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Abstract

We conjecture that the order complex of an open interval in the subgroup lattice of a finite group
has the homotopy type of a wedge of spheres and prove thdt ify) is a minimal counterexample
to this conjecture then eithér is almost simple oG = HN, whereN is the unique minimal normal
subgroup ofG, N is non-Abelian andf NN = 1.
0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The question of whether for each finite latticéhere exist a finite grougr and a sub-
group H of G such thatL is isomorphic to the latticéH, G] of subgroups ofG which
containH is open. This question has its roots in universal algebra. Indeed, the question of
whether every lattice is isomorphic to the lattice of congruences of a finite algebra (see, for
example, [BuSa] for the appropriate definitions) is also open, and in the paper [PaPu] of
P.P. Péalfy and P. Pudlak it is shown that these two questions have the same answer.

There has been significant progress towards proving that these questions have a negative
answer. Beginning already in [PaPu], attention was focused on lattices of height two. For
a positive integen, let M, be the lattice consisting of a minimum elemén@ maximum
elementl andn other elements, no two of which are related. It is believed that the set of
n such that there exist finit€, H with [H, G] isomorphic toM,, is quite sparse. Efforts

E-mail addressshareshi@math.wustl.edu.
1 Supported by National Science Foundation grant DMS 0070757.

0021-8693/$ — see front mattéi 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0021-8693(03)00274-6



678 J. Shareshian / Journal of Algebra 268 (2003) 677—-686

to prove this is the case culminated in the paper [BaLu] of R. Baddeley and A. Lucchini,
where the problem is reduced to the examination of almost simple groups.

Here we introduce a conjecture which says that in addition to the (conjectured)
guantitative restrictions on intervals in subgroup lattices of finite groups described in the
previous paragraph, there are qualitative restrictions on the topology of the order complex
of such an interval. Recall that for a finite partially ordered set (p&séheorder complex
AP is the abstract simplicial complex whogedimensional faces are chaing < x1 <
.-+ < x from P. Any such complex has a geometric realization in some Euclidean space
and any two such realizations are homeomorphic. Thus to every partially ordered set
there is associated a topological space (which will also be denotetPhylt is known
(see [Qu]) that ifP has a uniqgue maximum element or a unique minimum element4tren
is contractible. Note that every finite lattitehas both a unique maximum element and a
unigue minimum element. It is standard practice in topological combinatorics to reaplace
by the poset. obtained fromi by removing the minimum and maximum elements before
examining the order complex. So, it is natural in this context to examine the order complex
of the openintervalH, G) of proper subgroups of a finite grodpwhich properly contain
the subgroupH . We can now state our main conjecture, along with two weaker versions
which might be easier to prove.

Conjecturel.1. LetG be a finite group and lell < G. Then

(A) The complexA(H, G) has the homotopy type of a wedge of spheres.

(B) If A(H,G) is not connected then some connected component(@f, G) is
contractible.

(C) Let B3 be the poset obtained from the lattice of subsetglo2, 3} by removing the
minimum elemeny and the maximum elemefit, 2, 3}. Let 2B3 be the partially
ordered set obtained by taking two disjoint copies Bf. Then (H,G) is not
isomorphic to2Bs3.

Before continuing, we make the following remarks.

(1) If a complexI”™ which is not connected has the homotopy type of a wedge of spheres
then every connected componentiofis contractible (in which cas€ is homotopy
equivalent to a wedge of 0-dimensional spheres). Therefore Conjecture (A) implies
Conjecture (B). Also, each connected component®Bz has the homotopy type of
a circle, so Conjecture (B) implies Conjecture (C).

(2) If one adds a minimum element and a maximum elemeRBtp a lattice is obtained,
so Conjecture (C) is not empty of content. Moreo&®; is the smallest poset with
this property whose order complex does not have the homotopy type of a wedge of
spheres.

(3) We include Conjectures (B),(C) with the hope that they (at least (C)) will be easier to
prove than (A). We hope that (C) will actually be easier than the conjecture that some
M, is not isomorphic to any intervdlH, G]. Note that the results in [BaLu] apply
only whenn > 50 and that the three smallestfor which it is not known thatv,, is
isomorphic to some intervdH, G] are 1623 and 35.
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(4) Itis shown in the paper [KrTh] of C. Kratzer and J. Thévenaz th@tig solvable then
A(H, G) has the homotopy type of a wedge of spheres, so in any counterexample to
(A) one hasG nonsolvable.

(5) The most potent weapon currently available in topological combinatorics for showing
that every interval in a given posethas an order complex with the homotopy type of
a wedge of spheres is the nonpure shellability theory of A. Bjérner and M. Wachs (see
[BjWal,BjWwaZ2]). However, it is shown in [Sh] that for a finite grodp the complex
A(1, G) is shellable if and only iiG is solvable. Therefore shellability theory seems
unlikely to provide any progress beyond what was already established in [KrTh].

(6) Using the homotopy complementation formula of Bjorner and J. Walker (see [BjWal])
and the classification of finite simple groups, one can show thdt G) is not
connected if and only i&; is a semidirect produet V, whereV is elementary Abelian
andC is cyclic of prime order and acts irreducibly ¢h In this case every connected
component ofA(1, G) is contractible, so there is no counterexample to Conjecture
(B) of the form[1, G]. Not much is known about the homotopy typesfl, G) for an
arbitrary finite groupG.

(7) A conjectured set of combinatorial qualitative restrictions on intef\dlsG] appears
in the paper [Ba] of Baddeley.

In the next section, we will prove the following result.

Theorem 1.2. Let (H, G) be a counterexample to one of the ConjectutegA), (B),
(C) such that|G| is minimal(with respect to the chosen conjectuand, having fixeds,
[G: H]is also minimal. Then

(1) G is almost simple, or
(2) G = HN, whereN is the unigue minimal normal subgroup 6f N is non-Abelian
andHNN =1.

Of course our eventual goal is to eliminate paif$, G) which satisfy the second
condition of Theorem 1.2 (but are not almost simple) as possible counterexamples to any
of Conjectures (A), (B), (C) and then use the classification of simple groups. It should be
noted, though, that in the examination of the lattitdgsthe elimination of pairgH, G)
satisfyingH N N = 1 with (non-Abelian)N the unique minimal normal subgroup 6f,
which was the subject of the paper [BaLu], was the toughest part of the reduction to the
almost simple case. On the other hand, the proof of Theorem 1.2 seems somewhat easier
than the reduction to the case examined in [BalLu] for the lattitgsvhich is achieved in
the papers [K8,Lu] of P. Kéhler and Lucchini, respectively.

2. Proving Theorem 1.2
In this section we prove Theorem 1.2. We will give the proof of the theorem with for

Conjecture (A) in detail and then explain how to make minor adjustments to the given
proof in order to prove the theorem for each of Conjectures (B), (C).
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2.1. ConjecturdA)

Let (H,G) be a counterexample to Conjecture 1.1(A) satisfying the minimality
conditions of the theorem. Since, by definitiong = S, we know thatH is not
a maximal subgroup af'. Also, if C = Core; (H) then

AH,G)=AH/C,G/C)

and the minimality of G| givesC = 1.

If Lis a lattice and: € L thenx is defined to be the set of lattice theoretic complements
to x in L. So, forK € [H, G], K+ consists of thos& < G such thatk N X = H and
(K, X) = G. Recall that arantichainin a poset is a set of elements, no two of which are
related.

Lemma2.1. Thereis noK € (H, G) such thatk - (in [H, G]) is an antichain.

Proof. Assume for contradiction that - is an antichain for som& e (H, G). By the
homotopy complementation formula of Bjérner and Walker (see [BjWal]), we have

AH,G)~ \/ Z(A(H.X)*AX.G)).
Xekt

(Here~ indicates homotopy equivalenc¥, means wedge¥ means suspension ard
means join.) By the minimality ofG| and[G : H], both A(H, X) and A(X, G) have
the homotopy type of a wedge of spheres for efich K *. It follows (see, for example,
[BjWel, Lemma 2.5]) thatA (H, G) has the homotopy type of a wedge of spheres, giving
the desired contradiction.O

Lemma 2.2. For eachK € [H, G) we haveCore; (K) = 1.

Proof. We proceed by induction ihH, G), the base cas& = H having been settled
above. LetK € (H, G) and letC = Core; (K). Assume (for contradiction) th&t > 1. By
inductive hypothesis, we may assume that Gofe = 1 forall L € [H, K). It follows that
HC = K. By Lemma 2.1 there exis¥1, M» € K+ such thatM;, < M». Fori = 1,2 we
have

K=CH=CM;NK)=CM;NK,

the last equality holding by the modular law for groups (see [As, 1.14]). Therefore,
K < CM;. CertainlyM; < CM;, soG = (K, M;) <CM; andCM; = G. SinceC < K,
we haveK M; = G. Therefore,

CIKIM)

G| = |KM;| = ——— =
K N M;]|

[K : H]|M;]|

fori =1, 2. This contradictd/1 < M>. O
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Lemma2.3. The groupG has a unique minimal normal subgrodf Moreover,HN = G,
N is non-Abelian and’g (N) = 1.

Proof. Let N be any minimal normal subgroup 6f and letM be a maximal subgroup of
G which containsH . As noted aboveH # M. By Lemma 2.2 we havéIN = MN =G
and Corg; (M) =1, soG acts as a primitive permutation group on the set of coseg.of
Now

[M:MNN]=[G:N]=[H:HNN],

and sinceH < M we have 1< HN N < M N N. It now follows (see [DiMo,
Theorem 4.3B]) thaiV is the unique minimal normal subgroup 6f, N is non-Abelian
andCg(N)=1. O

Now we record some facts abadtandG.
(1) SinceN is non-Abelian and characteristically simple, we have
N=Tyx---xT,

where there is some non-Abelian simple grdupguch that7; = T for all i € [r] :=
{1,...,r}.

(2) The action ofG on N by conjugation determines a homomorphism fréno Aut(N)
with kernelCg (N)=1. Therefore? is (isomorphic to) a subgroup of AUY), which
is in turn (isomorphic to) the wreath produ$;fAut(7)].

(3) The minimal normal subgroups of areT1, ..., T, (see [DiMo, Theorem 4.3A(iv)]),
so the action ofH on N by conjugation determines an action 8fon {71, ..., T,}.
SinceG = HN andN is a minimal normal subgroup @f, this action ofH on{7;} is
transitive.

If A is a group of automorphisms of a grodpwhich stabilizesC < B, we write
[C, B]4 for the sublattice of C, B] consisting of allA-invariant groups inC, B].

(4) The mapsp:[H,G] — [HN N,N1¥ andy :[H NN, N1 — [H, G] defined by

¢(K) =K NN andy (L) = HL are both order preserving and are inverses to each
other. Therefore, we have

[H,G]=[HNN,N".

We will work for the most partinH NN, N14 from nowon. Foi € [r],letm;: N — T;
be the natural projection. F& < N andi € [r] let K' =x;(K) and letK; = K N T;.

(5) LetK e [HNN,NJ". Thenk; < K’ for all i € [r]. The transitivity ofH on theT;
givesk' =K/, K; =K;,andK'/K; = K/ /K; forall i, j e [r].
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(6) In'particular, ifK € [HN N, N1 then for each"e [r] there is somé € H such that
K= (KY', andifh € H mapsT; to T; then(K)" = K/. Therefore,

,
kK <[]k =[] (&Y etz nn. NI
i=1 heH

Notation.Let R=H N N.
Lemma?2.4. If r > 1then there exists sonié € [R, N)¥ suchthatk’ = T; forall i € [r].

Proof. Assume the contrary. LeX = Ny (T1). For eachK € [R, N)? we havek? e
[R, T1)X. Conversely, ifS € [RY, T1)X then

K(S) = ]_[ she[R, N)H
heH

with K (S)1 = S. Moreover, if L € [R,N)? and L1 = § then L < K(S). Define
¢ (R, N)" — [RY, T))X by ¢(K) = K. Then

e ¢ is order preserving, and
o for eachS € Imagd¢), the poset

¢ s ={Ke(®R N ¢(K)< 5}
has a unique maximum element, namefy,s).
It follows from the Quillen fiber lemma (see [Qu, Definition 1.5, Proposition 1.6]) that
A(R, M) ~ Almage).

If R+ Ry then Imagép) = [RL, T1)X has a unique minimum elemegt. It follows
(again [Qu, Definition 1.5]) thattimag&¢) is contractible, and we conclude that

A(H,G)~\/ 5°,
0
a contradiction. IfR1 = Ry then there is n& € (R, N)? with K1 = R so Imagép) =
(RY, T1)X. Here the Quillen fiber lemma gives
A(H, G)~ A(RY, 1)~

However,(RL, T1)X = (XRY, XT1), and we now have a contradiction to the minimality
of |G|. O

Corollary 2.5. If r > 1thenRy = 1.
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Proof. By Lemma 2.4 there is som& < [R, N) such thatk’ = T; for some, and
therefore all,i € [r]. Since eachZ; is non-Abelian simple an&; < K’, we have
K; € {1, T;} for all i. SinceK # N we haveK; = 1 for some, and therefore all,c [r].
SinceR < K we haveR; =1 foralli as claimed. O

For K < N define an equivalence relatiorg on [r] by i ~g j if and only if
Kernel;) N K = Kernelr;) N K. Note thati ~x j if and only if there exists an
isomorphisml/fl.’; K" — K/ such thatr; (k) = w{f (mi(k)) for all k € K. Let p(K) be
the partition of{r] whose parts are the g -equivalence classes. For two partitieng of
[r] we sayo refinesp if each part ofr is a subset of some part pf

Lemma2.6. If K <L <N then

(1) p(L) refinesp(K), and
(2) if i ~1 j then the restriction ofy/; to K" is v}

Proof. We prove the first claim first. Sayt g j. We may assume that there is some K

such thatr; (x) # 1 but; (x) =1. Sincex € L we have # j.
Now sayi ~ j.Fory € K' there is some € K < L such thatr; (x) = y, and we have

i =mjx)=y5y. O

Forany!l C [r], let; be the projection oV onto[ |
has partdy, ..., I;, define

T;. For K < N such thato (K)

iel 71

s
Kt := H”IJ(K)‘
j=1

We now record the following key facts.

(1) If K € [1, N1¥ thenp(K) is H-invariant, that isH acts on the parts gf(K).
(2) If K < N with K = T; for eachi € [r]thenK = K. (This is well known and follows
from [DiMo, Lemma 4.3A].)

Lemma2.7. If r > 1thenR! < T; forall i € [r].

Proof. Assume for contradiction thak’ = 7; for some (and therefore alf)e [r]. Let
K €[R,N). ThenK! = T; for all i, so K = K*. Moreover,p(K) refinesp(R) (by
Lemma 2.6(1)) and i¢ -invariant. Sayi ~g j. Theni ~g j, so for eachx € R < K we
have

Y (i(0) = 9 (mi (),
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by Lemma 2.6(2). Sinc&’ = 7; we havey,; = y/X. Sincek # N, we havek; = 1 for
all i, andK is determined by (K) and the maps;(fi’;. Therefore, ifK, L € [R, N1 and
p(K)=p(L) thenk = L.

Conversely, le®® be anyH -invariant partition of{r] which refinesp(R). Let ~o be
the equivalence relation determined by the part®oDefine

K :=K(0):={x e N: wj(x) =y (mi(x)) whenevei ~¢ j}.

ThenK < N andK' = T; for all i. Since® refinesp(R), we haveR < K. Saya € Aut(N)
induces the permutatianon[r]. Then there exisiy, . .., a, € Aut(T) such that forx € N
we have

i (x9) = (751 (x)) "
forall i € [r]. Itis straightforward to show tha is a-invariant if and only if we have

(a) ® iso-invariant, and
(b) I/filfrfl,jaflaj = ail/f,!; whenevel ~g ;.

SinceR is H-invariant, we see that conditions (a), (b) are satisfied whea p(R) and
a € H. Since any® under consideration refinggR), it follows thatK < [R, N]". Note
also that if® is H-invariant and refine® thenK (®) < K(®).

We now see that ifTy r is the set ofH -invariant partitions ofr] which refinep (R),
ordered by refinement, then

[H,GI°P= My g.

(Here [H, G]°P is the set of subgroups sitting betweéh and G, ordered by reverse
inclusion.) Now standard results on group actions show that i§ the stabilizer inH
of any part of p(R) then ITy g is isomorphic with[X, H] (see, for example, [DiMo,
Theorem 1.5A]). SinceAP®P = AP for any posetP, we have a contradiction to the
minimality of G. O

To complete our proof we must examine the case wherdl, R; = 1 andR’ # T; for
all ;.

Lemma 2.8. Say forK < L < N we have

(1) Ki#1forallie[r],and
) L=L".

Let

X:]_[K".

i=1
Thenp(LNX)=p(L).
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Proof. LetY = L N X. SinceY < L we know thatp (L) refinesp(Y) by Lemma 2.6(1),
so it suffices to show thad(Y) refinesp(L). Sayi 1, j. Assumptions (1) and (2) of our
lemma guarantee that we can pick some L such that £ r;(x) € K! andm;(x) =1
whenever +; k. By Lemma 2.6(2), we have;(x) € K whenevel ~; i, sox € X. We
now have

x € (Kernelr;) NY) \ Kernel;),
Soi #y j. O
Lemma2.9. If r > 1thenR = 1.

Proof. Assume for contradiction that! = 1 for some (and therefore all)e [r]. Set

X::lL[Ri.
i=1

By Corollary 2.5 and Lemma 2.7, we hake< X < N, so X € (R, N)?. We will show
that X is an antichain iR, N1, thereby obtaining a contradiction to Lemma 2.1. Say
L e Xt so(X,L)=N. SinceL! > X! = R, we must haveL.l = Ty and therefore
Li = T; for all i. SinceL # N we haveL; = 1 for all i, and it follows thatL* = L.

So, the pairR, L satisfies conditions (1) and (2) of Lemma 2.8. Sikcé&) L = R, we
havep(L) = p(R). Let I be a part ofp(R). For anyi € I, the restrictionnl.’ of 7; to
7(L) is surjective (sincer; is surjective), and, by the definition gf, we see thatri’

is also injective. thereforer; (L) = T. Assumep(R) hass parts. SinceL = Lt we
have|L| = |T|*. Since every element of - has the same ordek = is an antichain as
claimed. O

2.2. Conjecture¢B) and(C)

Here we discuss how to adjust the proof of Theorem 1.2 for Conjecture (A) to obtain
proofs of the theorem for Conjectures (B) and (C). We examine each step in the proof.

LetP be a poset obtained from a finite latticby removing the minimum and maximum
element, such that\P is not connected and has no contractible connected component.
(Note that2B3 is such a poset.) Then every connected componentohas at least two
vertices and it follows that if € P thenx is not an antichain in. Thus Lemma 2.1 holds
with respect to Conjectures (B) and (C). Lemma 2.2 is proved using only group-theoretic
argumentsand Lemma 2.1, and Lemma 2.3 is proved using only group-theoretic arguments
and Lemma 2.2. Thus Lemmas 2.2 and 2.3 hold with respect to Conjectures (B) and (C).

Lemma 2.4 uses group-theoretic arguments and the Quillen fiber lemma to produce
a poset whose order complex is homotopy equivalent to that(@f, G) and is either
contractible or isomorphic to an interval in the subgroup lattice of the geoTip with
|XT1| < |G]|. Since the topological properties used in formulating Conjecture (B) are
homotopy invariant, we see that Lemma 2.4 holds with respect to Conjecture (B). Note



686 J. Shareshian / Journal of Algebra 268 (2003) 677—-686

also that for the mag described in the proof, Imagg) is isomorphic to a subposet of
(H, G) (the isomorphism mapg (L) to K (¢(L))). It is straightforward to confirm that
there is no proper subposetof 2B3 such thatAP ~ A2B3. Therefore, if(H, G) is a
counterexample to Conjecture (C) for which the conclusion of Lemma 2.4 does not hold,
we conclude that Image) is isomorphic to(H, G) and we obtain a contradiction to the
minimality of |G|. Thus the lemma holds with respect to Conjecture (C).

Corollary 2.5 is proved using group-theoretic arguments and Lemma 2.4, and Lemma 2.6
is proved using only group theoretic arguments. Thus both of these results hold with respect
to Conjectures (B) and (C).

The proof of Lemma 2.7 uses Lemma 2.6 and group theoretic arguments to show that
[H, G]°Pis isomorphic td X, H] and then concludes with the observation thaf® = AP
for any poseP. Thus the lemma holds with respect to Conjecture (B), which concerns the
order complex. Sinc2B3°P is isomorphic witi2 Bz, we see that the lemma also holds with
respect to Conjecture (C).

The proof of Lemma 2.8 uses only group-theoretic arguments and the proof of
Lemma 2.9 uses group-theoretic arguments, Corollary 2.5, and Lemmas 2.1, 2.7, and 2.8.
Thus these results hold with respect to Conjectures (B) and (C).
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