (G), the condition
[L] � [Mi] means that L ≤ (Mi)

xi for some xi ∈ G, and by Proposition 4.8 there exists an
element y(p) ∈ G such that L is contained in J(p)y(p) for each p ∈ σ(G). Let Gp′ (called Q
above) denote the p-complement in Σ and note that (Gp′)y(p) ≤ J(p)y(p). The conjugacy
of Hall systems ensures the existence of an element g ∈ G such that (Gp′)y(p) ∈ Σg for all
p ∈ σ(G); since (Gp′)y(p) ∈ Hallp′(J(p)), we have Σg ց J(p)y(p). Now J(p) is pronormal
in G by Proposition 5.1, and so J(p)g is the unique conjugate into which (Σ)g reduces by
I,6.6(b) of [2]. Therefore J(p)y(p) = J(p)g for all p ∈ σ(G), and we have

L ≤
⋂

p∈σ(G)

J(p)y(p) =
⋂

p∈σ(G)

J(p)g = Jg.

Thus [L] � [J ], and [J ] is the desired infimum in Fr (G) of the given set of maximal
subgroups.

If J = M1 ∩M2 ∩ . . .∩M
j

is a second subgroup in IMSΣ(G), the argument above shows

that a lower bound [L] for [J ∩ J ] in Fr (G) is a lower bound for the set [M1], . . . , [Mj ],
[M1], . . . , [M

j
] and that L therefore contained in a conjugate of

M1 ∩ M2 ∩ . . . ∩ Mj ∩ M1 ∩ M2 ∩ . . . ∩ M
j

= J ∩ J.

Hence [J ∩ J ] is the infimum of [J ] and [J ] in Fr (G), and this shows that the image of
IMSΣ(G) under [ ] is rigidly embedded as a lower semi-lattice in Fr (G).
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(5.8) Corollary. When G is soluble, the sublattice of Fr (G) generated by the image of
IMSΣ(G) under the map [ ], in particular, the conjugacy class of prefrattini subgroups,
is uniquely determined by the poset structure of Fr (G).
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6. Open Questions

We have already mentioned several unresolved questions: for instance, using the poset
structure of Fr (G) alone, can we locate (i) the conjugacy classes of Hall subgroups and
(ii) the conjugacy classes of normally-embedded subgroups of a finite soluble group G? An
obvious question arising from Theorem 5.7 is the following:

(6.1) Open Question. Is the image of IMSΣ(G) in Fr (G) under the map [ ] a rigidly-
embedded lattice?

According to I,4.29 of [2], the set of Σ-permutable subgroups of a finite soluble group G is
a sublattice of the subgroup lattice of G. What can be said about the image of this set in
Fr (G) under the map [ ]? To be specific, we can ask:

(6.2) Open Question. Let Σ be a Hall system of a finite soluble group G, and let
Π = Π(Σ) denote the lattice of all Σ-permutable subgroups of G.

(a) Is the map [ ] : Π → Fr (G) injective?

(b) Is Π order-isomorphic to the poset inherited by its image [Π] in Fr (G) (and therefore
a lattice)?

(c) Is this image a rigidly-embedded lower semi-lattice (upper semi-lattice) in Fr (G)?

As we saw in Section 1, certain groups (such as A5) are uniquely determined by their
frames. On the other hand, all groups whose orders are the product of two distinct primes
have the same frame (namely, a square), and, as the following example shows, even quite
complicated groups can have the poset-isomorphic frames.

(6.3) Example. Let p and q be primes such that p + 1 = 2q (for instance, take (p, q) =
(5, 3), (13, 7), (37, 19), (61, 31), and so on). Then the extended affine group (described in
Proposition B,12.9 on page 195 of [2]) has a primitive subgroup G of order 2p2q which is
the semidirect product of an elementary abelian group P of order p2 by a dihedral group
of order 2q.

Since the centralizer in P of a Sylow 2-subgroup has order q (corresponding to the fixed
field of the involutary field automorphism on GF(p2)+ ∼= P ), the group G has exactly one
conjugacy class of dihedral subgroups of order 2p, one conjugacy class of cyclic subgroups
of order 2p, and just two conjugacy classes of subgroups of order p. It is not difficult to see
that the frame of G has the form shown below and is therefore independent of the choice
of primes p and q satisfying p + 1 = 2q. (As far as we know, the question whether there
exist infinitely-many such pairs of primes p and q is open.)
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[Zq] [Zp]

[D2q]

[Z2]

[(Zp X Zp )Z2]

[1]

[G]

[(Zp X Zp )Zq]

[Zp]

[Z2p][D2p][Zp X Zp ]

(6.4) Open Question. If a given poset is the frame of two non-isomorphic groups , do
there exist infinitely-many distinct groups with this poset as their frame?

In the above example we have two non-isomorphic groups of nilpotent length 3 with the
same frame. However, there is some experimental evidence to suggest that, as the chief-
factor rank of a group increases, so its frame carries steadily more information about its
structure and, in particular, about its order. Since chief factor rank of a soluble group
increases with its nilpotent length, we have the following related questions

(6.5) Open Questions. Do there exist an natural numbers d and l such that:

(i) the order of a primitive soluble group of degree at least d is uniquely determined by its
frame?

(ii) the order of a primitive soluble group of nilpotent length at least l is uniquely deter-
mined by its frame?

The frame-closure of several natural classes of finite groups have been characterized. For
example, Mainardis shows in [6] that the frame closure of the class of finite abelian groups is
the class of supersoluble T -groups with abelian Sylow subgroups (a T -group being a group
whose subnormal subgroups are all normal). Moreover, the class of supersoluble groups
is itself framed; this is clear from Iwasawa’s well-known characterization of supersoluble
groups by the property that their maximal chains of subgroups all have the same length
(see, for example, Satz VI,9.7 on page 719 of [4]). The class N of nilpotent groups is
certainly not framed; morevoer, it is easy to see that if p and q are primes satisfying
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p + 1 = 2q, then the frame of the primitive group H = (Zp × Zp)Z2q , (which may be
viewed as the semidirect product of GF(p2)+ by the Z2q in GF(p2)×) is poset-isomorphic
to the frame pictured shown above in Example 6.3. Since H has nilpotent length 2 while
the group G in Example 6.3 has nilpotent length 3, it follows that the class N2 is not
framed.

(6.6) Open Questions.

(a) Is Fr Cl (Nl) ⊆ Nl+1?

(b) Do their exist primitive saturated formations that are framed?
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