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Let M, be the lattice of length 2 with » > 1 atoms. It is an open problem to
decide whether or not every such lattice (or indeed whether or not every finite
lattice) can be represented as an interval in the subgroup lattice of some finite
group. We complete the work of the second author, Lucchini, by reducing this
problem to a series of questions concerning the finite non-abelian simple groups.
© 1997 Academic Press

1. INTRODUCTION

For any natural number n, let M, be the lattice of length 2 with n
atoms. Let T be a subgroup of a finite group G. The interval [G/T] in the
subgroup lattice of G is isomorphic to M, if and only if there are precisely
n proper subgroups of G that strictly contain T, and moreover, each such
subgroup K satisfies
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2 BADDELEY AND LUCCHINI

(Here the notation 4 <,,,, B means that A is a maximal subgroup of B.)
We use () to denote the set of all » € N such that M, is isomorphic to
some [G/T]. The determination of () is an open question. (For some
history of this question see [18].)

Itiseasytoseethat n € Q if n =1o0r 2, orif n — 1is a prime power.
For a long while it was conjectured that these were the only elements in Q.
However, in 1983 Feit [6] showed that both 7 and 11 lie in (), and more
recently the second author showed that n € Q if

n=gq+?2 or n=

for any prime power g and for any odd prime ¢. Currently no other
elements of () are known; for convenience we let K denote the set of
known elements of ().

Kohler [10] has shown that if n &€ K and G is a finite group chosen so
that |G| is minimal subject to the existence of a subgroup T < G with
[G/T] =M, then the socle Soc G of G is the unique minimal normal
subgroup of G and is non-abelian. The second author [16] has shown that
if in addition n > 50, then either Soc G is simple (in which case G is said
to be almost simple), or the intersection (Soc G) N T is trivial.

Given the classification of finite simple groups (henceforth referred to
as CFSG) it is to be hoped that

S={neN: M, =[G/T]forsome T < G with G almost simple}

can be determined. (The case in which G is either alternating or symmet-
ric is currently under consideration by Alberto Basile, a research student
of the second author.) The present paper is concerned with the case
(Soc G) N T = {id;}. This falls naturally into two subcases, either G #
(Soc G)T or G = (Soc G)T, and we let Q(2.D), Q(2.E) be the subsets of
Q) comprising those integers that arise in these subcases. (Formal defini-
tions of Q(2.D) and Q(2.E) are given in Section 2.) We refer to these
subcases respectively as the not-T-complement and the T-complement cases.

The statement of our results depends on some quite technical defini-
tions and so we feel it is inappropriate to give a full statement in this
introduction. We can however give some idea of the analysis used. We
assume that G is a finite group with a subgroup T such that Soc G is
non-abelian and is the unique minimal normal subgroup of G, and such
that

[G/T]=M,, and SocG N T = {id};
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if appropriate, we may also assume that » & K and that |G| is minimal
among such groups. It is easy to see that in all cases there exists a
subgroup H of G containing T and complementing Soc G. (This is a
consequence of Lemma 4.3(i)—(ii) in the not-T-complement case, and is
immediate in the T-complement case as we can take H = T.) The key step
is then to show that we may assume that the socle of H is non-abelian and
is the unique minimal normal subgroup of H. (In the T-complement case
this follows from either Theorem 6.4(iii) or Lemma 7.1(iii) depending on
which subcase applies, while in the not-7T-complement case Proposition 4.9
shows that H is almost simple.) Let E, F be minimal normal subgroups of
Soc H, Soc G, respectively, so that both £ and F are non-abelian simple
groups; let «, B denote respectively the maps N,(E) — Aut E, N;(F) —
Aut F induced by conjugation. We will see that F is isomorphic to a
section of E; the bulk of the paper is then concerned with obtaining as far
as possible a characterization of the pair (G,T) in terms of E, F, the
representation of F as a section of E, and other information as appropri-
ate—for example, in the not-7-complement case we additionally require
knowledge of a(N,(E)) and a(N;(E)), while in the T-complement case
the situation is more complex and also requires knowledge of the images
under B of various subgroups of H. Our philosophy throughout is that the
global properties of the pair (G, T) are largely controlled by the internal
structure of E.

Thus the net effect of the paper is to reduce the problem of determining
Q(2.D) and Q(2.E) to a series of problems concerning the finite non-abelian
simple groups. Thus this paper can be seen as the final step in the
reduction of the problem of determining ) to one which can be tackled
via CFSG. Here we must stress that we do believe that the questions raised
concerning the finite non-abelian simple groups can be answered, and
indeed hope to have some answers in the near future. At this point, we
should perhaps abandon caution and remark that the results that we
expect to obtain in this direction provide yet more evidence to support the
conjecture that Q # N.

The layout of the paper is as follows. Section 2 contains the “Results
Diagram’: this is a schematic representation of our results, and is designed
as an aid to understanding the significance of each individual result.
Section 3 sets out our notation and gives a variety of preliminary results.
Of particular importance is the information given on the maximality of top
groups in twisted wreath products; the latter play a central role in the
paper. The subsets Q(2.D) and Q(2.E) of Q are investigated in Section 4
and Sections 5-7, respectively. We finish in Section 8 by giving some final
comments and some examples.
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2. THE RESULTS DIAGRAM

As mentioned in the Introduction, our results depend on some quite
technical definitions, and we see no point in giving these definitions any
earlier than need be. However, we feel it helpful to give a schematic
representation of our results as an aid in understanding the significance of
each individual result.

Our results are phrased in terms of various subsets of N. The Introduc-
tion referred to the subsets Q, K, S, Q(2.D), Q(2.E) and for the sake of
precision we now expand upon or repeat their definition.

there exists a group G
QO ={neN: withasubgroup T , (2.A)
suchthat M, = [G/T]

n=12q+1qg+20r(qg"+1)/(g+1)+1
K= (n € N: for some prime power g
and some odd prime ¢

(2.B)
(Recall that K is precisely the set of currently known elements of (.)

M, = [G/T]forsomeT < G

= e N:
S neN with G almost simple

, (2.0)

M, = [G/T] for some T < G with
Q(2.D) ={n > 16: SocG <, G, Soc G non-abelian, , (2.D)
T N SocG = {id},and G # T(Soc G)

M, = [G/T] for some T < G with
Q(2.E) = {n>16: SocG <,;,G, Soc G non-abelian, . (2.E)
T N Soc G = {id} and G = T(Soc G)

Note that we have restricted attention to integers n > 16 in defining
Q(2.D) and Q(2.E) since 16 is the smallest positive integer not in K, and
so is the smallest positive integer not known to be in . With this notation
the results discussed in the introduction of Kohler [10] and the second
author [16] show that

Q=Ku{n<50:neQ}UuSuUQ2D)UQ2E). (2.F)
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We now explain our results diagram, Fig. 1. Observe that the diagram is
essentially a tree comprising nodes joined by a single bond or by a double
bond (or not joined at all). Each node represents the subset of N as
indicated by the (unboxed) label adjacent to the node. Those subsets that
have not yet been defined are all denoted by notation of the form Q(—)
or A(—): the bracketed reference gives the number of the relevant
definition. The diagram encodes our results according to the following
conventions: firstly that if the “descendent” of a node is joined to its
“parent” by a double bond, then the ‘“descendent” is a subset of its

{n<50:n €N}

9(4.1) . 0(5.2)

o) g a(erm)

6.18

518 ' 9(7.13)

o n(7.18)

neE A (6.17((1))

u afe17(p)
u a(e17(0))}

{nin-1€a(6172)}

6.18

afe9)u{n:n-1€a(69)}

FiG. 1. The results diagram.
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“parent”’; and secondly that the “parent” is a subset of the union of all its
“descendents.” The reference of the result(s) thus encoded is given in a
box adjacent to each “parent” node. Thus on considering the ‘“‘descen-
dents” of Q(2.E) we see that

Q(2.E) = Q(5.1) U Q(5.2)

and that this result is the content of Theorem 5.3.

3. PRELIMINARIES

3.1. General Notation. In the remainder of the paper all groups are
assumed finite. We use id, or simply id if no confusion arises, to denote
the identity element of a group G. The group of automorphisms of a group
G is denoted Aut G. We use 6 for the natural map G — Aut G given by

g — “‘conjugation by g’ forall g € G.

The image Inn G of 6 is the subgroup of Aut G comprising inner auto-
morphisms; we say that an automorphism is outer if it is not inner, and use
Out G to denote the quotient Aut G/Inn G. If the centre Z(G) of G is
trivial, then 6 gives rise to an isomorphism between G and Inn G; in such
cases we will often identify G and Inn G via 6. In particular, we will
always use 6 to identify F with Inn F whenever F is a non-abelian simple
group, although we will normally remind the reader when doing so.

Maps are written on the left; in view of this, the composition B o « of
maps « and B means “« followed by B.” However, if «, B8 are automor-
phisms of a group G, then for g € G we often write g instead of a(g),
and ap instead of B o a.

The socle Soc G of a group G is the product of all minimal normal
subgroups of G. If H < G and K is either a subgroup of G or a subgroup
of Aut G, then the K-core of H in G is denoted by Corey H and is the
largest K-invariant subgroup of G that is contained in H; explicitly

CorexH= () HY;

xekK

if K= G then we simplify terminology and refer to the core of H in G.

Given a subgroup H of G an overgroup of H in G is any subgroup K
satisfying H < K < G; a strict overgroup of H in G is an overgroup of H in
G that is not equal to H. Given also a homomorphism y with domain H,
then an extension of x in G is any homomorphism whose domain is an
overgroup of H in G and whose restriction to H is equal to y; it is a strict
extension of x in G if, in addition, its domain is a strict overgroup of H
in G.
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We use standard notation for normalisers and centralizers, that is,
N;(H), C;(H) denote respectively the normaliser, centralizer of H in G.
For subgroups H,,..., H, of G we set

Ng(Hy, ..., H,) = Ng(Hy) N N Ng(H,).

We also use the same notation even when G is a subgroup of Aut K with
H,,..., H, subgroups of K.

As noted in the Introduction, we use M, to denote the lattice of length
2 with n > 1 atoms; for example, M, is the lattice

We also use M, to denote the lattice of length 1, namely

I

For a subgroup H of a group G, we use [G /H] to denote the lattice whose
elements are the overgroups of H in G with partial order given by
inclusion. If S is a subgroup of Aut G such that H is S-invariant, then
[G/H]g denotes the sublattice of [G/H] comprising the S-invariant
overgroups of H in G.

3.2. Wreath Products. Suppose that G is a subgroup of the symmetric
group S,. The wreath product H\ G of H by G is the semi-direct
product H" X G of the direct product H" of n copies of H by G in
which the conjugation action of G on H" is given by

(hyy.oo hy)® = (hygr-- - hyy) forall hy,...,h, € Hand g € G.

Wreath products arise in this paper from applications of the “embedding
theorem’ which is well known and goes back to Frobenius: for more recent
expositions see [5, Sect. 5; 19, Sect. 4].

THeoreM 3.3 (Embedding Theorem). Let H be a subgroup of the finite
group G, let x,,...,x, be a right transversal for H in G, and let ¢ be any
homomorphism with domain H. Then the map G — £(H) \ S, given by

x = (E(xpxx}), o E(x,xx )T forallx € G,
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where w € S, satisfies x;xx;;* € H for all i =1,...,n is a well-defined
homomorphism with kernel equal to Core(ker £).

We remark that the above is usually applied with ¢ equal to the identity
map on H, in which case ker ¢ is trivial and the map G - H S, is a
monomorphism—hence the name “Embedding Theorem.” Also we often
fail to distinguish between homomorphisms defined with respect to differ-
ent choices of transversal: the relationship between such homomorphisms
is made explicit by the “Uniqueness theorem” of [11].

3.4. Twisted Wreath Products. The concept of a twisted wreath product
(originally due to B. H. Neumann [17]) plays a central role in this paper.
Consequently we feel obliged to give a complete treatment of the construc-
tion, rather than refer the reader to a suitable reference such as [21] or [3].
We note however that the following treatment does use a slightly different
notation for the base group of a twisted wreath product; this change is for
the purposes of encoding more information in the notation.

The ingredients for the construction of a twisted wreath product are

agroup F, agroup 7T, a subgroup S of T,
and a homomorphism ¢ : S — Aut F.

Define the base group B, by
Bl p={f:T—F:f(1s) =f(t)" forallt € T, s € S}

We view BgT as a group by defining multiplication in the natural way;
note that Bj , = F'"*%. Define an action of 7' on B, , as follows: for
fe B¢ rand r €T let f', the image of f under ¢, be defined by

fi(x) =f(xx) forall x e T.

It is easily verified that this does indeed give an action of T on BFT The
semi-direct product X = B(f X T with respect to this action is called the
twisted wreath product of F by T and we write

X = F twr,T

and refer to T as the top group of the twisted wreath product. (The
subgroup S is recoverable from this notation as the domain of ¢.)

In the situation where L is a subgroup of F invariant under ¢(S) we
often use ¢ to denote the natural map ¢(S) — AutL and consider the
twisted wreath product L twr,, , T with base group B 4) r- Given that
BL,  ={f:T—L:f(ts) =f(1)* forall t € T, s € §}

L

= {f:T > L:f(1s) =f(t)*"forall t € T, s € S}
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since xU*®) = x¢) for all x € L and s € S, we sometimes abuse nota-
tion and write B¢> r in place of B 4) r- The superscript in the base group
notation then serves to dlstlngwsh this base group from the base group
BF We also abuse notation by viewing maps T — L as maps T — F so
that BL becomes a subgroup of B . In fact, with this viewpoint BLT,
as a subgroup of B¢ 7 1S normallsed by T, and moreover, the action of T
on By ; < Bj ; is identical to the action of 7" on B, , as the base group
of Ltwrd,T Hence this viewpoint identifies Ltwr¢T Wlth the subgroup
LT of F twr, T

In cases where no confusion arises we will omit the superscript and
subscripts in the base group notation as appropriate.

Twisted wreath products occur naturally as the following result shows.

LEMMA 3.5 (Bercov [4], Lafuente [13]). Ler G be a group with a normal
subgroup M complemented by a subgroup T. Suppose that F is a subgroup of
M such that for some t,(= id;),t,,...,t, € T we can write

M =F' X -+ X F',

where conjugation by T permutes the F'i among themselves, that is,
{(F,..., F'*} is the set of T-conjugates of F. Set S = Np(F) andlet ¢:S —
Aut F be the map induced by the conjugation action of S on F. Then there
exists an isomorphism G — F twr,T which maps M to Bg r and which
restricts to give the identity on T.

We shall often be concerned with the possible maximality of the top
group in a twisted wreath product. Hence the following results are rele-
vant. (The first two are given without proof: both are straightforward, and
Corollary 3.7 follows from Lemmas 3.1 and 3.2 of [3], while Lemma 3.6 is
the content of the proof of [3, 3.1]. However, we note that Corollary 3.7
does depend on CFSG, or more precisely on its consequence, the “Schreier
conjecture.”)

LEMMA 3.6. Let F be a non-abelian simple group, and let F twr,T be a
twisted wreath product with twisting homomorphism ¢ : S — Aut F. Suppose
that X is a T-invariant proper subgroup of the base group Bg r of Ftwr,T.
Then precisely one of the following holds:

(i) there exists a proper ¢(S)-invariant subgroup L of F with X < By 1;
(ii)  there exists a strict extension p of ¢ in T such that X = B ;.
We remark that conclusion (ii) is sensible; indeed, if given an arbitrary

twisted wreath product F twr,7T and a strict extension p of ¢ in T, then
the base group BFT is a non-trivial proper subgroup of BFT and is
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normalised by T'. In fact, the action of T on Bth as a subgroup of Bf,r is
identical to the action of T on B:T as the base group of F twr,T; thus
Ftwr, T appears naturally as a subgroup of F twr,T.

COROLLARY 3.7.  Let F be a non-abelian simple group, and let F twr,T be
a twisted wreath product with twisting homomorphism ¢ : S — Aut F. Then T
is maximal in F twrT if and only if the following both hold.:

i ¢(S)=InnF;
(ii)  there does not exist a strict extension p of ¢ in T.

LEMMA 3.8.  Let F twr,T be a twisted wreath product with twisting homo-
morphism ¢ : S — Aut F, and let R be any overgroup of S in T. Suppose that
T is a maximal subgroup of F twr,T. Then R is a maximal subgroup of
Ftwr,R.

Proof. We suppose that R is not a maximal subgroup of F twr,R and
argue for a contradiction. Then there exists a non-trivial proper subgroup
X of B, that is normalised by R. Let Y be the subset of B, r
comprising all maps f € B,  such that for all t € T the map f,: R - F
given by

fi(r) =f(1r) forall r €R
isin X.
We claim that Y is a non-trivial proper subgroup of B, ; normalised by

T. The verification of this is straightforward and we leave it to the reader.
Thus T is not a maximal subgroup of F twr,T, a contradiction.

Suppose that F is a non-abelian simple group and consider the base
group B, of the twisted wreath product F twr,T. Now B, = F!"*%l and it
is clear that T is transitive on the simple direct factors of B,. Hence B, is
a minimal normal subgroup of F twr,T. We shall often be concerned with
whether or not B, is the unique minimal normal subgroup, and so equal
to the socle of F twr,T’; clearly this holds if and only if its centralizer in
Ftwr,T is trivial.

LEMMA 3.9.  Let F twr,T be a twisted wreath product with twisting homo-
morphism ¢ : S — Aut F, and suppose that the centre of F is trivial. Then

Cr(B,) = Corey(ker ¢) and  Cpyy,r(B,) = Corer(o~*(Inn F)).

Proof.  This is straightforward, or can be seen as a particular instance of
[3, 2.7(3)].

3.10. Sections. The ordered pair (C, D) is said to be a section of E
isomorphic to a group T whenever C is a normal subgroup of D and D is
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a subgroup of E such that the quotient D /C is isomorphic (in the usual
sense) to 7. It is a non-abelian simple section if T is a non-abelian simple
group, and is a proper section if T %« E.

Suppose that P either is a subgroup of Aut E or normalises E inside
some larger group. The section (C, D) of E is said to be P-contained in the

section (5, D) of E if

C=CnD, D=CD, and N,(C,D)<N,(C,D);

moreover, it is strictly P-contained in (C, D) if in addition C < C. If there
does not exist a section of E strictly P-containing the section (C, D) of E,
then (C, D) is said to be a P-maximal section of E; it is a maximal section
of E if it is Aut E-maximal.

We state without proof some easy consequences of the above defini-
tions.

PROPOSITION 3.11.  Suppose that (C, D) and (C, D) are sections of E and
that P < Aut E. Then the following all hold.

_ '_gl) If (C, D) is P-contained in (C. D), then the quotients D /C and
D /C are isomorphic.
(2) The following statements are equivalent:
(i) (C, D) is P-contained in (C, D);
(i) (C, D) is (DN,(C, D))-contained in (C, D);
(i) (C, D) is Ny(C, D)-contained in (C, D).
(3 If Q <P and (C,D) is P-contained in (5, 5), then (C, D) is
Q-contained in (C, D).

Suppose that ¢ : .S — Aut F is a homomorphism from a subgroup § of a
group T to the automorphism group of a non-abelian simple group F with
¢(S) = Inn F and that N is a subgroup of T normalised by S. Then
¢(N N S) is a normal subgroup of the almost simple group ¢(S) and so is
either trivial or contains Inn F. The following results deal separately with
these two cases and demonstrate the relevance of sections to the maximal-
ity of top groups of wreath products.

LEMMA 3.12. Let N, T, ¢, S, and F be as in the preceding paragraph.
Suppose that ¢(N N S) is trivial. Then the map p . NS — Aut F given by

pixy = ¢(y) forallx € Nandy € §

is well-defined, is an extension of ¢ in N;(N), and contains N in its kernel.
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Proof. This is straightforward.

LEMMA 3.13. Let N, T, ¢, S, and F be as in the paragraph immediately
preceding the above lemma. Suppose that $(N N S) > Inn F. Then

(N Nker¢, NN ¢ *(Inn F))

is a section of N isomorphic to F. Moreover, if (N N ker ¢, N N ¢~ *(Inn F))
is S-contained in the section (C, D) of N then the map o : N;(C, D) — Aut F,
given by requiring that

d(x)"Y = ¢(2)

whenever x,z € N N ¢~ *(Inn F) and y € N;(C, D) are such that x’z"* €
C, is well-defined and extends ¢ in T.

Conversely, if o is an extension of ¢ in N(N) then (N N ker ¢, NN
¢~ (Inn F)) is S-contained in the section (N N ker o, N N o *(Inn F)) of
N.

Remark 3.14. With the notation of the above lemma, observe that the
section

(C,D) = (Nnker¢, NN ¢~ *(Inn F))

certainly S-contains itself. Now if x,zeD=Nn ¢ (InnF) and y €
N;(C, D) are such that x’z~! € C = N N ker ¢ then x” € D and further-
more

(x7) = ¢(2).
Hence by the lemma the map o : N;(C, D) — Aut F given by requiring
that

d(x)"Y = ¢(x¥)  forall xeDand y € N,(C, D)

is well-defined and extends ¢.

Proof of Lemma 3.13. This follows by adapting the proofs of [3, 3.1 and
3.5].

Corollary 3.15. Let N, T, ¢, S, and F be as in the paragraph immediately
preceding Lemma 3.12. Suppose that N is a normal subgroup of T and that
d(N N'S) = Inn F. Then ¢ has no strict extensions in T if and only if both of
the following hold:

(i) (Nnker¢, NN ¢ *(Inn F)) is an S-maximal section of N;
(i) S =N (NNnker$, NN ¢ *(Inn F)).
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Proof. This is straightforward.

Suppose that N, T, ¢, S, and F are as above; suppose also that
(S N N) = Inn F. Set

U=Nnker¢ and V=Nno'(InnF).

By Lemma 3.13 the section (U, V) is a section of N isomorphic to F.
Suppose further that N is a minimal normal subgroup of 7. As ¢(N N §)
> Inn F we see that N is non-abelian and so is isomorphic to the direct
product of its minimal normal subgroups, each of which are isomorphic to
a fixed non-abelian simple group. An easy argument (cf. [3, 5.3]) shows that
there exists a minimal normal subgroup E of N with

k(U) # k(V),

where «: N;(E) — Aut E is induced by conjugation. As « induces an
epimorphism from the quotient VV/U onto the quotient «(V)/«(U) we
deduce that («(U), k(}")) is a section of E also isomorphic to F (where we
identify £ with Inn E). The following result relates possible S-maximality
of (U, V) to possible «(N(E))-maximality of («(U), (V).

LEMMA 3.16. Suppose that (U,V) and (U, V) are non-abelian simple
sections of the minimal normal subgroup N of a group T with L < T such that
(U, V) is L-contained in @, V) Then there exists a minimal normal subgroup
E of N such that (x(0), k(V)) is a section of E isomorphic to the quotient
V/U, where kN7 (E) = Aut E is induced by conjugation. Let E be so
chosen; then (k(U)_, (V) is a section of E which is k(N,(E, U,V ))-con-
tained in («(U), k(V)). Moreover (U, V') is an L-maximal section of N if and
only if the following all hold.:

@) (), k(W) is a k(N,(E, U,V ))-maximal section of E;

(i) CoreyU of N contains every normal subgroup of N that is nor-
malised by N,(U,V') and that does not contain E;

(i UnNE=«k).

Remark 3.17. (1) The above lemma is essentially a rephrasing of
Theorem 5.1 of [1]. However, we choose to give a proof of the lemma here,
rather than refer to [1], as the method of proof used here is quite different
from [1] and much more appropriate in the current context.

(2) We stress that condition (i) of the above lemma considers
k(N,(E, U,V ))-maximality, and does not consider «(N;(E))-maximality.
This is important in that in general we only have

k(N(E,UV)) < (NL(E))(K(U) k(V))
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and not equality. For an example demonstrating this, see the final section
of Remark 4.8 of [1].

(3) With the notation of the above lemma, conditions (ii) and (iii) hold
if and only if

k(U)" if x e N(U,V);
E* if x € T\ N.(E)N,(U,V).

UNE"=

In turn the latter holds if and only if

U= ( ]m_[ k(U)™

i=1

!

X ( 11 Exf),
i=m+1

where x,,..., x,, is a right transversal for N,(E,U,V), in N,(U,V) and

Xy, ..., X, is a right transversal for N.(E) in T.

Proof of Lemma 3.16. The discussion immediately prior to the state-
ment of the lemma may be adapted to show the existence of a minimal
normal subgroup E of N such that

(«(T), k(V)),

where « : Np(E) — Aut E is induced by conjugation, is a section of E also
isomorphic to VV/U. We fix this choice of E and . Given that (U, V),
(U, V) are non-abelian S|mple sections with the former L-contained in
the latter, we have that V= UV, and that V,/U, V/U are isomorphic
non-abelian simple groups: we deduce that in the following diagram (in
which the maps are the obvious ones) all homomorphisms are epimor-
phisms and moreover that all are isomorphisms with the possible exception
of those in the bottom row.

g - <)@ -  «(@)c(V)/x(D)
) )
VU - k(N)U) - V)@ 0 w(V)
It follows from the commutativity of this diagram that all maps are in fact
isomorphisms, and in particular that
k(V)[k(U)=V/U and  «k(U) = (V) N «(0).

We conclude that (x(U), k(1)) is indeed a section of E isomorphic to
/U and, on noting that «(N,(E, U, V")) normalises both x(0) and k()
since N, (U, V) is contained in Ny (0, V), that («(U), k() is
k(N,(E, U, V))-contained in (x(0), K(V))
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We turn to the “Moreover” statement. Set S = N,(U, V) and note that
(U, V) is L-maximal if and only if (U, V) is S-maximal. Let x,,..., x, be a
right transversal for N-(E) in T such that x,, ..., x,, is a right transversal
for Ny(E) in S. Let (C, D) be a section of E that «(Ny(E))-contains
(k(U), k(V)). It is straightforward to see that

= (ncxi
i=1

1
1)
i=m+1

is normalised by both S and V. Thus X N V' is a normal subgroup of I/
that contains U, and so is equal to either U or V' as VV/U is simple. But
k(X) = k(U) 5 (V) and so X N V' = U. Hence (U, V) is S-contained in
the section (X, XVV) of N, and the necessity of conditions (i)—(iii) follows.
Conversely, suppose that conditions (i)—(iii) all hold and that (U,V) is
S-contained in the section (U, V) of N. Condition (i) together with the first
part of the lemma implies that x(U) = x(U). Given that S normalises U,
it follows that

m

U< (1‘[1K(U)xl

=

!

<[ 1)
i=m+1

where by conditions (ii) and (iii) the right hand side equals U. Hence

U < U whence the section (U, V) is equal to (U, V) as required.

With the notation of the above lemma, it is clear that if £ is a minimal
normal subgroup of N such that («(U), «(J")) is isomorphic to VV/U, then
the same holds with E replaced by any N, (U, V )-conjugate of E (and «
redefined appropriately). Hence, if N,(U,V) is transitive on the minimal
normal subgroups of N, equivalently if

T'=Np(E)N(U,V),

then E can be replaced by any minimal normal subgroup of N. As this is
often true in the situations arising later in this paper it is worthwhile to
consider this more carefully. For the sake of precision we have the
following definition.

DErFINITION 3.18. We say that (E, N, T, F, S, ¢) is a (3.18)-tuple if the
following all hold:

(i) E is a minimal normal subgroup of the group N which in turn is
a minimal normal subgroup of the group T;
(i) F is a non-abelian simple group;
(iii) S is a subgroup of T such that T = N,(E)S;
(iv) ¢ is a homomorphism S — Aut F such that ¢(S " N) > Inn F.
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Given a (3.18)-tuple (E, N, T, F, S, ¢) we fix the notation «, C, D, n, X,
P, and o as follows.

The map « is the usual map N (E) — Aut E induced by conjugation.
We stress that we identify E with Inn E so that « restricts to give the
identity map on E. We set

C=«(ker¢NN) and D =«k(os*(InnF)NN).

Note that the section (N N ker ¢, N N ¢~ *(Inn F)) of N is isomorphic to
F. The remarks immediately prior to Lemma 3.16 coupled with the fact
that T = N;(E)S (equivalently that S is transitive on the minimal normal
subgroups of N), imply that (C, D) is a section of E isomorphic to F. In
fact it is clear that the map D/C — F given by

Ck(x) » ¢(x) forallx e NN ¢ *(InnF),

where F is identified with Inn F in the usual way, is an isomorphism. We
use this isomorphism to identify D/C with F, and let n: Ny, (C, D) —
Aut F' be induced by the conjugation action on the quotient D /C.

Let x,,..., x, be any right transversal for Ng(E) in S. We set

!
X=]]C*"<N.
i=1

Notice that X is independent of the transversal chosen and furthermore
that the section (N N ker ¢, N N ¢ *(Inn F)) of N is S-contained in
(X, X(N N ¢ X(Inn F))). We set P = N.(X, X(N N ¢ *(Inn F))), and
let o : P — Aut F be defined by requiring that

$(x)"" = §(2)

whenever x,z € NN ¢ (Inn F) and y € P are such that x’z~! € X. By
Lemma 3.13 the map o is well-defined and extends ¢. We leave the
reader to verify that for x € N,(E) we have k(x) € N,,, (C, D) and

o (x) =n(x(x)). (3.A)
LEMMA 3.19. Let (E,N,T,F,S, ¢) be a (3.18)-tuple and let x, C, D, 7,
X, P, and o be as defined above. Let x,, ..., x; be any right transversal for

Ny(E) in S. Then the following all hold:

(i) Nnkero=TII'_(E N kern)";
(i) a(N N P) = Core(n(N(C, D)),
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(i) k(N N P)=E N n (Core,(n(N(C, D))
(ivyv (Nnkero,Nn o *Inn F)) is a P-maximal section of N if and
only if

(E nkerm, EN n~'(Inn F))

is a k(Np(E))-maximal section of E.

Proof. Part (i) follows by a straightforward calculation. We turn to (ii).
Observe that N N P is normalised by P, and so also by S, whence
o(N N P) is normalised by o(S) = ¢(S). As k(N N P) < E we deduce
from (3.A) that

o(N N P) < n(Ny(C, D))

and so (N N P) is contained in the ¢(S)-core of n(N;(C, D)). Con-
versely, if x is an element of Core,s,(n(N:(C, D))) then

1
x€ () (n(Ne(C, D))*.

Foreach i = 1,...,1 choose y, € N(C, D) with n(y,) = x** 9, and set
y=yit -y €N.

We claim that y € P and that o(y) = x. Certainly y normalises X. To
show that y also normalises X(N N ¢~ (Inn F)) we must show that for all
u in the intersection N N ¢ 1(Inn F) there exists v € N N ¢ 1(Inn F)
with u’v € X, or equivalently, given that X = [T/!_, C*, we must show
that for all u € N N ¢~ (Inn F) there exists v € N N ¢~ (Inn F) with

K((uyv)xfl)eC foralli=1,...,1.

So suppose u € N N ¢~ 1(Inn F). As (N N S) > Inn F there exists v €
N N ¢ Xnn F) with ¢(v™1) = ¢p(u)*. Since N =TI'_, E* and since
y =yit -+ yj* with each y, € E we have foreach i = 1,...,/

i

((@)) = k()
whence
K((uyv)"fl) = K(ux71)yix(vxf1).

Recalling that y, & N,(C, D) and that x; € S we see that both x(u* ")
and «(v* ") are in D. Thus the right hand side above is in C if and only if
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its image under 7 is trivial. However,

( (u" ) (v ))
= () n(e(e)
(77 )z/)(x)xz[)(x 1) (K(Ux,*)), by the choice of y,,
( )¢(x)xd>(x )¢(U’C71), by (3.A)

- (qs(u)%(v))“x"”

which is trivial by the choice of v. Hence we have shown that y € P.
Moreover if x; € Ny(E) (and this holds for precisely one i = 1,...,/) so
that k(y) = k(y®) =y ), then by (3.A)

Kk(x; k(x;) x)
o () = n(x(x)) = () = m(r) " = n(3) " = x
and the claim holds. The reverse containment
Core,sy(n(Ne(C,D))) < o (NN P)

follows, whence (ii) holds.
We turn to (iii). By (i) we have k(N N P) > E N ker n and so given that
o(N N P) = n(«(N N P)) we have

k(NNP)=Enn*(a(NNP)).

Part (iii) now follows from (ii).

Finally, as P > S, whence P is also transitive on the minimal normal
subgroups of N, every proper normal subgroup of N normalised by P is
trivial. Part (iv) follows by assuming part (i) and by applying Lemma 3.16 to
the section

(UV)=(Nnkero,Nn o *(InnF))
of N.

ProrosITION 3.20. Let (E, N, T, F, S, ¢) be a (3.18)-tuple and let «, C,
D, and n be as defined above. Then ¢ has no strict extensions in NS if and
only if the following all hold:

(i) (C, D) is a k(Ng(E))-maximal section of E;
(i) SNE=C;
(iii) Core,5(n(Ng(C, D)) = ¢(S N N).
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Remark 3.21. We note that in the instance where the group C is trivial
then condition (ii) of the lemma is trivially satisfied.

Proof of Proposition 3.20. It is easy to see that if (E, N, T, F, S, ¢) is a
(3.18)-tuple, then so is (E, N, NS, F, S, ¢). Thus it is enough to prove the
lemma under the additional assumption that T = NS.

Let X, P, and o be as above. Note that the conclusions of Lemma 3.19
all hold.

Suppose that ¢ has no strict extensions in 7. Then clearly P = S and
o = ¢, whence (iii) follows from Lemma 3.19(ii). Also by Corollary 3.15

(N Nnker¢, NN ¢~ *(Inn F))

is an S-maximal section of N, and (i) and (ii) follow from Lemma 3.16(i)
and (iii), respectively.

Conversely, suppose that (i)—(iii) all hold. Condition (ii) implies that X
(as defined above) is contained in S. As also N N ker¢ <X <N N ker o
we have

NnNnkerg <X <SNNNKkero=N N ker¢

and equality must hold. Now (E N kern,(E N kern)D) is clearly a sec-
tion of E that «(N(E))-contains (C, D), whence (i) implies that C = E N
ker n. From Lemma 3.19(i) we deduce that

N N kero =X =N N ker ¢.

This coupled with Lemma 3.19(ii) and condition (iii) implies that N N S =
N N P. Now by assumption 7 = NS and so

P=PN(NS)=(NNP)S=S5

which in turn implies that o = ¢. Having already seen that C = E N ker 7,
condition (i) together with Lemma 3.19(iv) shows that

(Nnkero,Nn o *(InnF))

is a P-maximal section of N. Recall that P is defined as the normaliser in
T of this section. We finish by applying Corollary 3.15 to deduce that o,
which we know is equal to ¢, has no strict extensions in T as required.

COROLLARY 3.22. Let (E,N,T,F,S, ¢) be a (3.18)-tuple such that ¢
has no strict extensions in NS. Let k, C, D, and m be as defined above, and
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let x,, ..., x; be a right transversal for Ny(E) in S. Then C = E N ker n,

!
Nnkerp=T]C* (3.B)
i=1

and
YnS=vYnker¢= [] C~, (3.0)

{i: EX<Y}
where Y is any proper normal subgroup of N.

Proof.  As in the proof of Proposition 3.20 we may immediately reduce
to the case where T = NS. From Proposition 3.20(i) we see that (C, D) is a
k(N;(E))-maximal section of E whence we certainly have E N kern = C.
Let P and o be as in the statement of Lemma 3.19. As ¢ has no strict
extensions in T we have o = ¢ whence (3.B) follows from Lemma 3.19(i).

Suppose that Y is a proper normal subgroup of N. As T = N;(E)S
there exists x € § with E « Y™, or equivalently, with Y* < Cy(E) < ker «.
Now by (3.A)

$(Y* N S) = n(x(Y*NS)).

As k(Y™) is trivial we deduce that Y* N S < ker ¢p. Also as (Y N S) is
¢ (S)-conjugate to H(Y* N §) (namely by ¢(x)), we see that Y N S < ker ¢,
whence YN S =Y N ker ¢ as required. The remainder of (3.C) follows
from (3.B) via an easy calculation.

3.23. Subgroup Lattices of Non-Abelian Characteristically Simple Groups.
We shall need two results on subgroup lattices of characteristically simple
groups.

LEMMA 3.24. Let N be a non-abelian characteristically simple group, and
let H be a soluble subgroup of Aut N. Then

[N/(idN)]H * Mm
for any m > 0.

Proof. We must show that there exist strictly comparable H-invariant
non-trivial proper subgroups of N. We proceed by induction on |N|. Let Q
be a minimal normal subgroup of H. Note that Q is an elementary abelian
g-group for some prime gq.

Suppose that C,(Q) is trivial. An easy argument (cf. [7, 6.2.3]) shows
that N is a g'-group. A generalization of a conjecture due to Frobenius
and proved by Wang using CFSG [22] forces N to be soluble—a contradic-
tion. (Alternatively, we can avoid this use of CFSG as follows: the last part
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of the proof of the Aschbacher—O’Nan-Scott theorem as given in [14]
shows that Q normalises a unique Sylow p-subgroup P of N where p is
any prime dividing |N|, and by Burnside’s normal p-complement theorem
[7, 7.4.3] either Z(P) and P, or P and N,(P) are strictly comparable
H-invariant non-trivial proper subgroups of N.)

So we may assume that C,(Q) is non-trivial. If C,(Q) is not character-
istically simple then the result clearly follows. If C,(Q) is non-abelian and
characteristically simple, then we are done by induction. If C,(Q) is
abelian and characteristically simple, then by Burnside’s normal p-comple-
ment theorem [7, 7.4.3], C,(Q) and N, (C,(Q)) are strictly comparable
and are certainly H-invariant non-trivial proper subgroups of N.

COROLLARY 3.25. Let F be a non-abelian simple group, and let H be a
subgroup of Aut F. Suppose that

[F/{idp)]H =M,

for some m = 0. Then one of the following holds:

(i) m=0and H=InnF;

(ii) m=1and HN Inn F is a non-trivial non-abelian characteristi-
cally simple proper subgroup of Inn F.

Proof. The previous lemma shows that H is insoluble, and so by the
“Schreier conjecture” H N Inn F is an insoluble, and so non-abelian,
non-trivial subgroup of Inn F. Clearly m =0 if H N Inn F = 1Inn F, in
which case (i) holds, and so we may assume that H N Inn F is a proper
subgroup of Inn F, whence m > 1. We must show that (ii) holds.

Suppose that m > 1. Identify F with Inn F in the usual way and let L
be a non-trivial H-invariant subgroup of F distinct from H N F. Then
(HNF,L) is an H-invariant subgroup of F strictly containing both
HNF and L and so equals F. However, L is normal in (HNF,L)
which contradicts the simplicity of F. Thus m = 1. Finally observe that
H N F is characteristically simple as if not then it must strictly contain a
non-trivial H-invariant subgroup.

4. THE NOT-T-COMPLEMENT CASE

In this section we are concerned with the determination of (2.D). For
convenience, we say that the pair (G, T) is a (2.D)-pair of rank n, if the
following both hold:

(A) T is asubgroup of G such that
[G/T] =W,;
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(B) the socle Soc G of G is a minimal normal subgroup of G, is
non-abelian, and satisfies

(Soc G) N T = {id} and (Soc G)T # G.
Thus
Q(2.D) = {n > 16: there exists a (2.D)-pair of rank n}.

Our first step in the study of Q(2.D) is to translate the problem into the
language of twisted wreath products.

DEerFINITION 4.1.  We say that the tuple (H, T, F, Q, ¢) satisfies (4.1), or
is a (4.1)-tuple, if the following all hold:

(i) T is a maximal subgroup of the group H and T is core-free
in H;
(i) F is a non-abelian simple group;
(iii) Q is a core-free subgroup of H satisfying H = QT;
(iv) ¢ is a homomorphism Q — Aut F such that $(Q N T) > Inn F

and such that the restriction ¢lo~7:Q N T — Aut F has no strict exten-
sionsin T.

Moreover, we say that the tuple (H, T, F, Q, ¢) is a (4.1)-tuple of rank n, if
it satisfies (4.1) and there exist precisely n — 1 homomorphisms
¢, d,_1: 0 = Aut F (one of which is ¢) such that for each i =
1,...,.n—1

~

¢i|QmT = ¢|QmT and ¢, = 5, (4.A)

where 5, $ are the homomorphisms Q — Out F obtained by composing
¢,;, ¢, respectively, with the natural quotient map Aut F — Out F.

The subset Q(4.1) of N is defined by
Q(4.1) = {n > 16: there exists a (4.1)-tuple of rank n}.

The significance of (4.1)-tuples is clear from the following result.
THEOREM 4.2. Q(2.D) = Q(4.1).

The proof of the theorem will be constructive; given a (4.1)-tuple of rank
n, we will construct a (2.D)-pair of rank n, and conversely, given a
(2.D)-pair of rank n > 3, we will construct a (4.1)-tuple of rank n. Before
doing so we need to fix some notation concerning (2.D)-pairs and to give
some preparatory lemmas.

Suppose that (G, T) is a (2.D)-pair of rank n so that there are precisely
n proper overgroups of T in G each of which is maximal in G. Let
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M = Soc G. Set H, = MT which is then the unique maximal subgroup of
G containing both 7 and M; let the other n — 1 distinct maximal
subgroups of G containing T be H,,..., H,_,. Let F be a fixed minimal

normal subgroup of M; observe that F is a non-abelian simple group since
M is non-abelian and is a minimal normal subgroup of G.

LEMMA 4.3. Suppose that (G,T) is a (2.D)-pair of rank n; let M,
H,, ..., H, be as above. Then the following all hold:

() G=MH, foralli=1,...,n—1;

(i) MnH ={id} foralli=1,...,n -1,

(iii) CoregH, ={id} foralli=1,...,n — 1;

(iv) ifn =3, then Core, T = {id} foralli=1,...,n -1,

(V) M is the unique minimal normal subgroup of H,,.

Proof.  Suppose that 1 <i<n — 1. Now MH, is a subgroup of G
containing M, H;, and T. As H, is the unique maximal subgroup of G
containing both M and T, and as H, # H,, we have that G = MH, and so
(i) holds. To see (ii) observe that M N H, is a subgroup of M normalized
by T. As T is maximal in H, = MT and as M N T s trivial, we deduce
that the only non-trivial subgroup of M that is normalised by T is M
itself. If M N H; = M then H, > MH,; = G, a contradiction. Hence M N H,
is trivial as required. Part (iii) now follows since M is the unique minimal
normal subgroup of G.

Suppose now that n > 3. Let « be the natural quotient map G — G /M.
Parts (i) and (ii) of the lemma imply that the homomorphism «|y, : H; —
G /M obtained by restricting « is an isomorphism. Let ¢ : H, — H, be
the isomorphism obtained by composing aly, : H, = G/M with the in-
verse of a|y, : H, = G /M. Note that | is the identity map on T. Thus
if N is a non-trivial normal subgroup of H, contained in T, then y(N) = N
is a normal subgroup of H, contained in T'; it follows that N is a normal
subgroup of {H,, H,). The maximality of H, and H, in G implies that
G =(H,, H,). Hence N is a normal subgroup of G. But this is a
contradiction as M is the unique minimal normal subgroup of G and
M £« T. So we have shown that T is core-free in H,. Likewise T is
core-free in H; forall i = 1,...,n — 1 and (iv) holds.

Finally we verify (v). As noted above, M is the only non-trivial subgroup
of M that is normalised by T, and so is certainly a minimal normal
subgroup of H, = MT. By definition M is the unique minimal normal
subgroup of G and is non-abelian, whence C;(M) is trivial. Hence
Cy (M) is also trivial, and the uniqueness of M follows.

LEMMA 4.4.  Let H be a group with subgroups Q, T satisfying H = QT let
F be any group with a trivial centre, and let ¢ be a homomorphism



24 BADDELEY AND LUCCHINI

Q — AUt F; let X be the twisted wreath product F twr,H. Then the comple-
ments in X to the base group B, of X that contain T are in one-to-one
correspondence with the homomorphisms & : Q — Aut F satisfying

§|QmT: ¢|QmT and &= (2;, (4-8)

where &, ¢ are the maps Q — Out F obtained by composing &, ¢, respec-
tively, with the natural quotient map Aut F — Out F.

Remark 4.5. The proof of Lemma 4.4 could be executed in the follow-
ing fashion: firstly, prove the special case in which Q = H, and, secondly,
deduce the result from this by using the results of [8]. We choose instead
to give a direct proof involving the construction of an explicit bijection
between the two sets involved as we feel this to be more illuminating.
However, we must stress that this is precisely the type of result that
depends on the ideas investigated in [8].

Proof of Lemma 4.4. As mentioned above, the proof is constructive: we
give an explicit bijection between the two sets. For convenience, let S,
be the set of complements in X to B, that contain 7, and let S, be the
set of homomorphisms £: O — Aut F satisfying (4.B).

We now set up some notation that will remain in force for the rest of
this proof. Let

map

Fy={feB,: f(x) =id, forall x & Q};

observe that F, is minimal among the normal subgroups of B, that are
normalised by Q and that are isomorphic to F (cf. Lemma 2.3 of [3]).
Identify F, with F via the map f+~ f(id,) for all f€F,, and let
X : Nx(Fy) = Aut F be the map induced by conjugation. Recall that X
can be written as the semi-direct product of B, by H; let a: X — H be
the map obtained by quotienting out B, so that «/|y is the identity map on
H. Let B:Aut F — Out F be the natural quotient map.

We claim that the restriction xlo of x to Q, which is indeed a subgroup
of Ny(Fp), is equal to ¢. To see this note that the definition of y ensures
that for x € F and g € QO

xX@ = fi(id,,),
where f € F, is such that f(id;) = x. However,

Fi(idy) = f(q) = f(id;)*?

and the claim holds.
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Suppose that L € S,,,,. Observe that al; is an isomorphism L — H
that restricts to give the identity map on 7 and to give an isomorphism
between N, (F,) and Nj(F,). (The latter holds since B, < Ny(F,) and
X =B,L = B,H imply that

Ny(Fp) = ByN,(Fp) = B¢NH(FQ)-)

Observe also that Q = N, (F,). We define ¢, :Q — AutF to be the
composition of (alNL(FQ))_l with X|NL(FQ>- We claim that ¢, € S,,. We
consider first the condition & lonr = dlonr. Let t € O N T; then a(t)
= t, whence

(1) = x(1) = o(1)

since xlo = ¢ as verified in the previous paragraph. We turn to the
condition ¢, = ¢. Since x(B,) = Inn F = ker g and since xlo = ¢ it is
straightforward to see that the diagram

a \NX(FQ)

Ny(Fp) —— Q

| s
AutF —" outF

commutes. Hence so does

alN(Fo)
N (Fp) — 0
[/XNMQ) ‘(55
B
Aut F — OutF

Recalling that «/|w,(r,) is an isomorphism N,(F,) — Q we deduce that é
is equal to the composition B o(XINL(FQ))o(aINL(FQ))’l. This composition
is precisely ¢ and so ¢ = &, as required.

Thus the map y : Sy, = Spap given by

L~ ¢ forall L € S

comp

is well-defined. We prove that vy is a bijection by exhibiting an inverse.
Suppose that ¢ € S,,. Given h € H we define f, € B, by requiring
that forall t € T

(1) = 674 E( ) (1 ) ), (4.C)
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where 0 : F — Inn F is the natural map taking y € F' to “conjugation by
y” (which is an isomorphism as F has a trivial centre by assumption) and
where x is any element of T such that ¢ *hx € Q. We must verify that f,
is a well-defined element of B,. We start by showing that the right hand
side of (4.C) is an element of F well-defined in terms of . Fix t € T.
Firstly, note that, as H = QT, elements x € T such that ¢t hx € Q do
indeed exist. If x, y € T are such that both ¢ */x and ¢~ 'hy are elements
of Q, then y = xg for some g € Q N T, whence

£(t hy) (1 hy) T = E(1 g (1 )
= () E(q) d(q) tb(t )

since both ¢ and ¢ are homomorphisms Q — Aut F. Now &lpnr =
$lonr, and it follows that £(¢~*hx)¢(t~*hx)~* is a_uniquely determined
element of Aut F. Moreover, the condition ¢ = ¢ implies that
EG ) p(t7thx) ™2 lies in Inn F whence 6~ (&t thx)p(t thx)™1) is a
well-defined element of F. Thus there exists some map f, : H — F satisfy-
ing (4.C). It remains to show that f, can be chosen so that f, € B,, and
moreover, that there is a unique such choice. If ¢t = sq for some s € T and
qeE 0, thenge Q0N T and

fh(s)cb(q) _ 071(g(s—lhy)(b(sflhy)—l)tb(q)l

where y € T is chosen so that s 'hy € Q. Here we can assume that y = x
where x is chosen so that ¢t ‘hx € Q since s ‘hx = gt "*hx. Thus

£i(5)" = 07 ((s o) (s~ ) )"

l)rb(q)

0 (£(q) € ) d(r o) ()
= fu(1)

since £(q) = ¢(g) and since conjugation by ¢(g) followed by #~* is the
same as 6! followed by the action of ¢(q). It follows that there does
indeed exist an element f, € B, satisfying (4.C); there is a unique such
element since if g € H, then we can write g = sq for some s € T and
q € Q whence

fu(8) =fh(s)d)(q)n

and the element f, € B, is determined by its values on elements of 7.
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We define the subset L, C X by
L;={f,h:he€H}.

We claim that L, € S and, moreover, that the map ¢ — L, is the

comp
inverse of .

We show firstly that L, is a subgroup of X. To see this we must show
that

L(F) =f, forallh,geH.

Suppose t € T and that x,y € T are chosen so that both ¢ 'hx and
t"thgy lie in Q. Then (+ *hx)~'(t thgy) =x'gy € Q and

(1)) Fag(t) = 07 (e ) (¢ Hhe) " £(t *hgy) b(1~hgy) )
61 (p(r h) E(x ') b(xgy) (1 M) )

Gt hx)t

_ _ _ -1

07 (x ) o(xey) )

= ()"

g
= f(h™'1)
n-t

= (fg) (1)
as required. Now L is clearly a complement to B, in X since |L,| = |H|
and since L, N B, is trivial. To see that 7' < L, we take 4 € T and show

that f, = idy,, that is, f,(r) = id for all 7 € T. To suppose that 1 € T
then x = h™'t € T satisfies " *hx = id, € O and so

filt) = 072 £(idg) é(idy) ') = id.

Hence L§ eSS

comp*
We now consider y(Lg): we must show that this equals ¢. As By <

Ny(F,) it is clear that
N (Fo) = {fyq:a = 0}
Choose f € Fj; then

F(idy )X = fra(idy,) = (£,41,) (idy)
= (£,*,)(q)
= ((f7 4, )(idyy)

— f(id,, ) " EHD _ g €D

)¢(q)
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since (4.C) with t =x =id; and h =q € Q shows that 6(f,(idy)) =
E(@dp(q)~. Thus x(f,q) = é(g) and it follows that y(L,) = &.

Finally we suppose that &= y(L) for some L Scomp We must show
that L,=L. Since T<L,, T<L and H = TQ, which implies that
X =Ny (F )T, we have that L = TN, (F )and L = TN,(F,). Given that
L and Lg have the same order it is sufﬂuent to show that N, (Fp) <
N, (Fp). So suppose that [ € N, (Fy); clearly we can write / = fg for some
fe B, and g € 0. We will show that f=f, where f, is defined with
respect to g_ v(L). Let x,t € T be such that t” 1qx € Q. Note that
t7' = f't"qx € N,(F,) as T <L and as B, normalises F,. Choose
g € F, and consider g(ld )&¢ M) By the deflnltlon of ¢ we have

g(id,) )07 — g(id,,) 0 = g (id)
— () er) “(idy)
= (£(1) tg(id) f(0)" "

whence 0(f(1)) = &(¢t qx)p(t 1gx)~t. As this holds for any t € T we
have f=f,andso [ =f,q € L,.
We have now finished the proof of Lemma 4.4.

Proof of Theorem 4.2. As already observed, it is enough to show that
given a (2.D)-pair of rank n > 3 there exists a (4.1)-tuple of the same rank,
and conversely, that given a (4.1)-tuple of rank n there exists a (2.D)-pair
of the same rank.

Suppose that (G, T) is a (2.D)-pair of rank n > 3. Let M, H,,..., H,,
and F be as defined immediately prior to Lemma 4.3. For each i =
1,...,n—1let Q;=Ny(F) and let ¢,:Q;, > Aut F be the homomor-
phism induced by the conjugation action of Q; on F. Choose and fix an
integer i such that 1 <i <n — 1; we claim that (H,,T,F,Q;, ¢;) is a
(4.1)-tuple. To see this we must verify that conditions (i)—(iv) of Definition
4.1 all hold.

Certainly (ii) holds. Now T is a maximal subgroup of H; by the
definition of (2.D)-pairs, and T is core-free in H, by Lemma 4.3(iv); hence
(i) holds.

Lemma 4.3(v) implies that T is transitive by conjugation on the simple
direct factors of M; as these are precisely the G-conjugates of F we
deduce that H; = TQ,. Lemma 4.3(iii), together with the maximality of H,
in G, implies that G, in its action on the coset space (G: H,) by right
multiplication, is a primitive permutation group. Furthermore, Lemma
4.3(i)—(ii) imply that M is a regular subgroup of G. (A permutation group
is regular if and only if it is transitive and the stabilizer of any point is
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trivial.) Thus the primitive permutation group G has a non-abelian and
regular socle; such primitive permutation groups are commonly referred to
as primitive permutation groups of twisted wreath type. The results of [14]
(see also [3, 8.4) imply that Q,, as the normaliser in a point-stabilizer of a
simple direct factor of the socle, is core-free in H,. (This deduction uses
the “Schreirer conjecture” and hence depends on CFSG.) We have veri-
fied that (iii) holds.

We finally consider (iv). Lemma 3.5 shows that there exists an isomor-
phism H, — F twr, T that maps T < H, to the top group T of the twisted
wreath product where o is the restriction of ¢, to O, N T = N, (F). As T
is maximal in H, it follows that 7" is maximal in Ftwr, 7T and by applying
Corollary 3.7 we deduce that (iv) holds.

We have shown that (H,, T, F, Q;, ¢,) is a (4.1)-tuple; we claim moreover
that it is a (4.1)-tuple of rank n. To see this, we once again use Lemma 3.5,
this time to deduce that there exists an isomorphism G — F twr,, H; that
maps M to the base group and H, to the top group of the twisted Wreath
product. It follows from Lemma 4. 3 that there are precisely n — 1 comple-
ments in F twr, H; to the base group that contain 7', namely, the images
of H,...,H,_, under this isomorphism. We can now apply Lemma 4.4 to
find that the rank of the tuple is indeed n.

Conversely, suppose that (H,T, F, Q, ¢) is a (4.1)-tuple of rank n. Let
X be the twisted wreath product F twr,H. We claim that (X,T) is a
(2.D)-pair of rank n. To verify this we must show that conditions (A) and
(B) given at the start of this section both hold.

Certainly T is a subgroup of X. We consider (B). Let B, be the base
group of the twisted wreath product X = F twry,H. By definition Q is
core-free in H, whence so is ¢ *(Inn F). Lemma 3.9, together with the
remarks made before its statement, implies that B, is the unique minimal
normal subgroup of X and so equals the socle of X. Now since 7T is a
proper subgroup of H, and since H complements B, in X, it follows both
that B, N T = {id} and that B,T # X. Hence (B) holds.

It remains only to show that [X/T]= M,. Let L be any proper over-
group of 7 in X. We consider L N B, which is a subgroup of B,
normalised by T. Set o = ¢|p~r and observe that there exists an isomor-
phism B,T — F twr, T given by

t—t forallt e T
and f-flreB, forall feB,,

where B, is the base group of Ftwr, T. Applying Corollary 3.7 to
condition (iv) of Definition 4.1, we deduce that T is a maximal subgroup of
B,T, whence the only T-invariant subgroups of B, are B, and {id}. Hence
either L N B, is trivial or L > By.
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If L >B, then B,T <L. Now the proper subgroups of X =B, H
containing B,T are in one-to-one correspondence with the proper sub-
groups of H containing T; hence L = B,T as T is maximal in H.

Suppose now that L N B, is trivial. Let « be the natural map X — H
obtained by quotienting out B,. Observe that «(L) = L, and so «(T) is a
proper subgroup of «a(L). However, a(T) = T and is a maximal subgroup
of H; we deduce that «(L) = H, whence L is a complement in X to B,
that contains 7. Lemma 4.4 implies that precisely n — 1 such complements
exist.

We have shown that any non-trivial overgroup of 7 in X is either equal
to B,T, or is a complement to B, in X containing 7, and also that
precisely n — 1 such complements exist. Hence [ X/B,] = M, as required.

Remark 4.6. Let (H,T,F,Q, ¢) be a (4.1)-tuple of rank n. Then, as
shown in the above proof, (F twr,H,T) is a (2.D)-pair of rank n with
B, = Soc(F nNr¢H). Using Lemma 4.3 in an argument analogous to that
used in the fourth paragraph of the above proof, we deduce that both
Ftwr,H and F twr,, .7 in their actions on respectively the coset spaces
(Ftwr,H: H)and (F twry,,,T:T) are primitive permutation groups of
twisted wreath type.

Having reduced the problem of determining Q(2.D) to that of determin-
ing Q(4.1), it is not yet clear that we have made any advance in our
attempt to reduce to questions concerning simple groups. We now correct
this.

DEerFINITION 4.7. Let Q(4.7) be the subset of N given by

there exists a (4.1)-tuple
O(4.7) ={n=>=16: (H,T,F,Q,¢)ofrank n
with H almost simple

THEOREM 4.8. Q(4.1) = Q(4.7).
This is an immediate consequence of the following proposition.

PROPOSITION 4.9.  Suppose that (H,T, F,Q, ¢) is a (4.1)-tuple of rank
n > 3, and moreover that |H| is minimal among all (4.1)-tuple of rank n.
Then H is almost simple.

Before proving the proposition we fix some notation and give some
preparatory results.
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Suppose that (H, T, F, Q, ¢) is a (4.1)-tuple of rank n. Let ¢;,..., d,_,
be the n — 1 homomorphisms Q — Aut F satisfying (4.A); let o : 0 N
T - Aut F be the common restriction of ¢,...,¢,_ ;. Set V=
$~1(Inn F). The condition ¢, = ¢ implies that ¢, (Inn F) = ¢~ *(Inn F)
=Vforalli=1...,n—1.

LemmA 4.10.  Suppose that (H, T, F,Q, ¢) is a (4.D)-tuple of rank n; let
V,o,and ¢,,..., ¢,_, be as above. For a subgroup K of Q, let K denote the
image of K under the quotient map

0 - Q/m ntker ¢,.

Then V = F" 1, the images Iier ¢y, ..., ker¢,_, are the n — 1 distinct
maximal normal subgroups of V, and V' N T= F complements each ker ¢,
inV.

Proof. Since o(Q N T) = Inn F by assumption, we have c(V N T) =
F. Let 1<i<n—1; since ¢lonr=0 we have ¢(VV)=InnF =
(V' N T), whence V' = (ker ) (VN T) and V/ker ¢, = F. As ker o =
(ker ¢;) N T, it follows that "N T=F, that N T complements each
ker ¢, in V and that 7’/ Kker ¢,= F. The latter implies_that, for each
i=1,. — 1,ker ¢, is a maximal normal subgroup of ¥ with quotient
F; we claim that they are all distinct. Suppose that 1 < i <j < n are such
that ker ¢, = ker ¢,. Clearly this forces ker ¢; = ker ¢,. Choose v € V. As
V = (ker ) (VN T), we can write v = ut where u € ker ¢, = ker ¢, and
t € T. Thus

$i(v) = di(u)di(t) = idpy po(t) = ¢j(u)¢j(t) = ¢j(”)’

whence ¢l = gbjly. As any automorphism of F is determined uniquely by
its action on F, or equivalently by its conjugation action on Inn F, this
forces ¢, = ¢;, whence i = j as required.

We have shown that IV has n — 1 distinct maximal normal subgroups
that have quotient F and that have a trivial common intersection. This
implies that 7 = F"~! and we are finished.

COROLLARY 4.11.  Suppose that (H, T, F, Q, ¢) is a (4.1)-tuple of rank n;
let V be as above. Then the following all hold.:
(i) ker ¢; = ker ¢, if and only if i = j;
(i) in any chief series of Q there are at least n — 1 chief factors
isomorphic to F,
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(iii) if K is a normal subgroup of V satisfying K(ker ¢,) =V for all
i=1,...,n—1, then

n—1
K( N ker d),.) =
i=1
Proof. Parts (i) and (ii) are immediate; (iii) follows by considering the

normal subgroups of F"~ ! = V/(N"_}! ker ¢,).

LEMMA 4.12.  Suppose that (H, T, F, Q, ¢) is a (4.1)-tuple of rank n > 3
and that L is a subgroup of H. Let ~ denote reduction modulo Core; Q.
Suppose further that the following all hold:

@ Q0<L;
(b) Core, Q < N} ker ¢;
¢ LNT<_ . L.

max

Then (L,L N T,F,Q,n) is a well-defined (4.1)-tuple of rank n, where 7 is
the unique map satisfying 7(q) = ¢(q) for all g € Q.

Remark 4.13. Recall from Remark 4.6 that for each i = 1,...,n — 1
the twisted wreath product Ftwr, H in its action on the coset space
(F twry H: H) is a primitive permutation group of twisted wreath type. In
the terminology of [3, Sect. 8] a subgroup L of H satisfying (a) and (b) of
the above lemma is a “‘balanced subgroup” of each such twisted wreath
product. The results of [3] show that non-trivial balanced subgroups exist if
and only if the primitive permutation group F twr, H possesses a non-triv-
ial blow-up decomposition (in the sense of [12]). The above lemma works
by essentially using the blow-up decomposition to reduce to a smaller
primitive permutation group of twisted wreath type, namely F twrnz.

_Proof of Lemma 4.12. We start by showing that the tuple
(L,LNT,F,Q,n) is well-defined. Note that Core, Q is a normal sub-
group of L and so both L and the map L — L, [ — [ are well-defined.
Thus given (a) both Q and L N T are well-defined. By (b) we have
Core, O < ker ¢ and so 7 is also well-defined.

We now show that (L,L N T, F,Q, n) is a (4.1)-tuple, i.e., that condi-
tions (i)—(iv) of Definition 4.1 all hold.

Given (c) we need only verify that Z N T is core-free in L to show that
(i) holds. Suppose not, i.e., that Core (L N T) is non-trivial. Then there
exists a subgroup N of (Core, Q)/(L N T) that is normalised by L and
that strictly contains Core, Q. In particular, N is normalised by Q. As
usual set V' = ¢, *(Inn F) which is independent of i by (4.A). Now the
facts that H = QT, that ¢,(Q N T) > Inn F, and that ¢,lo~7 has no
strict extensions in T together imply that ¢,(Q) > Inn F and that ¢, has
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no strict extensions in H. Lemma 3.12, together with the remarks immedi-
ately preceding it, implies that either N < ker ¢, or ¢;(N N Q) = Inn F. If
the former then certainly N < Q, whence N < Core, Q as N is nor-
malised by L. Thus we may assume that ¢;(N N Q) > Inn F whence we
have

V= (VnN)(kerd¢,) foralli=1,...,n — 1.

Now V' < Q and so V' also normalises N, whence VN N is a normal
subgroup of V. Applying Corollary 4.11(iii) we deduce that

V=(VAN)

n—1
N ker gb,.).

i=1

Recall that Core; QO < N < (Core, Q)(L N T). Since by (b), Core, O < V'
we see that V' N N < (Core, QXV N T); again using (b) it follows that

n—1
N ker ¢, ].

i=1

V=(VnT)

But this gives a contradiction for n > 3 as by Lemma 4.10
V/Niziker ¢ = F'~'  while
(VN T)NZE ker /N2 ker ¢, = F.

That (ii) holds is immediate. We turn to (iii). Since H = QT and Q < L
by (a), we have

L=LnNn((QT)=0Q0(LNT)

whence L = Q(L N T); as Q is, by the definition of Core, L, a core-free
subgroup of L we deduce that (iii) holds. We turn to (iv). We claim that

LNTNnO=0nT.

Certainy ONT<L N TN Qsince Q < L. Suppose that x € L N T and
q € Q are such that ¥ =g. Then x = qu for some u € Core, Q and
consequently, u € Q whence sois x = qu and x € Q N T as required. We
deduce that

nLNTNQO)=n@NT)=¢(QNT)=InnF

and that the restriction 1|~ possesses a strict extension in L N T if and
only if the restriction ¢l 7 possesses a strict extension in L N 7. As the
latter does not possess a strict extension even in T we see that (iv) holds.
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It remains to show that the (4.1)-tuple (L,L N T, F, O, n) has rank n.
Define a map « from the set of homomorphisms Q — Aut F with kernel
containing Core, QO to the set of homomorphisms Q — Aut F given by

a(£)(q) =¢&(q) forallg e Q.

It is straightforward, and we leave it to the reader, to show that « restricts
to give a bijection between the set of homomorphisms ¢:Q — Aut F
satisfying

§|QmT:¢|QnT and &= ¢,

and the set of homomorphisms £ :Q — Aut F satisfying

where as usual ~ denotes composition with the natural map Aut F —
Out F. Hence the rank of (L,L N'T,F,Q,n) is equal to the rank of
(H,T,F,Q, ¢) and we are finished.

Proof of Proposition 4.9. In Remark 4.6 we noted that F twr,H in its
action on the coset space (F twr,H : H) is a primitive permutation group
of twisted wreath type. The results of [3] give a great deal of information
about H, Q, and ¢. In particular, Theorem 5.4 of [3] implies that:

(i) Soc H is a minimal normal subgroup of H and is non-abelian;

(i) if K is the largest normal subgroup of Soc H that is contained
in O, then

0 < Ny(K) = Ny(Csoe i (K)) and ker ¢ = Cpy(Csoe y(K));

(iii) if Q does not contain a maximal normal subgroup of Soc H,
then ker ¢ is determined by knowledge of H and V' = ¢~ (Inn F) (cf. [3,
6.4);

(iv) if Q does contain a maximal normal subgroup of Soc H, then
E # F where E is any minimal normal subgroup of Soc H; in fact, F is
isomorphic to a proper section of E (cf. [3, 9.13(1)]).

Let E be a minimal normal subgroup of Soc H not contained in Q: this is
possible as Q is a core-free subgroup of H. Note that E is a non-abelian
simple group as by (i), Soc H is a non-abelian minimal normal subgroup of
H. Set L = N,(E). It is our intention to apply Lemma 4.12 and to do this
we must show that conditions (a)—(c) of that lemma all hold.

Recall that by supposition n > 3, whence ¢,, ¢, both exist and may
both play the role of ¢. Thus Corollary 4.11 implies that ker ¢ is not
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determined by knowledge of H and ¥/, whence by (iii), O contains some
maximal normal subgroup K of Soc H. As E « Q we must have K =
Csoc n(E) < Q. By (ii), Q < L = N, (E), whence (a) holds, and moreover,
C,(E) < ker ¢ < Q. Now C,(E) is a normal subgroup of L = N,(E) and
so Cy,(E) < Core, Q; furthermore, the conjugation action of L on E
induces an isomorphism between the quotient L /C,(E) and some sub-
group of Aut E. Since E < L induces all inner automorphisms of E, we
see that L/CL(E) is almost simple with socle EC,(E)/E = E. Thus,
either C,(E) = Core, Q, or EC,(E) < Core; Q. The latter is impossible
as E « Q. Condition (b) follows since again by (ii) we have

Cy(E) <ker¢; foralli=1,...,n—1.

We turn to condition (c). Now T is a core-free maximal subgroup of H.
We deduce that H = (Soc H)T and that (Soc H) N T is a maximal
T-invariant proper subgroup of Soc H. As in Lemma 4.12 we let  denote
reduction modulo Core; Q = C,(E). By arguing as in the proof of the
Aschbacher—O’Nan—Scott theorem as given in [14], we deduce that either
Ny(E)= Ny(E) or that N;(E) <., Ny(E). If the latter then (c) holds
as required, and so we assume that the former holds, whence

NH(E) = Cy(E)N7(E).

As already noted by (ii) we have C,(E) < ker ¢, foreachi =1,...,n — 1,
and so

ker ¢, = C,(E)(kerp, N T) = Cy(E)ker o

is independent of i; given that n > 3 this contradicts Corollary 4.11.

We now finish by applying Lemma 4.12 to see that (L,L N T, F, Q, n) is
again a (4.1)-tuple of rank n. As L is almost simple and |L| < |H| the
minimality assumption implies that equality holds and that H = L is also
almost simple as required.

5. THE T-COMPLEMENT CASE: AN INITIAL
REDUCTION

In this and the following two sections, we are concerned with the
determination of Q(2.E). The purpose of the present section is to translate
the problem into the language of twisted wreath products. In so doing we
identify two natural subcases which are then dealt with separately in
Sections 6 and 7.
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Suppose that T is a subgroup of a group G such that for some n € N
the lattice [G /T] is isomorphic to M,, and such that the socle of G is
non-abelian, is a minimal normal subgroup of G, and is complemented by
T.Set M = Soc G. As M is a non-abelian minimal normal subgroup of G,
M is a non-abelian characteristically simple group and so is the direct
product of its minimal normal subgroups, each of which is non-abelian,
simple, and G-conjugate to any other. Let F be a minimal normal
subgroup of M. Set § = N(F) and let ¢: S — Aut F be induced by the
conjugation action of S on F. Applying Lemma 3.5 we see that there is an
|somorph|sm G — Ftwr,T mapping M to the base group BFT and T to

. In particular, it follows that BFT is the socle of F twr,7T" and so by
Lemma 3.9 the core of ¢ *(Inn F) in T is trivial. Furthermore, the above
isomorphism G — F twr,T also implies that

[BS - flid}], = [F twr,T/T| = [G/T] = m,. (5.A)

Let L be a ¢(S)-invariant non-trivial proper subgroup of F. Then, as
discussed in Subsection 3.4, we may view B¢ r as a T-invariant non-trivial
proper subgroup of B +- Moreover, if K is also a ¢(S)-invariant non-triv-
ial proper subgroup of F and K < L, then BKT <B r are a strlctly
comparable pair of T-invariant non-trivial proper subgroups of Bd) r- As
this contradicts (5.A) it follows that

[F/{id}] 45 = My, (5.B)

for some non-negative integer m < n. (Recall that M, is the lattice of
length 1.) Corollary 3.25 applies and we see that either m = 0 and
d(S) = Inn F, or m=1and ¢(S) N Inn F is a non-trivial proper sub-
group of Inn F. We consider these two cases separately, but before so
doing we briefly pause to note that in both cases ¢~ 1(Inn F) is non-trivial,
whence S is a proper subgroup of T as Core, (¢~ *(Inn F)) is trivial.

Firstly we suppose that ¢(S) = Inn F. Lemma 3.6 implies that the
T-invariant non- tr|V|aI proper subgroups of Bd) ; are precisely the sub-
groups of the form B T where p varies over all the strict extensions of ¢
in T. Noting that BFT < B{ if and only if o is in turn a strict extension
of p we see that the tuple (T, F, S, ¢) is a (5.1)-tuple of rank n in the
meaning of the following definition.

DerFINITION 5.1.  We say that the tuple (T, F, S, ¢) satisfies (5.1), or is a
(5.D)-tuple, if the following all hold:

(i) ¢ is a homomorphism S — Aut F such that ¢(S) > Inn F,
where S is a proper subgroup of T and where F is a non-abelian simple
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group;
(ii) ¢ *(Inn F) is a core-free subgroup of T;

(iii) S <nax R Whenever p: R — Aut F is a strict extension of ¢ in
T.

Moreover, we say that the tuple (T, F, S, ¢) is a (5.1)-tuple of rank n, if it
satisfies (5.1) and there exist precisely n strict extensions of ¢ in T.
The subset Q(5.1) of N is defined by

Q(5.1) = {n > 16: there exists a (5.1)-tuple of rank n}.

Secondly we suppose that ¢(S) # Inn F. As noted above (5.B) together
with Corollary 3.25 implies that

[F/id] o) =M

and that ¢(S) N Inn F is a non-trivial proper subgroup of F, and more-
over, that ¢(S) N Inn F is the unique ¢(S)-invariant such subgroup,
whence ¢(S) is a maximal subgroup of ¢(S)XInn F) and ¢(S) normalises
no non-trivial proper subgroup of ¢(S) N Inn F. Observe that BJ@)" " F
is a T-invariant non-trivial proper subgroup of B r- From (5.B) we deduce
that 7 is a maximal subgroup of (B '"" F)T or equivalently, that 7 is
a maximal subgroup of (¢(S) N Inn F)twr +T where ¢ ¢ is the compo-
sition of ¢ with the map ¢: N, (¢(S) N Inn F) = Aut(¢(S) N Inn F)
induced by conjugation. On noting that Corollary 3.25 also implies that
¢(S) N Inn F is non-abelian and characteristically simple, we see that the
ideas used to prove Corollary 3.7 can be adapted to show that T is
maximal in (¢(S) N Inn Fltwr,, ,T only if ¢(S) normalises no non-trivial
proper subgroup of ¢(S) N Inn F and there exists no strict extension of
to ¢ in T (with image in Aut(¢(S) N Inn F)). (The converse however only
holds if ¢(S) N Inn F is non-abelian and simple.)

Suppose now that X is a T-invariant non-trivial proper subgroup of
BFT, and suppose further that there does not exist an extension p of ¢ in
T with X = Bl ;. Since [B; ;/{id}], = M,, Lemma 3.6 implies that X =
B‘i’“)ﬂ nn £ It follows that the T-invariant non-trivial proper subgroups of

By r distinct from B! are all of the form B/, for some strict
extension p of ¢ in T Moreover, given a strict exten5|on p:R—>AutT
of ¢ in T, we have that

T <pax Ftwr,T <., Ftwr,T.
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This, together with Corollary 3.7, implies that p(R) > Inn F, whence
S < (kerp)S < p~*(Inn F)S <R,

and that § <,,, R. We deduce that S = (ker p)S whence ker p = ker ¢,
and that R = p~(Inn F)S whence p(R) = (Inn F)¢$(S) since as noted
above p(R) = Inn F. We have now shown that (T, F, S, ¢) is a (5.2)-tuple
of rank n in the meaning of the following definition.

DEFINITION 5.2.  We say that the tuple (T, F, S, ¢) satisfies (5.2), or is a
(5.2)-tuple, if the following all hold:

(i) ¢ is a homomorphism § — Aut F such that ¢(S) N Inn F is a
non-trivial proper subgroup of Inn F, where S is a proper subgroup of T
and where F is a non-abelian simple group;

(i) ¢ (Inn F) is a core-free subgroup of T;
(i) P(S) <oy (INN F)P(S);

(V) T <pax (6(S) N Inn Fltwr,, ,T where o ¢ is the composition
of ¢ with the map ¢: Ny x(d(S) N Inn F) — Aut(4(S) N Inn F) in-
duced by conjugation;

(v) if p: R — AutF is a strict extension of ¢ in T, then ker ¢ =
ker p and p(R) = (Inn F)¢(S).

Moreover, we say that the tuple (T, F, S, ¢) is a (5.2)-tuple of rank n, if it
satisfies (5.2) and there exist precisely n — 1 strict extensions of ¢ in T.
The subset Q(5.2) of N is defined by

Q(5.2) = {n > 16: there exists a (5.2)-tuple of rank n}.

THEOREM 5.3. Q(2.E) = Q(5.1) U Q(5.2).

Proof. We have already seen that
Q(2.E) € Q(5.1) U O(5.2).
To show the containment in the reverse direction it is sufficient to show
that if (T, F, S, ¢) is either a (5.1)-tuple of rank n or a (5.2)-tuple of rank
n, then

[F twr, T/T]| = M,

and Soc(F twr,T) = B, ;. The verification of this is left to the reader as it
requires little more than reversing the arguments used above.
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Remark 5.4. We note that an integral part of the above proof is to
show that Definition 5.2(iii) and (iv) together imply that

[F/id}] i) = M.

We close this section with a result that applies both to (5.1)-tuples and
to (5.2)-tuples.

LEMMA 55. Let (T,F,S,¢) be either a (5.1)-tuple of rank n or a
(5.2)-tuple of rank n + 1; in either case let p, . R, > AUt F fori =1,...,n
be the n strict extensions of ¢ in T. Suppose that X is an overgroup of S in T
such that

Corey (¢ *(Inn F)) < ker ¢.

Let ~ denote reduction modulo Core,(¢~*(Inn F)) and set m = [{i: R, <
X}. Then the condition

1n(3) = ¢(s) foralls € S

uniquely defines a homomorphism n: S — Aut F, and moreover, if
(T,F,S, ¢) is a (5.1)-tuple then (X,_F, S,_’q) is a (5.1)-tuple of rank m, while
if (T,F,S, ¢)isa(5.2)-tuple then (X, F,S,n) is a (5.2)-tuple of rank m + 1.

Proof. This is straightforward and, other than to say that Lemma 3.8 is
useful in verifying condition Definition 5.2(iv) in the relevant case, we
leave it to the reader.

6. THE T-COMPLEMENT CASE: SUBCASE ¢(S) = Inn F

In this section we study the problem of determining Q(5.1). We start
with a series of results leading to Corollary 6.3 which is an application of
Lemma 5.5.

LEMMA 6.1. Let (T, F, S, ¢) be a (5.1)-tuple. Suppose that the homomor-
phisms p,,...,p, - R = Aut F are distinct strict extensions of ¢ in T with
m > 2 and with a common domain. Then m = 2 and ker ¢ =
Coreg(¢~*(Inn F)).

Proof. Foreach i=1,...,m we have

ker ¢ = ker p, N S
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and so either ker ¢ = ker p, N ker p,, or S % ker p; N ker p,. If the latter
holds then

S < (ker p, N ker p,) <R,

and the maximality of S in R forces R = (ker p; N ker p,)S. However,
this is impossible as the distinct maps p,, p, agree both on S and on
ker p, N ker p,, and so also on their common domain R.

Hence ker ¢ = ker p, N ker p,. This implies that ker ¢ is a normal
subgroup of R. Let ~ denote reduction modulo ker ¢. Observe that the
homomorphisms R — Aut F extending ¢ are in a one-to-one correspon-
dence with the homomorphisms R — Aut F extending the map ¢: S —
Aut F defined by

b:q~ ¢(q) forallges.

Suppose that ker ¢ = ker p,. Then R = p,(R) is almost simple with
socle ¢~ 1(Inn F) = F. The “Schreier conjecture” implies that any homo-
morphism R — Aut F with image containing Inn F is a monomorphism.
Furthermore, it is clear that any monomorphism R — Aut F is deter-
mined uniquely by knowledge of its restriction to Soc R. Thus there exists
a unique homomorphism R — Aut F extending ¢, contradicting the hy-
pothesis that m > 2.

So ker p; > ker ¢ for all i = 1,..., m. Recalling that ker ¢ = ker p, N
ker p, it follows that p,(ker p,) is a non-trivial normal subgroup of p,(R),
whence p,(ker p,) contains Inn F; similarly, p,(ker p;) > Inn F. We con-
clude that the map R — (Aut F)? given by

P (py(r), pa(r)) forall r € R

is a well-defined monomorphism with image containing (Inn F)?. Note also
that the image of ¢~ *(Inn F) is equal to the diagonal subgroup {(x, x):
x € Inn F} of (Inn F)2. It is now straightforward to see that there are
precisely two homomorphisms R — Aut F extending ¢, namely those
corresponding to p; and to p,, and that Corez(¢~*(Inn F)) is trivial,
equivalently, that m = 2 and that ker ¢ = Coreg($~'(Inn F)) as required.

LEMMA 6.2. Let (T,F,S, ) be a (5.1)-tuple of rank n > 2, and for
i=1,...,mwith2 <m <nlet p;: R, > Aut F be distinct strict extensions
of pinT. Set X=<R,,...,R,). Then

Corey (¢ *(Inn F)) < ker ¢.

Proof. For convenience set C = Core (¢ (Inn F)). Now C is a sub-
group of T and is normalised by each R,. Since p,(R,) > ¢(S) > Inn F
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and since no strict extensions of p; in T exist, we have by Lemma 3.12 and
Remark 3.14 either that C < ker p;, or that

R, = Ny (C nker p;,C N p;*(Inn F)). (6.A)
Note that since C < ¢ *(Inn F) < S, we have

Cnkerp,=Cnker¢  and
Cnp (InnF)=Cn ¢ (InnF) =C.

Thus if C < ker p;, then C < ker ¢ as required, and we may therefore
suppose that (6.A) holds for all i = 1,..., m. It follows that

R, =N;(CnNnker¢,C) foralli=1,...,m.

Thus X = R;, and we finish by applying Lemma 5.5 to deduce that the
X-core of ¢ 1(Inn F) is ker ¢ which is certainly contained in ker ¢ as
required.

COROLLARY 6.3. Let (T, F,S, ¢) be a (5.1)-tuple of rank n > 2, and for
i=1,...,nlet p;: R, > Aut F be the n strict extensions of ¢ in T. Suppose
that |T| is minimal among all such (5.1)-tuples. Then T = {(R;,...,R,).

Proof. This is an immediate corollary of Lemmas 5.5 and 6.2.

The next result is highly significant in that it says that if (T, F, S, ¢) is a
(5.1)-tuple, then the socle of T is non-abelian and minimal normal in T,
and moreover, that each strict extension p of ¢ in T is uniquely deter-
mined by the subgroup (Soc T') N ker p.

THEOREM 6.4. Let (T, F, S, ¢) be a (5.1)-tuple of rank n > 3. Let N be
any minimal normal subgroup of T. Then the following all hold.:
i) ¢(NNS)>InnF,

(i) if P=N(Nnker¢, NN ¢ *(InnF)) and o:P — AutF is
defined by requiring that

o(x) = d(x)°Y  forallx €N N ¢~ (Inn F) andy € P,

then o is a well-defined extension of ¢ in T;

(iii) N is non-abelian and equals the socle of T (whence N is the unique
minimal normal subgroup of T);

(iv) any strict extension p: R — AUt F of ¢ in T is uniquely deter-
mined by knowledge of N N ker p: more precisely, if N N ker p = N N ker ¢
then p= o (where o is as in (ii)), and if N N ker p> N N ker ¢ then
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R = (N n ker p)S and p is given by
p(xy) = &(y)  forallx € NN ker¢andy € S.

Proof. Let N be a minimal normal subgroup of 7, and let p: R —
Aut F be any strict extension of ¢ in T. Suppose that N N kerp > NN
ker ¢. As p extends ¢ we have S N ker p = ker ¢, whence N N ker p £ S.
Thus (N N ker p)S > § and the maximality of S in R forces R = (N N
ker p)S. Noting that p(x) = id if x € ker p and that p(y) = ¢(y)if y € §
we see that (iv) holds for such a strict extension.

Suppose now that N < ker p, or equivalently that N = N N ker p. As p
extends ¢ we have N < § if and only if N < ker ¢. But by the definition
of (5.1)-tuples, ker ¢ is a core-free subgroup of T and so N « S, whence

Nnkerp=N>NNS=NnkerpnS =N n ker .

The preceding paragraph implies that R = NS and that p is the unique
strict extension of ¢ with N in its kernel. Let ¢:Q — Aut F be a strict
extension of ¢ distinct from p. Thus N « ker £, whence by Lemma 3.12
the image £(N N Q) is a non-trivial normal subgroup of £(Q). Recall that
£(Q) = ¢(S) = Inn F, which means that £(Q) is almost simple with a
unique minimal normal subgroup, namely Inn F. We deduce that ¢&(N N
Q) = Inn F. Now N < ker p whence

d(NNS)=p(NNS)<p(N) = {id}.

Hence NN Q « S and S < (NN Q)S < Q. The maximality of S in O
implies that

0 =(NNQ)s.

However, the latter is contained in NS = R and the maximality of S in R
forces Q = R. As by assumption » > 3 and £ was any strict extension of ¢
distinct from p this contradicts Lemma 6.1. We conclude that N « ker p,
and moreover, that ker p is a core-free subgroup of T.

On the other hand, suppose that N N § < ker ¢. Then it is clear that
the homomorphism p: NS — Aut F given by

p(xs) = ¢(s) forallxeNand s €S

is a well-defined strict extension of ¢ in T with N < ker p. This contra-
dicts the above conclusion and so ¢(N N S) is a non-trivial normal
subgroup of ¢(S). It follows that ¢(IN N S) > Inn F since ¢(S) is almost
simple with socle Inn F. We conclude that (i) holds.

We turn to part (ii). Given part (i) this is immediate from Remark 3.14.
From now on we assume that P and o are as defined in (ii). Note that
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either o = ¢ and P = S, or o is a strict extension of ¢ and S < . P.
Now the definition of o forces C;(N) < kero. If P =S then the fact
that S is a core-free subgroup of T implies that C(N) is trivial; on the
other hand, if P > § then, as we saw above, ker o is a core-free subgroup
of T, which again implies that C,(N) is trivial. Hence N is the unique
minimal normal subgroup of T and so N = Soc T. As part (i) implies that
N is non-abelian, we see that (iii) holds.

We turn to part (iv). Once again let p: R — Aut F be an arbitrary strict
extension of ¢ in T. In the first paragraph we saw that (iv) holds if
N N ker p strictly contains N N ker ¢, and so it remains only to show that
if NN kerp=N N kerd¢, then p = o. By (i) we have that (N N §) >
Inn F; it follows that

Nnp*(InnF)=Nn ¢ *(Inn F)

whence R < N, (N N ker ¢, N N ¢~ (Inn F)) = P. The maximality of S
in the domain of any strict extension implies that R = P. Choose x € R
and y € NN ¢ X(Inn F). Then y* € NN ¢ *(Inn F) and

d)(yx) = p(yx) = p()’)p(x) = (l)(y)"()‘),

As this is precisely the requirement defining o we see that p = o as
required.

We remark that given an (5.1)-tuple (T, F, S, ¢) of rank n > 3, then the
above theorem implies that 7 has a unique minimal normal subgroup,
whence the minimal normal subgroup N, the subgroup P, and the exten-
sion o of ¢ in T defined in the statement of the theorem are uniquely
defined. Hence the statement of the following result is sensible.

COROLLARY 6.5. Let (T, F,S, ¢) be a (5.1)-tuple of rank n > 3. Let P
and o be as defined in Theorem 6.4, and fori = 1,...,nlet p;: R; > Aut F
be the n strict extensions of ¢ in T. Suppose that T = {(R,,..., R, ). Then
T = NP.

Proof. Let N be the uniqgue minimal normal subgroup of 7. Theorem
6.4(iv) implies that for each i = 1,...,n we have either R, = P or R, =
(N N ker p;)S. In either case we have R; < NP whence

(R,,...,R,> < NP

whence the result follows.
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In what follows it proves more useful to assume that a given (5.1)-tuple
satisfies the conclusion of the above corollary, rather than to make the
stronger assumption that the hypothesis holds. For convenience we make
the following definition.

DEFINITION 6.6. We say that the tuple (T, F, S, ¢) is a small-(5.1)-tuple
of rank n if n > 3, the tuple is a (5.1)-tuple of rank n, and

T = (Soc T)N;((SocT) N ker ¢, (SocT) N ¢~ *(Inn F)).

Note that Corollaries 6.3 and 6.5 imply that
Q(5.1) = {n > 16: there exists a small-(5.1)-tuple of rank n}. (6.B)

Thus from now on we need only consider small-(5.1)-tuples.

Suppose that (T, F, S, ¢) is a small-(5.1)-tuple of rank n. Set N = Soc T,
let £ be a minimal normal subgroup of N, and let o, P be as defined in
Theorem 6.4(ii). In the following we see that P is transitive on the minimal
normal subgroups of N, and furthermore, that (E, N,T,F, P,o) is a
(3.18)-tuple. This is then used to show that if » > 4 then S, as well as P, is
transitive on the minimal normal subgroups of N, whence (E, N, T, F, S, ¢)
is also a (3.18)-tuple.

LEMMA 6.7. Let (T, F, S, ¢) be a small{(5.1)-tuple of rank n > 4. Then S
is transitive on the minimal normal subgroups of SocT.

Proof. As usual set N =SocT, and let o and P be defined as in
Theorem 6.4(ii). Also let E be a minimal normal subgroup of N. We
assume that S is intransitive on the minimal normal subgroups of N and
argue for a contradiction. Note that this assumption means that N has at
least two minimal normal subgroups and so E # N.

As T = NP we see that P is transitive on the minimal normal subgroups
of N, or equivalently that 7 = N,(E)P. It follows that (E, N, T, F, P, o)
is a (3.18)-tuple with T = NP. If P < NS then T = NS and the same
argument shows that S is transitive on the minimal normal subgroups of
N, contradicting our assumption. We deduce therefore that P ¢ NS. Thus

S<PN(NS)=(NNnP)S<P,

and the maximality of S in P implies that S = (N N P)S whence NN S =
N N P. It immediately follows that

Nnker¢=Nnkereo and NN¢ '(InnF)=Nno'(InnF).
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Let k, C, D, and 5 be as defined after Definition 3.18 in terms of the
(3.18)-tuple (E, N,T,F, P, o), that is, k: N;(E) - Aut E is induced by
conjugation,

C=«k(Nnker¢), D=«k(Nn¢*(InnF)),

and 1: Np, (C, D) — Aut F is induced by the conjugation action on the
quotient D /C together with the appropriate identification of D/C with
F.As P> S, the map o is a strict extension of ¢ in T, and so given that
(T,F,S, ¢)is a(5.1)-tuple o is equal to any map that extends o in T. Let
X4, ..., %, be aright transversal for N,(E) in P. Corollary 3.22 implies that

I
Nnkero=[[C% and YnP=Ynkere= [ C=~
i=1 {i: EYi<Y}

(6.0)

where Y is any proper normal subgroup of N. Let Y be any proper normal
non-trivial subgroup of N that is normalised by S. As N Nkeroc=N N
ker¢ we have YN P =Y N S < ker ¢. Thus the map p, : YS - Aut F
given by

Py ys = () forallyeYands eSS

is well-defined and extends ¢. Given (6.C) an easy calculation shows that

N N ker py, = ( 11 fo) XY. (6.D)
{i: EXigY}

It is then clear that if Y, is also a proper normal non-trivial subgroup of N
normalised by S with Y <Y, then p, strictly extends py , which in turn
strictly extends ¢. However as (T, F,S,¢) is a (6.1)- tuple any strict
extension of ¢ in T has itself no strict extensions in T, and we deduce that
the proper normal non-trivial subgroups of N that are normalised by S are
pairwise incomparable by inclusion. Hence S has precisely two orbits on
minimal normal subgroups of N.

On the other hand, if p: R — Aut F is a strict extension of ¢ in T
distinct from o, then by Theorem 6.4 we have R = (N N ker p)S and
N # N N ker p. Set Y = Core, (N N ker p) which is clearly a proper nor-
mal subgroup of N normalised by R. Given that R is equal to (N N ker p)S
we see that the normal subgroups of N normalised by R are precisely the
same as those normalised by S. As S has two orbits on minimal normal
subgroups we see that R normalises precisely two non-trivial proper
normal subgroups of N, and moreover, that given any minimal normal
subgroup E, of N there exists a non-trivial normal subgroup of N



46 BADDELEY AND LUCCHINI

normalised by R and not containing E,. Now p is a strict extension of ¢
and so p has no strict extensions in 7. Corollary 3.15(i) together with
Lemma 3.16(ii) implies that Y = Core, (N N ker p) is a non-trivial sub-
group of N. Thus p, : YS — Aut F as defined earlier is a strict extension
of ¢ in T. Also p is an extension of p, as p and p, agree on both § and
on Y. We conclude that p = p, as § is maximal in the domain of any
strict extension of ¢ in T. As there are only two possible choices for Y (as
a non-trivial normal proper subgroup of N normalised by R), there are
only two possible choices for p (as a strict extension of ¢ in T distinct
from o). This contradicts the hypothesis that (T, F, S, ¢) has rank n > 4,
and we are finished.

Construction 6.8. The input for this construction is a small-(5.1)-tuple
(T,F,S, ¢) of rank n with either T = (Soc T)S or n > 4. The output is a
tuple of objects which will be seen to be of key significance in the study of
(T,F,S, ¢).

As usual let N be the unique minimal normal subgroup of T'; let E be a
minimal normal subgroup of N and let « : N;(E) — Aut E be induced by
conjugation. Observe that (E, N, T, F, S, ¢) is a (3.18)-tuple—this is im-
mediate if 7 = NS and follows from the above theorem if n > 4. Let C,
D, P, and o be as defined immediately after Definition 3.18. (Note that
we do not yet know that o is the same map as defined in the proof of
Theorem 6.4; however, this will become clear in the course of proving
Theorem 6.10 below.) The output of the construction is then the tuple

(C.D,E, k(Ns(E)), k(Np(E)), $(5)).

For convenience, we shall refer to this tuple and its entries as being
obtained from (T, F, S, ¢) via Construction 6.8.

The main thrust of the following is to obtain necessary conditions on an
arbitrary (ordered) tuple (C, D, E, K, L, A) for it to be the tuple obtained
from some small-(5.1)-tuple via the above construction. The key conditions
pertain just to C, D, E, and K and are given in Definition 6.9, while the
remainder are given in Definition 6.17. Obviously we would also like such
conditions to be also sufficient, but we are able only to achieve this in
some special cases. The chief obstacle to ensuring sufficiency in all cases
lies in attempting to construct a suitable small-(5.1)-tuple given a tuple
obtained from a small-(5.1)-tuple (T, F,S, ¢) satisfying T # (Soc T)S.
(Note that we do not necessarily want to reconstruct the original tuple, but
rather any small-(5.1)-tuple of the same rank.) However, we do not view
this to be a big problem as it is easy to see that if (T, F,S, ¢) is a
small-(5.1)-tuple of rank n > 4 with T # (Soc T')S, then ((Soc T)S, F, S, ¢)
is also a small-(5.1)-tuple but of rank n — 1 instead of rank n.
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DEFINITION 6.9.  We say that the tuple (C, D, E, K) satisfies (6.9), or is
a (6.9)-tuple, if the following conditions both hold:

(i) (C, D) is a non-abelian simple proper section of the non-abelian
simple group E with K < N, z(C, D);

(i) if (C, D) is strictly K-contained in the section (C,, D,) of E, then
(Cy, Dy) is a K-maximal section of E.

Moreover, we say that (C, D, E, K) is a (6.9)-tuple of degree d, if it satisfies
(6.9) and there exist precisely d sections of E strictly K-containing (C, D).
The subset A(6.9) of N is defined by

A(6.9) = {d € N:there exists a (6.9)-tuple of degree d} .

Observe that we use the terminology degree and the notation A, rather
than rank and (), as we do not have an exact correspondence between
(5.1)-tuples and (6.9)-tuples. Instead, we have the following.

THEOREM 6.10. Let (T, F, S, ¢) be a small-(5.1)-tuple of rank n > 4 and
assume the notation of Construction 6.8. Then (C, D, E, k(Ny(E))) is a
(6.9)-tuple of degree d with D contained in k(Ny(E)) where

i= " if P = (kero N N)S;
n—1 otherwise.

Moreover, if p is an extension of ¢ in T then

/

Nnkerp= [T«(NnNkerp)",
io1

where x,, ..., x, is any right transversal for Ny(E) in S; also, the map
p = (k(NnNkerp), k(NN kerp)D)
is a bijection between the extensions p of ¢ in T satisfying N N kerp > N N
ker ¢ and the sections of E strictly K-containing (C, D).
COROLLARY 6.11. Q(5.1) c A6 U{n eN:n — 1 € A6.9)}
Proof. This is straightforward.

Proof of Theorem 6.10. Set K = x(Ng(E)). It is clear that E is a
non-abelian simple group, that (C, D) is a section of E isomorphic to the
non-abelian simple group F, and that D < K < N, (C, D). Thus Defini-
tion 6.9(i) holds provided only that (C, D) is a proper section of E, or
equivalently that D /C # E. However, if there exists at least one section of
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E strictly K-containing (C, D), then (C, D) is not K-maximal whence D /C
is certainly not isomorphic to E. Thus given that n > 4 and that, as
already noted, D < K, to prove the first assertion it is sufficient to show
that Definition 6.9(ii) holds and that there are precisely d sections of E
strictly K-containing (C, D) where d is as defined in the statement of the
theorem.

Asusual for i =1,...,n let p,: R, = Aut F be the strict extensions of
¢ in T. Notice that if P = (N N ker ¢)S then either P = S and o = ¢ or
P+ Sand N N ker o > N N ker ¢. On the other hand P # (N N ker o)S,
equivalently d = n — 1, if and only if o is a strict extension of ¢ with
N N kero = N N ker ¢. We relabel so that if d =n — 1, then p, = 0.
For i = 1,...,n we define subgroups C;, D, of E by

C,=x(Nnkerp) and D,=«(Nnp *(InnF)).
We claim that (Cy, D), ...,(C,, D,) are distinct K-maximal sections of E,
all strictly K-containing (C, D).

By the first part of Lemma 3.16 we see that the sections (C;, D,) all
K-contain (C, D). Recall that d >n —1>3. If (C;,,D,) for i =1,...,d
are distinct K-maximal sections, then they must all strictly K-contain
(C, D) since if one is equal to (C, D), then (C, D) is K-maximal and so
equal to any section K-containing it. Now by Theorem 6.7 we have
T = N;(E)S, whence T = N;(E)R; for each i = 1,...,n. It follows that
(E,N,T,F,R;, p)is a(3.18)-tuple foreach i = 1,...,n. Let x,,..., x; be
a right transversal for Ng(E) in S, and so also for N (E) in R;. As each p,
has no strict extensions in T we deduce from Proposmon 3.20 that (C;, D))
isa (N, ,-(E)) -maximal section of E, and from Corollary 3.22 that

!
Nnkerp,=[[Cq foralli=1,...,n. (6.E)
j=1

By Theorem 6.4 the map p; is uniquely determined by the subgroup
N n ker p;, whence the subgroups Ci,...,C, are distinct. Suppose that
N N ker p; > N N ker¢. Then by Theorem 6.4 we have R, = (NN
ker p,)S, whence k(N (E)) = C,K. By Proposition 3.11, the section (C;,, D)
is K-maximal if and only if it is C;K-maximal, and so to verlfy the claim it
is enough to show that N N ker p, > N N ker ¢ fori = 1,...,d, or equiv-
alently, that if p is a strict extension of ¢ in T with N N ker p=NnN ker¢
then d =n — 1 and p = o. Suppose that p is such an extension. Note
that the deduction p = o follows from Theorem 6.4 provided only that the
subgroup P and the map o are precisely the same as those defined by
Theorem 6.4(ii). On comparing the two alternative definitions of P and o
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we see that they are the same if

I
Nnkerg=[[Cx. (6.F)
j=1

Given that d > 3, Theorem 6.4 implies that we may certainly relabel so
that R, = (N N ker p,)S for at least i = 1,2. It follows that

S < (Nnkerp, Nkerp,)S <R, NR,.
As p,, p, clearly agree on (N N ker p; N ker p,)S we have
(N N ker p; N Kker p,)S <R, foralli = 1,2,

whence the maximality of § in R, implies that S = (N N kerp, N
ker p,)S. We deduce that N N ker ¢ = N N ker p, N ker p,, whence by
(6.E) we have

!
Nnkero=[1(C,nC,)Y and  k(Nnker¢p)=C, NG,
j=1

As k(N N ker ¢) = C we deduce that (6.F) holds, and that p does indeed
equal o. Hence P # S and

N N kerp=Nnkero=N N ker¢,

whence P # (N N kero)S and d = n — 1 as required. We conclude that
the claim holds.

To prove the first assertion of the theorem it now remains only to show
that if (C,, D,) is any section of E strictly K-containing (C, D), then
(Cy, D) is equal to (C;, D,) for some i = 1,...,d. To see this suppose that
(Cy, Dy) strictly K-contains (C, D). Thus C, is a strict overgroup of C in
E, is normalised by K, and meets D in precisely C. It follows that

l
[1¢s
j=1
is a subgroup of N normalised by S and meeting N N ¢ *(Inn F) in
N N ker ¢. Define a map ¢ :(IT}_, C;)S — Aut F by
!

E:xy—> ¢p(y) forallxe [[Cyandy€S.
j=1
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Clearly ¢ extends ¢ and so either £ = ¢ or £ = p, forsome i =1,...,n.
Observe that N N ker £ = IT;_, Cy/ and that

k(N N ker &) = Cy # C = k(N N ker ),

whence N N ker ¢ # N N ker ¢. Recall thatif n >d =n — 1then o isa
strict extension of ¢, N N kero = N N ker ¢», and we have labelled so
that p, = o. Thus ¢ = p;, forsome i = 1,...,d and by (6.E) it follows that
C,=C, forsomei=1,...,d as required.

Finally we turn to the “Moreover” statement. The first part of this holds
by (6.E) and (6.F), while the second part follows by noting that in the
course of the above we have seen that if p is any extension of ¢ in T
satisfying N N ker p > N N ker ¢, then p is one of p,,..., p, and that
(C,,Dy),...,(Cy D,) are distinct and are the only sections of E strictly
K-containing (C, D).

Given a (6.9)-tuple (C, D, E, K) of degree d, we fix some notation which
will apply for the rest of this section. Let F be the quotient D/C; note
that by definition F is a non-abelian simple group not isomorphic to E. As
usual we identify F with Inn F and E with Inn E. Observe that there is a
natural action induced by conjugation of N, (C,D) on F=D/C; let
1 :Nay g(C, D) —» Aut F be the associated map. (In the situation where
(C, D, E, K) is obtained via Construction 6.8 applied with input (T, F, S, ¢)
(so that (E, N, T, F,S, ¢) is a (3.18)-tuple), then we note that the defini-
tion of m just given agrees with that given immediately after Definition
3.18 in terms of the (3.18)-tuple (E, N, T, F, S, ¢) subject to using ¢ to
identify D/C with F.) Let (C,, D,),...,(C,, D,) be the d sections of E
that strictly K-contain (C, D). Now for each i we have D; = C;D and so
we can identify the quotient D,/C; with F viathe map F = D/C — D,/C;
given by

Cx = Cix forall x € D;

let m,: Nay (C;, D;) = Aut F be defined in an analogous fashion to .
Note that if x € N, z(C, D) N N, 5(C;, D,) then

n(x) = n,(x).

LEMMA 6.12. Let (C,D, E,K) be a (6.9)-tuple of degree d. Then the
following hold:

(1) The tuple (C, D, E, DK) is a (6.9)-tuple of degree d.
(2 Ifd =2 and D < K then

D=Knyn'InnF)NnE and C=KnkernnkE.
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Proof. We start by noting that DK is, as implicitly assumed in the
above statement, a subgroup of N, z(C, D) since both D and K are
subgroups of N, z(C, D) and since D is normalised by K. Now the
definition of section containment is such that a section K-contains (C, D)
if and only if it DK-contains (C, D); part (1) follows from this observation.

To see (2) suppose that d > 2 and D < K. As o~ *(Inn F) = D(ker ) it
is enough to show that C = K N kern N E. For convenience set C, =
K N kern N E. Clearly C < C,. Suppose that C < C,. As n(C,) is trivial,
we have C, N D = C. Now K, and so also D, normalises C, and so
(Cy, CyD) is a section of E strictly K-containing (C, D); by the definition
of (6.9)-tuples (C,, D,) is a K-maximal section of E. Let (C;, D,) be a
section of E strictly K-containing (C, D) that is distinct from (C,, D,); this
is possible as d > 2. However,

Co=KnkerpnNE < (CK)nkernNE

since m; and n agree on K. The K-maximality of (C;, D,) implies that C;
equals (C;K) N kerm, N E, whence C, < C; whereupon the K-maximality
of (Cy, Dy) implies Cy, = C,. But the section (C;, D,) was chosen to be
distinct from (C,, D), a contradiction.

Construction 6.13. The input is a (6.9)-tuple (C, D, E, K) of degree
d = 2 with D < K, together with a subgroup A of Aut F that contains
1n(K) (where we assume the notation set out immediately prior to Lemma
6.12). The construction attempts to output a (5.1)-tuple defined in terms of
this input. More precisely, the construction outputs a tuple (T,F, S, ¢>) and
in Proposition 6.16 below, we give necessary and sufficient conditions for
this to be a (5.1)-tuple.

Set a = |A:n(K)|. We construct Sasa subgroup of (Aut E)1 S,.
fact, we construct S as a subgroup of K\ S, < Ny, z(C,D) 1| S,. Let n(‘”
be the epimorphism K1 S, = n(K)\ S, W|th kernel (kern N K)* in-
duced by . Choose (and fix) a right transversal «,(=id ), a,,..., a, for
n(K)in A,and let .: A - n(K) \ S, be the map defined by

Wa) = (aqaay),..., q,aa, )7,
where 7 € S, is defined by the condition
n(K)a,a=n(K)a,, foralli=1,...,a
Theorem 3.3 shows that . is a well-defined monomorphism. We now

define S to be the full inverse image in K\ S, under n® of «(A). Thus S
is a (not necessarily split) extension of (K N kern)® by A. Let ¢:8§ —
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Aut F be defined by
$(x) —a forall x €8,

where @« € A < Aut F is such that «(a) = n(x). Given our usual identi-
fication of E and Inn E, we see that E“ is a normal subgroup of
(Aut E) \ S,. We finish by setting T = E“S.

LEMMA 6.14. With the notation of Construction 6.13, the following all
hold:
(1) E“ is the unique minimal normal subgroup of T;
(2 E“Nkerd=CY
(3)  if we identify E with a subgroup of E° via the map

x = (x,idg,...,idg) forallx € E,

and let «k: Npy gy s(E) = Aut E be induced by conjugation, then
k(Ng(E)) = K and

#(x) = n(x(x))  forallx € Ny(E);

@) &E* N 8) = Core,(n(KNE) > InnF.

Proof. Itis clear that S < T is transitive on the simple direct factors of
E¢ < T,whence E“ is indeed a minimal normal subgroup of 7. Moreover,
as the centraliser in (Aut E) \ S, of E“ is trivial, we see that E“ is the
unique such subgroup, and so (1) holds.

By construction we have

ker ¢ = ker n@ = (K N kern)"“.

Thus E“ N ker ¢ = (K N kern N E)* and Lemma 6.12(2) implies that (2)
holds.

We turn to (3). Now S is defined as the inverse image under the
epimorphism 7™ : K1 S, - n(K) \ S, of the group 1(A4). Observe that
Ny 5 (E) contains ker n'® and that

n(Ng s (E)) = {(x1,....x,)m € n(K) \ S, : 17w = 1}.
Therefore on inspecting the definition of « we see that Ng(E) is precisely

the inverse image under n'“ of «(n(K)), whence the definition of ¢
implies that ¢(Ns(E)) is equal to n(K). Furthermore, if x € Ny s(E)
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then n‘“(x) is of the form

(n(k(x))....)w

for some 7 € S, while if y € K then «(n(y)) is of the form

(n(y),...)T

for some 7€ §,; thus if x € N;(E) and y € K are such that n‘“(x) =
un(y)), then we must have equality between n(«k(x)) and n(y). It follows
by the definition of ¢ that

n(k(x)) = ¢(x)  forall x € Ny(E).

To see the remainder of (3), namely that k(Ng(E)) = K, we note that
k(Ng(E)) is certainly a subgroup of K as § < K\ §,. Now by the above

n(k(Ns(E))) = d(Ns(E)) = n(K),

and so k(Ng(E)) = K if and only if k(Nz(E)) > kern N K. However, the
latter holds as N3(E) clearly contains (ker n(“)) N(K\S,) = (kernn K)~.

__Finally we consider (4). As ¢(S) Aandas E*isa normal subgroup of
T > §, we see that ¢(E“ N S) is a normal subgroup of A. By (3) we have

$(E* N S) = n(k(E* N §)) < n(x(E) N «(N5(E))) = n(E N K).

Hence $(E* N S) is contained in the A-core of n(K N E). On the other
hand, the definition of « implies that

(Core,(n(K N E))) < (n(K N E))" = 7@((KNE)"),

and this together with the definition of é ensures that Core (n(K N E)) is
contained in G(E* N S). Thus (E* N S) = Core (n(K N E)), and on
noting that n(K N E) contains n(D) = Inn F, part (4) follows.

Remark 6.15. There is a strong sense in which Construction 6.13
followed by Construction 6.8 has the effect of doing nothing. We leave the
precise formulation of what we mean by this statement, together with its
verification (of which part (3) of the above lemma is an essential part) to
the reader. We stress however that the composition in the other direction,
namely Construction 6.8 followed by Construction 6.13, does not have a
trivial effect.

PROPOSITION 6.16. Suppose that (C, D, E, K) is a (6.9)-tuple of degree
d > 2 with D <K, and that A is a subgroup of AutF containing n(K)
(where we assume our usual notation in relation to this (6.9)-tuple.) Let
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) be the corresponding output of Construction 6.13. Then
) is a (5.1)-tuple if and only if the following conditions all hold:

(I) foralli=1,...,d

(i) foralli=1,...,d
Core,(n(K N E)) = Core,(n,(N:(C;, Dy)));
(i)  either
Core,,(n(N:(C, D))) = Core,(n(K N E)) (6.G)

or
[CoreA( (N:(C, D))) /CoreA(n(KmE))] = M,. (6.H)
Moreover, if (T, F, S, $) is a (5.1)-tuple, then it has rank n where

"= d if (6.G) holds;
d+1 otherwise.

Proof. We start by noting that it is easy to see that the tuple (T,F,S, $)
satisfies the conditions of Definition 5.1(i)—(ii). So to prove the first
assertion it is enough to show that the three conditions of the statement
hold if and only if Definition 5.1(iii) holds.

As in Lemma 6.14(3) we identify E with a subgroup of E“ via the map

x = (x,idg, ..., idg) forall x e E.

Using Lemma 6.14(1) and Lemma 6.14(4) we see that (E, E*, T,F,R,p)is
a (3.18)-tuple with T equal to E“R whenever p: R — Aut F is an exten-
sion of ¢ in T.

In particular (E, E*, T, F, S, ¢) is a (3. .18)-tuple. Let the overgroup P of
S and the extension o : P - Aut F of ¢> in T be as defined immediately
prior to Lemma 3.19 in terms of this (3.18)-tuple. Note that since E N
ker ¢ = C* by Lemma 6.14(2), we in fact have P = Nz(E® N ker ¢, E“ N
$ *(Inn F)) and that o is defined by requiring that

b(x)7" = $(x?)

whenever x € E“ N ¢~ *(Inn F) and y € P. Note also that since T =ES
we have P = (E“ N P)S, whence o is a strict extension of ¢ if and only if
E‘*NP>E*“NS.
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Recall that for i =1,...,d the section (C, D) of E is strictly K-
contained in the section (C, D,). For each i we claim that the subgroup
C/ of E“ is normalised by S and that the intersection Ci' N S is contained
in kerf\b Certainly C{ is normalised by S as C is normallsed by K and
since S <K\1S,. Now if x € C/ NS then Lemma 6.14(3) implies that
(x) = T](K(x)) e n(C)); the Iatter is trivial and so the claim holds. Thus
fori=1,...,d the map p;: “S — Aut F given by

p; XS — $(s) forall x € Cf and x € §,
is a well-defined extension of ¢ in T = E“S. Moreover, by Lemma 6.14(2)
E*Nkerd = C* < C* < E* N ker p,

and so each such map is a strict extension of $ For convenience we use R,
to denote the domain C“S of p,.

Now let p: R — Aut F be any extension of ¢> in T and assume that p
itself has no strict extensions in T. Let x,(=id),..., x, be a right transver-
sal for Ng(E) in S. By applying Lemma 3 19 to the (3.18)-tuple
(E,E*, T, F, R, p) we deduce that

a
E*Nnkerp=[]X*~
i-1

for some X < E. By Lemma 6.14(4) we have ¢(E“ N §) > Inn F and so
E* N p Y (Inn F) = (E* N ker p)(E* N ¢~1(Inn F)).

Thus if X =C then E“Nkerp=E"‘nN keré and E° N p~(Inn F) =
E‘N q’) (Inn F), whence it follows that o, as defined above, is an
extension of p. On the other hand, if X > C then it is straightforward to
see that X is a subgroup of E normalised by K and satisfying X N D = C,
Whence the definition of (6.9)-tuples ensures that X = C; for some i =

,d and it now follows that p is an extension of p, (for the same i).
Hence the tuple (T, F, S, ¢) satisfies Definition 5.1(ii) if and only if all of
the following conditions hold:

@ S<,, R foralli=1,...,4d;

(b) p, has no strict extension in 7 forall i = 1,...,d;

(c) either P=SorS <, P.
Condition (a) is easily seen to be equivalent to condition (i) of the
statement. By applying Proposition 3.20 to the (3.18)-tuple

(E,E*T,F, R, p;) we see that (b) is equivalent to (ii). Recall that P =
(E“ N P)S. In the following we apply Lemma 3.19 to the (3.18)-tuple
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(E,E*, T, F,S, ¢). By Lemma 3.19(i) we have
E‘nkera= [](Enkern)"™,
i=1

where as above x,(= id),..., x, is a right transversal for Ny(E) in S. We

consider two cases, namely:

a

(1) Enkern>C,
(20 Enkern=C.

If (1) holds then E* N ker o > E* N ker $ and arguing as above for the
arbitrary extension p we see that o is an extension of p, for some i. In
particular, P > R, > S. Hence if (a)—(c), and consequently (i)—(ii) of the
statement, all hold then for some i=1,...,d we have P =R, >S
o = p;, and (iii) follows from (ii). Conversely, if conditions (i)—(ii) of the
statement hold, then we_have already seen that both (a) and (b) hold,
whence it follows that § <,,,. R; =P, and so _(c) holds. On the other
hand, if (2) holds, then E“ N ker o = E* N ker ¢ and so (¢) is equivalent
to the condition:

(©) either $(E*NS)=a(E°NP) or $(E*NS) is a maximal
$(S)-invariant subgroup of o(E® N P).

But by Lemmas 3.19(ii) and 6.14(iv) the latter is equivalent to (iii) of the
statement. We have now verified the first assertion of the proposition.

We turn to the “Moreover” statement. So we assume that (7, F, S, fﬁ) is
a (5.1-tuple of rank n. In the notation of the above we see that the set of
strict extensions of ¢ in T is contained in the set {p,,..., p;, o}. Con-
versely, py,..., p, are certainly distinct strict extensions of ¢; by inspect-
ing the above arguments, we see that o is strict extension of ¢ distinct
from p,,..., p, if and only if condition (2) above holds and S # P, and
that in turn this conjunction of conditions holds if and only if HE* N S)is
a maximal ¢(S)-invariant subgroup of o(E* N P), or equivalently if (6.H)
holds. The *“Moreover” statement now follows.

DerINITION 6.17. We say that the tuple (C,D, E, K, L, A) satisfies
(6.17), or is a (6.17)-tuple, if the following conditions (i)—(ix) all hold:

(i) (C,D,E,K) is a (6.9)-tuple of degree d > 2 with D < K (in
the following we assume that F, n, C,,...,C, and 7,,..., n, are defined in
terms of the (6.9)-tuple (C, D, E, K) as immediately prior to Lemma 6.12);
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(ii) n(K) <A < Aut F (note that conditions (i) and (ii) are suffi-
cient for the implementation of Construction 6.13: the output tuple
(T,F,S, ¢>) is referred to in condition (vii));

(i) K <L < Ny, :(C, D),
(iv) m(L)A is a subgroup of Aut F;
(v) either n(L) < A or

A <pax M(L)A,  n(K)=A4nmn(L), and
K nkern=L N kernx;

(vi) set X=Enkern and Y =E N n (Core,(n(N,(C, D)),
then one of the following mutually exclusive conditions holds:

(@ K=XK=YK-=1L;
(b) K<XK=YK=1L;
(c) K=XK<YK=L;
d K=XK=YK<L:
(vii) foralli=1,...,d

[Cfc] = Mo;
(viii) foralli=1,...,d
Core,(n(K N E)) = Core,(n,(Nx(C;, D,))):
(ix) if (vi)(c) above holds, then
[Core, (n(N:(C, D)))/Core (n(K N E))] , =

Moreover, we say that (C, D, E, K, L, A) is a (6.17)-tuple of rank n, if it
satisfies (6.17) and

N {d if (vii)(a) or (vii)(b) holds;
T \d+1 otherwise,

where d is the degree of the (6.9)-tuple (C, D, E, K).
The subset A(6.17(a)) of N is defined by

there exists a (6.17)-tuple of rank n

A(6.17(a)) = {” e N: such that (vi)(a) holds
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The subsets A(6.17(b)), A(6.17(c)), and A(6.17(d)) are defined analogously;
the subset A(6.17) is defined by

A(6.17) = A(6.17(a)) U A(6.17(b)) U A(6.17(c)) U A(6.17(d)).

Remark 6.18. It is immediate from the definition that if
(C,D,E,K,L,A) is a (6.17)-tuple of rank n, then (C,D,E,K) is a
(6.9)-tuple of degree n if Definition 6.17(vi)(@) or (viXb) holds, and of
degree n — 1 otherwise; also if Definition 6.17(vi)(d) holds, then
(C,D,E,K,K, A) is a (6.17)-tuple of rank n — 1 satisfying Definition
6.17(vi)(a). Hence

A(6.17(a)) U A(6.17(b)) < A(6.9),
A(6.17(c)) U A(6.17(d)) < {n:n — 1 € A(6.9)}
and
A(6.17(d)) c {n:n — 1 € A(6.17(a))}.

Observe that we use the notation A, rather than (2, as we do not have
an exact correspondence between (5.1)-tuples and (6.17)-tuples. Instead,
we have the following.

THEOREM 6.19. Let (T, F,S, ¢) be a small(5.1)-tuple of rank n with
either T = (Soc T)S or n > 4. As usual set N = SocT and let E be any
minimal normal subgroup of N. Let «, C, D, P, and o be as defined
immediately after Definition 3.18 in terms of the (3.18)-tuple
(E,N,T,F,S, ¢). Then the tuple

(C.D,E,k(Ns(E)), k(N7(E)). ¢(5))

obtained from (T, F, S, ¢) via Construction 6.8 is a (6.17)-tuple of rank n.
Moreover, the cases (a)—(d) of Definition 6.17(vi) are respectively equivalent
to cases (1)—(4) below:

(1) T=NSandS =(Nnkero)S =Pr;
(2) T=NSandS <(N N kera)S = P;
(3 T=NSand S =(N N kero)S < P;
(4) T+ NS.

COROLLARY 6.20. The following all hold:

D Q(.1) c A6.17).
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(2 Q(.1) c A6.17(a) U A(6.17(0) U AB.17() U {n:in — 1€
A(6.17(a))}.

(3) {n=16:n < A(6.17(a)) U A(6.17(b)) U A(6.17(c))} < Q(5.1).
Proof. Recall from (6.B) that

Q(5.1) = {n > 16: there exists a small-(5.1)-tuple of rank n}.

Part (1) is now immediate from Theorem 6.19, and part (2) follows from
part (1) and Remark 6.18.

To see part (3) suppose that (C, D, E, K, L, A) is a (6.17)-tuple of rank
n satisfying one of Definition 6.17(vi)(a)—(c). We wish to apply Proposition
6.16 to demonstrate the existence of a (5.1)-tuple of rank n. To achieve
this it is enough to show, with respect to (C,D,E,K) and A, that
conditions (i) and (ii) of Proposition 6.16 both hold, and that condition
(6.G) holds if one of Definition 6.17(vi)(@)—(b) applies, while condition
(6.H) holds if Definition 6.17(vi)(c) applies. Now (i) and (ii) of Proposition
6.16 are identical to (vii) and (viii) of Definition 6.17, respectively, and if
Definition 6.17(vi)(c) applies, then (6.H) is identical to Definition 6.17(ix).
So it remains to show that (6.G) holds if one of Definition 6.17(vi)(a)—(b)
applies. In either case we have

(E nkern)K = (E N n~*(Core,(n(Nz(C, D)))))K;
by intersecting both sides with E and then applying n we deduce that
n(K N E) = Core,(n(Ng(C,D)))n(KNE).
Thus n(K N E) > Core ,(n(N(C, D))) and so
Core,(n(K N E)) > Core,(n(Ng(C, D))).

As the containment in the reverse direction follows easily from the
observation that K < N, z(C, D), we see that equality, and hence (6.G),
holds as required.

The proof of Theorem 6.19 requires the following lemma.

LEMMA 6.21. Let I be a positive integer and let A, B, H be groups such
that

A<B and H < Aut(B')

with H transitive on the [ direct factors of B'. Identify B with the first direct
factor of B! and let L < H be the normaliser in H of B. Suppose that A' is
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invariant under H and that B does not normalise A. Then
[B[/A’]H = M, if and only if [B/A]L =M,.

Proof.  Firstly note that if A’ is invariant under H, then A is invariant
under L and the assertion is sensible.

Now the result in one direction is easy: if A, is invariant under L with
A <Ay, <B then it is straightforward to see that there is a group A0
invariant under H such that A’ <A <B'and A = A,

We consider the reverse direction. We assume that there are no proper
L-invariant subgroups of B that strictly contain A4 and suppose that X is a
strict H-invariant overgroup of A’ in B'. We must show that X > B’ as
equality then follows. Let k be the projection B’ — B which restricts to
give the identity map between the direct factor identified with B and B.
As A' < X we have 4 < k(X). Now k(X) is certainly invariant under L
as X is invariant under H, and so by assumption «(X) = B. Recall that B
has been identified with a direct factor of B'; consider X N B. This is
normalised by X, and so also by «(X) = B, is invariant under L, and
contains A. As B does not normalise A4, we have A < X N B; our
assumption then forces X N B = B. It follows that X contains the conju-
gates of B under H, and so X > B’ as required.

Proof of Theorem 6.19. We suppose that (T, F, S, ¢) is a small-(5.1)-
tuple of rank n with T = (Soc T)S or n > 4. As in the statement of the
theorem we set N = Soc T and let E be a minimal normal subgroup of N.
Observe that S is transitive on the minimal normal subgroups of 7' this is
immediate if T = NS and is implied by Theorem 6.7 if n > 4. (Our reason
for not proving a weaker theorem, namely one covering only those small-
(5.D-tuples of rank n > 4, is that we shall have cause later in the proof to
replace (T, F, S, ¢) by (NS, F, S, ¢): our hypotheses are thus chosen so
that they are still satisfied after such a replacement.) It follows that
(E,N,T,F,S, ¢)is a(3.18)-tuple, as is implicitly assumed in the statement
of the theorem. Let «, C, D, m, and P be as in the statement of the
theorem, i.e., as defined in terms of the (3.18)-tuple (E, N, T, F, S, ¢) as
immediately after Definition 3.18. Note that in the proof of Theorem 6.10
we saw that this definition of P and o is equivalent to that given by
Theorem 6.4(ii), that is, P = N(N N ker ¢, NN ¢ (Inn F)) and o: P
— Aut F is defined by requiring that

d(x)"Y = p(x?) forallxe NN ¢ '(InnF)and y € P.
We recall from (3.A) that k(N,(E)) < Ny, (C, D) and that
n(k(x)) =o(x) forall x € N,(E).
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In the following this will often be used without explicit mention. For
convenience we set K = k(Ng(E)), L = k(Np(E)), and A = ¢(S). Let
X4, ..., X, be aright transversal for Ny(E) in S with x; = idg. We consider
conditions (i)—(ix) of Definition 6.17.

Definition 6.17(i) follows from Theorema 6.10, while conditions (ii)—(iii)
of Definition 6.17 follow by the definition of C, D, K, L, and n. As noted
in the first paragraph we have T = N;(E)S, whence P = N,(E)S and

o(P) = o (No(E))a(S) = n(k(Np(E)))(S) = n(L)A.

As o (P) is certainly a subgroup of Aut F, Definition 6.17(iv) follows.

We turn to Definition 6.17(v); we suppose that n(L) < A whence A is a
proper subgroup of n(L)A. Recall that ¢(P) = n(L)A and that A4 =
¢(S) = o(S). Using the fact that S is either equal to P or maximal in P
we deduce that 4 <., n(L)A as required, and also that ker o = ker ¢.
Now n(K) is clearly contained in both 4 and n(L). To see the reverse
containment we choose w € n(L) N A. Then there exist x € N,(E) and
y € S with

w=mn(x(x)) = (y).

As o extends ¢ and as n(k(x)) = o(x) it follows that xy~* € ker o. We
have just seen that ker ¢ = ker o < S, whence x € § as y € S. We deduce
that x € Ny(E), that k(x) € K, and consequently that

w=mn(k(x)) € n(K)

as required. Finally to see the remainder of (v) observe that since n(«x(x))
= o(x) for all x € N,(E) we have

KNkern=k(Ng4(E)) and  LnNkern=«(Ne,(E)).

As ker¢ = ker ¢ we have equality between the above and Definition
6.17(v) holds.

Before verifying Definition 6.17(vi) we claim that P = § if and only if
K = L. In one direction this is obvious. To verify the other direction, we
suppose that § < P: we must show that K < L. Let p: R - Aut F be a
strict extension of ¢ distinct from o. (This is possible as the small-(5.1)-
tuple (T, F, S, ¢) has rank n > 3 by Definition 6.6.) Note that S nor-
malises

Ny nker (N N ker ¢, NN ¢ *(Inn F)) = N N ker p N P.

Given that p # o, Theorem 6.4 implies that R = (N N ker p)S, whence
the maximality of S in R forces

[N N ker p/N N ker ¢, = M,.
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Thus either N N ker p < P or
NnkerpnP=NnNKkeré. (6.1

If the former holds, then R = (N N ker p)S < P and the maximality of S
in P forces R = P. Choose x € NN ¢ *(Inn F)and y € R = P. Then

$(x)" = p(x)" = p(x”) = $(x")

as x” € NN ¢ X(Inn F) and as p extends ¢. On comparing this with the
definition of o we see that p = o, a contradiction. Hence (6.1) holds.

As o is a strict extension of ¢ in T, o itself has no strict extensions in
T and by Corollary 3.15, (N N kero, N N o X(Inn F)) is a P-maximal
section of N. Given (6.1) this implies that N N ker p is not normalised by
P. By Theorem 6.10, N N ker p is equal to IT!_, k(N N ker p)*. As P
does not normalise N N ker p it is clear that there exist an integer j with
1 <j <!l andelements x € k(N N ker p) and y € P such that

x*? & N N ker p.
Let 1 <k <! be such that x;yx;* € Ny(E). Then as x;, x, €S <P, we

have x,yx; ! € Ny(E), x*»*" € E, and
x5 & En (Nnkerp)™ =EnN (Nnkerp) = k(N nkerp).
By the definition of x we have x*** = x*®¥*" whence
k(X0 ") & Naweg(k(N N kerp))  and
L =k(Np(E)) % Nauwe(k(N N kerp)).

As the latter contains K we have L > K as required.
We now consider Definition 6.17(vi). As S is either equal to P or
maximal in P it is clear that one, and only one, of the following holds:
(A) S=(Nnkerag)S=(NnP)S=Pr;
B) S<(Nnkero)S=(NnNP)S=P;
(© S=(Nnkercg)S<(NnNnP)S=Pr;
(D) S=(Nnkero)S=(NNP)S<P.
Furthermore, as T = N;(E)S and as N < N,(E) we see that the above
cases can be equivalently described as:
(A Ny(E) = (N N ker 0)N{(E) = (N 0 P)Ny(E) = Ny(E);
(B) N(E) < (N N ker ¢)Ny(E) = (N N P)Ny(E) = N,(E);
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(€)' Ny(E) = (N N ker 0)Ny(E) < (N N P)NS(E) = N,(E);
(D) Ny(E) = (N N ker ¢)Ny(E) = (N N P)Ny(E) < Ny(E).

Now K = k(Ny(E)), L = k(Np(E)), and by Lemma 3.19() and (iii) we
have

X =«k(Nnkero) and Y=«k(NNP),

where X and Y are as defined in Definition 6.17(vi). Thus by applying « to
each condition, and noting that by the above claim P = § if and only if
K = L, we deduce that the conditions (A)'—(D)’ are respectively equiva-
lent to the cases (a)—(d) of Definition 6.17(vi).

Before proceeding with Definition 6.17(vii)—(ix) we assume that they do
hold and consider the consequences. Thus (C, D, E, K, L, A) is a (6.17)-
tuple. Using the information that either S =P or § <., P and that
T = NP (since (T, F, S, ¢) is a small-(5.1)-tuple), it is easy to see that the
cases (1)—(4) of the theorem are respectively equivalent to cases (A)—(D)
above. The “Moreover” statement follows.

Now observe that one of (1) and (2) holds if and only if P =(N N
ker o)S. From this together with Theorem 6.10 it follows that
(C,D,E,K, L, A)is indeed a (6.17)-tuple of rank n. We conclude that the
theorem holds provided only that the remaining conditions (vii)—(ix) of
Definition 6.17 all hold.

Note that Definition 6.17(vii)—(ix) depend only on the (6.9)-tuple
(C,D,E,K) and the subgroup A4 = ¢(S) of Aut F, and not on the
subgroup L of Aut E. Note also that if we replace the small-(5.1)-tuple
(T,F,S, ) by the small-(5.1)-tuple (NS, F,S, ¢) then the (6.9)-tuple
(C,D,E,K) and the subgroup A remain unchanged. Hence we may
assume that 7 = NS.

By Theorem 3.3 the map T — (Aut E) 1 S, given by

x o (k(xpg)), o k(X))

where 7 € S, is such that x,xx;;* € N;(E), is a monomorphism. We use

this to identify T with a subgroup of (Aut E) \ §,. Note that under this
identification we have

N={(y1,....n): 5, €E} = E,

E={(y,id,...,id):y € E} =E,
N(E)=TO{(yy,....,y)m€ (AUt E) \ §,: 17w = 1},

S<K\§ < (AutE) S,
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and the map « : N;(E) — Aut E is given by

KIX =y,

where x = (y,,..., y)m € N;(E). (These statements depend on our as-
sumption that x, ..., x; is a right transversal for Ng(E) in S with x, = idg.)
Also note that by Theorem 6.10 we have

!
Nnker¢=]]C*,
=1

L

whence given the above identification
Nnkerg={(y,....y):y,€C}=C"

It is clear that K \ S,, and so also S, normalises the subgroup (K N ker )’
of (Aut E) | S,. Set S, = (K N kern)'S and observe that NS, is a well-
defined subgroup of (Aut E) \ S, as N is a normal subgroup of the latter.
If x € (KN kern) NS, then x € Ny(E) and

$(x) = n(«x(x)) = id.
Hence (K N kern)' N S < ker ¢ and the map ¢, : S, > Aut F given by

by x5 = P(s) forall x € (KN kern)’andseS

is well-defined. We claim that (NS,, F, S,, ¢,) is small-(5.1)-tuple of the
same rank as (T, F, S, ¢), and moreover, that if we replace (T, F, S, ¢) by
(NS,, F, S,, ¢y) then the (6.9)-tuple (C, D, E, K) and the subgroup A of
Aut F remain unchanged. This is straightforward and left to the reader.
Hence we may assume that S > (K N ker n)".

As in the proof of Theorem 6.10 fori = 1,...,n we let p,: R, > Aut F
be the n strict extensions of ¢ in T labelled so that p, = o if n =d + 1,
where d is the degree of the (6.9)-tuple (C, D, E, K), and set C; = k(N N
ker p,). Given the current identification of T with a subgroup of (Aut E) \
S; we deduce from Theorems 6.10 and 6.4 that

Nnkerp =C! foralli=1,...,n

and that R, = C!S foralli=1,...,d.
We turn to Definition 6.17(vii). The maximality of S in each R, implies
that

[Cis[s] =m, foralli=1,....d. (6.J)
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Given that for i = 1,...,d we have C!S = (C.(K N kern))'S while S N
ker p;, = ker ¢ implies that

Sncl=Cc" and SN (C(Knkern)) = (Knkern),
we deduce that (6.J) is equivalent to either of

[clfc] =M, foralli=1,....d, (6K)

I

|(Ci(K kerm))'[(K  kerm)']

On the other hand, if a =|A4:n(K)| and S is defined in terms
of (C,D,E,K) and A as in Construction 6.13, then given that (K N
kerm)® < § we see that Definition 6.17(vii) is equivalent to either (6.K) or
(6.L), but with [ replaced by a and with S replaced by S. If for all
i=1,...,d the subgroup C.(K N kermn) does not normalise K N kern,
then Definition 6.17(vii) follows via two applications of Lemma 6.21—the
first deducing from (6.L) that [C,(K N kern)/(K N kern)ly =M, for
i =1,...,d, and the second deducing from this that (6.L) holds, but with /
replaced by a and with § replaced by S. Hence we may assume that for
some i = 1,...,d that KN kern is normalised by C,(K N kern). With
this assumption we claim that ker ¢ < Ny(E).

The claim essentially follows from the observation that, as ker ¢ is
normal in S, the ker ¢-orbits on minimal normal subgroups of N form a
system of imprimitivity for the action of S on such subgroups—this system
of imprimitivity, if non-trivial, can be used to construct a strict S-invariant
overgroup of (K N kern)' that is strictly contained in (C,(K N ker n))’,
contrary to (6.L). More formally, to see the claim we proceed as follows.
We assume that the transversal x,, ..., x;, for Ng(E) in S is chosen so that
forall j,k=1,...,1

M, foralli=1,...,d. (6.L)

x;x; ' € Ng(E)(kerp)  ifandonlyif  xx; ' € kerg.

(This can be achieved by firstly choosing a right transversal for N, ,(E) in
ker ¢ and a right transversal for Ng(E)ker ¢) in S, and then combining
these to give a right transversal for Ny(E) in S.) Define the subgroup W of
(C(K N kern))' by

[ _
W = {(yl,...,yl) IS (Cl-(Kﬂ kerm)) :y]-yk1 e Knkern
whenever x;x; ' € ker d)}.

Observe that W strictly contains (K N ker n)!, and moreover, that W is a
proper subgroup of (C,(K N ker 7))’ if and only if ker ¢ ¢ Ng(E). Hence,
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given that (6.L) holds, to verify the claim it suffices to show that W is
normalised by S. Choose x € S and y = (y,,...,y) € W. Let m € §, be
such that x;xx; ' € Ny(E) for all j=1,...,1 so that x is identified with
the element
(k(xyxey,t), oo (xpx,t))m
of (Aut E) 1 S,. Thus
yx — (y:()f%"ﬂxxl*l) . yl,;’(:yllwqxxl’l) )

Now
X Xjw =X XX 20 g x00 € No(E)xjx; 'Ng(E).
Recalling that ker ¢ is a normal subgroup of § > N(E), we see that

x;x; b is in Ng(E)ker ¢) if and only if x; x;} € Ny(E)ker ¢), and so by

J
the choice of transversal, x;x;* € ker ¢ if and only if x; x;; € ker ¢.

Suppose xjx,jl € ker ¢; to show that y* € W we must show that
— _1 -1
ij(}lwxxf D ()’,’;(Tfﬁ”’mk )) € K N ker .
Now

-1 k(Xpm-1Xx5 L)
-1 — -1 -1,-1 N
yx(jclj,,—lxxj ) (y:c()icklﬂflx,ck 1)) (y;f(jc{,,—lxxj XX xk,,—1)yk_171)

jm ke j
But
n(K(xj,,flxxj_lxkx_lx,:jfl)) = qb(x],,flxxj_lxkx Xiat)
= ¢>(xj,,71xx_1x,:}1), as x;x; ' € ker ¢,
= (X)X
= idayr, 8 XX € ker ¢,

whence k(x;,-1xx; 'x,x~x; 1) € K N ker m. Hence

-1
X —1xx; b k(x, -1xx;,
y/';'(iifﬂ J ) (yk,)g.*klﬂ k 1) )

(x 7—1xx_1) . A
)K ) since C; normalises K N ker 7,

€ ((K N kern)yj, 1y
€ (K N kerm) @50 since x, ixgt s € Ker ¢,

€ Knkern,  since K N kern isnormal in K = k(Ng(E)).
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We have now shown that § normalises W and so have verified the claim
that ker ¢ < Ng(E). We deduce that ¢(x,),..., ¢(x,) is a right transversal
for n(K), which equals ¢(N(E)), in A = ¢(S). It follows that / = a, and
more significantly, that if § is constructed using the transversal
d(xy), ..., #(x)), then S = §. Definition 6.17(vii) holds as it is now identi-
cal to (6.K) and as it does not depend on the transversal chosen in
Construction 6.13.

We turn to Definition 6.17(viii). Note that for each i =1,...,d the
tuple (E, N, T, F, R;, p) is a (3.18)-tuple such that p, has no strict exten-
sions in T. Applying Proposition 3.20 we see that

pi(N N R;) = Core, \(m(N:(C;, D)) foralli=1,....d,

where 7, is as defined immediately prior to Lemma 6.12. Now for each
i=1,..., d we have R, =C!S and C!= N n ker p;, whence p(R,) =
pi(S) = ¢(S) = A4 and

pi(NNR;) = pi(Cil(Nm S)) =p(NNS)=¢(NNS).

Clearly k(NN S) < KN E, while ¢(N N S) is a normal subgroup of
d(S) = A. Hence (N N S) = n(«(N N §)) is certainly contained in the
A-core of n(K N E). Summarising we have

Core(n;(Nx(C;, D;))) = p(NNR;) = (N N S) < Core,(n(KNE))

forall i = 1,...,d. Recalling that  and =, agree on K < N, z(C;, D,), it
is immediate that n(K N E) is contained in 7,(N(C;, D,)), whence the
A-core of the former is contained in the A-core of the latter. Definition
6.17(viii) follows. We also deduce that (N N ) is equal to Core ,(n(K N
E)).

Finally we turn to Definition 6.17(ix). We assume that Definition
6.17(vi)(c) holds, or equivalently that (C) above holds, i.e., that

S=(Nnkero)S<(NNP)S=P.
The maximality of S in P implies that
[N N PINNS| =M, (6.M)

Now S = (N N kero)S forces N N ker¢ =N N ker o, whence (6.M)
holds if and only if

[c(NNP)/d(NN S)]W) =M,.

At the end of the previous paragraph we saw that ¢(N N S) = Core ,(n(K
N E)), while by applying Lemma 3.19 to the (3.18)-tuple (E, N, T, F, S, ¢)
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we have that
o (N nP) = Core,(n((Ng(C, D))).

Definition 6.17(ix) follows and we are finished.

7. THE T-COMPLEMENT CASE: SUBCASE ¢(S) # Inn F

In this section we study the problem of determining Q(5.2). We start
with some easy consequences of the definition of (5.2)-tuples.

LEMMA 7.1. Let (T, F,S, ¢) be a (5.2)-tuple, and let p: R — Aut F be a
strict extension of ¢ in T. Then the following all hold.:

(i) T is a maximal subgroup of the twisted wreath product F twr,T;

(i)  the twisted wreath product F twr,T in its action on the coset space
(Ftwr,T:T) is a primitive permutation group with a non-abelian regular
normal subgroup;

(iii) the socle Soc T of T is non-abelian and is the unique minimal
normal subgroup of T,

(iv) p(SocTNR) > Inn F;
(v) R =(SocT N p t(Inn F))S;
(vi) R=(SocT NR)S.

Proof. By Definition 5.2(v) and Corollary 3.7, the top group T is
maximal in F twr, T and (i) follows. The action of F twr,T on the (right)
cosets of 7' is thus primitive. As T complements B, in F twr,T" we see that
B, acts both regularly and faithfully in this action (that is, B, is transitive
and meets every point-stabilizer trivially). We can therefore identify the
cosets of T with elements of B, so that the action of 7' becomes that of
conjugation on B,. Hence the kernel of the action is equal to CT(B,,)
which by Lemma 3.9 equals Corey(ker p). The latter is trivial as by
Definition 5.2(ii) and (v), the kernel ker p is a core-free subgroup of T.
Given that F is a non-abelian simple group, whence B, is indeed a
non-abelian regular normal subgroup, we see that (ii) holds. That (iii) and
(iv) hold follows from (ii) together with [3, 5.4]. From (iv) we see that

p(SocT N p~*(Inn F)) = Inn F,

whence by Definition 5.2(i), Soc 7T N p~1(Inn F) ¢« S. Now S normalises
SocT N p~*(Inn F) and so (Soc T N p~*(Inn F))S is a strict overgroup of
S in R. Part (v) follows as by Definition 5.2(v) S <, R. Finally (vi) is an
immediate consequence of (v).

max
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Recall that a (5.2)-tuple has rank #n if and only if there exist n — 1 strict
extensions of ¢ in T. In the following corollary to Lemma 5.5 we consider
(5.2)-tuples of rank n > 2 so that such strict extensions exist.

COROLLARY 7.2. Let (T, F, S, ¢) be a (5.2)-tuple of rank n > 2, and for
i=1...,n—1let p;:R, > AutF be the strict extensions of ¢ in T.
Suppose that |T| is minimal among all such (5.2)-tuples. Then

T={(R,,....R, ).

Proof. Set X =<{R,,...,R,_;>. The result follows from Lemma 5.5
provided that

Corey (¢ *(Inn F)) < ker ¢.
In fact, since R, < X it is enough to show that
Coreg (¢~ *(Inn F)) < ker ¢.

By Definition 5.2(v), ker ¢ = ker p; and on applying the homomorphism
p; we see that the above holds if and only if ¢(S) N Inn F is a core-free
subgroup of p,(R,). But the latter is true, since by Definition 5.2(v) the
image p,(R,) is almost simple with socle Inn F, while by Definition 5.2(i)
the intersection ¢(S) N Inn F is a proper subgroup of Inn F.

The conclusion of the above result turns out to be fundamental in what
follows and for convenience we give the following definition.

DEFINITION 7.3.  We say that the tuple (T, F, S, ¢) is a small-(5.2)-tuple
of rank n if n > 2, the tuple is a (5.2)-tuple of rank #n, and the conclusion
of Corollary 7.2 holds, i.e.,

T= <Rll"'1Rn—l>l

where for i = 1,...,n — 1 the maps p,: R, — Aut F are the strict exten-
sions of ¢ in T.

ProrosITION 7.4. Let (T, F, S, ¢) be a small-(5.2)-tuple of rank n, and
fori=1,...,n—1let p,: R, > Aut F be the strict extensions of ¢ in T.
Then the following all hold.

(i) T =(SocT)S;

(i) ker ¢ is trivial;

(i) for each i =1,...,n — 1 the inverse image p;*(Inn F) is a
subgroup of Soc T isomorphic to Inn F via p;, and moreover,

SocT ={ p;*(Inn F),..., p, i(Inn F)).
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Proof. By Lemma 7.1(vi) we have R, < (SocT)S forall i =1,...,n —
1, whence

(Ry,...,R,_) <(SocT)S <T.

Equality follows by the definition of small-(5.2)-tuples, and so (i) holds.

We turn to (ii); by Definition 5.2(v), ker ¢ = ker p, forall i = 1,...,n —
1 and so ker ¢ is normalised by (R,..., R,_;). As the latter is equal to T
by assumption we see that ker ¢ is a normal subgroup of T whence by
Definition 5.2(ii), ker ¢ is trivial as required.

To see (iii) note that by (ii) and Definition 5.2(v) the kernel ker p; is
trivial for all i =1,...,n — 1, whence the inverse image p; *(Inn F) is
isomorphic to a subgroup of Inn F via p,. However, by Lemma 7.1(v),
Soc T N p; *(Inn F) is a subgroup of p; *(Inn F) with Inn F as a homo-
morphic image, whence equality holds and

p7(Inn F) <SocT  foralli=1,...,n— 1.

Finally by repeating the argument used to prove (i), but using Lemma
7.1(v) in place of Lemma 7.1(vi), we see that

T={pi*(InnF),...,p; (Inn F))S.

As (p;*Inn F),..., p;*,(Inn F)) is normalised by both itself and by S,
we see that it is a normal subgroup of T. Noting that
Cpr*nn F), ..., p;t(Inn F)) is non-trivial and is contained in Soc T,
which by Lemma 7.1(iii) is a minimal normal subgroup of T, we deduce
that

SocT ={ p;*(Inn F),..., p; ,(Inn F))

and are finished.

Suppose that (T, F, S, ¢) is a small-(5.2)-tuple of rank »n so that the
conclusions of Lemma 7.1 and Proposition 7.4 all hold. Let E be a
minimal normal subgroup of Soc T. As Soc T is non-abelian and minimal
normal in T the group E is non-abelian and simple, and Soc T is the
direct product of the T-conjugates of E. Let «:Np(E) - AutE be
induced by conjugation; we identify £ with Inn E in the usual way so that
k restricts to give the identity on E. As usual for i =1,...,n — 1 let
p; - R, » Aut F be the strict extensions of ¢ in 7. Now by Proposition
7.4(iii) the inverse image p; *(Inn F) is a subgroup of Soc T isomorphic to
Inn F via p,. Note that by Proposition 7.4(i) the group S, and so also each
R, is transitive on the minimal normal subgroups of Soc 7. This means
that the projections of p; (Inn F) onto each simple direct factor of Soc T
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are isomorphic to each other. As p;*(Inn F) is non-trivial we see that
k( p; *(Inn F)) is non-trivial. Furthermore, as p; *(Inn F) is simple we see
that « restricts to give an isomorphism between p; (Inn F) and its image
under . (For later reference we note also that p; *(Inn F) meets every
proper normal subgroup of Soc T trivially.) For each i =1,...,n — 1 we
define the monomorphism ¢; : Inn F — E by

a;(pi(x)) = k(x)  forall x € p;*(Inn F).

We also set L = ¢(S).

DerFINITION 7.5. The tuple (E, F, a;,..., @,_,, L) as defined in the
above discussion is referred to as the tuple obtained from the small-(5.2)-
tuple (T, F, S, ¢).

In Theorem 7.10 we see that the small-(5.2)-tuple (T, F, S, ¢) is recover-

able from the tuple (E, F, a4,..., o,_,;, L) obtained from it. However,
before defining exactly what we mean by recoverable we wish to make
explicit the more important properties of the tuple (E, F, a4, ..., a,_4, L).

DEFINITION 7.6. Let m be a positive integer. We say that
(E,F,ay...,a,, L) is a (7.6)-tuple if the following all hold:
(i) E and F are non-abelian simple groups;

(i) ay,..., a, are distinct monomorphisms F — E such that their
images generate E, that is, E = {a(F),..., a,(F));

(iii)y for each i=1,...,m the section ({id}, o;(F)) is a maximal
section of E;

(iv) L is a subgroup of Aut F such that
[F/{idF}]L =M,
(v) foralli,j=1,...,m we have

a,‘|Lm InnF = Ollem Inn F-

(Note that in (v) we have implicitly assumed our usual identification
between F and Inn F.)

Furthermore, a (7.6)-tuple (E, F, ay,..., @, L) is said to be either a
(7.6())-tuple, or a (7.6(b))-tuple, depending on which of the following
holds:

(a E=#F,;
(b) E=F.
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We refer to the integer m as the degree of the (7.6)-tuple, and define the
subsets A(7.6(a)), A(7.6(b)), and A(7.6) of N by

A(7.6(a)) = {n > 16:there exists a (7.6(a))-tuple of degree n — 1},
A(7.6(b)) = {n > 16: there exists a (7.6(b))-tuple of degree n — 1},

and
A(7.6) = A(7.6(a)) U A(7.6(b)).

We remark that the notation and terminology, A and degree, have been
used to emphasize the fact that we do not have a complete correspondence
between (5.2)-tuples and (7.6)-tuples. We do however have the following.

THEOREM 7.7. Q(5.2) C A(7.6).

The theorem is proved by supposing that (T, F, S, ¢) is a small-(5.2)-tuple
of degree n > 2, and then showing that the tuple (E, F, oy, ..., @,_;, L)
obtained from (T, F, S, ¢) is a (7.6)-tuple. However, we note that the tuple
(E,F,a...,a,_ 1, L) is not uniquely defined by the small-(5.2)-tuple
(T,F,S, ¢): indeed, it is defined only up to the choice of the minimal
normal subgroup E of Soc 7" and up to ordering of the maps «y, ..., a,_;.

DErFINITION 7.8. Let the tuple (E, F, a4, ..., a,,, L) be either a (7.6)-
tuple or be a tuple obtained from some small-(5.2)-tuple; let (D, F,
Bi,---, B, L) be another such tuple. We say that the two tuples are
equivalent if there exists an isomorphism y : D — E such that

{ag, e} ={Xx° B x° B},

where y o B; denotes the composition of g; followed by y.

Observe that two (7.6)-tuples are equivalent only if they have the same
degree; observe also that if two tuples are equivalent and one is a
(7.6)-tuple, then so is the other.

Proof of Theorem 7.7. As noted above we prove the theorem by
supposing that (T, F, S, ¢) is a small-(5.2)-tuple of degree n > 2, and then
showing that the tuple (E, F, ay, ..., a,_,, L) obtained from (T, F, S, ¢) is
a (7.6)-tuple, i.e., that conditions (i)—(v) of Definition 7.6 all hold. (Note
that by the above observations it does not matter which tuple obtained
from (T, F, S, ¢) is considered as they are clearly equivalent to each
other.)

It is clear that Definition 7.6(i) holds. We consider Definition 7.6(ii).
Given our usual identification between F and Inn F, we certainly have
that ay,..., @,_, are monomorphisms F — E. Suppose that «; = ;. We
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claim that this forces p; = p;.. To see this we start by considering
p; 1(Inn F) which we recall is a subgroup of Soc 7' isomorphic to Inn F
and such that the projection « restricts to give an isomorphism between
p; Y(Inn F) and «,(F). Now as noted above S is transitive on the simple
direct factors of Soc 7. Set [ = |S : Ng(E)|; the transitivity of S implies that
there exist s,(= idg),...,s; € S with

SocT = E* X -+ X E*,
whence for all x € Soc T we have
o1 S1 1
x= (ke ()" (e(27Y))
Choose x € p; }(Inn F) < Soc T. For each s € S we have x* € p; '(Inn F)

since S normalises p; *(Inn F). Now p,(x*) = p,(x)?**) since p; is a homo-
morphism extending ¢, while by the definition of «; we have

ai( Pi(xs)) = k(x*).
Hence for each k = 1,...,/ we have
K(xslzl) = O‘i( Pi(x)d)(sgl))-

This, together with (7.A), implies that

S

(1.A)

x= (@ (@) *)) " (e p(0) (7.8)

Suppose now that X € p;*(Inn F) is such that p(%) = p(x). As o; = a;,
inspection of (7.B) shows that x = X. We conclude that not only are the
subgroups p; *(Inn F) and p; '(Inn F) identical, but also that p, and p;
agree on these subgroups. Since they also agree on S we deduce from
Lemma 7.1(v) that p, = p;. Since the p;, are distinct, it follows that
ay, ..., a,_, are also all distinct.

To see that E is generated by the images «(F),..., a,_,(F) note that
by Proposition 7.4(iii)

SocT ={ p7*(Inn F),..., p, t,(Inn F));

the required result follows by applying « to both sides and recalling that
a,(F) is equal to «(p;*(Inn F)) by the definition of «;. We have now
shown that Definition 7.6(ii) holds.

To see Definition 7.6(iii)) we note that for each i =1,...,n — 1 the
tuple (E,Soc T, T, F, R;, p;) is a (3.18)-tuple with T = (Soc T)R;, and such
that p; has no strict extensions in 7'; Definition 7.6(iii) then follows from
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Proposition 3.20(i). Definition 7.6(iv) is immediate from Remark 5.4.
Finally Definition 7.6(v) is an easy consequence of the fact that the
restrictions of each p;, to p; *(Inn F) N S are all equal.

We must stress here that the concept of a (7.6(a))-tuple is an extremely
restricted one: certainly Definition 7.6(iv) imposes a great restriction on L
and F, and if E # F, then Definition 7.6(iii) severely limits the possibilities
for E and the monomorphisms «;, ..., «,,. Our intuitive feeling is that the
set A(7.6(a)) is likely to be empty. On the other hand, if £ = F then
Definition 7.6(iii) is trivially satisfied, and the concept of a (7.6(b))-tuple is
not a useful one. Indeed, we note in Remark 8.5 that A(7.6(b)) = {n €
N:n > 16}! Thus we must establish what extra conditions must be satisfied
by a (7.6)-tuple so that it is a (7.6)-tuple obtained from some small-(5.2)-
tuple. The key to doing this is the already advertised result, Theorem 7.10,
which says (among other things) that if (E, F, ay,..., a,_;, L) is the
(7.6)-tuple of degree n — 1 obtained from the small-(5.2)-tuple (T, F, S, ¢)
of rank n, then (T, F, S, ¢) is recoverable from (E, F, a;, ..., a,_1, L). TO
be precise about what is meant by “recoverable” we need the following
construction.

Construction 7.9.  The input to this construction is a (7.6)-tuple

(E,F,ay,...,,,L)

m?

of degree m, and the output is a tuple (T, F, S, ¢). En route to construct-
ing the output tuple we shall have cause to construct various objects: in
their order of definition these are denoted

nl!"'lnmln!Kla!llllf'

In addition to these objects which are an integral part of the construction
we shall also define maps x and ¢ that will be useful later. For conve-
nience, we will often subsequently refer to the input tuple as x, to the
output tuple as I'(x), and to the components of the output tuple and
associated objects as T, F, etc.

So we start with a (7.6)-tuple (E, F, a;,..., @, L) of degree m. For
each i = 1,..., m we define a homomorphism 7, : N, z(@;(F)) > Aut F
by requiring that for all x € N, z(«,(F)) the automorphism x,(x) of F is
such that the following diagram commutes:

7;(x)
F _ F

Ja,. l (7.0)

conjugation by x

E _— E
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We define a homomorphism n: N7, Nay z(a,(F)) = (Aut F)™ by

(x) = (%), mu(x))  forall x e () Nayg(a(F)). (7.D)
i=1
Observe that x € Aut E is in the kernel of 7 if and only if x centralizes
a,(F) for all i = 1,...,m; by Definition 7.6(ii) this holds if and only if x
centralizes E. We conclude that n is a monomorphism.
Let K be the subgroup of L given by

K={xeL:(x,...,x) € Imn}, (7.E)
and defineamap o : K = N, Nay z(e;(F)) by requiring that
n(a(x)) =(x,...,x) forall x € K; (7.F)

observe that « is a well-defined monomorphism, and moreover that for all
i=1....m

a(x)

a;(y*) = a;(y) forall y € Fand x € K. (7.6)

We deduce from Definition 7.6(v) that L N Inn F < K and moreover that
ai|Lmnnp=a|Lmnnp fora||i=1,...,m. (7H)

Set / = |L: K|and choose a right transversal x,,..., x;, for K in L. Define
amap ¢ : L - Aut E S, by

Prx = (a(xxg)),. . a(xxt))r forallxe L, (7.0)

where 7 € S, is such that x;xx;' € K for all i =1,...,1 Theorem 3.3
shows that ¢ is a monomorphism. Let ¢ : (L) — Aut F be inverse to .
Note that (L) normalises (Inn E)' < Aut E \ S;; let T be the subgroup
of Aut E \ S, given by T = (Inn E)y(L).

Finally we set S = (L) so that the output tuple (T, F, S, ¢) of the
construction has now been defined.

Before moving on we define in terms of the (7.6)-tuple x two more
objects, namely y and ¢ which play a role later.

Define the homomorphism x : Ny, g(a(L N Inn F)) - Aut(L N
Inn F) by requiring that for each x € N, ;(a(L N Inn F)) the automor-
phism x(x) of L n Inn F is such that the following diagram commutes:

x(x)
LNninnF _ LNninnF

Ja Ja (7.J)

conjugation by x

E _— E
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Also define the homomorphism ¢ : Ny (L N Inn F) — Aut(L N Inn F)
to be that induced by the conjugation action on L N Inn F. We observe
that a(K) is contained in N,,, z(a(L N Inn F)), and moreover that

yX@) =¥ = yu»  forallx e Kand y € L N Inn F.

THEOREM 7.10. Let x = (E, F, ay,..., a,,, L) and y be equivalent (7.6)-
tuples of degree m, and let T(x), T(y) be the outputs of Construction 7.9 as
applied to X, y, respectively. Then the following all hold.

() if T(x) is a (5.2)-tuple of rank m + 1, then both T'(x) and T'(y)
are small-(5.2)-tuples and moreover, the (7.6)-tuple obtained from T'(x) is
equivalent to X;

(i) if x is obtained from some small-(5.2)-tuple of rank m + 1, then
T'(x) is a small-(5.2)-tuple of rank m + 1;

(iii)  the tuple T(x) is a (5.2)-tuple of rank m + 1 if and only if x is
obtained from some small<(5.2)-tuple of rank m + 1.

The proof of Theorem 7.10 uses the following two lemmas.

LEMMA 7.11. Letx = (E,F, oy, ..., a,,, L) be a (1.6)-tuple of degree m.
Let T(x) = (T, F,S, ¢) be the output of Construction 7.9 as applied to X.
In the following we use the notation of Construction 1.9, in particular
x(=id),..., x; is the right transversal for K in L chosen in the process of
constructing T'(x).

Foreachi=1,...,mlet B,: F = (Inn E) < T be given by

Bi(x) = (ai(x"l_l),...,ai(xxf_l)) forallx € F.

(Note that B; is a well-defined monomorphism as forj = 1,...,leach a; is a
monomorphism F — E and each x; is an automorphism of F.) Then the
images B(F),..., B, (F) are all normalised by S, and moreover, for i =
1,...,m the maps p;: B;(F)S — Aut F given by

P, Bi(x)y = xd(y) forallx € Fandy € S, (7.K)

are well-defined distinct monomorphisms strictly extending ¢ in T.

Proof. We fix i and choose x € F and y € L so that (y) € ¢(L) = S.
Let = € S, be such that xjyxj;l € K forall j =1,...,1 By the definition
of ¢, (7.1),

P(y) = (a(xxy)), .o a(xyxt))m
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whence

a(xy-1yxpt

-1
—1 ale-yx )
Loo(xtEt) .

B.(0)" = (a(x)

Now a(K) is contained in N, (a,(F)) and by the definition of 7, (7.C),
we have

ai(x"ffﬂl’l)a(xmilyxfl) = ai((xx 71)1’(&(%71” )))

forall j =1,...,1. But « is defined so that n,(«(¢)) = ¢ for all t € K and
SO

Bi(x)" = (ar(x), . e (217)) = Bi(x?). (7.L)

Thus B;(F) is normalised by (L) =
To see that p; is a well-defined homomorphism we must show, firstly
that

pi(Bi(x)") =x*»  forallxeFandye€S,

and secondly that if y = B.(x) € B(F) NS then x = ¢(y), or equiva-
lently given the definition of ¢, that if x € F and z € L are such that
B:(x) = (z) then x = z. The former follows immediately from the defini-
tions of ¢ and p; and from (7.L). To see the latter suppose x € F and
z € L are such that B,(x) = (z). Now

U(z) = (a(xyz0,)), ..o a(xzt))w

where 7 € S, satisfies x;zx;* € K for all j=1,...,I. By comparing
this with the expression given for B.(x) we deduce that = = id, whence
x;z;t €K forall j=1,...,7 and that a(x;zx;!) € o(F) for all j =
, 1. In particular, and on recalling that x, = id, we have a(z) € «,(F).
From (7.G) we deduce that conjugation by a(z) is an inner automorphism
of «,(F) if and only if conjugation by z is an inner automorphism of F.
Hence a(z) € o,(F) implies that z € Inn F. On the other hand, if z € L
N Inn F < F, then by using (7.H) it is easy to see that (z) = B.(z), and
so B(x) = ¢(z) forces x = z as B; is a monomorphism.
To see that p; is a monomorphism, suppose that x € F and z € L are
such that B,(x)¢/(z) € ker p;. Then

id = p( B(x)¥(2)) =2,

whence z =x"* € L N Inn F. As noted above, this means that (z) =
B:(2), whence B,(x)y(z) = id and the kernel of p; is trivial as required.
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It is clear from its definition that p, extends ¢ in T. Moreover p; strictly
extends ¢ as p,( B(F)S) = p,( B;(F)) = Inn F while ¢(S) = L which by
Definition 7.6(iv) and Corollary 3.25 does not contain Inn F.

Finally to see that p,, ..., p,, are distinct we let « be the projection map
(Inn E)! = Inn E given by

(y1,--y) —>y, forally,....,y,€InnE.
Observe that the map F — E given by
x = k(B(x)) forallxeF

is equal both to «; (given our usual identification between E and Inn E)
and to the composition of p;* followed by k. As «y,..., a,, are distinct
we see that p,,..., p,, are also distinct.

LEmMMA 7.12. Let E be a non-abelian simple group with subgroups
K,,....,K,,, and let I be a positive integer. For each i=1,...,m let
B, ..., By be automorphisms of K,. Define subgroups Vy,...,V, of E' by

V, = {(kBM’_I.’kBil):k EK[} =K,.

L

Then E' = {V,,...,V, if and only if both of the following hold:
(i) E=(Ky....K,);

(ii) there do not exist integers 1 <j <k <1 and an automorphism
B € AUt E such that B € N, Nay(K;) and such that for each i =
1,....m

xPiP =xPx  forallx € K,.

Proof.  The necessity of the two conditions is easy to see. To see that
they are also sufficient we assume that they both hold and set H =
V...,V ). Foreach i =1,...,1, let m, : E' > E be the projection map

(e1,....€) —e;.
Now for each i = 1,...,!
m(H) =(m(V1),...,m(V,))) = Ky, K,

whence by condition (i), H is a subgroup of E’ projecting onto each simple
direct factor. A standard argument (see for instance the lemma on p. 328
of [20]) shows that H is the direct product of full diagonal subgroups, and
we deduce that H < E' if and only if there exist integers 1 <j <k <!
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and an automorphism B € Aut E such that H < X where X is given by
X={(x,....x) €E"1xf =x.}.
Now for i = 1,..., m, the subgroup V; is contained in X if and only if
xPiP =xPx  forall x € K,.

If the latter holds for a given i, then

KiB = {xBif:x IS Ki}B = {xB"k:x EK,-} =K,

i

that is, B normalises K. Hence condition (ii) implies that one of V;,...,V,,
is not contained in X, whence H = E' as required.

Proof of Theorem 7.10. We assume the notation of Construction 7.9; in
particular, we assume that x,(= id),..., x, is the right transversal for K in
L chosen in the process of constructing the tuple T'(x). For i =1,...,m
we let B, and p; be as in Lemma 7.11.

We start with part (i) and assume that T'(x) = (T, F, S, ¢) is a (5.2)-tuple
of rank m + 1. By Lemma 7.11 the maps p,,..., p, are distinct strict
extensions of ¢ in T, and so they are the only strict extensions of ¢ in T.
Thus to show that I'(x) is a small-(5.2)-tuple we must show that

T =( ByF)S,.... Bu(F)S).

By construction 7 = (Inn E)'S and so it is enough to show that

(Inn E) =({ By(F), ..., Bu(F)).

To do this we aim to apply Lemma 7.12. For i = 1,...,m set K, = a,(F).
Recall that for x € F

Bi(x) = (ai(xx{l)'---’ ai(xxfl))-

Fori=1,...,mand j=1,...,1 let g; be the automorphism of K; =
a,(F) given by

Bij(ai(x)) = a(x*")  forall x €F. (7.M)

By Lemma 7.12 we have (Inn E) = { B,(F),..., B, (F)) if and only if
conditions (i) and (ii) of Lemma 7.12 both hold. Lemma 7.12(i) is precisely
Definition 7.6(ii) and so holds as x is a (7.6)-tuple. Suppose that Lemma
7.12(ii) does not hold, i.e., that there exist integers 1 <j < k <[ and an
automorphism B € N, Ny, g(@,(F)) such that foreach i = 1,...,m

xPiP =xPBx  forall x € o;(F).
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As Be N, Nayp(a;(F)) we can consider the image of B under
.- .-, M, and n. Recalling the definition of 7, we see that

ai(xni(ﬁ)) = ai(x)B = O‘i(x)Bi?lBik forall x € F.

But (7.M) implies that for x € F

ai(x)Brle[k = Bik(Bi;l(ai(x))) = Bik(ai(xxl)) = ai(xxile)-

It follows that n,(8) = x;x;* and is independent of i. Hence

n(B) = (xjx,gl,...,xjx,zl)

and the definition of K forces xjx,jl € K. This is impossible as x;, x, are
distinct elements in a transversal for K in L. We conclude that Lemma
7.12(ii) holds as required.

Having shown that I'(x) is a small-(5.2)-tuple we must show that the
(7.6)-tuple obtained from I'(x) is equivalent to x. By construction S =
(L) is a subgroup of (Aut E) \ S, acting transitively on the  components
of (Aut E) and so T = (Inn E)%4(L) contains (Inn E)' as a minimal
normal subgroup. As by assumption I'(x) is a (5.2)-tuple and so has a
unique minimal normal subgroup by Lemma 7.1(ii), we have Soc T =
(Inn E)\. To construct the (7.6)-tuple obtained from I'(x) we start by
choosing a minimal normal subgroup of Soc T. We choose this to be E
where we identify E with the subgroup

{(x,id,...,id): x € Inn E}

of (Inn E)" in the obvious way. With this choice of minimal normal
subgroup of Soc T and recalling that the maps p,, ..., p,, given in Lemma
7.11 are the strict extensions of ¢ in T, it is now straightforward to see
that the (7.6)-tuple obtained from I'(x) is, up to possible reordering of
ay, ..., a,, precisely x =(E,F, a,,...,a,,L). To see that (i) holds it
remains only to show that I'(y) is also a small-(5.2)-tuple, given that y is a
(7.6)-tuple equivalent to x. By the definition of equivalence (7.8) we have
y=(D,F, x°ay..., x°a,, L) for some isomorphism y:E — D. It is
straightforward to construct, using the isomorphism y, an isomorphism
X T, — T, such that x(S,) =S, and such that

o (w) = (X (w)) forallw € S,.

Having already shown that I'(x) is a small-(5.2)-tuple, it is now immediate
that T'(y) is also a small-(5.2)-tuple. Hence (i) holds.
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We turn to (ii). We assume that x is obtained from a small-(5.2)-tuple
(T,F,S, ¢), and to distinguish this tuple from the tuple I'(x) we attach a
subscript x to the components of TI'(x), that is, we write T'(x) =
(T, F,, Sy, ¢,). To show that (ii) holds, it is clearly enough, given that
F = F,, to show that there exists an isomorphism ¢:7 — T, with £(S) =
S, and

b (E(y)) = ¢(y) forally €S.

Now as x = (E, F, ay,..., a,, L) is obtained from (T, F, S, ¢) we have
that E is a minimal normal subgroup of Soc 7. Let « : N;(E) — Aut E be
induced by the conjugation action of N,(E) on E. Since Soc T < N;(E),
Proposition 7.4(i) implies that T = N(E)S and so a right transversal for
N,(E) in § is also a right transversal for N;(E) in T. Set k = |S: Ny(E)|
and let y,,...,y, be a right transversal for Ng(E) in S. Define a map
E:T - (AutE)\ S, by

Exx o (k(yowis ) k(s ))m forallxe T, (7.N)

where 7 € S, is such that y,xy,.' € N,(E) for all i =1,..., k. Theorem
3.3 shows that ¢ is a homomorphism and that ker £ = Core,(C,(FE)). Now
Core,(C,(E)) is equal to C,(SocT) since a normal subgroup of T
centralizing E must also centralize the T-conjugates of E and since Soc T
is the direct product of the T-conjugates of E. From Lemma 7.1(iii) we
deduce that ker ¢ is trivial, whence ¢ is a monomorphism. Observe also
that £(Soc T) = (Inn E)* whence by Proposition 7.4(1), &(T) =
(Inn E)* £(S). We claim that k = [ and that y,,...,y, can be chosen so
that £(S) = S, and

o (E(y)) = #(y) forally €58.

Given the observation that £(7) = (Inn E)* £(S), verification of this claim
is enough to prove that (ii) holds.

To see the claim we start by showing that Ny(E) = ¢~ *(K) where K is
as defined by (7.E). The containment Ny(E) c ¢~ *(K) is straightforward.
To see the reverse containment we suppose that there exists x € S\ Ny(E)
with ¢(x) € K, and argue for a contradiction. Let p,,..., p,, be the strict
extensions of ¢ in T, and let V,,...,V,, be the subgroups of
prt(nn F), ..., p.*(Inn F), which by Proposition 7.4(iii) are subgroups of
Soc T isomorphic to Inn F and that generate Soc 7. Note that x nor-
malises each of the V. and that «a($(x)) is an automorphism of E
normalising each of the images «(V;) = «,(F), where « is given by (7.F).
In fact the definition of « is such that

k(y*) = k(y)**  forallyeV,i=1,...,m.



82 BADDELEY AND LUCCHINI

From this we deduce that Soc T # {V,,...,V,, ), which gives the required
contradiction, either by choosing any identification between Soc T and E*
and then applying Lemma 7.12, or by adapting the argument given in
Lemma 7.12 to the present notation.

On recalling that ¢ is a monomorphism we see that

k=[S:Ny(E)| =|d(S): K|=IL:K|=1
as required. Moreover we see that if y,,..., y, are chosen so that
é(y,) =x;, foralli=1,...,1,

where we recall that x,,..., x; is the given right transversal for K in L,

then y,,...,y, is a right transversal for Ng(E) in S. It is now a routine

calculation to verify that the claim holds given this choice of transversal.
Finally we note that (iii) is an immediate consequence of (i) and (ii).

Theorem 7.10 means that instead of studying (5.2)-tuples of rank n, we
can study (7.6)-tuples x of degree n — 1 such that the tuple I'(x) obtained
via Construction 7.9 is a (5.2)-tuple of rank n. Our next task in this section
is to find necessary and sufficient conditions on the (7.6)-tuple x for I'(x)
to be a (5.2)-tuple.

DEFINITION 7.13.  We say that the tuple x = (E, F, ay, ..., a,,, L) satis-
fies (7.13), or is a (7.13)-tuple, if x is a (7.6)-tuple and if the following
conditions all hold (in which K, «, n,...,7m,, ¢, x are as defined in
Construction 7.9):

(i) if B is a monomorphism F — E such that B(F) is normalised
by a(K) and such that for all x € F and y € K

B(x) = B(x)*,
then B =, forsome i =1,..., m;

(i) for each i =1,...,m the section ({id;}, o;(F)) of E is a(K)-
maximal;

(iii) foreachi=1,...,m

Core gy yr(m(Ne(,(F)))) = (Inn F)Core,(a *(E))

(where a X (E) = {x € K: a(x) € E});
(iv) one of the following holds:
(@ L nNInnF is a non-abelian simple group, the section
({id}, a(L N Inn F)) of E is a(K)-maximal, and

Core,; ( x(Ng(a(L N Inn F)))) = (Core,(a *(E)));
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(b) K=L, N(a(L NnInn F)) < a(K), and if D is any mini-
mal normal subgroup of L N Inn F, then

Ce(a(D)) < a(K)

and the section (C(a(D)), a(D)C.(a(D))) of E is a(K)-maximal.

Moreover, we say that x is a (7.13)-tuple of rank n, if it satisfies (7.13)
and n = m + 1, where m is the degree of x as a (7.6)-tuple.
The subset Q(7.13) of N is defined by

Q(7.13) = {n > 16: there exists a (7.13)-tuple of rank n}.

Remark 7.14. In the course of proving Theorem 7.15 below we see that
Definition 7.13(ii) is implied by Definition 7.13(iv). Thus Definition 7.13(ii)
could be omitted in the above definition. However, it has not been so
because we feel that Definition 7.13(ii) provides a starting point in deter-
mining Q(7.13) by directing attention towards maximal non-abelian simple
sections of non-abelian simple groups.

Before giving the results that justify the above definition we pause to
consider Definition 7.13(iv). Let x = (E, F, a4, ..., a,,, L) be a (7.6)-tuple,
and assume the notation of Construction 7.9. Clearly the following cases
are exhaustive and mutually exclusive:

(A) K=L and L N Inn F is non-abelian and simple;
(B) K#L and L N Inn F is non-abelian and simple;
(C©) K=Land L nInn F is either abelian or not simple;
(D) K+#Land L N Inn F is either abelian or not simple.

Obviously if (D) applies then neither Definition 7.13(iv)(@) nor (iv)(b) can
hold; if (C) applies then only Definition 7.13(iv)(b) can hold; if (B) applies
then only Definition 7.13(iv)(a) can hold. However, if (A) applies then it
appears that either can hold. In fact the situation is simpler than it may
first appear as if (A) holds, then Definition 7.13(iv)(b) is implied by
Definition 7.13(iv)(a).

To see this suppose that (A) does hold. Further suppose that Definition
7.13(iv)(a) holds. Let D be a minimal normal subgroup of L N Inn F. As
the latter is simple we have D =L N Inn F. Now a(L N Inn F) =L N
Inn F is non-abelian and simple, and so has a trivial centre. Hence
Cy(a(L N Inn F)) meets (L N Inn F) trivially. As C(a(L N Inn F)) is
normalised by «(K) we see that the section

(Ce(a(LNInnF)),Cp(a(L NnInnF))a(L N Inn F))
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a(K)-contains the section ({id}, (L N (Inn F)) of E. But the latter is
a(K)-maximal, whence both sections are a(K)-maximal and in fact are
equal. It follows that C(a(L N Inn F)) is trivial and is certainly con-
tained in «(K). Now by assumption K = L. Also the composition
xe°a:K— Aut(L N Inn F) is identical to the map «. As a(K) = a(L)
normalises N.(a(L N Inn F)) we deduce that

Core, 1,( X(Ne(a(L n'Inn F)))) = x(Ng(a(L N Inn F))).

By Definition 7.13(iv)(a) the latter is contained in «(Core,(a~*(E))) which
in turn is clearly contained in «(L). Thus

X(Ng(a(L NnInnF))) < (L)

and on recalling that C,(a(L N Inn F)) = (keryx) N Ny(a(L N Inn F)) is
trivial and by applying x~* to both sides we deduce that N (a(L N
Inn F)) < a(L) = a(K) as required. Definition 7.13(iv)(b) follows.

THEOREM 7.15. Let x =(E,F, ay,..., a,,, L) be a (71.6)-tuple of degree
m =1 and let T(x) =(T,F,S, ¢) be the output of Construction 7.9 as
applied to x. Then the following all hold.:

(i) T(x) satisfies Definition 5.2()—(iii);
(i) T(x) satisfies Definition 5.2(iv) if and only if X satisfies either
Definition 7.13(iv)a) or (iv)(b);

(i)  T'(x) is a (5.2)-tuple of rank m + 1 if and only if X is a (7.13)-tuple.
CoROLLARY 7.16. Q(5.2) = Q(7.13).
Proof. This is immediate from Theorem 7.15(iii).

Proof of Theorem 7.15. Let x and T'(x) be as in the statement of the
theorem. We assume the notation of Construction 7.9 and of Lemma 7.11.
In particular, x,(=id),..., x,, is the right transversal for K in L used to
define I'(x), and p,, ..., p,, are the distinct strict extensions of ¢ in T as
defined by (7.K).

Recall that T is constructed as the subgroup (Inn E)'S of (Aut E) \ S,.
We claim that (Inn E)’ is the unique minimal normal subgroup of T, and
so equal to the socle Soc T of T. Certainly its centralizer in (Aut E) \ §,,
and so also its centralizer in T, is trivial. Furthermore, (Inn E)’ is minimal
normal in T as § is transitive on the / simple direct factors of (Inn E)'.
The claim now follows.
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Throughout the proof we identify £ with a minimal normal subgroup of
Soc T = (Inn E)' via the map

x = (x,idg,...,idg) forall x € E, (7.0)

and let k : Ny(E) — Aut E be the map induced by conjugation. Note that
N,(E) = ¢(K) and that for all x € K

k(P(x)) = a(x). (7.P)

On several occasions in the proof we shall have cause to apply earlier
results on (3.18)-tuples. To facilitate this we now determine the subgroup
¢ (L) N Soc T. Recall that for x € L we have

(x) = (a(xlxxl_,,l), e a(x,xx,j,l))ﬂ',

where x,,...,x; is the chosen right transversal for K in L and where
m € S, is such that x;xx;.! € K forall i =1,...,L Thus y(x) € (Aut E)
if and only if

xx;tekKk foralli=1,...,1,
and moreover, (x) € (Inn E) if and only if
xx;tea X (E)  foralli=1,...,1
Hence (L) N (Aut E)' = ¢(Core, K) and
$(L) N (Inn E)' = y(Core, a *(E)).

We now consider part (i) of the theorem. We must show that Definition
5.2(i)—(iii) all hold with respect to the tuple I'(x) = (T, F, S, ¢). Certainly
¢ is a homomorphism § — Aut F and F is a non-abelian simple group.
By Definition 7.6(iv) and Corollary 3.25, the intersection ¢(S) N Inn F =
L N Inn F is a non-trivial proper subgroup of Inn F. As strict extensions
of ¢ in T exist, namely p,,..., p,,, we see that S is a proper subgroup of
T. Thus Definition 5.2(i) holds.

Now we have already seen that (Inn E)' is the socle of T and is the
unique minimal normal subgroup of 7. Note that (Inn E)’ is not contained
in Sas T = (Inn E)'S and as S is a proper subgroup of T (as proved in the
preceding paragraph). We deduce that S, and so also ¢ 1(Inn F), is a
core-free subgroup of T, whence Definition 5.2(ii) holds. Finally Definition
5.2(iii) is an immediate consequence of Definition 7.6(iv).

We turn to part (ii). By Definition 7.6(iv) and Corollary 3.25, the
intersection L N Inn F is non-abelian and is a minimal normal subgroup
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of L. Let D be a minimal normal subgroup of L N Inn F. Then D is a
non-abelian simple group and L N Inn F is the direct product of the
L-conjugates of D. As ¢ is a monomorphism the same statement holds
with D, L N Inn F, and L replaced respectively by (D), (L N Inn F),
and ¢(L) =S. Let o : Ny((D)) = 4(N,(D)) - Aut D be induced by
conjugation and the isomorphism D — (D) obtained by restricting . It
is straightforward, in fact it is an application of Lemma 3.5, to see that
Definition 5.2(iv) holds if and only if T is a maximal subgroup of the
twisted wreath product D twr, 7.

Observe that as a(L N Inn F) < E we have (L N Inn F) < (Inn E),
which by the proof of part (i) is the socle of T. Thus (D) < Soc T. Note
also that (D) is contained in the domain of o and that o(y(D)) =
Inn D. Hence

SocT N o '(Inn D) = ¢(D)(Soc T N ker o)

and o(SocT N o *(Inn D)) = Inn D. By definition ker o = ((C,(D))
and so by Corollaries 3.7 and 3.15 the following statements are equivalent:

(a) Definition 5.2(iv) holds;
(b) there exist no strict extensions of o in T;
(c) the section

(Soc T N (C (D)), w(D)(Soc T N ¢(C,(D))))

is a ¢ (N, (D))-maximal section of Soc 7" with normaliser in 7 equal to
Y (N, (D).

We split into two cases: if K =L then we show that Definition 5.2(iv)
holds if and only if 7.13(iv)(b) holds, while if K # L then we show that
Definition 5.2(iv) holds if and only if Definition 7.13(iv)(a) holds. Given the
discussion immediately prior to the statement of the theorem this is
sufficient to prove part (ii).

Suppose that K = L. Note that in such circumstances Construction 7.9
is much simplified, indeed / = 1, « = ¢, T < Aut E and we can identify £
with Soc T = Inn E. Recall that o : K = L. — Aut E is a monomorphism;
for convenience we use « to identify L with § = a(L) < T. With these
conventions condition (c) above becomes

(¢ the section (E N C,(D), D(E N C,(D)) is a N,(D)-maximal
section of E with normaliser in T equal to N,(D).

Assume now that Definition 5.2(iv) does indeed hold, or equivalently that
(c)’ holds. Observe that C(D) is normalised by N,(D) and meets D(E N
C,(D))in E N C,(D). Thus the N,(D)-maximality of section given in (c)’
implies that C(D) = E N C;(D) is a subgroup of L and that the section
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given in (c)’ is equal to the section
(Ce(D), DCL(D))

of E. As a section is certainly L-maximal if it is N;(D)-maximal (since
N,(D) < L), to verify Definition 7.13(iv)(b) it remains only to show that
N(L nInn F) <L; in fact we show that N,(L N InnF) <L. Now
N;z(L N Inn F) clearly contains L and acts on the minimal normal sub-
groups of L N Inn F. As L acts transitively on such subgroups, one of
which is D, we have

N (LNnInnF) =Ny (D,LNniInnF)L.

But N, (D) certainly normalises the section (C.(D), DC.(D)); as by (c)’
the normaliser in T of this section is contained in L we have N,(D) < L,
whence N;(L N Inn F) < L as required.

Conversely, we assume that Definition 7.13(iv)(b) holds. It is enough to
show that (c)’ holds. By Definition 7.13(iv)(b) we have, in particular,
Cx(D) < L whence E N C,(D) is equal to Cr(D). Thus the section given
in (¢)’ is equal to

(Ce(D), DC(D)).

We claim that the normaliser in T of this section is contained in N, (D,
L N Inn F). For any group H let H* be the normal subgroup of H that
is minimal subject to H/H ™ being soluble; note that H is a character-
istic subgroup of H. Now L N Inn F is contained in E and so

CLmInn F(D) < CE(D) <L.

As L N Inn F is non-abelian and characteristically simple and as by the
“Schreier conjecture” L /L N Inn F is soluble we see that

Cromp(D)=Co(D)” and L niInnF=(DCy(D))”.

Hence the normaliser of the section (C.(D), DC.(D)) also normalises
C; ninmn (D), L N Inn F, and

CrLaimn F(CLmlnnF(D)) =D,

and so is contained in N;(D, L N Inn F). The claim follows.
By the claim N (CL(D), DC;(D)) is contained in N(L N Inn F). As
T = EL we have

N (LNnInnF)=N(LNInnF)L
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which is contained in L as by Definition 7.13(iv)(b), N(L N Inn F) < L.
We deduce that

Ny (Cx(D), DCy(D)) < Ny(D,L nInn F) N L = N,(D).

On the other hand, N,(D) certainly normalises the section (C.(D),
DC. (D)) and so N,(D) is indeed equal to the normaliser in 7' of this
section. It remains only to show that the section given in (c)’ is N,(D)-
maximal. This follows from the assumption that it is L-maximal together
with the observation that its normaliser in T, and so also in L, is contained
in N, (D).

We now consider the second case referred to above, namely that in
which K # L. Let D and o be as above. We initially show that if either
Definition 5.2(iv) or 7.13(iv)(a) holds, then Soc T N (C,(D)) is trivial.

Assume that Definition 5.2(iv) holds, whence condition (c) above holds.
In particular, the section

(Soc T N (€ (D)), (D) (Soc T N y(Cy(D))))

is a maximal section of Soc 7. Lemma 3.16 together with Remark 3.17
implies that

Soc T N (C (D)) = ]‘[S o ¥(C(D)), (7.R)

W <pin SOC

where the direct product is taken over all minimal normal subgroups W of
Soc T. Now ¢(C;(D)) < ¢ (N, (D)) < y(L) = S. Also S < B,(F)S where
B, is as defined by Lemma 7.11. In Lemma 7.11 it was shown that p, is a
monomorphism mapping B,(F)S to a subgroup of Aut F with p,( 8,(F))
= Inn F. Hence B,(F) is the unique minimal normal subgroup of 8,(F)S.
Recall that / > 1 since K # L; observe that the map B, is defined so that
B,(F) meets every non-trivial normal subgroup of Soc 7 = (Inn E)' triv-
ially. As
[T wn(B(F)S)

W <min SOC T

is a normal subgroup of B,(F)S, it is non-trivial if and only if

B(F) < I[I wWn(BJ(F)S).
min SOC
As above, for any group H let H™ be the normal subgroup of H that is
minimal subject to H/H®™ being soluble. As B,(F)® = B,(F), while

1 wosns) = 11

W <min SoCc T W <min SOC

wn B(F) = T'T{id} = {id},
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we deduce that ITy, o7 W N (B,(F)S) is trivial, whence by (7.R) and
the containment a,l;(CL(D)) < B,(F)S we see that SocT N ¢(C,(D)) is
also trivial.

On the other hand, assume that Definition 7.13(iv)(a) holds. Then
L nInn F is a non-abelian simple group, whence D = L N Inn F. As
{id}, (L N Inn F)) is a maximal section of E, we have C (a(D)) = {id}.
An easy calculation shows that Cg,. ((D)) is also trivial, whence Soc T
N (C, (D)) is trivial as required.

Given the above two paragraphs it is enough to make the extra assump-
tion that Soc T N ¢(C,(D)) is trivial and to show that Definition 5.2(iv)
holds if and only if Definition 7.13(iv)(a) holds. As (C; . (D)) <
Soc T N (C,(D)), it follows that D = L N Inn F is a non-abelian simple
group, that N;((D)) = S, and that the restriction to L of the homomor-
phism ¢: Ny z(L N Inn F) = Aut(L N Inn F) defined at the end of
Construction 7.9 is identical to the composition of ¢ followed by o. Recall
that we have identified £ with a minimal normal subgroup of SocT =
(Inn E)' via (7.0) and that the map «: N;(E) — Aut E is induced by
conjugation. We claim that

(E,SocT, T, LN InnF,S, o)

is a (3.18)-tuple with T = (Soc T)S. Certainly E is a minimal normal
subgroup of SocT; also at the beginning of this proof we saw the
Soc T = (Inn E)" is the unique minimal normal subgroup of T, whence
Definition 3.18(i) holds. That Definition 3.18(ii) holds is immediate. By
construction T = (Soc T')S and so Definition 3.18(iii) holds since Soc T is
contained in N;(E). By (7.Q) we have S N (Soc T) = ¢(Core,(a *(E)))
and so

o(SN(SocT)) = o(y(Core,(a *(E)))) = t(Core,(a *(E))).
Now a *(E) > L N Inn F which is a normal subgroup of L, whence
o(SN(SocT)) =L NiInnF)=Inn(L NInnF)

and Definition 3.18(iv) holds. The claim follows.
From above Soc T N (C,(L N Inn F)) is trivial, whence «(SocT N
ker o) = {id} and

k(¢ (L nInn F)(SocT N (C.(L N Inn F))))
=k(y(LNnInnF)) =a(L NInnF).

From Proposition 3.20 we deduce that condition (b) above holds if and
only if the section ({id}, (L N Inn F)) is a a(K)-maximal section of E
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and if
Core,; ( x(Ng(a(L NInn F)))) = o(SNSocT).
We have just seen that
o (SN SocT) = (Core, a *(E))

and so we have shown that condition (b) holds if and only if Definition
7.13(iv)(@) holds: part (ii) follows.

Finally we turn to part (iii). By parts (i) and (ii) it is enough to assume
that T'(x) satisfies Definition 5.2(iv), and then to show that x satisfies
Definition 7.13(i)—(iii) if and only if T'(x) satisfies Definition 5.2(v) and
there are precisely m strict extensions of ¢ in T. Recall that by Lemma
7.11, p,,..., p,, are distinct strict extensions of ¢ in T with

ker p; = ker ¢ = {id} and Im p;, = (Inn F)L = (Inn F) ¢$(S)

for all i=1,...,m. Thus it is in fact enough to show that Definition
7.13(i)—(iii) hold if and only if p = p, for some i = 1,..., m whenever p is
a strict extension of ¢ in T.

Suppose that p: R — Aut F is a strict extension of ¢ in 7. We claim
that

S =p ' (Nawr(L N INN F)). (7.5)

Suppose not. Set X = p (N, (L N Inn F)). Note that the restriction
ply of p to X is a map X — Aut F strictly extending ¢. Thus the
composition ¢ °( p|y) is a strict extension of the composition ¢ o ¢ contra-
dicting the assumption that Definition 5.2(iv) holds. Hence (7.S) holds. As
ker ¢ = ker p N S we deduce that ker ¢ = ker p.

(Recall that in Remark 7.14 we claimed that Definition 7.13(ii) is a
consequence of Definition 7.13(iv), or equivalently given part (ii), that
Definition 7.13(ii) is a consequence of Definition 5.2(iv). The purpose of
the present paragraph is merely to justify this and does not form part of
the proof of Theorem 7.15. Fix i=1,...,m and consider the strict
extension p; of ¢ in T. Note that any extension of p, in T is necessarily a
strict extension of ¢ in T. Thus the previous paragraph shows that
ker p = ker p, = ker ¢ = {id} whenever p is an extension of p, By the
definition of B, we have B,(F) < Soc T = (Inn E) and p,( B,(F)) = Inn F.
From Lemma 3.13 we deduce that the section

((SocT) N ker p,,Soc T N p;*(Inn F)) = ({id}, B;(F))

is a B,(F)S-maximal section of Soc T. As in part (ii) we identify E with a
minimal normal subgroup of Soc T via the map given by (7.0), and let
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k : N;(E) - Aut E be induced by conjugation. Observe that «( §;(F)) =
a,(F), that Ny(E) = ¢(K), and that x(4(K)) = a(K). By Lemma 3.16
the section («({id}), k( B;(F))), which is equal to the section ({id}, o;,(F)), is
a a(K)-maximal section of E and Definition 7.13(ii) holds.)

We return to the proof proper and continue with the assumptions in
place before the bracketed paragraph. Thus p: R — Aut F is assumed to
be a strict extension of ¢ in T. We have already seen that ker p = ker ¢
and that p(R) £ Nu,, (L N Inn F). We now claim that p(R) > Inn F. To
see this observe that p(R) N Inn F contains L N Inn F and is normalised
by both L = ¢(S) and p(R). As p(R) does not normalise L N Inn F we
see that p(R) N Inn F is a strict overgroup of L N Inn F in Inn F. From
Definition 7.6(iv), p(R) N Inn F must equal Inn F and the claim holds.

We conclude that R is almost simple with socle p~(Inn F). Since
RNSocT is a normal subgroup of R and since {id}# ¢ (L NInn F) <
Soc TNR we deduce that p~*(Inn F) <Soc T. As above let «: Ny (E)—
Aut E be as defined following the identification of E with a subgroup of
Soc T given by (7.0). Define B: F — E by

p(x) = k(x)  forall x € p~*(Inn F).

It is straightforward to see that 8 is a monomorphism F — E such that
B(F) is normalised by «(K) and such that for all x € F and y € K

B(x") = B(x)",

and moreover, that

p (I F) = {(B(x*),..., B(x*")):x € F}.

On comparing this with the definition of B.(F) for i =1,...,m we see
that every strict extension of ¢ in T is a strict extension of p;, for some
i =1,...,m if and only if Definition 7.13(i) holds. We have thus reduced
to showing that for i = 1,..., m no strict extensions of p, exist if and only
if Definition 7.13(ii)—(iii) both hold. Observe that for each i = 1,..., m the
tuple (E,SocT, T, F, B(F)S, p,) is a (3.18)-tuple with T = (Soc T)S. By
Proposition 3.20, p; has no strict extensions for i = 1,..., m if and only if
Definition 7.13(ii) holds and

Core i, F)L(ni(NE(ai(F)))) = Pi(( B(F)S) N SOCT)
foralli=1,...,m. (7.T)

On noting that B,(F) < Soc T and that p; extends ¢, and by using (7.Q),
we see that

p((Bi(F)S)nSocT) = p(Bi(F))p(S N SocT)
= (Inn F)Core,(a *(E)).
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Hence (7.T) is equivalent to Definition 7.13(iii) and the proof of Theorem
7.15 is finished.

Let x=(E,F, a,..., o, L) be a (7.6)-tuple. Recall that Definition 7.6
identified x as a (7.6(a))-tuple, or as a (7.6(b))-tuple, depending on whether:
(@) E # F; or (b) E =F. If the latter then the conditions of Definition
7.13 can be greatly simplified; our final task in this section is to make use
of this simplification to replace the concept of a (7.13)-tuple satisfying (b)
above with an equivalent concept that is much more amenable to analysis.

We start by supposing that (E, F, a4, ..., «,,, L) is a (7.6(b))-tuple. Thus
the monomorphism «, : F — E is in fact an isomorphism and so the tuple
(E, F,...)is equivalent to the tuple (F, F, a; ¢ a;,..., @; ' ° a,,, L). Note
that a;'e @, is the identity map F — F, and moreover, that for i =
1,...,m the monomorphisms a;'e «, are automorphisms of F. Con-
versely we have the following result.

LEMMA 7.17. Let F be a non-abelian simple group. (As usual we identify
F with Inn F) Let ay,...,«,, be distinct automorphisms of F with a, =
iday gy let L be a subgroup of Aut F, and set x = (F,F, ay,..., a,, L).
Then x is a (7.13)-tuple if and only if the following conditions all hold:

@ [FAd}], =M,;
2 o, €Cphp,(LNINNF) foralli=1,...,m;
(3) {all ey am} = CAutF(CL(al) n--nN CL(am));
(4) one of the following holds:
(@ L NF is non-abelian and simple, and ({id}, L N F) is a
N ", C,(a,)-maximal section of F;
() ;€ Cay (L) foralli=1,...,m, and if D is any minimal
normal subgroup of L N Inn F, then C.(D)D =L N F.

Proof. Now x is a (7.6)-tuple if and only if Definition 7.6(i)—(v) all hold.
Definition 7.6(i)—(iii) are trivially satisfied, while Definition 7.6(iv) and (v)
are equivalent to conditions (1) and (2), respectively. Hence x is a
(7.6)-tuple if and only if (1) and (2) both hold. It is thus enough to assume
that x is a (7.6)-tuple, and then to show that x is a (7.13)-tuple if and only
if conditions (3) and (4) both hold. To do this we must first determine the
objects n,,...,m,, K, a, v, x defined in the course of applying Construc-
tion 7.9 to x.

For each i = 1,...,m the image «,(F) is equal to F, and so the maps
Ny, ..., M, are automorphisms of Aut F; in fact we have

nl-(x)=al-xal-_1 forall xe AutF,i=1,..., m.
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In particular, 5, is the identity map on Aut F. It follows that

an

= NGa?) = N Cule)

and that the map « : K — Aut F is the identity map on K. The homomor-
phisms ¢« and y are equal to the map Ny, (L NF)— Aut(L N F)
induced by the conjugation action on Aut F.

Given the above information it is straightforward to verify that Defini-
tion 7.13(i)—(iv) can be rewritten respectively as:

(i) if B is an automorphism of F such that F is normalised by
N, C,(a;) (which is a subgroup of Aut F) and such that B centralises
N, C(a,), then B = qa, forsomei=1,...,m;

(i) for each i =1,...,m the section ({|d}, F)of Fis N, C,(a)-
maximal,

(iii) foreachi=1,...,m,
F=F;

(iv) one of the following holds:

(@ L NnInnF is a non-abelian simple group, the section
{id}, L n'Inn F) of F is N, C,(a;)-maximal, and

LNninnF=LnNInhnF;

b L=nNn",Cla),LNInnF <K, and if D is any mini-
mal normal subgroup of L N Inn F, then

Cy(D) <K

and the section (Cr(D), DC(D)) of F is L-maximal.

Clearly Definition 7.13(ii) and (iii) are trivial, while given that (1) and (2)
hold, it follows that Definition 7.13(i) and (iv) are equivalent to (3) and (4),
respectively, as required.

DEerFINITION 7.18.  We say that the tuple (F, K, L) satisfies (7.18), or is a
(7.18)-tuple, if the following conditions all hold:
(i) F is a non-abelian simple group;
(ii) K and L are subgroups of Aut F with L N InnF <K < L;
(i) [F/Ad}, = M;
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(lV) K= CL(CAut F(K))’
(v) one of the following holds:

(@ L N Inn F is a non-abelian simple group, and ({id}, L N Inn F)
is a K-maximal section of F;

(b) K = L andif D is any minimal normal subgroup of L N Inn F,
then

DC,,,r(D)=LNInnF.
Moreover we say that (F, K, L) is a (7.18)-tuple of rank n if it satisfies
(7.18) and
n=|Cayr(K)| + 1.
The subset Q(7.18) of N is defined by
0(7.18) = {n > 16: there exists a (7.18)-tuple of rank n}.

COROLLARY 7.19.

there exists a (7.13)-tuple
Q(7.18) ={n>16: (E,F,ay,...,,, L)
of rank nwith E = F

Proof. Given the remarks preceding Lemma 7.17 together with the
implication of Theorem 7.10 that a (7.6)-tuple is a (7.13)-tuple if and only
if any of its equivalents are, the corollary is a straightforward application
of Lemma 7.17.

8. FINAL COMMENTS AND EXAMPLES

From the Results Diagram (Fig. 1) we see that
QcQUAT)U{n<50:ne Q) UA®BI)
U{neN:n—-1eA(6.9)} UA(7.6(a))
UQ(7.18) UK U S.
It is our hope that further investigation of the sets Q(4.7), A(6.9), A(7.6(a)),

O(7.18), and S will be sufficient to show that Q) # N. We comment on the
difficulties involved in the determination of the first four of these sets.

Problem 1. Determine Q(4.7).

It seems likely that Q(4.7) is the empty set; we offer three reasons for
this.

Firstly, we have no examples of a (4.1)-tuple (H,T, F, Q, ¢) of rank n
with H almost simple and with n > 3. We do however have an example
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with n = 2. Let H = Ay, let F = L4(2), and let T, Q be maximal sub-
groups of H with T = A4, and with Q = 23:L,(2). Then there exist obvious
homomorphisms ¢ : Q — Aut F with kernel isomorphic to 2% Moreover,
if ¢ is any such homomorphism, then it is easy to see that (H, T, F, Q, ¢)
is a (4.1)-tuple of rank 2 with H almost simple.

Secondly, suppose that n € Q(4.7): then n > 16 and there exists a
(4.1)-tuple (H, T, F, Q, ¢) of rank n with H almost simple. In what follows
we assume the notation of Lemma 4.10. Thus N /- ker ¢, and V' are
normal subgroups of Q such that the quotient

V=v[ni} ker ¢,

is isomorphic to F"~*. Let X = N,(N/_! ker ¢,,7’) so that X acts on 14
by conjugation. Further let X < S._1 be the permutation group induced
by the action of X on the n — 1 maximal proper normal subgroups of V.
It is an easy consequence of Definition 4.1 that ¢,(Q) > Inn F and that ¢,
has no strict extensions in H. By Corollary 3.15 we have

Q = Ny(ker ¢, 1),

whence in particular Q = N, (ker ¢,) for all i =1,...,n — 1. Thus the
action of X on the n — 1 maximal proper normal subgroups of IV = F"~*
is such that the stabilizer of any one stabilizes all others; equivalently, the
stabilizer in X < S, of any point is trivial. It is our intuitive feeling that,
for H almost simple, the permutation group X is likely to be “close” to
S,_ - This intuition, together with the above regularity condition, suggests
that » must be small, perhaps even that n < 4.

Thirdly, and more significantly, our investigation to date of Q(4.7) has
produced the following result:

If (H, T,F,Q, ) is a (4.)-tuple with n > 16 and H almost simple, then H is not
alternating, sporadic, or exceptional of Lie type.

The major tools used in proving this result are the classification of
non-trivial maximal factorisations of almost simple groups due to Liebeck,
Praeger, and Saxl [15], and, in the alternating case, a description of the
maximal non-abelian simple sections of the alternating groups [2]. (The
former is relevant to Definition 4.1(iii), and the latter to Definition 4.1(iv).)
Resolution of the one remaining case depends upon developing a useful
description of the maximal non-abelian simple sections of the classical
groups, but we are hopeful that this can be achieved.

Problem 2. Determine A(6.9).
Progress on this problem, in view of Definition 6.9(i)—(ii), depends on
the existence of an adequate theory of non-abelian simple sections of
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non-abelian simple groups. As mentioned above, we already have a de-
scription of the maximal non-abelian simple sections of the alternating
groups [2], and it is hoped that analogous descriptions can be obtained in
the remaining cases.

We remark that if the concept of a proper non-abelian simple section
(C, D) is replaced in Definition 6.9 by that of a proper subgroup, then we
obtain the definition of, instead the set A(6.9), the set S. Hence we can
expect the degree of difficulty involved in the determination of A(6.9) to
be comparable to that involved in the determination of S. Furthermore,
given that our intuition suggests that S is a highly restricted set, possibly
even bounded, then it seems reasonable to expect A(6.9) to be similarly
restricted.

Finally we note that we have examples of (6.9)-tuples of degree d only
for d < 2. Of these examples, some give rise to (6.17)-tuples of ranks d
and d + 1, while others do not. Below we give an example of the latter
behaviour as this seems to best illustrate the delicacy of the conditions
involved in Definition 6.17.

ExampLE 8.1. For n > 2, let £ = GL,,(2), the group of all 2n X 2n
matrices over the field F, of two elements, and define the subgroups
(C,D) of E as

I, B
C= {(0 7 ):BEM,,(Z)},

n

D= {(‘g ﬁ):A € GL,(2),B EMn(z)}’

where M,(2) is the set of all n X n matrices over [F,, and where I, is the
identity matrix. Note that (C, D) is a section of E isomorphic to GL,(2):
let F be the quotient D/C. We claim that:

(1) (C,D,E,D)is a(6.9)-tuple of degree 2;
(2 (C,D,E,D,D,F)is a(6.17)-tuple of rank 2.

To see the claim we note that in Example 4.10 of [3] it is shown that

b= {(6‘ g):A,C € GL,(2),B eMn(Z)}

is the unique maximal subgroup of E containing D. As D normalises C
with quotient D/C = F X F, it follows that there are precisely two sec-
tions of E strictly D-containing (C, D). Given this the verification of the
claim is straightforward.
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Further let o be the involutory automorphism of E given by first taking
the inverse transpose, and then conjugating by (,0 ’df): direct calculation
shows that C, D, and D are all o-invariant, and we also use o to denote
the involutory automorphism of F = D /C induced by o. In Example 4.10
of [3] it is also shown that (C, D) is a {D, o y-maximal section of E, and it
is tempting to hope that (C, D, E, D,{D, o ),{F, o)) is a (6.17)-tuple of
rank 3. However, this is not the case—explicit calculation shows that
Definition 6.17(vii) fails. Moreover, such a calculation can be generalised
to give a proof of the following result:

Let (C,D,E,K,L, A) be a (6.17)-tuple. Suppose that (C,, D,),(C,, D,) are
sections of E strictly K-containing (C, D) with C; < Ng(D,). Then D, = D, and

A = n(K), where n is the homomorphism induced by the conjugation action of
Naut 5(C, D) on the quotient F = D /C (as in Construction 6.13).

Problem 3. Determine A(7.6(a)).

As in the previous problem, progress here depends on being able to
count maximal non-abelian simple sections of non-abelian simple groups
subject to various conditions. We must stress that the set A(7.6(a)) could
prove to be bounded above, which is the desirable outcome, or if not, then
it would be likely to contain all but finitely many positive integers. The
reason for this is the following observation.

If (E,F, ai,...,a,, L) is a (7.6)-tuple with

Cautr(LOINNF) = {By,..., B},

then (E, F,vy,,..., 7%, L) is a (7.6)-tuple, where v,,...,, are any distinct
elements of the set

{aeBii=1,....m,j=1,....r}

chosen so that E = (y,(F),..., v(F)).

If the latter unbounded scenario occurs, then we would have to incorpo-
rate some version of the extra conditions as satisfied by (7.13)-tuples;
probably the most helpful being some version of Definition 7.13(i).

We note that we have no examples of (7.6)-tuples of degree d with
d > 4.

ExampLE 8.2. Let E = Oj(g) with ¢ > 2, and let F be a maximal
subgroup of E with F = O,(q). Let 7 be a triality automorphism of E,
that is, 73 = id,, ; and 7 induces a non-trivial symmetry of the Dynkin
diagram of E. Set «, = id, a, = 7lr, @y = 7%|r, and L = Cn(7). By [9,
3.1.1(vi)] we have

L=F%NF%=F%nF%=F4%0F%z=G,(q).
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Also L is non-abelian and simple and L is a maximal subgroup of F, and
moreover, it is straightforward to verify that (E, F, a,, «,, as, L) is both a
(7.6)-tuple of degree 3 and a (7.13)-tuple of rank 4.

Problem 4. Determine Q(7.18).

This problem contrasts with the earlier ones in that the fundamental
information required is not that of maximal non-abelian simple sections of
non-abelian simple groups. Instead it seems sensible to focus on the
following necessary condition.

If (F, K, L) is a (7.18)-tuple of rank n, then F is a non-abelian simple
group with L < Aut F such that

[Ff{iid}], =M, and (1= 1)||Caur(L N InnF)].

Note that this necessary condition does not involve K; in fact we are
hopeful that it may be enough for our purposes to only find those F, L,
and n satisfying this condition. Note also that C,,, (L N Inn F) is iso-
morphic to a subgroup of Out F since C,,, (L N Inn F) is trivial: thus to
find all (7.18)-tuples (F, K, L) of degree n with n > 16, we need only
consider F of Lie type, and not alternating or sporadic.

We stress that (7.18) is unbounded as the following examples show.

ExampLE 8.3. Let F = PSL,(q?) with n = g> — 1 be the quotient of
SL,(g?) by its centre Z, and define the subgroup D of F by

D= {(é E)Z:A e SLH(qZ)} = PSL, 4(q?).

Let o € Aut F be given by

ai(a;)Z > (a%) " Z,

and set K=L =(D, o). Then [Cpy r(I)I=¢ + 1 and (F,K,L) is a
(7.18)-tuple of rank ¢ + 2.

ExampLE 8.4. Let F = PSL,(p’) with both p and f prime, and let
K = L = PSL,(p), which we view as a subgroup of F in the natural way.
Then |Cpy (L) = f and (F, K, L) is a (7.18)-tuple of rank f + 1.

Remark 8.5. Either of the above two examples can be used to show
that A(7.6(b)) = {n € N:n > 16}, thus justifying the dichotomy intro-
duced in Definition 7.6.

Our final comment on Problem 4 is that the conditions defining a
(7.18)-tuple are similar, but not identical, to those investigated by the
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second author in the “Crucial Case” of [16]. Given that the latter was
resolved successfully, it seems reasonable to hope that the present problem
can also be resolved.

We finish by stressing the two general problems on which the successful
resolution of Problems 1-4 depend:

« Describe the maximal non-abelian simple sections of the non-abelian
simple groups (cf. [2]).

e Describe all pairs (F, L) with F non-abelian and simple, L < Aut F,
and [F/{id}], = M,.
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