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On the nonabelian tensor squares of free nilpotent groups of
finite rank

Russell D. Blyth, Primož Moravec, and Robert Fitzgerald Morse

Abstract. We determine the nonabelian tensor squares and related homo-
logical functors of the free nilpotent groups of finite rank.

1. Introduction

Let G be any group. Then the group G ⊗ G generated by the symbols g ⊗ h,
where g, h ∈ G, subject to the relations

gh⊗ k = (gh⊗ gk)(g ⊗ k) and g ⊗ hk = (g ⊗ h)(hg ⊗ hk)

for all g, h, and k in G, where xy = xyx−1 for x, y ∈ G, is called the nonabelian
tensor square of G. Let ∇(G) be the subgroup of G ⊗ G generated by the set
{g ⊗ g | g ∈ G}. The group ∇(G) is a central subgroup of G ⊗ G [8]. The factor
group G⊗G/∇(G) is called the nonabelian exterior square of G, denoted by G∧G.
For elements g and h in G, the coset (g ⊗ h)∇(G) is denoted g ∧ h.

In his paper [13] C. Miller gives a group theoretic interpretation of the Schur
multiplier of a group G or, equivalently, H2(G), the second integral homology group
of G. Miller shows that H2(G) is the group that contains all relations satisfied by
the commutators in G modulo those commutator relations which are trivially, or
universally, satisfied by G. He interprets H2(G) to be a measure of the extent
to which relations among commutators in G fail to be consequences of universal
commutator relations. A relation is universally satisfied if it holds in the free group.
We list some of these in (2.1).

For the free group Fn of rank n, the group H2(Fn) is trivial, since Fn does not
satisfy any relations other than the universal commutator relations. Let Nn,c ∼=
Fn/γc+1(Fn) be the free nilpotent group of class c and rank n. By Theorem 1
of [17], H2(G) is isomorphic to the free abelian group of rank M(n, c + 1), where
M(n, c) is the number of basic commutators in n symbols of weight c. This matches
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Miller’s interpretation of H2(G), as it captures the commutator relations of Nn,c
that are not consequences of universal commutator relations.

Implicit in Miller’s work is that H2(G) is the kernel of the commutator mapping

(1.1) 1 −−−−→ H2(G) −−−−→ G ∧G κ′−−−−→ G′ −−−−→ 1,

where κ′(g ∧ h) = [g, h] for all g, h in G. R. K. Dennis in his preprint “In Search
of New ‘Homology’ Functors Having a Close Relationship to K-theory” [9] makes
note of (1.1) and extends the nonabelian exterior square to the nonabelian tensor
square. Dennis considers the commutator map

1 −−−−→ J2(G) −−−−→ G⊗G
κ−−−−→ G′ −−−−→ 1,

where κ(g ⊗ h) = [g, h] for all g, h, in G, and investigates its kernel J2(G). Brown
and Loday in [8] show that J2(G) is isomorphic to π3SK(G, 1), the third homotopy
group of the suspension of an Eilenberg MacLane space K(G, 1).

In the same paper, Brown and Loday introduce the nonabelian tensor product
G⊗H of two groups G and H. This product is defined if the two groups act on each
other in a compatible way. The nonabelian tensor square G⊗G can be considered
a specialization of the nonabelian tensor product, where the actions are taken to
be conjugation. The nonabelian tensor square of a group is always defined.

The study of G⊗G from a group theoretic point of view was started by Brown,
Johnson and Robertson in their seminal paper “Some Computations of Non-Abelian
Tensor Products of Groups” [7]. One focus of their paper is to “compute” the
nonabelian tensor square for various groups. By computing the nonabelian tensor
square of a group G, we mean finding a simple or standard form for expressing
G ⊗ G. The definition of the nonabelian tensor square gives no insight as to the
group it describes or its structure. Starting in [7], methods in computational group
theory have been invoked to investigate this problem.

In [7] the approach to computing the nonabelian tensor square for a finite
group G is to form the finite presentation given in the definition and to use a
computer program to perform Tietze transformations to simplify the presentation.
This simplified presentation is then examined to determine the isomorphism type
of G⊗G. This technique was applied to all of the nonabelian groups of order up to
30. This method becomes impractical for large finite groups since one starts with
|G|2 generators and 2|G|3 relations.

To compute some examples of the nonabelian tensor product for finite groups,
Ellis and Leonard [11] construct a group in which the nonabelian tensor product
naturally embeds. In the specialized case of the nonabelian tensor square, we
denote this group by ν(G), following Rocco [15], who independently investigated
its properties.

In the following, we fix G to be an arbitrary group with presentation 〈G|R〉.

Definition 1.1. Let G be a group with presentation 〈G|R〉 and let Gϕ be an
isomorphic copy of G via the mapping ϕ : g → gϕ for all g ∈ G. We define the
group ν(G) to be

ν(G) = 〈G,Gϕ|R,Rϕ, x[g, hϕ] = [xg, (xh)ϕ] = xϕ

[g, hϕ],∀x, g, h ∈ G〉.

The motivation for considering ν(G) relative to the nonabelian tensor square
is the following theorem given in [11] and [15].
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Theorem 1.2. Let G be a group. The map φ : G⊗G→ [G,Gϕ]�ν(G) defined
by φ(g ⊗ h) = [g, hϕ] for all g and h in G is an isomorphism.

It is clear from the definition of ν(G) that it is generated by 2|G| elements,
which is significantly smaller than the number of generators given in the definition
of the nonabelian tensor square. Ellis and Leonard [11] show that the relations for
ν(G) can be significantly pruned depending on the size and structure of the center
of G. Hence the computational strategy is to construct a relatively small finite
presentation of ν(G), compute a concrete presentation for ν(G), and then apply
standard computational group theory methods to find the subgroup [G,Gϕ]. Ellis
and Leonard were able to compute the nonabelian tensor squares for some large
finite p-groups, such as the Burnside group of exponent 4 and rank 2, which has
order 212, by applying a p-quotient algorithm to find a power-conjugate presen-
tation of ν(G), from which the subgroup [G,Gϕ] can easily be determined. This
computation is essentially impossible using the Tietze transformations method.

For an infinite group the definition of the nonabelian tensor square leads to an
infinite presentation. The standard technique for computing the nonabelian tensor
square for infinite groups is to find a mapping Φ : G × G → L for some group
L. If Φ satisfies certain conditions then we call Φ a crossed pairing. If Φ is a
crossed pairing then it lifts to a unique homomorphism Φ∗ : G ⊗ G → L. Hence
to compute the nonabelian tensor square one proposes a group L that one intends
to show is isomorphic to G ⊗ G, devises a crossed pairing Φ, and shows that the
lift Φ∗ is actually an isomorphism. This method has been used to compute the
nonabelian tensor squares for the free nilpotent groups of class 2 of finite rank
[1] and the infinite metacyclic groups [3]. In each of these cases the nonabelian
tensor square is abelian. The crossed pairing method was also used to compute the
nonabelian tensor squares of the free 2-Engel groups of finite rank (see [2] and [6]).
An appropriate group L for the free 2-Engel group of rank n was suggested by using
the computational techniques of Ellis and Leonard [11] to compute the nonabelian
tensor square of a finite image of the free 2-Engel group of rank n, namely the
Burnside group of exponent 3 and rank n. In the free 2-Engel case, where the
nonabelian tensor squares are not abelian, the computations were overwhelming,
and the viability of this method for general use seems limited.

To overcome the limitations of the crossed pairing method when the nonabelian
tensor square is not abelian, Blyth and Morse [5] extend the method used by Ellis
and Leonard [11] to infinite groups and, in particular, to polycyclic groups. If
G is a polycyclic group then G ⊗ G is polycyclic and so is ν(G) [5]. Hence for
finite and infinite polycyclic groups both G ⊗ G and ν(G) are finitely presented.
A finite presentation of ν(G) can be described in terms of a polycyclic generating
sequence of G. Using a polycyclic quotient algorithm, one is able to compute a
polycyclic representation for ν(G) and use standard algorithms for polycyclic groups
to compute the subgroup [G,Gϕ]. Such standard algorithms are implemented in the
GAP [12] package Polycyclic [10]. For nilpotent groups this method works well
since there exist fast and effective nilpotent quotient algorithms, for example, nq
[14], for computing a polycyclic presentation for ν(G). A simple GAP program that
computes the nonabelian tensor square for nilpotent groups is given in [5]. This
program creates a finite presentation for ν(G) using the polycyclic presentation of
G and then organizes a series of function calls to compute a polycyclic presentation
for ν(G) and to compute the subgroup [G,Gϕ] of ν(G).
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Rocco [15] initiates the development of a commutator calculus associated with
the subgroup [G,Gϕ] of ν(G) that allows for general computations in this subgroup.
This commutator calculus is extended in [5]. In this paper we extend it further
by providing some new identities. (See Lemma 2.1, identities (ii) and (iii).) The
commutator calculus is used in [5] to compute the nonabelian tensor square of the
free nilpotent group of class 3. We use this calculus in proving Theorem 1.6, the
main theorem of this paper.

In [5] a group τ(G) is defined that is analogous to the group ν(G) in that the
subgroup [G,Gϕ] of τ(G) is isomorphic to the nonabelian exterior square, G ∧ G,
of G.

Definition 1.3. Let G be any group. Then we define τ(G) to be the quotient
group ν(G)/φ(∇(G)), where φ : G⊗G→ [G,Gϕ] is as defined in Theorem 1.2.

Since φ isomorphically embeds ∇(G) into [G,Gϕ], it follows that

[G,Gϕ]/φ(∇(G)) ∼= G ∧G.

We henceforth denote [G,Gϕ]/φ(∇(G)) by [G,Gϕ]τ(G). The following proposi-
tion is now evident.

Proposition 1.4. Let G be any group. The map

φ̂ : G ∧G→ [G,Gϕ]τ(G) � τ(G)

defined by φ̂(g ∧ h) = [g, hϕ]τ(G) is an isomorphism.

Assembling the maps together we obtain the following sequence of mappings:

(1.2) G⊗G
φ−−−−→ [G,Gϕ] σ−−−−→ [G,Gϕ]τ(G)

φ̂−1

−−−−→ G ∧G

where φ and φ̂−1 are isomorphisms and σ is an epimorphism that is the restriction
of the canonical epimorphism ν(G) → τ(G) to the subgroup [G,Gϕ]. Using (1.2)
an arbitrary generator g ⊗ h of G⊗G is mapped to the element g ∧ h in G ∧G by

(1.3) φ̂−1(σ(φ(g ⊗ h))) = g ∧ h.

We use this composition of homomorphisms in the proof of Theorem 1.6 below.
To date only the nonabelian tensor squares of the free nilpotent groups of class

2 and 3 with finite rank have been computed.

Theorem 1.5 ([1],[5]). Denote the free nilpotent group of class c and rank
n > 1 by Nn,c and the free abelian group of rank n by F ab

n .

(i) For c = 2, Nn,2 ⊗Nn,2 ∼= F ab
f(n), where

f(n) =
n(n2 + 2n− 1)

3
;

(ii) For c = 3, Nn,3 ⊗Nn,3 is the direct product of Wn and F ab
h(n), where Wn

is a nilpotent of class 2 group minimally generated by n(n − 1) elements
and

h(n) =
n(3n3 + 14n2 − 3n+ 10)

24
.
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The following commutative diagram is found in [7]:

(1.4)

0 0y y
H3(G) −−−−→ Γ(Gab)

ψ−−−−→ J2(G) −−−−→ H2(G) −−−−→ 0y y y
0 −−−−→ ∇(G) −−−−→ G⊗G −−−−→ G ∧G −−−−→ 1

κ

y κ′

y
G′ G′y y
1 1

All sequences in this diagram are exact and the short exact sequences are central.
The group Γ(Gab) is the Whitehead quadratic functor found in [18].

The purpose of this paper is to compute the nonabelian tensor squares of the
free nilpotent groups of class c and rank n as well as most of the other homological
functors in Diagram (1.4). Our main theorem is the following:

Theorem 1.6. Let G = Nn,c be the free nilpotent group of class c and rank
n > 1. Then

G⊗G ∼= Γ(Gab)×G ∧G.

A covering group Ĝ of a group G is a central extension

1 −−−−→ H2(G) ι−−−−→ Ĝ −−−−→ G −−−−→ 1,

where the image of ι is a subset of Ĝ′. If G is a finitely generated group then Ĝ′ is
isomorphic to G ∧G by Corollary 2 of [7].

Suppose G = Nn,c. Then Ĝ ∼= Nn,c+1 is a covering group for G. Since G is a
finitely presented group, G∧G is isomorphic to N ′

n,c+1. In Section 3 we prove that
∇(G) is isomorphic to Γ(Gab) (Corollary 3.2). Since Gab is isomorphic to F ab

n , by
a result of Whitehead ([18], Section 5), Γ(Gab) ∼= F ab

(n+1
2 ).

From these observations we obtain the following corollary.

Corollary 1.7. Let G = Nn,c be the free nilpotent group of class c and rank
n > 1. Then

G⊗G ∼= N ′
n,c+1 × F ab

(n+1
2 ).

In the case when c = 3, the subgroup Wn of Theorem 1.5 is not isomorphic to
N ′
n,4, as the free abelian factor has rank larger then

(
n+1

2

)
. The group Wn is in fact

a direct product of a free nilpotent group of class 2 and rank M(n, 2), and a free
abelian group of rank

(
n
2

)
. This case suggests an investigation into the structure of

N ′
n,4. We will give a detailed structural description of N ′

n,c+1, the derived subgroup
of the free nilpotent group of class c+ 1 > 3 and rank n, in a companion paper [4].
However, to illustrate the application of Corollary 1.7, we give a complete structure
description for the c = 3 case in Section 3.
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Theorem 1.6 is motivated by exploring examples computed using GAP [12]. An
illustrative description of how these examples were computed is given in Section
5. Our proof of Theorem 1.6 given in Section 4 relies on knowledge of ∇(G). The
structure of the group ∇(G) and most of the groups in Diagram 1.4, except the
nonabelian tensor square, is given in Section 3.

2. A commutator calculus

In this section we introduce and extend a commutator calculus for the subgroup
[G,Gϕ] of ν(G). An account of this calculus can be found in [5], which is based in
part on [15]. The identities found in [15] use right actions and are restated using
left actions both in [5] and this paper. The identities listed for the tensor square
in Proposition 3 of [7], which use left actions, are now naturally reflected in the
identities found in this calculus. Since all conjugation and commutation in this
paper is done using left actions, we include a few basic commutator identities for
the convenience of the reader. Let G be any group and x, y and z be elements of
G. Then

xy = [x, y] · y;
[xy, z] = x[y, z] · [x, z];
[x, yz] = [x, y] · y[x, z];(2.1)

[x−1, y] = x−1
[x, y]−1 = [x−1, [x, y]−1] · [x, y]−1;

[x, y−1] = y−1
[x, y]−1 = [y−1, [x, y]−1] · [x, y]−1;

and [x−1, y−1] = [x−1, [y−1, [x, y]]] · [y−1, [x, y]] · [x−1, [x, y]] · [x, y].

The following lemma records some basic identities used in this paper.

Lemma 2.1. Let G be a group. The following relations hold in ν(G):

(i) [g3,g
ϕ
4 ][g1, g

ϕ
2 ] = [g3,g4][g1, g

ϕ
2 ] and [gϕ

3 ,g4][g1, g
ϕ
2 ] = [g3,g4][g1, g

ϕ
2 ] for all g1,

g2, g3, g4 in G;
(ii) [gϕ1 , g2, g3] = [g1, g2, g

ϕ
3 ] = [gϕ1 , g2, g

ϕ
3 ] = [g1, g

ϕ
2 , g3] = [gϕ1 , g

ϕ
2 , g3] = [g1, g

ϕ
2 , g

ϕ
3 ] for

all g1, g2, g3 in G;
(iii) [g1, [g2, g3]ϕ] = [g2, g3, g

ϕ
1 ]−1;

(iv) [g, gϕ] is central in ν(G) for all g in G;
(v) [g1, g

ϕ
2 ][g2, g

ϕ
1 ] is central in ν(G) for all g1, g2 in G;

(vi) [g, gϕ] = 1 for all g in G′.

Proof. All of the identities can be found in [5] except (ii) and (iii). In [15] it
was shown that

[gϕ1 , g2, g3] = [g1, g2, g
ϕ
3 ] = [gϕ1 , g2, g

ϕ
3 ](2.2)

and

[g1, g
ϕ
2 , g3] = [gϕ1 , g

ϕ
2 , g3] = [g1, g

ϕ
2 , g

ϕ
3 ].(2.3)
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Using these identities we have

[g1, g
ϕ
2 , g3] = [[gϕ2 , g1]

−1, g3]

= [gϕ
2 ,g1]

−1
[gϕ2 , g1, g3]

−1

= [g2,g1]
−1

[gϕ2 , g1, g3]
−1 by Lemma 2.1(i)

= [g1,g2][g2, g1, g
ϕ
3 ]−1 by (2.2)

= [g1,g2][g1,g2]
−1

[g1, g2, g
ϕ
3 ]

= [g1, g2, g
ϕ
3 ].

Hence it follows that all six commutators in (2.2) and (2.3) are equal.
Identity (iii) is a simple consequence of (ii):

[g1, [g2, g3]ϕ] = [gϕ2 , g
ϕ
3 , g1]

−1 = [g2, g3, g
ϕ
1 ]−1.

�

We represent a generator g ⊗ h of G⊗G as [g, hϕ] using the isomorphism φ of
Theorem 1.2. The commutator identities of Lemma 2.1 allow us to make nonabelian
tensor computations with familiar commutator calculations.

3. Structure of Homological Functors

In this section we determine the groups ∇(Nn,c), Γ(N ab
n,c), and J2(Nn,c). Let A

be an abelian group. The Whitehead quadratic functor, Γ(A), is an abelian group
with generators γ(a), where a ∈ A, with the following relations:

γ(a−1) = γ(a),

γ(abc)γ(a)γ(b)γ(c) = γ(ab)γ(bc)γ(ca),

for a, b, c ∈ A. There is a well defined homomorphism

ψ : Γ(Gab) → G⊗G

such that ψ(γ(g)G′) = g ⊗ g ([7], page 181). The image of ψ is ∇(G).
The projection map

π : G⊗G→ Gab ⊗Gab,

where Gab ⊗Gab is an ordinary tensor product ([7], Remark 2) abelianizes G⊗G.
Suppose Gab has a basis {a1, . . . , an}. Then Gab ⊗Gab is an abelian group with a
basis

{ai ⊗ ai, ai ⊗ aj , (ai ⊗ aj)(aj ⊗ ai) | 1 ≤ i, j ≤ n, i < j}.(3.1)

Proposition 3.1. Let G be a group whose abelianization is free abelian of finite
rank. Then ∇(G) ∼= Γ(Gab).

Proof. The abelianization Gab of G is isomorphic to F ab
n for some n. Let

{ai | 1 ≤ i ≤ n} be a basis for Gab. By a result of Whitehead ([18], page 62) there
is a basis B for Γ(Gab) consisting of γ(ai) and (ai, aj) = γ(aiaj)γ(ai)−1γ(aj)−1 for
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1 ≤ i, j ≤ n and i < j. Define Φ = πψ, where ψ and π are defined above. Then we
have that Φ(γ(ai)) = ai ⊗ ai and

Φ((ai, aj)) = Φ(γ(aiaj))Φ(γ(ai)−1)Φ(γ(aj)−1)

= Φ(γ(aiaj))Φ(γ(ai))−1Φ(γ(aj))−1

= (aiaj ⊗ aiaj)(ai ⊗ ai)−1(aj ⊗ aj)−1

= (ai ⊗ aj)(aj ⊗ ai)(aj ⊗ aj)(ai ⊗ ai)(ai ⊗ ai)−1(aj ⊗ aj)−1

= (ai ⊗ aj)(aj ⊗ ai).

The last two equalities hold as we are computing in the usual abelian tensor product,
Gab ⊗Gab. The images of the elements of the basis B for Γ(Gab) under Φ are part
of the basis (3.1) for Gab ⊗ Gab. We conclude that ψ is injective. Since ψ is also
surjective, it is bijective and Γ(Gab) ∼= ∇(G). �

Corollary 3.2. Let G = Nn,c be the free nilpotent group of class c and rank
n > 1. Then ∇(G) ∼= Γ(Gab).

Using Corollary 1.7 we can give a complete structure description of Nn,3⊗Nn,3.

Proposition 3.3. Let G = Nn,3 be the free nilpotent group of class 3 and rank
n > 1. Then G⊗G ∼= NM(n,2),2 × F ab

f(n), where

f(n) =
n(n+ 1)(3n2 + 11n− 2)

24
.

Proof. By Corollary 1.7, G ⊗ G ∼= N ′
n,4 × F ab

(n+1
2 ). In [5], Lemma 32, it was

shown that
N ′
n,4

∼= NM(n,2),2 × F ab
g(n),

where g(n) = M(n, 3) + M(n, 4) −M(M(n, 2), 2). Using the Witt-Hall identity,
M(n, 2) = n(n − 1)/2, M(n, 3) = n(n2 − 1)/3, and M(n, 4) = n2(n2 − 1)/4.
Therefore,

g(n) =
n(n2 − 1)

3
+
n2(n2 − 1)

4
− n4 − 2n3 − n2 + 2n

8

=
3n4 + 14n3 − 3n2 − 14n

24
.

It follows that

f(n) =
(
n+ 1

2

)
+ g(n)

=
(
n+ 1

2

)
+

3n4 + 14n3 − 3n2 − 14n
24

=
n(n+ 1)(3n2 + 11n− 2)

24
.

�

The description of Nn,3⊗Nn,3 in Theorem 1.5 (ii) fails to include all of ∇(Nn,3)
in the free abelian factor of the direct product. The group ∇(Nn,c) has n inde-
pendent generators of the form gi ⊗ gi and

(
n
2

)
independent generators of the form

(gi ⊗ gj)(gj ⊗ gi). This matches the result of Corollary 3.2: ∇(Nn,c) ∼= Γ(N ab
n,c),

which is free abelian of rank
(
n+1

2

)
= n +

(
n
2

)
. The direct factor Wn of the direct
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product in Theorem 1.5 (ii) includes the
(
n
2

)
generators of ∇(Nn,3) of the form

(gi⊗ gj)(gj ⊗ gi). Hence the rank of the free abelian direct factor of Theorem 1.5 is

n+ g(n) = n+M(n, 3) +M(n, 4)−M(M(n, 2), 2)

=
n(3n3 + 14n2 − 3n+ 10)

24
.(3.2)

Adding in the generators of ∇(Nn,3) included in Wn to (3.2), we obtain f(n) from
Proposition 3.3.

The discussion above depends, of course, on the proof of Theorem 1.6. We
begin with some preliminary results that are used in the proof of Theorem 1.6. We
start by formally introducing the notion of a basic sequence of commutators. Our
exposition follows Sims [16].

A basic sequence of commutators in the free group Fn of rank n is an infinite
sequence c1, c2, . . . of elements of Fn, where each ci has associated with it a positive
integer wi called its weight. The sequence is defined as follows. The ci are ordered
by weight i.e. if j > i then wj ≥ wi. The c1, . . . , cn are the free generators of Fn
arranged in some order. If wk > 1 then ck is described explicitly by [cj , ci], where
j > i and wj + wi = wk. If wj > 1, so that cj is described by [cq, cp] with q > p,
then p ≤ i. Lastly, for each j > i such that either wj = 1 or wj > 1 and cj is
described as [cq, cp] with p ≤ i, there is a unique index k such that ck is described as
[cj , ci]. We fix one basic sequence of commutators in the free group Fn and denote
it by Cn. The elements of Cn are referred to as basic commutators. We denote
the subsequence of commutators of Cn whose weight is at most w by Cn,w. The
elements of Cn,c map to Nn,c, the free nilpotent group of class c and rank n, via
the natural homomorphism Fn → Fn/γc+1(Fn) ∼= Nn,c. We will consider elements
of Cn,c as the same as their images in Nn,c.

The following proposition found in [16] will be used in the next section.

Proposition 3.4. The subsequence Cn,c of Cn forms a polycyclic generating
sequence for Nn,c.

We conclude this section by showing that J2(Nn,c) splits. This follows from
the following more general statement.

Proposition 3.5. Let G be a polycyclic group whose abelianization and second
homology are both free abelian groups. Then J2(G) ∼= Γ(Gab)×H2(G).

Proof. Let G be a polycyclic group, generated by {gi | 1 ≤ i ≤ n}. The
central subgroup J2(G) of G ⊗ G is the kernel of the commutator mapping κ :
G⊗G→ G′, defined by κ(g ⊗ h) = [g, h]. The tensor square G⊗G is a polycyclic
group [5]. Hence J2(G) is a finitely generated abelian group, and therefore is a
direct product F ×T , where F is a free abelian group of finite rank and T is a finite
abelian group. The group Γ(Gab) is free abelian of rank

(
n+1

2

)
, while the Schur

multiplier H2(G) is free abelian of finite rank, say d. In the exact sequence

(3.3) Γ(Gab)
ψ−−−−→ J2(G)

β−−−−→ H2(G) −−−−→ 0
from Diagram (1.4), the kernel of β is isomorphic to ∇(G), which in turn is iso-
morphic to Γ(Gab) by Proposition 3.1. Hence the kernel of β is free abelian of rank(
n+1

2

)
. But β(T ) = 1, since H2(G) is torsion free, so T ⊂ ker(β). We conclude that

T = 1, and that J2(G) is free abelian of rank
(
n+1

2

)
+ d and hence is isomorphic to

Γ(Gab)×H2(G). �
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Corollary 3.6. Let G = Nn,c be the free nilpotent group of class c and rank
n > 1. Then J2(G) ∼= Γ(Gab) × H2(G) is a free abelian group of rank

(
n+1

2

)
+

M(n, c+ 1).

4. Structure of the Tensor Square

In this section we prove Theorem 1.6. Our proof relies extensively on the
commutator calculus given in Section 2.

If G is nilpotent of class c then ν(G) is nilpotent of class at most c+1 [15]. We
make use of a general observation about nilpotent groups that we apply to ν(G).
If X is a set of elements of a nilpotent group of class c, then any commutator of
any weight at least 2 with entries from X ∪ X−1 can be written as a product of
commutators all of whose entries lie in X. This fact is proved by induction on the
weight k of a commutator, with base case k = c, using the commutator identities
(2.1). Consequently, the following result for ν(G) holds.

Lemma 4.1. Let G be a nilpotent group of class c. Let u and v be commu-
tators of weight i ≥ 1 and j ≥ 1 respectively. Then in ν(G) the commutators
[u−1, vϕ], [u, v−ϕ] and [u−1, v−ϕ] can all be expressed as products of commutators
whose entries are positive words in u, uϕ, v and vϕ.

By Proposition 3.4 in Section 3, the sequence Cn,c = {c1, . . . , ct} is a polycyclic
generating sequence for Nn,c. We denote the elements c1, . . . , cn in Cn,c of weight
1 by g1, . . . , gn. By Proposition 25 of [5] and Lemma 4.1 the subgroup [Nn,c,Nϕ

n,c]
of ν(Nn,c) is generated by the elements

(4.1) {[ci, cϕj ] | ci, cj ∈ Cn,c}.

Our goal is to prune this set of generators for [Nn,c,Nϕ
n,c] so that a one-to-one

correspondence between a generating set for [Nn,c,Nϕ
n,c] and the set of generators

of the factors in the direct product of Theorem 1.6 can be realized.

Lemma 4.2. Let G = Nn,c be the free nilpotent group of class c and rank n > 1,
with polycyclic generating sequence Cn,c = {c1, . . . , ct}. Then [G,Gϕ] is generated
by

(i) [gi, g
ϕ
i ] for i = 1, . . . , n;

(ii) [gi, g
ϕ
j ] for 1 ≤ i < j ≤ t;

(iii) [cj , c
ϕ
i ] for 1 ≤ i < j ≤ t, where wj + wi ≤ c+ 1.

Proof. All generators of [G,Gϕ] of the form [ci, c
ϕ
i ] for i > n are trivial by

Lemma 2.1 (vi). This leaves only the generators of the form [gi, g
ϕ
i ] for i = 1, . . . , n

as possibly nontrivial generators of the form [ci, c
ϕ
i ]. These generators are listed in

(i).
Suppose i < j and wi + wj ≥ 3 with wi ≥ 2. Then ci = [cq, cp] for some q, p

such that q > p. By Lemma 2.1 (iii) we have

[ci, c
ϕ
j ] = [[cq, cp], c

ϕ
j ] = [cj , [cq, cp]ϕ]−1 = [cj , c

ϕ
i ]−1.

Similarly, the equality holds if wj ≥ 2. Hence all generators of the form [ci, c
ϕ
j ] with

wi +wj ≥ 3 and i < j can be expressed in terms of elements of (iii). However, this
argument does not eliminate those generators with wi = wj = 1 and i < j; these
generators are listed in (ii).
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Since ν(G) is nilpotent of class at most c+ 1 all generators of the form [cj , c
ϕ
i ],

where j > i and wj + wi > c+ 1 are trivial. Hence the upper weight restriction of
(iii) holds. �

Our analysis of Nn,c ⊗ Nn,c now focuses on the subgroup generated by the
elements listed in Lemma 4.2 (iii).

Proposition 4.3. Let G = Nn,c be the free nilpotent group of class c and rank
n > 1, with the basic sequence of commutators Cn,c = {c1, . . . , ct} as its polycyclic
generating sequence. The subgroup

N = 〈[cj , cϕi ] | j > i, wj + wi ≤ c+ 1〉
is a normal subgroup of [G,Gϕ] isomorphic to G ∧G.

Proof. The elements [gi, g
ϕ
i ] for i = 1, . . . , n are in the center of ν(G). Hence

we need only show that
[gi,g

ϕ
j ][ck, cϕm]

is an element of N when i < j and k > m. Now
[gi,g

ϕ
j ][ck, cϕm] = [gϕ

i ,gj ][ck, cϕm] Lemma 2.1(i)

= [gj ,g
ϕ
i ]−1

[ck, cϕm]

= [gj , g
ϕ
i ]−1 · [ck, cϕm] · [gj , gϕi ],

which is an element of N .
To show that N is isomorphic to G ∧G, we recall that G ∧G is isomorphic to

the derived subgroup of Nn,c+1, which is generated by the commutators

C = {ci ∈ Cn,c+1 | wi > 1}.
Every element ck in C is uniquely expressed by ck = [cj , ci] for some cj , ci ∈ Cn,c,
where j > i. The isomorphism from G∧G to N ′

n,c+1 is realized by cj∧ci 7→ [cj , ci] =
ck. The isomorphism from [G,Gϕ]τ(G) to N ′

n,c+1 is defined by φ̂−1([cj , c
ϕ
i ]τ(G)) =

[cj , ci]. Similarly we can set up a mapping of generators from N to N ′
n,c+1 by

[cj , c
ϕ
i ] 7→ [cj , ci].
We have now the following version of a short exact sequence from Diagram

(1.4):

(4.2) 0 −−−−→ ∇(G) ι−−−−→ [G,Gϕ] σ−−−−→ N ′
n,c+1 −−−−→ 0

Suppose x ∈ ι(∇(G))∩N . Then using the Hall collection process, x may be written
as a product of powers of the generators of N in order of increasing commutator
weight. Let d be the least weight of a factor that appears nontrivially in this expres-
sion for x. Then the induced map σ∗ : [G,Gϕ] 7→ γd(Nn,c+1)/γd+1(Nn,c+1) maps x
to a product of powers of weight d basic commutators. Since γd(Nn,c+1)/γd+1(Nn,c+1)
is a free abelian group with basis the set of basic commutators of weight d, and
σ(x) = 1 (as x ∈ ι(∇(G)) = ker(σ)) we obtain a contradiction unless x = 1. Hence
ι(∇(G)) ∩N = 1.

The mapping from N to N ′
n,c+1 is an epimorphism, and since ker(σ) ∩N = 1,

we conclude that N is isomorphic to N ′
n,c+1, and hence the result follows. �

Proof of Theorem 1.6. Since ∇(G) is a central subgroup of [G,Gϕ] it is
normal in [G,Gϕ]. The subgroup N ∼= G ∧ G is normal in [G,Gϕ] by Proposition
4.3. As was shown in the proof of Proposition 4.3, ∇(G) ∩ N = 1. Now [gi, g

ϕ
j ]
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for i < j are the only generators of [G,Gϕ] not obviously in either N or ∇(G).
However

[gi, g
ϕ
j ] = ([gi, g

ϕ
j ][gj , g

ϕ
i ]) · [gj , gϕi ]−1

is a product of elements of ∇(G) and N . Hence [G,Gϕ] = ∇(G)N . Therefore we
conclude that

G⊗G ∼= [G,Gϕ] = ∇(G)×N ∼= ∇(G)×G ∧G ∼= Γ(Gab)×G ∧G.
The last isomorphism holds by Corollary 3.2. �

5. Computational Interplay

In this section we provide an account of how Theorem 1.6 was motivated by our
use of computational methods, some of which are outlined in Section 1. Specifically,
the computed examples provided evidence that the nonabelian tensor square of the
free nilpotent group Nn,c is a direct product of its nonabelian exterior square and a
free abelian group whose rank depends on the rank n of the group. This observation
is not immediately obvious. This fact was missed in three earlier publications:
Bacon, Kappe and Morse [2]; Blyth, Morse and Redden [6]; and Blyth and Morse
[5]. All three of these papers also used computer examples to help formulate their
final general results.

One problem with making computer calculations is interpreting the output
given by the computer. Moreover, relating this output to the symbolic manipula-
tions required can be a challenge. Our strategy is to provide a GAP representation
of the symbolic or abstract objects we are working with and to then map the GAP
symbolic objects to the computer generated output. In our particular case we were
interested in mapping a basic sequence of commutators to the generators of G⊗G.
So we first represent basic commutators in GAP and then relate them to the poly-
cyclic groups we construct. The purpose of this section is to explicitly demonstrate
how we accomplished this.

We start with the following GAP functions that create objects that symbolically
represent a basic sequence of commutators. These functions are straightforward to
implement:
BasicSeq(<symset>,<maxweight>);
ComEval(<comm>);
Weight(<comm>);

The function BasicSeq generates a basic sequence of commutators in the symbol
set <symset> of weights 1 to <maxweight>. The output of BasicSeq is a list of
lists. Each list in the list represents a fully bracketed commutator. If s is in the
symbol set then [s] is a fully bracketed commutator of length 1. Suppose c and d
are fully bracketed commutators of weights wc and wd respectively. Then [c, d] is
a fully bracketed commutator of weight wc + wd. If the elements from the symbol
set are group elements then we can form the element of the group represented by a
fully bracketed commutator. The function ComEval forms this group element from
a fully bracketed commutator represented as a list. The Weight function computes
the weight of the commutator one of these lists represents. Below is a example
whose symbol set consists of the generators of a free group of rank 3.
gap> F := FreeGroup(3);;
gap> b := BasicSeq(GeneratorsOfGroup(F),3);;
gap> PrintArray(b);
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[ [ f1 ],
[ f2 ],
[ f3 ],
[ [ f2 ], [ f1 ] ],
[ [ f3 ], [ f1 ] ],
[ [ f3 ], [ f2 ] ],
[ [ [ f2 ], [ f1 ] ], [ f1 ] ],
[ [ [ f2 ], [ f1 ] ], [ f2 ] ],
[ [ [ f2 ], [ f1 ] ], [ f3 ] ],
[ [ [ f3 ], [ f1 ] ], [ f1 ] ],
[ [ [ f3 ], [ f1 ] ], [ f2 ] ],
[ [ [ f3 ], [ f1 ] ], [ f3 ] ],
[ [ [ f3 ], [ f2 ] ], [ f2 ] ],
[ [ [ f3 ], [ f2 ] ], [ f3 ] ] ]

gap> ## Compute the weights of each commutator represented.
gap> ## The number of commutators of each weight
gap> ## corresponds to the Witt-Hall formula.
gap> ##
gap> List(b,Weight);
[ 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 ]

gap> ## Evaluate each commutator as an element in the free
gap> ## group F
gap> ##
gap> List(b,ComEval);
[ f1, f2, f3, f2^-1*f1^-1*f2*f1, f3^-1*f1^-1*f3*f1,
...
...
...
f2^-1*f3^-1*f2*f3^-1*f2^-1*f3*f2*f3 ]

The goal is to map the elements of a basic sequence of commutators to elements
of G⊗G. To do this we need the subgroups G and Gϕ, which are the left and right
isomorphic embeddings of G in ν(G). The GAP program listed in [5] to compute
the nonabelian tensor square computes these values and returns [G,Gϕ] ∼= G⊗G.
This GAP program can be modified to return a record with the fields lbg (left
base group), and rbg (right base group). These GAP variables correspond to the
mathematical objects G and Gϕ respectively. The nonabelian tensor square is
computed by the command CommutatorSubgroup(lbg,rbg). Nothing from the
program listed in [5] is modified except we are returning different computed values
in the form of a record. We rename this function BaseGroups from the name
TensorSquare given in [5] to reflect the different returned values. We fix our
example group to be N3,3 = G. The GAP object G below corresponds to G. We
compute lbg, and rbg for G and compute the tensor square, ts, from them.

gap> ## Create the free nilpotent of group of class 3
gap> ## and rank 3 and compute the base groups.
gap> ##
gap> G := NilpotentQuotient(FreeGroup(3),3);;
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gap> r := BaseGroups(G);;

gap> ## Save the base groups for later use
gap> lbg := r.lbg;
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0 ]
gap> rbg := r.rbg;
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0 ]

gap> ## Compute the tensor square from the returned values
gap> ##
gap> ts := CommutatorSubgroup(lbg,rbg);
Pcp-group with orders [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0 ]

gap> ## List the induced generating sequence of ts
gap> ##
gap> Igs(ts);
[ g10, g11, g12, g13, g14, g15, g17, g18, g19, g30, g31,
g34, g35, g36, g40, g41, g42, g46, g47, g48, g49, g50,
g51, g52, g53, g54, g55, g56, g57, g58, g59, g60, g61,
g62, g63 ]

How can we show that ts above is a direct product of two subgroups? How
can we identify the generators of the two subgroups as specific elements in ts that
can be used to guide us in our proof? The following is one method for doing this
using the basic commutator routines introduced above.

gap> ## Record the minimal generators of F, lbg and rbg
gap> ##
gap> Fm := GeneratorsOfGroup(F);;
gap> Lm := MinimalGeneratingSet(lbg);;
gap> Rm := MinimalGeneratingSet(rbg);;

gap> ## Create the basic sequence of commutators of weight
gap> ## at most four and then prune them to those of
gap> ## weight greater than 1.
gap> ##
gap> b2 := Filtered(BasicSeq(GeneratorsOfGroup(F),4),

x->Weight(x)>1);;
gap> PrintArray(b2);
[ [ [ f2 ], [ f1 ] ],
[ [ f3 ], [ f1 ] ],
[ [ f3 ], [ f2 ] ],
[ [ [ f2 ], [ f1 ] ], [ f1 ] ],
[ [ [ f2 ], [ f1 ] ], [ f2 ] ],
[ [ [ f2 ], [ f1 ] ], [ f3 ] ],
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[ [ [ f3 ], [ f1 ] ], [ f1 ] ],
[ [ [ f3 ], [ f1 ] ], [ f2 ] ],
[ [ [ f3 ], [ f1 ] ], [ f3 ] ],
[ [ [ f3 ], [ f2 ] ], [ f2 ] ],
[ [ [ f3 ], [ f2 ] ], [ f3 ] ],
[ [ [ f3 ], [ f1 ] ], [ [ f2 ], [ f1 ] ] ],
[ [ [ f3 ], [ f2 ] ], [ [ f2 ], [ f1 ] ] ],
[ [ [ f3 ], [ f2 ] ], [ [ f3 ], [ f1 ] ] ],
[ [ [ [ f2 ], [ f1 ] ], [ f1 ] ], [ f1 ] ],
[ [ [ [ f2 ], [ f1 ] ], [ f1 ] ], [ f2 ] ],
[ [ [ [ f2 ], [ f1 ] ], [ f1 ] ], [ f3 ] ],
[ [ [ [ f2 ], [ f1 ] ], [ f2 ] ], [ f2 ] ],
[ [ [ [ f2 ], [ f1 ] ], [ f2 ] ], [ f3 ] ],
[ [ [ [ f2 ], [ f1 ] ], [ f3 ] ], [ f3 ] ],
[ [ [ [ f3 ], [ f1 ] ], [ f1 ] ], [ f1 ] ],
[ [ [ [ f3 ], [ f1 ] ], [ f1 ] ], [ f2 ] ],
[ [ [ [ f3 ], [ f1 ] ], [ f1 ] ], [ f3 ] ],
[ [ [ [ f3 ], [ f1 ] ], [ f2 ] ], [ f2 ] ],
[ [ [ [ f3 ], [ f1 ] ], [ f2 ] ], [ f3 ] ],
[ [ [ [ f3 ], [ f1 ] ], [ f3 ] ], [ f3 ] ],
[ [ [ [ f3 ], [ f2 ] ], [ f2 ] ], [ f2 ] ],
[ [ [ [ f3 ], [ f2 ] ], [ f2 ] ], [ f3 ] ],
[ [ [ [ f3 ], [ f2 ] ], [ f3 ] ], [ f3 ] ] ]

The elements in the GAP object b2 represent all of the commutators in the
basic sequence of the form [ci, cj ], where ci and cj are elements in the sequence
and i > j. These commutators generate N ′

3,4
∼= γ2(F3/γ5(F3)), which we know is

isomorphic to G ∧G.
Our objective now is to map the elements of this basic sequence of commutators

to elements in ts and see if the resulting subgroup is normal in ts and, if so, whether
or not it is a direct factor.

We evaluate each ci and cj of [ci, cj ] to obtain pairs of words in the free gener-
ators Fm.

gap> ## The elements of b2 are lists that represent
gap> ## a fully bracketed commutator of weight at least
gap> ## two. Hence it is a list of the form [left, right],
gap> ## where left and right are lists representing
gap> ## commutators in our basic sequence.
gap> ## We create a word in the free group F for the left
gap> ## and right commutator using our ComEval function
gap>
gap> e2 := List(b2,x->[ComEval(x[1]),ComEval(x[2])]);
[ [ f2, f1 ], [ f3, f1 ], [ f3, f2 ],
[ f2^-1*f1^-1*f2*f1, f1 ], [ f2^-1*f1^-1*f2*f1, f2 ],
[ f2^-1*f1^-1*f2*f1, f3 ], [ f3^-1*f1^-1*f3*f1, f1 ],
...
...
...
[ f2^-1*f3^-1*f2*f3*f2^-1*f3^-1*f2^-1*f3*f2^2, f3 ],
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[ f2^-1*f3^-1*f2*f3^-1*f2^-1*f3*f2*f3, f3 ] ]

For each element of e2, we substitute the free generator symbols of the left
element with the generators of the left base group whose GAP object is Lm and we
substitute the free generators of the right element with the generators of the right
base group Rm.
gap> t2 := List(e2,x->

[MappedWord(x[1],Fm,Lm), MappedWord(x[2],Fm,Rm)]);
[ [ g2, g4 ], [ g3, g4 ], [ g3, g5 ], [ g7, g4 ],
[ g7, g5 ], [ g7, g6 ], [ g8, g4 ], [ g8, g5 ],
[ g8, g6 ], [ g9, g5 ], [ g9, g6 ], [ g8, g16 ],
[ g9, g16 ], [ g9, g20 ], [ g22, g4 ], [ g22, g5 ],
[ g22, g6 ], [ g23, g5 ], [ g23, g6 ], [ g25*g27^-1, g6 ],
[ g24, g4 ], [ g24, g5 ], [ g24, g6 ], [ g25, g5 ],
[ g25, g6 ], [ g26, g6 ], [ g28, g5 ], [ g28, g6 ],
[ g29, g6 ] ]

We now create the subgroup ts generated by the commutators represented by
the elements of t2 and check to see that it is normal in ts.
gap> N := Subgroup(ts,List(t2,LeftNormedComm));;
gap> IsNormal(ts,N);
true

By Lemma 21 of [5], ∇(G) is generated by the elements [gi, g
ϕ
i ] for i = 1, . . . , n

and [gi, g
ϕ
j ][gj , g

ϕ
i ], where 1 ≤ i, j ≤ n and i 6= j. In our example, n = 3. Hence

∇(G) is generated by only six generators. We enumerate these generators and
create the subgroup generated by them.
gap> A := Subgroup(ts,[Comm(Lm[1],Rm[1]),Comm(Lm[2],Rm[2]),

Comm(Lm[3],Rm[3]),
Comm(Lm[1],Rm[2])*Comm(Lm[2],Rm[1]),
Comm(Lm[1],Rm[3])*Comm(Lm[3],Rm[1]),
Comm(Lm[2],Rm[3])*Comm(Lm[3],Rm[2])]

);;
gap> IsSubgroup(Centre(ts),A);
true

The subgroups N and A are normal in ts. They also have trivial intersection:
gap> IsTrivial(Intersection(N,A));
true

The nonabelian tensor square ts is generated by N and A:
gap> ts = Subgroup(ts,Concatenation(GeneratorsOfGroup(N),

GeneratorsOfGroup(A)));
true

We conclude that ts is the direct product of N and A.
Finally we show that N is isomorphic to N ′

3,4
∼= G ∧G.

gap> ## Form the derived subgroup of the free nilpotent group
gap> ## of class 4 and rank 3.
gap> ##
gap> H := DerivedSubgroup(NilpotentQuotient(FreeGroup(3),4));;
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gap> ## Form a mapping from N to H and check to see if it is
gap> ## a homomorphism
gap> ##
gap> hom := GroupGeneralMappingByImages(N,H,

MinimalGeneratingSet(N),MinimalGeneratingSet(H));;
gap> IsPcpGroupHomomorphism(hom);
true
gap> ## Check to see if hom is an isomorphism
gap> ##
gap> IsTrivial(Kernel(hom));
true

While computing examples like this does not constitute a proof, such examples
gave us direction in formulating and proving Theorem 1.6.
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