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In this paper we consider the action of a finite group G on the geometric 
realization ]CP[ of the order complex CP of a poset P, on which a group G acts 
as a group of poset automorphisms. For special cases we give the G-homotopy type 
of ]CPr. Moreover, we provide conditions which imply that the orbit space 
I CPI/G is homotopy equivalent to the geometric realization of the order complex 
over the orbit poset P/G. The poset P/G is the set of orbits [x] : =  {xglg ~ G} of 
G in P ordered by [x] _< [y]: ~ ::tg ~ G: x g <_ y. We apply all our results to the 
case P = A(G) ° is the lattice of subgroups H ~ 1, G of a finite group G. For finite 
solvable groups G we give the G-homotopy type of A(G) ° and we show that 
I CA(G)°I/G and I C(A(G)°/G)[ are homotopy equivalent. We do the same for a 
class of direct products of finite groups and for some examples of simple groups. 
Finally we show that for the Mathieu group G = M~2 the orbit space [CA(G)°X/G 
and I C(A(G)°/G)I are not homotopy equivalent. © 1995 Academic Press, Inc. 

1. INTRODUCTION 

W e  i n v e s t i g a t e  t o p o l o g i c a l  and  c o m b i n a t o r i a l  p r o p e r t i e s  o f  f in i te  pa r -  

t ial ly o r d e r e d  sets.  In  p a r t i c u l a r  we  c o n s i d e r  t h e  p r o p e r  pa r t  A ( G )  ° := 

A ( G )  - {1, G} o f  t h e  lattice o f  subgroups A ( G )  of  a f in i te  g r o u p  G.  T h e  

g r o u p  G acts  on  A ( G )  by c o n j u g a t i o n .  T h e  orb i t s  o f  t h e  ac t ion  o f  G on  

A ( G )  ° a re  t h e  conjugacy classes [ H I  o f  p r o p e r  s u b g r o u p s  H o f  G.  T h e  

o rb i t s  give r ise  to a n o t h e r  pa r t i a l l y  o r d e r e d  set. W e  d e n o t e  t he  set  o f  

c o n j u g a c y  c lasses  o f  s u b g r o u p s  by A ( G ) ° / G  and  o r d e r  t h e m  by c o n t a i n -  

m e n t  o f  r e p r e s e n t a t i v e s  (i.e., [ H ]  _< [U]:  ~ 3 g  e G:  H g < U) .  W e  will  

g ive  s o m e  resu l t s  on  t h e  r e l a t i o n  o f  t h e  t o p o l o g i c a l  b e h a v i o r  o f  A ( G )  ° a n d  

A ( G ) ° / G .  
M o r e  gene ra l l y ,  le t  P be  a f in i te  pa r t i a l ly  o r d e r e d  set  (pose t  for  shor t ) .  

W e  a s soc i a t e  to  P t h e  order complex CP, w h i c h  is t h e  s impl ic ia l  c o m p l e x  

cons i s t i ng  o f  all n o n - e m p t y  cha ins  x I < • • • < x n in P .  I f  a g r o u p  G acts  

on  t h e  p o s e t  P as a g r o u p  of  p o s e t  a u t o m o r p h i s m s  (i.e., x <_ y ~ x g < yg 
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for all x, y ~ P and g ~ G), then this action induces an action of G on 
the complex CP and thereby we obtain a representat ion of G as a group 
of homeomorphisms of the geometric realization ICP] of CP. Hence we 
can speak of G-homotopy equivalent, G-contractible, and G-homeomor-  
phic posets. For the basic notations in algebraic topology we refer the 
reader  to the book of Munkres [Mu]. Two spaces are G-homotopy equiva- 
lent if they are homotopy equivalent in the usual sense [Mu, p. 108] and if 
all maps providing the equivalence are G-equivariant.  If  X and Y are 
spaces on which G acts as a group of homeomorphisms,  then we call a 
map f :  X ~ Y a G-equivariant map if f ( x )  g = f ( x  g) for all x ~ X and 
g ~ G. Analogously one defines the terms G-contractible and G-homeo-  
morphic. 

In several papers Bj6rner, Walker, Kratzer, Th6venaz, and originally 
Quillen have classified the homotopy type of [CPL for certain kinds of 
posets. Now we will do the same for the G-homotopy type of ICP[. We 
use these results to give the G-homotopy type of A(G) ° and the homotopy 
type of A(G)°/G for finite solvable groups (extending results in [K-T]), 
some finite simple groups, and a class of direct products. We mention that 
in the work of Th6venaz and Webb IT-W] another  set of techniques for 
the study of the G-homotopy type of a poset is developed and applied. 

Moreover,  our results allow us to investigate the orbits of the group 
action. There  are two ways to divide out the G-operat ion from ICPI. The 
first and natural way is to look at the orbit space [CP[/G. The orbit space 
ICPI/G is the topological space on the set of G-orbits in ICP[ whose 
topology is induced by the natural  projection map p: ICP[ ~ [CPI/G 
(see, for example, [Br]). The second possibility for dividing out the G- 
action is a generalization of the procedure,  defined above for subgroup 
lattices, to an arbitrary poset P on which a group acts. Hence we impose a 
partial ordering on the orbits Ix] := {xglg ~ G} of elements x E P. The 
set of orbits P / G  = {[x]lx ~ P} is ordered by [x] _< [y]:** ::lg ~ G: 
x g < y. The poset P / G  is called the orbit poset of P. We will state some 
results on the relations between ICPI/G and [C(P/G)I in special cases. 
But in the general case we see no way to describe the relation between the 
two spaces. 

However,  our results apply if P = A(G) °. In this situation we are able to 
prove for some finite groups G that ]CPI/G = I CA(G)°]/G and P / G  = 
A(G)°/G are homotopy equivalent. In Section 4 we show this for finite 
solvable groups G. We will prove it by constructing a subposet Q of 
P = A(G) ° for which P and Q are G-homotopy equivalent, P / G  and 
Q / G  are homotopy equivalent, and I CQI/G is homeomorphic  to Q/G.  
In Section 5 we derive some conditions on direct products G = U × V of 
finite groups which imply that ICA(G)°I/G is homotopy equivalent to 
A(G)°/G if ICA(U)°I/U (resp. [CA(V)°I/V) and A(U)°/U (resp. 
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A ( V ) ° / V )  are homotopy equivalent. Finally we investigate in Section 6 
some examples of non-abelian finite simple groups. We analyze the groups 
An, n < 7, M H, Mlz, and PSLz(FT). If G is one of the alternating groups 
or the first Mathieu group, we show that ICA(G)°J/G and A(G)° /G  are 
homotopy equivalent. The same holds for the group G = PSLz(F 7) but for 
this group A(G)° /G  is contractible and A(G) ° is not. This never happens 
for solvable groups and the other simple groups investigated here. The 
Mathieu group G = M12 is an example Where ICA(G)°[/G is not homo- 
topy equivalent to A(G)° /G.  This generalizes results given in [B-G-V] on 
the M6bius numbers of A(MI=) ° and A(Mlz)°/Ml2 . 

2. EQUIVARIANT HOMOTOPY OF POSETS 

In this section we will develop some results in equivariant homotopy 
theory of posets. Most of the results are equivariant versions of theorems 
of Bj6rner and Walker [B-W1] and Kratzer and Th6venaz [K-T]. Some of 
them can be found in the paper  of Thdvenaz and Webb IT-W]. If  the 
proofs are only easy modifications of the original ones we leave them to 
the reader.  If  we say that a group acts on a poset P, then we mean that G 
acts on the set P preserving the order relation (i.e., G acts as a group of 
poset automorphisms on P). If  a group G acts on a set (resp. poset), (resp. 
topological space) X then we call X a G-set (resp. G-poset), (resp. 
G-space). 

TVIEOnEM 2.1 (Contractible Subcomplex lemma) [B-Wa, 2.2][We2, Satz 
1.1.14]. Let P be a G-poset and let P' c P be a subposet which is invariant 
under the action of G. I f  P' is G-contractible then P and the quotient space 
I CP[ / I CP'] are G-homotopy equivalent. 

For a poset P and an element x e P  we denote by P>x the poset 
{y[y > x}. Analogously defined are the posets P>_x, P<~, and P<~.  We 
write G x for the stabilizer of  x in G. 

THEOREM 2.2 [Qu, Proposition 1.6] [T-W] [We2, Satz 1.1.8]. Let P be a 
G-poset and let P' c_ P be a subposet which is invariant under G. I f  for all 
x ~ P - P' the Gx-poset P> ~ is Gx-contractible then P and P' are G-homo- 
topy equivalent. 

By the previous theorems we see that it will become important  to prove 
for a G-poset  P that it is G-contractible. The following condition (adapted 
from [B-Wa]) gives a criterion which implies that P is G-contractible. 
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(C) Let P be a G-poset and let a ~ P  be an element which is 
invariant under G and satisfies the following two conditions. 

(i) For all x ~ P either the infimum a /X x or the supremum a V x 
exists. 

(ii) Let x, y ~ P be elements such that x < y. If the supremum a V x 
exists but a v y does not then the infimum (a v x) /~ y exists. 

THEOREM 2.3 [B-Wa, 3.2] [We2, Satz 1.1.12]. Le t  P be a G-poset and let 

a ~ P be an element o f  P. I f  P and the element a fulfill  the condition (C) 
then P is G-contractible. 

As a corollary we obtain a result which will be essential for the situation 
in the subgroup lattice of a finite solvable group. For a poset P with least 
element 0 and greatest element ] we denote by p0 the proper part 
P - {0, ]} of P. In particular, since all partially ordered sets in this paper 
are finite, every lattice occurring in this paper has a least element and a 
greatest element. 

COROLLARY 2.4. Le t  P be a G-lattice and let a ~ P be an element which 

is invariant under G. Le t  a ± be the set {x ~ P lx  /x a = () and x V a = ]}. 
Then pO _ a ± is G-contractible. 

Proof. Since i) and ] are invariant under G the poset p0 _ a "  is a 

G-poset. Because P is a lattice and by the choice of a ± , condition (C) is 
fulfilled for p0 _ a ± and the element a. I 

For a subposet P '  c_ P of a G-poset P we will now study the following 
condition. 

(I) P - P '  is an antichain which is invariant under G and the 
subposet P '  is G-contractible. 

Note that if P is a G-poset and if for a subposet P '  the difference 
P - P '  is G-invariant then P '  is a G-poset as well. Before we can give 
results on the G-homotopy type in situation (I) we have to define the 
action of G on a suitable topological space. 

For two topological spaces X, Y we denote by X * Y the join of X and 
Y [Mu, p. 386]. Note that if X and Y are G-spaces then X * Y  is a 
G-space as well [Di]. If ~ is a two element antichain then [C~I * X is the 
topological suspension of the space X. We write as usual X X  for I CXI * X. 
If ( X i )  i ~ j is a family of topological spaces then we denote by V i ~ j X i  the 
wedge of the spaces X~. Note that in general we have to define a 
wedgepoint Pi ~ Xi  for all i in order to have the wedge V g s ] X  i well 
defined. 

In the sequel we will describe a construction of topological spaces which 
will turn out to be important in our particular context. 
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Let P be a G-poset  and P '  be a subposet which fulfill (I). We choose a 
new point p ~ P and form antichains ~ = {x, p} for all x e A := P - P' .  
We define an operat ion of G on the wedge V x ~ A X~ ]CP < ~ [ * [ CP> ~ { with 
wedge point p. An element  g ~ G fixes the point p and permutes  the 
elements x ~ A of the antichains Nx according to its operat ion on A. For 
an x c A  and y e P<~ the image yg of y under g is the corresponding 
element  of P in P< x~. Analogously we define the operation for y e P> ~. 
Now the described action induces an operation of G (as a group of 
homeomorphisms)  on the topological space V x ~ A Xx [CP < ~ [ * I CP> x I. We 

G write V~AZ~ICP<~[ * ICP>~I for the G-space with the operation speci- 
fied above. 

More abstractly one can construct a G-space (G-set) from an H-space 
( / / -set)  if H is a subgroup of G in the following way. Let X be an 
/ / - space  (resp. H-set). Then X × G can be given the structure of a left 
H-  and a right G-space (resp. -set) by the following definition h(x, g)g' := 
(x h-~, hgg'). Then the G-action on X × G induces a G-action [Di, (4.2)] 
on the orbit space X ×H G = H \ (G X X).  Now assume that the H-space 
X is actually a pointed H-space.  More generally assume that there is a 
fixpoint p ~ X. Then the image {p} ×H G of {p} × G in X ×H G is a 
G-orbit.  Of  course if X is an H-set  then the G-action on X × ,  G 
corresponds to the permutat ion representat ion induced from the permuta-  
tion representat ion of H on X to G. 

PROPOSITION 2.5 [B-Wl]. Let P be a G-poset and let P ' c  P be a 
subposet which fulfill (I). Then P is G-homotopy equivalent to 

G 

V 2x l ce< . [  * ICP>xl, A := r - r ' .  
x ~ A  

Moreover assume that the set A is (as a G-set) isomorphic to the disjoint 
union ~in=lG/Hi of  coset spaces G / H  i for not necessarily different sub- 
groups H i of  G. Then 

G 

V Zx lcP<xf*  ICe>xl, A := P - P', 
x E A  

and 

(((Y~x,[CP<xil*JCP>xil) XH, G ) / ( { P }  ×Hi G ) )  
i = 1  

are G-homeomorphic. Here the image of  ({p} ×~ii G) is the wedge point and 
the x i are chosen such that H i = G~i and A = U in=l{x~lg e G}. 

Proof. By (I) we deduce from the Contractible Subcomplex lemma 
(Theorem 2.1) that P and ICPI/ICP'[ are G-homotopy equivalent. Now 
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we choose the image of ICP'I in ICPi/ICP'I  as the wedge point p. Since 
P '  is invariant under  G the point p is also invariant under  G. For each 
y ~ ICPI we have either y ~ ICP'I or y can be identified with a point in 
{x}* [CP<~I * JCP>~I *{p} - {p} for an element x c A  which is uniquely 
determined by y since A is an antichain. In the second case (i.e., 
y ~ ICP'I)  we have yg ~ {xg}* [CP<~I * ICP>~el *{p} - {p}. This shows 
that the action of G on [CPI/ICP'I is compatible with the action of G on 

G Vx~A~,xlCP<x [ * ICP>x I . NOW it is routine to show that ICPI/ICP'I and 
V G~A~GxICP<xl * ICP>xl are G-homeomorphic .  It remains t o b e  shown 
that V.~AXxICP<~[ * [CP>~[ and 

i = 1  

are G-homeomorphic .  For the sake of completeness,  we will actually 
establish a G-homeomorphism between the topological sum X = 

I~ x~A.~xlCP<xl * JCP>~[ and Y -- I i  i~=l((~x,ICP<xll * ICP> xi]) XHi G)• 
This will prove the assertion since taking the various copies of p as the 
wedge point in the first topological sum and identifying the copies of p to 
a wedge point in the second topological sum will preserve a G-homeomor-  
phism. We may assume that A is a transitive G-set• In particular n = 1, 
A = G / H  for a subgroup H of G, and Y = (2~ICP<xl * ]CP>xl) x/~ G 
for some fixed x ~ A with G~ = H. Now we map (y,  g) ~ Y to f ( y ,  g)  = 
yg E X~,ICP<~gl * ICP>~]  _ X .  Assume (yh, h - l g )  is another  represen- 
tative of the class of (y,  g)  in Y for some h e H.  Then (yh)h lg = yg and 
x hg = (Xh) g = X g. Hence  f ( y ,  g)  is well defined• Moreover  f ( y ,  g)g'= 
(yg)g'  = ygg' = f ( (y ,  g)g')  shows that f is G-equivariant.  Now let y be an 
element  of XxlCP<xI * [CP>xl. Then define l(y g) ,= (y,  g)  ~ Y. If  yg = 

¢ ! 

yg for two elements g, g of G then h = gg,-1 is an element of H.  In 
• ! h - 1  particular (y,  g ) = (y , hh_lg  ) = ((yg,)g-l, g)  = (y,  g), which proves 

that 1 is well defined. Analogously as for f one shows that l is G-equiv- 
ariant. Moreover  one verifies that f o l = id x and l o f = / d  r ,  which proves 
the assertion• | 

In the situation (I) all posets P<x and P>~ are Gx-pOsets for the 
stabilizer G x of the element x in G. Our next aim is to deduce the 
G-homotopy type of P from the Gx-homotopy type of the posets P< x and 
P>x. It will turn out that we do not need to look at P<~ and P> 
separately. We will therefore regard the union P<x u P>~ (actually a 
disjoint union) as a subposet of P. The reader  is reminded of the fact that 
[C(P<~ U P>x)[ and ]CP<~[ * ]CP>~] are Gx-homeomorphic. Hence  we 
would like to analyze the following situation. 
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(II) The G-posets P and P '  satisfy (I). We set A ;= P -  P ' .  For 
every x ~ A  := P -  P '  there is a Gx-poset R x which is Gx-homotopy 
equivalent to P< x U P> x. 

But this does not suffice to deduce a suitable G-action on Vx e A X~ I CR~ p, 
which is the space of concern. Therefore  we need the following condition 
which assures the compatibility of the G~-homotopy equivalences. Below 
in Remark  2.6 (iii) we will see that (II) and ( l i d  are actually equivalent. 
But we will continue to use condition (III)  for the sake of easy formula- 
tions. 

( I l I )  The G-posets  P and P '  satisfy (I). There is a G-poset  Q and a 
subposet Q' which fulfill the condition (I). Fur thermore  the following 
three conditions hold: 

(a) The set Q - Q' is as a G-set isomorphic to the set A ;= P - P '  
(Therefore in the sequel we can identify A and Q - Q' in a suitable 
manner).  Every x ~ A is maximal in Q and hence Q > ~ = Q for all x ~ A. 

(b) For an x E A  the Gx-posets P < x U P > x  and Q<x are G~- 
homotopy equivalent. 

(c) There  exist Gx-homotopy equivMences f~: ICP<~I * ICP>xl --, 
[CQ< xl such that f x ( y )g  = f ~ ( y g ) .  (Here  we use the action of G on the 
space V~A~xlCQ<xl defined above.) 

In condition (I l l )  the elements of the poser Q which are not included in 
some Q < ~ are of no importance. Therefore  the following construction 
(see also Fig. 1) will provide the suitable model for our topological context. 
Assume the situation of condition (III). 

A2 

FIGURE 1 
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(i) Let Q' be the disjoint union of the posets Q < x for x ~ A. An 
element g of the group G acts on Q' by mapping y ~ Q<x to yg ~ Qxg. 

(ii) Let  A1 and A2 be two copies of the antichain A (regarded as a 
G-set). For an element x in A i and an element y ~ Q' we define x > y if 
and only if y ~ Q < , .  The elements of A 1 and A 2 are defined to be 
pairwise incomparable.  

(iii) Let a be an element which is not comparable with any element in 
the antichain A 1 and any element  in Q'. Now we add the relation a < x 
for all x ~ A 2. We define a to be a fixpoint of the action of G. 

If  we denote by ~ [ Q < x l x  ~ A ]  the poset constructed in (i)-(iii) then 
9 [ Q  < xlx ~ A] - A 1 and the element a fulfill the condition (C). Therefore  
by Theorem 2.3 and Proposition 2.5 the G-posets  Q and ~.~[Q<~lx ~ A] 
have the same G-homotopy type. Fur thermore  this construction justifies 
the concentration on the union P< x u P> x in condition (III). 

Remark 2.6. Let P0 and PD be G-posets  which satisfy (I). For all 
x ~ A = P0 - PD let Rx and T~ be Gx-pOsets. 

(i) If  the pair of G-posets  P = ~ [ ( P 0 ) < , l x  c A ]  (resp. P = 
~[(Po)>xJX ~ A]) and Q = 9 [ R ~ l x  ~ A] (resp. Q = ~ [ T ~ l x  ~ A]) fulfills 
(III)  for P '  = P - A 1 and Q' -- Q - A 1 then P0 and 

Qo ==~[Rx u T~Ix ~A] 

fulfill (III)  as well (the definition of A 1 is according to the construction 
depicted in Fig. 1, the order on R~ U Tx is induced by the order R~ and 
T~ and by y < y'  for y ~ R~ and y'  ~ T~). 

(ii) Let A = E7=IG/H i be a decomposition of the G-set A into 
coset spaces. Then we obtain the following decomposition of G-sets 

~[Rx[X ~A] : 2" L G/HikJ L G ×~ Rx,%JG/G, 
i = l  i = 1  

n g where we have chosen x i such that H / =  G~, and A = U i=l{xi Ig E G}. 
(iii) The  conditions (II) and (IID are equivalent. 

Proof. The first assertion follows immediately from Proposition 2.5. 
The second assertion is an immediate consequence of the construction of 
G~[R~[x ~ A]. For assertion (iii) one has to recall [Di, Proposition 4.3] the 
fact that an H-map  f :  X ~ Y between H-spaces X and Y has a unique 
extension to a G-map  f c :  X x  H G - * Y X  n G. Moreover  if f is an 
H-homotopy  equivalence then f c is a G-homotopy equivalence. This 
shows that given (II) condition (III)  follows after choosing representatives 
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FIGURE 2 

x~ , . . . , x~  of the G-orbits on A and setting Q<xf := Rx, xcx ' g and 

Q = ~ [ Q  < xlX ~ A]. Hence (II) implies (III). The other direction is trivial. 
! 

Now we will give an example of the construction depicted in Fig. 1. Let 
G be the cyclic group of order 2 generated by the element (bc)(de) acting 
on the poset P in Fig. 2. The poset Q on the right hand side of Fig. 2 is 
the poset ~ [ P < b ,  P<c]. The generator of the group G acts on Q by 
(blcl)(bZc2)(d%C)(dCeb). 

It is easily seen that both posets P and Q in Fig. 2 have the same 
G-homotopy type. The following proposition shows that this is actually a 
general fact. 

PROPOSITION 2.7. Let P and P' be two G-posets which fulfill (III) for 
the posets Q and Q'. Then for A := P - P' the spaces 

G G 

V X, ICP<~l * IcP>,]  and V 2 , lCQ<~]  
x ~ A  x e A  

are G-homotopy equivalen t. 

Proof. For all x ~ A let fx be a Gx-homotopy equivalence between 
P < ,  u P > ,  and Q <, which satisfies (III)(c). By the equivariant Simplicial 
Approximation theorem [Br, Chap. I, Exercise 6] we may assume that each 
fx is induced by an equivariant simplicial map gx: A + CQ<, of a 
certain subdivision A, of ICP<xl * ICP>~l, which is a Gx-complex. By the 
assumptions on f~ and by choosing the simplicial approximations uni- 
formly for all x ~ A we may assume that g~(cr)g = g~(o "g) for all g ~ G 
and o- ~ A,. As usual we regard IJ~ACQ<x as a G-set where G acts by 
mapping o - e  CQ< x to o "g ~ CQ<x~. We define a mapping f from 
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Vx~A~xICP<x[ * [CP>x[ to  Vx~A£x[CQ<x[ as a continuous extension of 

y if y ~ ~x for some x 

g(Y)  := gx(Y)  i f y  e A x  

defined on the vertices of the complexes ~ A  x. Here  we identify the 
antichains ~x which occur in ~xA~ and 2~xC Q < ~. By the construction of 
the wedge and since the element  x of A for which y ~ A x is unique, the 
map g(y)  is well defined. The extension f exists  and can be made 
G-equivariant by the assumptions on the mappings f~ (see (III)  (c)) and 
gx. The same construction applies to the homotopy inverses of the maps 
fx. We leave the verification of the claim that this construction preserves 
the property of being homotopy inverse to the reader.  This completes the 
proof  of the assertion that the two spaces are G-homotopy equivalent. | 

We now turn to a more general situation. Provided condition (III)  we 
analyze the reason why the action of G on P and on Q are compatible in 
our topological sense. Here  the following construction of a group opera-  
tion proves to be useful. 

Let G be a group and let E be a G-set. 

(i) We decompose E = ~'?~=IG/Hi into coset spaces (i.e., transitive 
G-sets) for not necessarily different subgroups H / o f  G. For each 1 _< i _< n 

n i i let F~ be a fixed Hi-set. Now we split F i -= ~.~=IHi/Kj into transitive H i 
sets for not necessarily different subgroups Kj of H i. 

• . n ~ n  i 1G/Kj. (ii) We form the G-set G ×till ..... Hnl [F1," ,Fn] := Ei=l. j= 
For each x g in the orbit of x ~ G / H  i c_ E there are [Hi/K~[ cosets of 
Kj contained in gH i. Therefore  we can naturally partition G / K j  into 
[ G / G  i] subsets of cardinality ]Hi/Kf[. Hence every element  of 
G ×IH1 ..... H~a [ F 1 , . . . ,  Fn] can be identified with a pair (x, y) for some 
x ~ E and y in some Fg. In particular, by an easy verification one shows 
that  this identification actually establishes the isomorphism of G-sets from 
G ×[H~,. H~I [F1 . . . .  Fn] to Ei= E ~ i G. . . ,  , n 1 j = I H i / K j  × H i  

Thus if E = G / H  and F 1 = H / K  then G X[/4~ 2 [F 1] is a G-set isomor- 
phic to G / H  = H / K  x H G. 

The most interesting case for us is when the H/-sets F/ are actually 
H~-posets. Thus we have to impose an order relation on G ×[HI H,] 
[ F 1 , . . . ,  F~]. Let y, y'  be two elements of F i. Then we define yg < y'"~i 
y _< y'  (the second order relation taken in the Hi-poset F,). We have to 
show that this actually defines a partial order (this actually follows from 
the fact that G ×g " is a functorial construction, but we will verify this 
easy fact briefly). We may assume n = 1, H = H  1, and F = F  v Now 
assume y < y', x ~ x '  are elements of F and there are g~, gy in G such 
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that y g Y  = X gx and y/gY = X gx. Then g y g x  l is an element of the stabilizer 
of y in G. By [Di, (1.14) Exercise 4] we infer that G,, = H,,, which implies 
g y g 2 l  ~ Hy. Now x = ygygx , x '  = y'gYg~ yields x _<x' contradicting the 
assumptions. 

PROPOSITION 2.8. Let  P be a G-poset and let P'  be a subposet which 
satisfies (I). We set A := P - P'. Le t  us assume the following situation: 

" G (i) Let  A = ~i= 1 / H  i be a decomposition o f  A into transitive G-sets. 
For every 1 <_ i <_ n let F i be an Hi-set. 

(ii) For x e G / H i  c_ A such that G x = H i the space I CP< ~ I * [CP> x I 
is Hi-homotopy equivalent to VffL Fi~ , y ICQy l .  

Then P is G-homotopy equivalent to 

G 

V ZyZQy. 
y~GX[H~ ..... H,,] [ FI . . . .  , Fn] 

Proof. For x e A we set R i :: . ,~[Qy l y e  F,]. Now it is routine to show 
that P and its subposet P '  (resp. R and its subposet R' := R - A) satisfy 
(III) (see also Remark 2.6 (iii)). Hence by Proposition 2.7 the poset P is 
G-homotopy equivalent to 

~/ (G ×H,(~x, ICRil))/(G ×H,{P}) 
i : l  

for a suitable choice of the x i ~ G / H I .  Now from Remark 2.6 (ii) and the 
construction of R i we deduce that P is G-homotopy equivalent to 

;/ .×... 
i = 1  

It is a well known fact from algebraic topology that suspension and wedge 
commute modulo homotopy equivalence (see for example [B-We]). Some 
technical computations show that this can be done G-equivariantly. Hence 

n H i P is G-homotopy equivalent to Vi= 1 Vy ~F, Xx, XyQy.  By definition of the 
G-set G x CH~ ..... ,q,] [FI . . . . .  F n] we get that P is G-homotopy equivalent 
to 

G 

V X, yXQy .  
Y ~ G X [ H ,  . . . . .  H~,] [ F I ,  - . .  , Fn] 
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Before we apply our results to subgroup lattices we will have a look on 
the orbit space ICPI/G for a G-poset  P. We wish to relate this space to 
the order complex of the poset P/G. 

3. ORBIT SPACES AND ORBIT POSETS 

In this section we wish to discuss the relation between the homotopy 
type of ICPI/G and the homotopy type of LC(P/G)I. In general the 
spaces seem to be almost unrelated. The one trivial fact which is true in 
general is that if CP is an n-dimensional simplicial complex, then L CPI/G 
(resp. C(P/G)) is an n-dimensional regular CW-complex (resp. simplicial 
complex). In Fig. 3 we depict the space IC(P/G)I, IC(Q/G)I, ]CPL/G, 
and I CQI/G, where P and Q are taken from Fig. 2. Note that although P 
and Q are by Proposition 2.7 G-homotopy equivalent their orbit posets are 
not homotopy equivalent. Q/G has the homotopy type of a 1-sphere and 
P/G is contractible. On the other hand Q/G, I CQL/G, and I CPI/G are 
homotopy equivalent. The reason for this behavior will become clear later. 

Our first approach is well known. We impose a rather  strong condition 
on the operat ion of G on P. 

(RE) For every chain x I < • • • < x n in P and for every sequence of 
elements g l , . - . ,  gn ~ G for which elementwise conjugation of the x i 

{ a } ~  b'c} 

{d,e} 
IC(P/G)I 

{ a } ~  c} 

{d,e} 
ICPI/G 

{bz, C 2} {b~,c ~} 

{db, e c} {dC, e b} 
IC(Q/G)I 

{ b2,-c 2, } {bl,c 1 } 

{db, e c} {dC,e b} 

ICQI/G 

FIGURE 3 
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gives another  chain x f  I < "-.  < x g" there exists a g ~ G such that 

x f ,  = 

If  (RE) is fulfilled for a G-poset  P then we call P a regular G-poser. 

PROPOSITION 3.1 [Br]. Let P be a regular G-poset; then [CPI/G and 
I C(P/G)I  are homeornorphic. 

Proof By condition (RE) we know the inclusion relation of simplices 
in CP behaves well under  the operation of the group G. Hence the orbits 
of the simplices in CP provide a suitable triangulation of the orbit space 
ICPi/G. I 

Now, although we can verify (RE) for an adequate subposet of the poser 
of subgroups of a finite solvable group, for subgroup lattices of more 
general types of groups it is of little use for us. We will apply this criterion 
to some specific examples, but we have no approach to the general 
problem. In order to treat  the case of solvable groups, we consider a 
suitable restriction of condition (RE). We return to the situation of 
condition (I) introduced in the last section. 

(RE) I Condition (I) holds for the G-poset  P and its subposet P' .  
Fur thermore  the poset ~ [ P < x  u P>x]x ~ P - P'] is a regular G-poset. 

Provided condition (I), it is trivial that condition (RE)/  is a consequence 
of (RE) but not vice versa. 

Condition (RE) I has the following sloppy interpretation: 

All "essential" identifications induced on P<x U 
P>x by the action of G on P can be realized by the 

operation of G x. 

We will show in the next section that condition (RE)I and the given 
interpretation is of group theoretical interest in the case where P = A(G) ° 
is the proper  part  of the subgroup lattice of a group G and G X is the 
normalizer of the subgroup x in an antichain A. 

Before we can apply condition (RE) 1 we prove the following general 
lemma. 

LEMMA 3.2. Let P and P' satisfy the condition (III)  for the G-posets Q 
and Q'. Then ICPI/G is homotopy equivalent to 

V 2[4ICQ<~I/G~. 
[x]~A/G 

Proof From Proposition 2.7 we know that P and Q are G-homotopy 
equivalent to 

G 

V ~ x l c O < x I .  
x c A  



74 VOLKMAR WELKER 

Hence ]CPI/G and [CQI/G are homotopy equivalent to 

V ~xlCQ<xl G. 
x~A  

From [Di, (4.14) Exercise 1] we know that for an H-space X and a group 
G containing H as a subgroup the spaces (X  × HG)/G and X / H  are 
homeomorphic. Therefore  the assertion follows from the fact that the 
wedge points are fixed under the G-action and the second part of 
Proposition 2.5. | 

PROPOSITION 3.3. Let P and P' satisfy the condition (III) for the 
G-posets Q and Q'. I f  for x ~ A the poset Q < x/Gx is homotopy equivalent 
to ]CQ<xI/G x then [CPI/G is hornotopy equivalent to 

V X[xl tC(Q<JGx)I  • 
[x]~A/G 

In particular, the conditions of this proposition are fulfilled if Q and Q' 
satisfy (RE) I. 

Proof. This follows immediately from Lemma 3.2 and a repeated 
application of Proposition 2.7. | 

In the next section we will apply the results of Section 2 and Section 3 to 
subgroup lattices of finite solvable groups. 

4. SUBGROUP LATTICES OF FINITE SOLVABLE GROUPS 

In this section all groups are finite and solvable. We actually would like 
to verify the conditions (III) and (RE) considered in Section 2 and Section 
3 for the G-poset A(G) °. We will see that condition (III) holds, but (RE) 
fails even for p-groups in simple examples [We2]. Therefore  we turn our 
interest to a subset of A(G) °. 

DEFINITION 4.1. Let G be a group. 

(i) We call a subgroup H of G a C-subgroup if the interval [H, G] 
:= {UhH < U < G} is a complemented lattice. 

(ii) By K(G) we denote the poset {UIU E A(G) and U is a C-sub: 
group} U {1}. 

Obviously if U is a C-subgroup of G then U g is also a C-subgroup. 
Hence K(G) is a G-poset. The poset K(G) is different from {1} for G =g 1 
since G and all maximal subgroups are always C-subgroups. The group G 
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is the largest element of K(G) and 1 is the least element of K(G). In 
particular K(G) is a bounded poset. But K(G) is not a lattice in general 
[We2]. 

LEMMA 4.2. The posets A(G)  ° and K(G) ° are G-homotopy equivalent. 

Proof. An interval [H, G] in G is not complemented if and only if 
there is a normal subgroup N of G such that the element H N  is not 
complemented in [H, G] [K-T, Proposition 4.13]. Since H N  is invariant 
under  the normalizer N o ( H )  of H in G we deduce from Theorem 2.3 that 
[ H , G ]  ° =  (A(G)°)>H is Nc(H)-contractible.  Now Theorem 2.2 applies 
and shows that A(G)  ° and K(G) ° are G-homotopy equivalent. I 

In the sequel we need a group theoretical characterization of C-sub- 
groups. For this purpose we denote by 

~ : l = N 0 < N l <  . . .  < N t _ I < N I <  . - .  < N ~ _ I < N k = G  

a chief series of G. By 1 we denote the set of indices i of chief factors 
N//Ni-1. A complement of a chief factor N//N/_ 1 is a subgroup M of G 
such that M C3 N/ = N,._ 1 and M N / =  G. For  i ~ I we write ~ '~ ( i )  for the 
complements of the chief factors N//N/_ ~. This allows us to formulate the 
following characterization. 

PROPOSITION 4.3 [We3, Proposition 3.2]. Let G be a group. A subgroup 
H o f  G is a C-subgroup i f  and only if  there is a set J c I and complements 
Mj ~ ' s ~ ( J )  o f  N j / N j _  1 such that H = ['1 j ~ j M j .  The set J is uniquely 
determined by H. 

COROLLARY 4.4. For any maximal chain I < H I <  . . .  < H k = G in 
~;(G) there are elements l 1 < •. • < l k o f  I and maximal subgroups Mt~ 
~se(lj) such that tt,. = f3 ~ i j=lmlj" 

Proof  This follows immediately from the uniqueness of the index set J 
in the representation of C-subgroups in Proposition 4.3. I 

COROLLARY 4.5. Let M be a complement o f  the minimal normal sub- 
group N o f  the group G. Then for a C-subgroup H o f  G we have either 
N < H or N c3 H = 1. In the first case H A M is a C-subgroup o f  M. 

COROLLARY 4.6 [Ku, (1.3)]. Let M be the complement o f  the minimal 
normal subgroup N in G. Then K(M) = {H ~ K(G)[H < M}. 

PROPOSITION 4.7. The G-poset K(G) ° is a regular G-poset. 

Proof. We may assume that H k >  . . .  > H i >  1 is a c h a i n i n  K(G) 
such that H~ = G. 
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(i) If  H1 and therefore all groups in the chain contain the minimal 
normal subgroup N then H 1 / N  < . . .  < H J N  is a chain in K ( G / N ) .  
This can be derived from the definition of K(G) and the fact that the 
intervals [Hi, G] and [ H i / N ,  G / N ]  are isomorphic. In this case the asser- 
tion follows by induction on the order of the group. 

By Corollary 4.6 we know that for a minimal normal subgroup N of G 
either N <_ H i or N G/4/  = 1. 

(ii) Therefore  if N is not contained in H1, it follows from H k = G 
that there is an index j such that N < Hj and N N Hi_ 1 = 1. In the 
representat ion of C-subgroups in Proposition 4.3 the index set J is 
determined by the C-subgroup. Thereby we infer that there is a comple- 
ment  M of N in G such that M N H i >_ Hi_ 1. By Corollary 4.6 the groups 
M N H i for i > j and / 4  for i < j  - 1 are C-subgroups of M. Hence  

( * )  M = H k A M > H k _ I N M >  . ."  > H j A M  

>Hi_l> . . .  > H 2 > H I > I  

is a chain of C-subgroups of M. Now let gl . . . . .  gk be elements of G such 
that H{~ > . . .  > H fl > 1 is another  chain in ~c(G). By the choice of M 
there is an element h of N such that M gk = M h. Hence the chain 

( * * )  M = r4gkh-~ N M > M n H~k--1 ~h-~ "'" > HgJh-' n M 

> HgJ-llh-I > . . .  > H f I  h-I 

is another  chain of C-subgroups in M. From G = N M  we deduce that 
there are elements n l , . . . , n ~  ~ N and m l , . . . , m  k ~ M such that 
gi h -1  = n i m  i. For i > j we have H g~h-~ N M = ( H  i n M )  'm, by the fact 
N < H i . For i <  j - 1  the subgroups H i and Hi gih-~ are subgroups M 
which are conjugate under  G. Therefore  by Lemma 5.1 (see [H-I-O, 
Lemma 7.1]) they are conjugate under  the operat ion of M. Now we apply 
the induction hypothesis to M and the chains (*)  and (* *). We find an 
element m ~ M such that 

H i  m = H gi  for i < j - 1 

and 

( H i n M ) m = ( H i g ~ n M )  = ( H i g ' h - ' n M )  for i >_j. 
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Since 

HT~ = ( N (  tt,. • M )  ) m = u (  Hi n M )  m = u (  Him n M )  = I-t~ gi f o r i > j  

the identity Hi gi = H g holds for all i. | 

Now we know that K(G) ° is a regular G-poset. From this we deduce the 
following surprising fact. 

THEOREM 4.8. The topological spaces ICA(G )° I /G  and IC(A(G)° /G) I  
are homotopy equizalent. 

Proof From Lemma 3.2 we know that A(G)  ° and K(G) ° are G-homo- 
topy equivalent. Now Proposition 4.7 and Proposition 3.1 show that 
I C K ( G ) ° I / G  and ]C(K(G)° /G) I  are homeomorphic .  Th e re fo r e  
t C A ( G ) ° I / G  and I C(K(G)° /G)I  are homotopy equivalent. Since we have 
shown [We3, Proposition 2.2 and Theorem 5.5] that [C(K(G)°/G)I and 
I C ( A ( G ) ° / G ) I  are homotopy equivalent the assertion follows. | 

Our next aim is to give the G-homotopy type of A(G)  °. 

Remark 4.9. Let A :=~Z/~(1) be the set of all complements of 
the minimal normal subgroup N 1 of G. Then A(G)  ° and A(G) ° -  A 
satisfy (I). 

Proof. Condition (I) follows from Theorem 2.3 and the fact that all 
complements of N are maximal subgroups. | 

For the formulation of the next theorem we define for a solvable group 
G the constant C(G) as the product Fl~=lCi where c i is the number of 
conjugacy classes in ~ ( i ) .  Actually, this number is independent from the 
choice of the chief series since it is the absolute value of the M6bius 
number of A ( G ) / G  [We1]. For a complement M of the minimal normal 
subgroup one easily deduces the recurrence formula C ( M )  = C ( G ) / c  1. In 
the proof of the theorem we use the following easy remark on comple- 
ments of commutator  subgroups. 

Remark 4.10. If G is a group such that A(G)  is complemented then 
there exists a complement H G of G' which is a C-subgroup. Furthermore: 

(i) All complements of the commutator subgroup G' which are 
C-subgroups are conjugate. Therefore  the coset spaces G / H  G are isomor- 
phic G-sets for all complements H G of G' which are C-subgroups. 

(ii) Let M be a complement of the minimal normal subgroup N. 
Then for a complement H G of the commutator subgroup G' the group 
H M = M • H G is a complement of the commutator subgroup M' of M. If 
H G is a C-subgroup of G then M G is a C-subgroup of M. 

582a/69/1-6 
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(iii) In the situation of (ii) the G-sets G / H  c and M / H  M × u G are 
isomorphic. 

The concept of the complements of the commutator subgroup which are 
C-subgroups is equivalent to the concept of infiltrated complements intro- 
duced by Th6venaz in [Th]. We are grateful to J. Th6venaz for pointing 
out an error in a previous formulation of Remark 4.10. 

For the formulation of the following theorem we recall that NS k- 1 and 
S k are homeomorphic spaces. The result given in the theorem implies the 
results in [Th] about the representation of G on the homology groups of 
I CA(G)°I.  

THEOREM 4.11. Let G be a group. I f  A (G)  is not complemented then 
A(G)  ° is G-contractible. I f  A (G)  is complemented and i l k  is the length o f  a 

\ /c  S k-  2 Here chief series then A(G)  ° is G-homotopy equivalent to --x~A(a) x • 
A ( G )  is as a G-set isomorphic to the sum of  c(G) copies o f  the coset space 
G / H  c for a complement H 6 o f  the commutator subgroup G' which is a 
C-subgroup. 

Proof. If A(G)  is not complemented then by [K-T, Proposition 4.13] 
there is a normal subgroup N which is not complemented. Therefore  by 
Corollary 2.4 the poset A(G)  ° is G-contractible. 

Hence we may assume that A(G)  is a complemented lattice. Now let N 1 
be the minimal normal subgroup in the chief series ~' .  If M is a 
complement of N then A ( M )  ~- A ( G / N ) .  Since N is a C-subgroup the 
lattice A ( M )  is complemented. By induction hypothesis we know that 

V M S k - 3  A ( M )  has the M-homotopy type of x~A(M) x . Here  A ( M )  is the 
C ( M )  = C(G)/Cl-fOld disjoint union of M-sets M / H  M for a complement 
H M of M'  in M which is a C-subgroup in M. Since M' -- G' n M the 
group M N H c is such a complement. 

If M is a normal subgroup of G then M is centralized by N. This shows 
that A ( M )  can be regarded as a G-set and the G-homotopy type of 

\[G ~ k -  3 
A ( M )  ° is - x  ~ A ( M ) ~ x  " 

If M is not normal then it is self-normalizing. Hence in all cases the 
\]G ~ k - 3  

NG(M)-homotopy type of A ( M )  ° is - x  ~A(M)Ox • 
NOW we can apply Proposition 2.7. Therefore  A(G)  ° is G-homotopy 

equivalent to 

G M 

V V S x • 
M ~ g ~ ( 1 )  x ~ A ( M )  

Hence Proposition 2.8 and Remark 4.10 (iii) show that A(G)  ° is G-homo- 
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topy equivalent to 

G 
V k-2 Sx • I 

x ~ A ( G )  

COROLLARY 4.12 [We3, Theorem 6.5 (ii)]. I f  A(G)  is a complemented 
lattice then the poset A ( G ) ° / G  and the topological space [CA(G) °] / G  are 
homotopy equivalent to V i=a ..... C(G)S ~-2. Here k is the length of  a chief 
series of  G. 

Proof This follows from Theorems 4.8 and 4.11 since M ( G ) / G [  = 
C(G). I 

5. DIRECT PRODUCTS OF FINITE GROUPS 

In this section we wish to investigate the G-homotopy type of A(G)  ° 
when G is the direct product of two non-trivial groups U and V. 

LEMMA 5.1. Let N be a non-trivial normal subgroup of  a group G and 
let M be a complement of  N. Then for a chain H 1 < • •. < H n in A(G)  < M 
and an element g ~ NG(M) there is an m ~ M such that Hi g = Hi m. In 
particular 

(i) A ( M ) ° / M  and ( A ( G ) < M ) ° / N G ( M )  are isomorphic and, 

(ii) [ C A ( M )  o [ / M  and [ CA(G)  < M[/NG ( M )  are homeomorphic. 

Proof The first part is proved in [Ha], [Lemma 1.5]. The assertions (i) 
and (ii) are trivial consequences. | 

LEMMA 5.2 [H-I-O, Lemma 8.1]. Let G = U × V be a direct product of  
two non-trivial groups U and V. We denote by C the set of  complements o f  
U x 1 in G. Then the mapping 

{ H O M ( V , U ) ~ C  
0: ~ ~{(~(~),v)lv ~v} 

& bijective. 

Using the result of the previous lemma we write V~ for the complement 
{(4~(v), v)lv ~ V} of U × 1 in G determined by  ~b ~ HOM(V,  U). Before 
we can state some results about the G-homotopy type of direct products 
we have to restrict ourselves to a special class of products. Following 
Hawkes [Ha, Definition 2.1] we call a group U weakly V-free if 
IHom(V, N u ( r ) / r ) [  = 1 for all 1 4~ r _< g. 
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LEMMA 5.3. Let G = U x V be the direct product of  two non-trivial 
groups U and V. Let U be weakly V-free and let V 6 be a complement of  
U x 1 in G. Then the mapping 

( A( G ) > - v ~  A(U)>_6(v) 
"Y: ~ H n  6 ( V )  

is a lattice isomorphism. Furthermore for ( u , v )  E NG(V6) we have 
T ( H  (u'v)) = T(H)" .  

Proof. This is a direct consequence of [H-I-O, Lemma 8.3]. I 

Immediately we obtain the following proposition. 

PROPOSITION 5.4. Let G = U X V be the direct product of  two non-triv- 
ial groups U and V. Let U be weakly V-free and let V 6 be a complement of  
U x 1 in G. Then one of  the three following cases holds: 

(i) V 6 = 1 x V. Here A ( G ) > v  ~ is U-isomorphic to A(U)  and 
A ( G ) ~ v6/ NG( V4~) is isomorphic to A ( U ) / U. 

(ii) q5 is not surjective. Then 4~(V) x V is the smallest element in 
( A(G)  > v+) ° and (A (G)  > v~) ° is NG(V6)-contractible. 

(iii) q5 is surjective and (A(G)>v+) ° is empty. 

THEOREM 5.5. Let U be weakly V-free and let A be the set o f  comple- 
ments o f  U x 1 in G = U x V. 

(i) A(G)  ° is G-homotopy equivalent to 

G 

( ~ l x v [ C A ( U ) ° ] * I C A ( V ) ° I )  V V  xlCa(U)°[. 
x ~ A  --{1X V} 

(ii) A ( G ) ° / G  is homotopy equivalent to 

( [lxvIIcA(U)°I/U,ICA(V)°I/v) v V z x lca(u)°[/u. 
[ x ] ~ A / G  -{[1 × V]} 

Proof. (i) By Corollary 2.4 the G-poset A(G)  ° - A  is G-contractible. 
Hence the result follows from Proposition 5.4 and Proposition 2.5. 

(ii) Before we can apply Proposition 2.5 we have to check condition 
(C) for a = [U X 1] in P = A ( G ) ° / G  - A / G .  By the choice of A either 
[U X 1] v [H]  = [(U x 1)H] or [U x 1] A [H]  = [(U x 1) n H ]  exists in 
A ( G ) ° / G .  Let [H]  _ [L] be elements of A ( G ) ° / G  such that [U X 1] v 
[H]  exists but [U x 1] v [L] does not exist. Since (U x 1)L = G we 
deduce from [H-I-O, Lemma 8.3] that L = T x V for a proper  subgroup 
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of U. If we denote by S the projection of H on V then [U × 1] v [H]  = 
[(U × 1)H] = [U × S]. Therefore  we have ([U × 1] v [H])  A [L] = [U × 
S] /x  [T × V]. The last infimum exists in A(G)°/G and is equal to 
[T × S]. Now an application of Theorem 2.3 and Proposition 5.4 com- 
pletes the proof. | 

COROLLARY 5.6. Let U be weakly V-free and let G be the group U × V. 
I f  A(U)°/U (resp. A(V)° /V)  and ICA(U)°I/U (resp. ICA(U)°I/G) are 
homotopy equivalent, then A(G) ° and ICA(G)°t / G  are homotopy equiua- 
lent. 

Proof. This follows immediately from Theorem 5.5 and Proposition 
2.7. | 

6. SOME EXAMPLES FOR FINITE SIMPLE GROUPS 

Since direct products of solvable groups are solvable, the results of the 
preceding section become useful only when we can analyze the G-homo- 
topy type of finite simple groups. Here  we cannot present any general 
result, but we analyze some cases which will hopefully give some insight 
into what could happen. All results about G-contractibility, which cannot 
be derived from the theorems of Section 2, were checked by computer. In 
order to formulate the problem algorithmically and reduce the amount of 
computation, such that it will become suitable for computers, we pro- 
ceeded as follows. Using Theorem 2.2 we remove by hand as much as 
possible from the investigated poset P. Then we apply the computer to 
prove a G-equivariant version of combinatorial collapsibility [G1] for CP. 
As collapsibility implies contractibility, we have chosen the definition of 
G-collapsibility such that it implies G-contractibility. 

DEFINITION 6.1. Let K, K '  be two simplicial complexes on which a 
group G acts as a group of simplicial automorphisms. 

(i) We say thaat K'  is an elementary G-collapse of K if there is a 
simplex cr ~ K such that for the sets S t a r ~ ( K ) =  {~-~ K[crg < z} the 
following conditions hold: 

(a) For two g, g ' ~  G the sets Starve(K) and S t a r j ( K )  either 
coincide or are disjoint. 

(b) Each S t a r ~ ( K )  contains a unique maximal simplex. 

(c) K '  = K - U g ~ c ( S t a r ~ ( K )  - {o-g}). 

(ii) We say that K is G-collapsible if there is a sequence of elemen- 
tary G-collapses which starts in K and ends with the empty complex. 
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Note that if K = CP and or = { x  1 < . . .  < Xr} is a chain in the poset 
P, then condition (a) of Definition 6.1 (i) is always satisfied. 

We have applied this criterion in the investigation of suitable parts of 
the subgroup lattices of A 6, A7, PSL2(F7), PSLz(F11), Mll, and M12. 

At first we analyze the two smallest non-abelian simple groups. 

A s. First we consider the intervals in A(As). The only NAs(H)-con- 
tractible intervals [H, As] ° in A(A s) are [Z 5, As] ° for the various copies 
of the cyclic group of order 5 and [V4, As] ° for the Kleinian four groups. 
Let Qs be the lattice obtained from A(A s) after the removal of the 
conjugacy classes of cyclic groups of order 5 and the Kleinian four groups. 
We deduce by Theorem 2.2 that A(As) ° and Q0 5 are As-homotopy 
equivalent. Now it is easy to verify that Qs satisfies (RE). Hence the orbit 
space [CA( As)°I /As is homotopy equivalent to Q°/A s. Obviously the 
latter is a 1-sphere (see also Fig. 4). Moreover CQ ° is a connected 
1-dimensional complex and therefore homotopy equivalent to a wedge of 
1-spheres. Since ix(A(As)) = -60  we deduce that A(A) ° and QO have 
the homotopy type of a wedge of 60 spheres S 1. In the next step we look at 
contractible subposets of Q0 which satisfy the conditions of the Con- 
tractible Subcomplex lemma (Theorem 2.1). Here we find the subposets 
[Z3, S 3] and [1, A 4] - {Z3, Z3, Z3, Z 3, 1}. Dividing out the associated topo- 
logical spaces from [CQ°l we derive from the Contractible Subcomplex 
lemma (or by an easy verification) that A(As) ° is As-homotopy equivalent 
to the space depicted in Fig. 5. The As-operation is indicated by the 
labeling of the vertices. But A(As) ° is not As-homotopy equivalent to a 
wedge of 60 spheres S 1. The fact that this is not true can be easily derived 
from Fig. 5, since there is no point fixed by the action of A s. Passing to the 
quotient space we see that [CA(As)°[/As is homotopy equivalent to a 
1-sphere. 

Now let us have a look at A(As)°/As in Fig. 4. Obviously this space is 
homotopy equivalent to a 1-sphere. Therefore A(As)°/As and 
[ CA(A s)° ]/A s are homotopy equivalent. 

PSL2(7). Contrary to the situation in solvable groups we have the 
following behavior of A(G) ° and A(G)°/G. The subgroup lattice 

[0 5 ] [A4] |S 3 ] 

FIGURE 4 
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A(PSL2(F7)) ° is not contractible but the poset of conjugacy classes 
A(PSLz(F7))°/PSL2(F7 ) is. After removing the subgroups H such that 
[1, H]  0 or [H, PSLz(F7)] ° is NpsL2(rT)(H)-contractible, we are left with the 
poset Q consisting of the subgroups of order 21, the cyclic groups of order 
2 and 3, the groups isomorphic to S 3, and the two conjugacy classes of 
subgroups isomorphic to S 4. Some calculations show that Q is not (see 
also [K-T] for the computation of the homology groups) contractible. A 
maximal chain in Q is a maximal chain of C-subgroups of the top element 
in the chain. Since all elements of Q are solvable, Proposition 4.7 implies 
that Q is a regular PSLz(Fy)-poset. Hence ]CA(PSL~(FT))°I/PSLz(FT) 
and Q/PSL2(F 7) are homotopy equivalent. Easy computations show that 
A(PSLz(Fv))°/PSLz(F7 ) and Q/PSLz(F 7) are homotopy equivalent. 
Therefore  [A(PSLz(F))°I /lPSLz(F7 ) and A(PSL2(Fv))°/PSLz(F7 ) are both 
contractible and in part icular  homotopy equivalent. The  space 
]A(PSL2(F7))[ itself is homotopy equivalent to a wedge of 2-spheres and 
1-spheres (again see [K-T] for computations of the homology groups). 
Again the homotopy equivalence cannot be G-equivariant. 

We return to the alternating groups An, n > 5. The case n = 5 has 
been investigated above. 

Next we turn to n = 6. By A we denote the set of subgroups of A 6 
which are isomorphic to A 5. The poset A(A6) ° - A is A6-contractible. By 
Proposition 2.7 one shows that A(A6) ° is A6-homotopy equivalent to a 
wedge of 12 copies of suspensions of spaces As-homeomorphic to that in 
Fig. 5. Hence [CA(A6)°[/A6 is homotopy equivalent to a wedge of two 
2-spheres. Each of these spheres corresponds to a conjugacy class of 
subgroups isomorphic to A 5. Surprisingly A(A6)°/A6- A/A 6 is con- 
tractible. Therefore  A(A6)°/A6 is also homotopy equivalent to a wedge of 
two 2-spheres. Here  we use the fact that (A(A6)/A6)_<[AsI and A(As)/A 5 
are isomorphic posets. Thus we have proved that A(A6)°/A6 and 
[CA(A6)°[/A6 are homotopy equivalent. 

The case n = 7 is a little bit more difficult. Here we collect in the set A 
all subgroups isomorphic to  A 6 and all subgroups H isomorphic to A 5 
which act transitively on the set of 6 letters permuted by A 6 _> H. The 
poset A(A7 )° - A is A7-contractible. But here we cannot apply Proposi- 
tion 2.7 since A is not an antichain. We use an equivariant version of a 
theorem of Bj6rner (private communication) which generalizes the classi- 
cal version of Proposition 2.7 to the case where A is a convex subposet 
(one can use some elementary argumentation here as well, since the 
convex subset in consideration is very simple). Thereby we show that 
A(A7 )° is Ay-homotopy equivalent to a wedge of 7 copies of suspensions 
of spaces A6-homotopic to A(A6) °. Dividing out the action of A 7 we 
obtain a 3-sphere. Again A ( A 7 ) ° / A 7 - A / A  7 is contractible. Applying 
the theorem of Bj6rner mentioned above we show that A(A7)°/A7 is 
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homotopy equivalent to a 3-sphere. Analogously to the case n = 6 we used 
the fact that (A(A7)/AT)<_[A 1 and A(A6) /A 6 are homotopy equivalent. 
So A(A7)°/A7 and I CA(A7)(Y[/A7 are homotopy equivalent. 

Since A(As) ° is homotopy equivalent to a wedge of 60 spheres S 1 we 
have shown that A(A6) ° is homotopy equivalent to a wedge of 720 spheres 
S 2 and that A(A 7) is homotopy equivalent to a wedge of 2040 spheres S 3. 
Since the absolute value of the M6bius number of a poset which is 
homotopy equivalent to a wedge of n-spheres counts those spheres, a 
generalization of a conjecture on the M6bius number of A n [H-I-O] (see 
also [St] for the analogous conjecture for ix(A(Sn))) would be: 

Conjecture 6.2. A(A n) is homotopy equivalent to a wedge of n!/2  
s p h e r e s  S n - 4  for n > 6. 

By our methods it would suffice to show that the poset A(An) ° -  
{Ag_llg ~ A n} is An-contractible. It is well known that two subgroups of 
A n contained in An_ 1 are conjugate if and only if they are conjugate in 
A n. Hence if we would show that A(An)° /A .  - {[An_l]} is contractible 
then we could inductively prove the original conjecture [H-I-O]: 

Conjecture 6.3. For the M6bius number /x of A(An) and A(A~) /A .  
the following equation holds in the case n > 6: 

I~( A( An) ) = IA.I " Iz( A( An) / A . ) .  
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Applying the methods used for A 5, A6, and A 7 to corresponding 
symmetric groups we obtain similar results. Now we turn to the first two 
Mathieu groups Mll and MI2. 

MII. In Mll there is one conjugacy class of subgroups isomorphic to 
PSLz(Fll). Setting A := [PSL2(F11)] we obtain that A(M11) ° - A  is M11- 
contractible. Hence A(M11) ° is M~l-homotopy equivalent to 

M11 

V ExlCA(PSL2(Fll))°I • 
x c A  

By inspection one shows that for the PSL2(FH)-poset P -- A(PSL2(Fll)) ° 
the orbit space [CP[/PSL2(Fll) is homotopy equivalent to P/PSL2(Fll). 
Now Proposition 3.3 implies that 

ICA(M11)°]/Mll and ~]C(A(PSL2(F11))°/PSL2(FlI)I 

are homotopy equivalent. But the poset A(Mll)°/Mll- [PSL2(F11)] is 
contractible. Hence we have shown that the poser A(M11)°/M11 and 
[CA(M11) °]/Mll are homotopy equivalent. 

It turns out that M12 behaves exceptionally. By using CAYLEY it has 
already been shown [B-G-V] that for the M6bius numbers the equation 
I-~(A(G)) = JG']" Iz(A(G)/G) does not hold. Note that this equation 
holds for all other groups we have investigated above and in previous 
sections. 

M12. For the computational analysis of A(M12) we refer to [B-R] and 
[B-G-V]. In A(M12 )° there is one conjugacy class of subgroups isomorphic 
to PSL2(F11) which acts transitive on the 12 letters in the usual permuta- 
tion representation of M12. If we denote by A this conjugacy class then 
A(M12 )0 - A  is M12-contractible. By Proposition 2.5 we deduce that 
A(M12 )° is M12-homotopy equivalent to 

M12 

V E I c A ( P S L 2 ( F l l ) ) ° ]  • 
x E A  x 

But the poset A(M12) ° is not a regular M~2-poset. Although this is also 
true for other cases investigated above, the failure occurs in this case in a 
crucial part of the subgroup lattice. The two conjugacy classes in PSL2(F H) 
of subgroups isomorphic to A 5 are fused under the action of M~2. For a 
subgroup H ~ A the poset (Q/M12)<IHI is contractible but A(H)°/H is 
not. Hence some additional computation shows that 

x ~ A  
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is contractible. This shows that ]CA(M12)°I/M12 is contractible. But 
IC(A(M12)°/M12)] is not contractible since its M6bius number is not 0 
[B-G-V, Appendix]. 
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