
Ž .JOURNAL OF ALGEBRA 196, 1]100 1997
ARTICLE NO. JA977069

On Representing Finite Lattices as Intervals in
Subgroup Lattices of Finite Groups

Robert Baddeley*

Department of Mathematics and Computer Science, Unï ersity of Leicester, Leicester,
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Let MM be the lattice of length 2 with n G 1 atoms. It is an open problem ton
Ždecide whether or not every such lattice or indeed whether or not every finite

.lattice can be represented as an interval in the subgroup lattice of some finite
group. We complete the work of the second author, Lucchini, by reducing this
problem to a series of questions concerning the finite non-abelian simple groups.
Q 1997 Academic Press

1. INTRODUCTION

For any natural number n, let MM be the lattice of length 2 with nn
w xatoms. Let T be a subgroup of a finite group G. The interval GrT in the

subgroup lattice of G is isomorphic to MM if and only if there are preciselyn
n proper subgroups of G that strictly contain T , and moreover, each such
subgroup K satisfies

T - K - G.max max

* E-mail address: r.baddeley@mcs.le.ac.uk.
† E-mail address: lucchini@bsing.ing.unibs.it.

1

0021-8693r97 $25.00
Copyright Q 1997 by Academic Press

All rights of reproduction in any form reserved.



BADDELEY AND LUCCHINI2

Ž .Here the notation A - B means that A is a maximal subgroup of B.max
We use V to denote the set of all n g N such that MM is isomorphic ton

w x Žsome GrT . The determination of V is an open question. For some
w x .history of this question see 18 .

It is easy to see that n g V if n s 1 or 2, or if n y 1 is a prime power.
For a long while it was conjectured that these were the only elements in V.

w xHowever, in 1983 Feit 6 showed that both 7 and 11 lie in V, and more
recently the second author showed that n g V if

qt q 1
n s q q 2 or n s q 1

q q 1

for any prime power q and for any odd prime t. Currently no other
elements of V are known; for convenience we let KK denote the set of
known elements of V.

w xKohler 10 has shown that if n f KK and G is a finite group chosen so¨
< <that G is minimal subject to the existence of a subgroup T F G with

w xGrT ( MM , then the socle Soc G of G is the unique minimal normaln
w xsubgroup of G and is non-abelian. The second author 16 has shown that

Žif in addition n ) 50, then either Soc G is simple in which case G is said
. Ž .to be almost simple , or the intersection Soc G l T is trivial.

ŽGiven the classification of finite simple groups henceforth referred to
.as CFSG it is to be hoped that

w xSS s n g N : MM ( GrT for some T F G with G almost simple� 4n

Žcan be determined. The case in which G is either alternating or symmet-
ric is currently under consideration by Alberto Basile, a research student

.of the second author. The present paper is concerned with the case
Ž . � 4Soc G l T s id . This falls naturally into two subcases, either G /G
Ž . Ž . Ž . Ž .Soc G T or G s Soc G T , and we let V 2.D , V 2.E be the subsets of

ŽV comprising those integers that arise in these subcases. Formal defini-
Ž . Ž . .tions of V 2.D and V 2.E are given in Section 2. We refer to these

subcases respectively as the not-T-complement and the T-complement cases.
The statement of our results depends on some quite technical defini-

tions and so we feel it is inappropriate to give a full statement in this
introduction. We can however give some idea of the analysis used. We
assume that G is a finite group with a subgroup T such that Soc G is
non-abelian and is the unique minimal normal subgroup of G, and such
that

w x � 4GrT ( MM , and Soc G l T s id ;n
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< <if appropriate, we may also assume that n f KK and that G is minimal
among such groups. It is easy to see that in all cases there exists a

Žsubgroup H of G containing T and complementing Soc G. This is a
Ž . Ž .consequence of Lemma 4.3 i ] ii in the not-T-complement case, and is

.immediate in the T-complement case as we can take H s T. The key step
is then to show that we may assume that the socle of H is non-abelian and

Žis the unique minimal normal subgroup of H. In the T-complement case
Ž . Ž .this follows from either Theorem 6.4 iii or Lemma 7.1 iii depending on

which subcase applies, while in the not-T-complement case Proposition 4.9
.shows that H is almost simple. Let E, F be minimal normal subgroups of

Soc H, Soc G, respectively, so that both E and F are non-abelian simple
Ž . Ž .groups; let a , b denote respectively the maps N E ª Aut E, N F ªH G

Aut F induced by conjugation. We will see that F is isomorphic to a
section of E; the bulk of the paper is then concerned with obtaining as far

Ž .as possible a characterization of the pair G, T in terms of E, F, the
representation of F as a section of E, and other information as appropri-
ate}for example, in the not-T-complement case we additionally require

Ž Ž .. Ž Ž ..knowledge of a N E and a N E , while in the T-complement caseH T

the situation is more complex and also requires knowledge of the images
under b of various subgroups of H. Our philosophy throughout is that the

Ž .global properties of the pair G, T are largely controlled by the internal
structure of E.

Thus the net effect of the paper is to reduce the problem of determining
Ž . Ž .V 2.D and V 2.E to a series of problems concerning the finite non-abelian

simple groups. Thus this paper can be seen as the final step in the
reduction of the problem of determining V to one which can be tackled
via CFSG. Here we must stress that we do believe that the questions raised
concerning the finite non-abelian simple groups can be answered, and
indeed hope to have some answers in the near future. At this point, we
should perhaps abandon caution and remark that the results that we
expect to obtain in this direction provide yet more evidence to support the
conjecture that V / N.

The layout of the paper is as follows. Section 2 contains the ‘‘Results
Diagram’’: this is a schematic representation of our results, and is designed
as an aid to understanding the significance of each individual result.
Section 3 sets out our notation and gives a variety of preliminary results.
Of particular importance is the information given on the maximality of top
groups in twisted wreath products; the latter play a central role in the

Ž . Ž .paper. The subsets V 2.D and V 2.E of V are investigated in Section 4
and Sections 5]7, respectively. We finish in Section 8 by giving some final
comments and some examples.
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2. THE RESULTS DIAGRAM

As mentioned in the Introduction, our results depend on some quite
technical definitions, and we see no point in giving these definitions any
earlier than need be. However, we feel it helpful to give a schematic
representation of our results as an aid in understanding the significance of
each individual result.

Our results are phrased in terms of various subsets of N. The Introduc-
Ž . Ž .tion referred to the subsets V, KK, SS , V 2.D , V 2.E and for the sake of

precision we now expand upon or repeat their definition.

there exists a group G¡ ¦~ ¥with a subgroup TV s n g N: , 2.AŽ .¢ §w xsuch that MM ( GrTn

¡ t ¦n s 1, 2, q q 1, q q 2, or q q 1 r q q 1 q 1Ž .Ž .~ ¥KK s n g N: .for some prime power q¢ §and some odd prime t

2.BŽ .

Ž .Recall that KK is precisely the set of currently known elements of V.

w xMM ( GrT for some T F Gn
SS s n g N: , 2.CŽ .½ 5with G almost simple

w x¡ ¦MM ( GrT for some T F G withn~ ¥Soc Ge G, Soc G non-abelian,V 2.D s n G 16: , 2.DŽ . Ž .min¢ §� 4T l Soc G s id , and G / T Soc GŽ .

w x¡ ¦MM ( GrT for some T F G withn~ ¥Soc Ge G, Soc G non-abelian,V 2.E s n G 16: . 2.EŽ . Ž .min¢ §� 4T l Soc G s id and G s T Soc GŽ .

Note that we have restricted attention to integers n G 16 in defining
Ž . Ž .V 2.D and V 2.E since 16 is the smallest positive integer not in KK, and

so is the smallest positive integer not known to be in V. With this notation
w xthe results discussed in the introduction of Kohler 10 and the second¨

w xauthor 16 show that

� 4V s KK j n F 50 : n g V j SS j V 2.D j V 2.E . 2.FŽ . Ž . Ž .
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We now explain our results diagram, Fig. 1. Observe that the diagram is
essentially a tree comprising nodes joined by a single bond or by a double

Ž .bond or not joined at all . Each node represents the subset of N as
Ž .indicated by the unboxed label adjacent to the node. Those subsets that

Ž .have not yet been defined are all denoted by notation of the form V }
Ž .or D } : the bracketed reference gives the number of the relevant

definition. The diagram encodes our results according to the following
conventions: firstly that if the ‘‘descendent’’ of a node is joined to its
‘‘parent’’ by a double bond, then the ‘‘descendent’’ is a subset of its

FIG. 1. The results diagram.
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‘‘parent’’; and secondly that the ‘‘parent’’ is a subset of the union of all its
Ž .‘‘descendents.’’ The reference of the result s thus encoded is given in a

box adjacent to each ‘‘parent’’ node. Thus on considering the ‘‘descen-
Ž .dents’’ of V 2.E we see that

V 2.E s V 5.1 j V 5.2Ž . Ž . Ž .

and that this result is the content of Theorem 5.3.

3. PRELIMINARIES

3.1. General Notation. In the remainder of the paper all groups are
assumed finite. We use id , or simply id if no confusion arises, to denoteG
the identity element of a group G. The group of automorphisms of a group
G is denoted Aut G. We use u for the natural map G ª Aut G given by

g ¬‘‘conjugation by g ’’ for all g g G.

The image Inn G of u is the subgroup of Aut G comprising inner auto-
morphisms; we say that an automorphism is outer if it is not inner, and use

Ž .Out G to denote the quotient Aut GrInn G. If the centre ZZ G of G is
trivial, then u gives rise to an isomorphism between G and Inn G; in such
cases we will often identify G and Inn G via u . In particular, we will
always use u to identify F with Inn F whenever F is a non-abelian simple
group, although we will normally remind the reader when doing so.

Maps are written on the left; in view of this, the composition b ( a of
maps a and b means ‘‘a followed by b.’’ However, if a , b are automor-

a Ž .phisms of a group G, then for g g G we often write g instead of a g ,
and ab instead of b ( a .

The socle Soc G of a group G is the product of all minimal normal
subgroups of G. If H F G and K is either a subgroup of G or a subgroup
of Aut G, then the K-core of H in G is denoted by Core H and is theK
largest K-invariant subgroup of G that is contained in H; explicitly

Core H s H x ;FK
xgK

if K s G then we simplify terminology and refer to the core of H in G.
Given a subgroup H of G an o¨ergroup of H in G is any subgroup K

satisfying H F K F G; a strict o¨ergroup of H in G is an overgroup of H in
G that is not equal to H. Given also a homomorphism x with domain H,
then an extension of x in G is any homomorphism whose domain is an
overgroup of H in G and whose restriction to H is equal to x ; it is a strict
extension of x in G if, in addition, its domain is a strict overgroup of H
in G.
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We use standard notation for normalisers and centralizers, that is,
Ž . Ž .N H , C H denote respectively the normaliser, centralizer of H in G.G G

For subgroups H , . . . , H of G we set1 n

N H , . . . , H s N H l ??? l N H .Ž . Ž . Ž .G 1 n G 1 G n

We also use the same notation even when G is a subgroup of Aut K with
H , . . . , H subgroups of K.1 n

As noted in the Introduction, we use MM to denote the lattice of lengthn
2 with n G 1 atoms; for example, MM is the lattice3

v

vv v

vv

We also use MM to denote the lattice of length 1, namely0

v

v

w xFor a subgroup H of a group G, we use GrH to denote the lattice whose
elements are the overgroups of H in G with partial order given by
inclusion. If S is a subgroup of Aut G such that H is S-invariant, then
w x w xGrH denotes the sublattice of GrH comprising the S-invariantS
overgroups of H in G.

3.2. Wreath Products. Suppose that G is a subgroup of the symmetric
group S . The wreath product H X G of H by G is the semi-directn
product H n i G of the direct product H n of n copies of H by G in
which the conjugation action of G on H n is given by

gy1

h , . . . , h s h , . . . , h for all h , . . . , h g H and g g G.Ž . Ž .1 n 1 g n g 1 n

Wreath products arise in this paper from applications of the ‘‘embedding
theorem’’ which is well known and goes back to Frobenius: for more recent

w xexpositions see 5, Sect. 5; 19, Sect. 4 .

Ž .THEOREM 3.3 Embedding Theorem . Let H be a subgroup of the finite
group G, let x , . . . , x be a right trans̈ ersal for H in G, and let j be any1 n

Ž .homomorphism with domain H. Then the map G ª j H X S gï en byn

x ¬ j x xxy1 , . . . , j x xxy1 p for all x g G,Ž . Ž .Ž .1 1p n np
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where p g S satisfies x xxy1 g H for all i s 1, . . . , n is a well-definedn i ip
Ž .homomorphism with kernel equal to Core ker j .G

We remark that the above is usually applied with j equal to the identity
map on H, in which case ker j is trivial and the map G ª H X S is an
monomorphism}hence the name ‘‘Embedding Theorem.’’ Also we often
fail to distinguish between homomorphisms defined with respect to differ-
ent choices of transversal: the relationship between such homomorphisms

w xis made explicit by the ‘‘Uniqueness theorem’’ of 11 .

3.4. Twisted Wreath Products. The concept of a twisted wreath product
Ž w x.originally due to B. H. Neumann 17 plays a central role in this paper.
Consequently we feel obliged to give a complete treatment of the construc-

w x w xtion, rather than refer the reader to a suitable reference such as 21 or 3 .
We note however that the following treatment does use a slightly different
notation for the base group of a twisted wreath product; this change is for
the purposes of encoding more information in the notation.

The ingredients for the construction of a twisted wreath product are

a group F , a group T , a subgroup S of T ,

and a homomorphism f : S ª Aut F .

Define the base group B F byf, T

Ž .f sFB s f : T ª F : f ts s f t for all t g T , s g S .Ž . Ž .� 4f , T

We view B F as a group by defining multiplication in the natural way;f, T
note that B F ( F <T : S <. Define an action of T on B F as follows: forf, T f , T
f g B F and t g T let f t, the image of f under t, be defined byf, T

f t x s f tx for all x g T .Ž . Ž .
It is easily verified that this does indeed give an action of T on B F . Thef, T
semi-direct product X s B F i T with respect to this action is called thef, T
twisted wreath product of F by T and we write

X s F twr Tf

Žand refer to T as the top group of the twisted wreath product. The
.subgroup S is recoverable from this notation as the domain of f.
Ž .In the situation where L is a subgroup of F invariant under f S we

Ž .often use i to denote the natural map f S ª Aut L and consider the
twisted wreath product L twr T with base group B L . Given thati( f i ( f , T

Ž Ž ..i f sLB s f : T ª L : f ts s f t for all t g T , s g SŽ . Ž .� 4i( f , T

Ž .f ss f : T ª L : f ts s f t for all t g T , s g SŽ . Ž .� 4
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since x iŽf Ž s.. s xfŽ s. for all x g L and s g S, we sometimes abuse nota-
tion and write B L in place of B L . The superscript in the base groupf, T i ( f , T
notation then serves to distinguish this base group from the base group
B F . We also abuse notation by viewing maps T ª L as maps T ª F sof,T
that B L becomes a subgroup of B F . In fact, with this viewpoint B L ,f, T f , T f , T
as a subgroup of B F , is normalised by T , and moreover, the action of Tf, T
on B L F B F is identical to the action of T on B L as the base groupf, T f , T f , T
of L twr T. Hence this viewpoint identifies L twr T with the subgroupf f

B L T of F twr T.f,T f

In cases where no confusion arises we will omit the superscript and
subscripts in the base group notation as appropriate.

Twisted wreath products occur naturally as the following result shows.

Ž w x w x.LEMMA 3.5 Bercov 4 , Lafuente 13 . Let G be a group with a normal
subgroup M complemented by a subgroup T. Suppose that F is a subgroup of

Ž .M such that for some t s id , t , . . . , t g T we can write1 T 2 k

M s F t1 = ??? = F tk ,

where conjugation by T permutes the F ti among themsel̈ es, that is,
� t1 tk4 Ž .F , . . . , F is the set of T-conjugates of F. Set S s N F and let f : S ªT
Aut F be the map induced by the conjugation action of S on F. Then there
exists an isomorphism G ª F twr T which maps M to B F and whichf f , T
restricts to gï e the identity on T.

We shall often be concerned with the possible maximality of the top
group in a twisted wreath product. Hence the following results are rele-

Žvant. The first two are given without proof: both are straightforward, and
w xCorollary 3.7 follows from Lemmas 3.1 and 3.2 of 3 , while Lemma 3.6 is

w xthe content of the proof of 3, 3.1 . However, we note that Corollary 3.7
does depend on CFSG, or more precisely on its consequence, the ‘‘Schreier

.conjecture.’’

LEMMA 3.6. Let F be a non-abelian simple group, and let F twr T be af

twisted wreath product with twisting homomorphism f : S ª Aut F. Suppose
that X is a T-in¨ariant proper subgroup of the base group B F of F twr T.f, T f

Then precisely one of the following holds:

Ž . Ž . Li there exists a proper f S -in¨ariant subgroup L of F with X F B ;f, T

Ž . Fii there exists a strict extension r of f in T such that X s B .r, T

Ž .We remark that conclusion ii is sensible; indeed, if given an arbitrary
twisted wreath product F twr T and a strict extension r of f in T , thenf

the base group B F is a non-trivial proper subgroup of B F and isr, T f , T



BADDELEY AND LUCCHINI10

normalised by T. In fact, the action of T on B F as a subgroup of B F isr, T f , T
identical to the action of T on B F as the base group of F twr T ; thusr, T r

F twr T appears naturally as a subgroup of F twr T.r f

COROLLARY 3.7. Let F be a non-abelian simple group, and let F twr T bef

a twisted wreath product with twisting homomorphism f : S ª Aut F. Then T
is maximal in F twr T if and only if the following both hold:f

Ž . Ž .i f S G Inn F;
Ž .ii there does not exist a strict extension r of f in T.

LEMMA 3.8. Let F twr T be a twisted wreath product with twisting homo-f

morphism f : S ª Aut F, and let R be any o¨ergroup of S in T. Suppose that
T is a maximal subgroup of F twr T. Then R is a maximal subgroup off

F twr R.f

Proof. We suppose that R is not a maximal subgroup of F twr R andf

argue for a contradiction. Then there exists a non-trivial proper subgroup
X of B that is normalised by R. Let Y be the subset of Bf, R f , T
comprising all maps f g B such that for all t g T the map f : R ª Ff, T t
given by

f r s f tr for all r g RŽ . Ž .t

is in X.
We claim that Y is a non-trivial proper subgroup of B normalised byf, T

T. The verification of this is straightforward and we leave it to the reader.
Thus T is not a maximal subgroup of F twr T , a contradiction.f

Suppose that F is a non-abelian simple group and consider the base
group B of the twisted wreath product F twr T. Now B ( F <T : S < and itf f f

is clear that T is transitive on the simple direct factors of B . Hence B isf f

a minimal normal subgroup of F twr T. We shall often be concerned withf

whether or not B is the unique minimal normal subgroup, and so equalf

to the socle of F twr T ; clearly this holds if and only if its centralizer inf

F twr T is trivial.f

LEMMA 3.9. Let F twr T be a twisted wreath product with twisting homo-f

morphism f : S ª Aut F, and suppose that the centre of F is trï ial. Then

C B s Core ker f and C B ( Core fy1 Inn F .Ž . Ž .Ž . Ž . Ž .T f T F twr T f Tf

Proof. This is straightforward, or can be seen as a particular instance of
w Ž .x3, 2.7 3 .

Ž .3.10. Sections. The ordered pair C, D is said to be a section of E
isomorphic to a group T whenever C is a normal subgroup of D and D is
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Ža subgroup of E such that the quotient DrC is isomorphic in the usual
.sense to T. It is a non-abelian simple section if T is a non-abelian simple

group, and is a proper section if T \ E.
Suppose that P either is a subgroup of Aut E or normalises E inside

Ž .some larger group. The section C, D of E is said to be P-contained in the
˜ ˜Ž .section C, D of E if

˜ ˜ ˜ ˜ ˜C s C l D , D s CD , and N C , D F N C , D ;Ž . Ž .P P

˜ ˜ ˜Ž .moreover, it is strictly P-contained in C, D if in addition C - C. If there
Ž .does not exist a section of E strictly P-containing the section C, D of E,

Ž .then C, D is said to be a P-maximal section of E; it is a maximal section
of E if it is Aut E-maximal.

We state without proof some easy consequences of the above defini-
tions.

˜ ˜Ž . Ž .PROPOSITION 3.11. Suppose that C, D and C, D are sections of E and
that P F Aut E. Then the following all hold.

˜ ˜Ž . Ž . Ž .1 If C, D is P-contained in C, D , then the quotients DrC and
˜ ˜DrC are isomorphic.

Ž .2 The following statements are equï alent:
˜ ˜Ž . Ž . Ž .i C, D is P-contained in C, D ;

˜ ˜Ž . Ž . Ž Ž .. Ž .ii C, D is DN C, D -contained in C, D ;P

˜ ˜Ž . Ž . Ž . Ž .iii C, D is N C, D -contained in C, D .P

˜ ˜Ž . Ž . Ž . Ž .3 If Q F P and C, D is P-contained in C, D , then C, D is
˜ ˜Ž .Q-contained in C, D .

Suppose that f : S ª Aut F is a homomorphism from a subgroup S of a
group T to the automorphism group of a non-abelian simple group F with
Ž .f S G Inn F and that N is a subgroup of T normalised by S. Then
Ž . Ž .f N l S is a normal subgroup of the almost simple group f S and so is

either trivial or contains Inn F. The following results deal separately with
these two cases and demonstrate the relevance of sections to the maximal-
ity of top groups of wreath products.

LEMMA 3.12. Let N, T , f, S, and F be as in the preceding paragraph.
Ž .Suppose that f N l S is trï ial. Then the map r : NS ª Aut F gï en by

r : xy ¬ f y for all x g N and y g SŽ .

Ž .is well-defined, is an extension of f in N N , and contains N in its kernel.T
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Proof. This is straightforward.

LEMMA 3.13. Let N, T , f, S, and F be as in the paragraph immediately
Ž .preceding the abo¨e lemma. Suppose that f N l S G Inn F. Then

N l ker f , N l fy1 Inn FŽ .Ž .
Ž y1Ž ..is a section of N isomorphic to F. Moreo¨er, if N l ker f, N l f Inn F

Ž . Ž .is S-contained in the section C, D of N then the map s : N C, D ª Aut F,T
gï en by requiring that

Ž .s y
f x s f zŽ . Ž .

y1Ž . Ž . y y1whene¨er x, z g N l f Inn F and y g N C, D are such that x z gT
C, is well-defined and extends f in T.

Ž . ŽCon¨ersely, if s is an extension of f in N N then N l ker f, N lT
y1Ž .. Ž y1Ž ..f Inn F is S-contained in the section N l ker s , N l s Inn F of

N.

Remark 3.14. With the notation of the above lemma, observe that the
section

C , D s N l ker f , N l fy1 Inn FŽ . Ž .Ž .
y1Ž .certainly S-contains itself. Now if x, z g D s N l f Inn F and y g

Ž . y y1 yN C, D are such that x z g C s N l ker f then x g D and further-T
more

f x y s f z .Ž . Ž .

Ž .Hence by the lemma the map s : N C, D ª Aut F given by requiringT
that

Ž .s y yf x s f x for all x g D and y g N C , DŽ . Ž . Ž .T

is well-defined and extends f.

wProof of Lemma 3.13. This follows by adapting the proofs of 3, 3.1 and
x3.5 .

Corollary 3.15. Let N, T , f, S, and F be as in the paragraph immediately
preceding Lemma 3.12. Suppose that N is a normal subgroup of T and that
Ž .f N l S G Inn F. Then f has no strict extensions in T if and only if both of

the following hold:

Ž . Ž y1Ž ..i N l ker f, N l f Inn F is an S-maximal section of N;
Ž . Ž y1Ž ..ii S s N N l ker f, N l f Inn F .T
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Proof. This is straightforward.

Suppose that N, T , f, S, and F are as above; suppose also that
Ž .f S l N G Inn F. Set

U s N l ker f and V s N l fy1 Inn F .Ž .

Ž .By Lemma 3.13 the section U, V is a section of N isomorphic to F.
Ž .Suppose further that N is a minimal normal subgroup of T. As f N l S

G Inn F we see that N is non-abelian and so is isomorphic to the direct
product of its minimal normal subgroups, each of which are isomorphic to

Ž w x.a fixed non-abelian simple group. An easy argument cf. 3, 5.3 shows that
there exists a minimal normal subgroup E of N with

k U / k V ,Ž . Ž .

Ž .where k : N E ª Aut E is induced by conjugation. As k induces anT
Ž . Ž .epimorphism from the quotient VrU onto the quotient k V rk U we

Ž Ž . Ž .. Ždeduce that k U , k V is a section of E also isomorphic to F where we
.identify E with Inn E . The following result relates possible S-maximality

Ž . Ž Ž .. Ž Ž . Ž ..of U, V to possible k N E -maximality of k U , k V .S

˜ ˜Ž . Ž .LEMMA 3.16. Suppose that U, V and U, V are non-abelian simple
sections of the minimal normal subgroup N of a group T with L F T such that

˜ ˜Ž . Ž .U, V is L-contained in U, V . Then there exists a minimal normal subgroup
˜ ˜Ž Ž . Ž ..E of N such that k U , k V is a section of E isomorphic to the quotient

˜ ˜ Ž .VrU, where k : N E ª Aut E is induced by conjugation. Let E be soT
Ž Ž . Ž .. Ž Ž ..chosen; then k U , k V is a section of E which is k N E, U, V -con-L
˜ ˜Ž Ž . Ž .. Ž .tained in k U , k V . Moreo¨er U, V is an L-maximal section of N if and

only if the following all hold:

Ž . Ž Ž . Ž .. Ž Ž ..i k U , k V is a k N E, U, V -maximal section of E;L

Ž .ii Core U of N contains e¨ery normal subgroup of N that is nor-N
Ž .malised by N U, V and that does not contain E;L

Ž . Ž .iii U l E s k U .

Ž .Remark 3.17. 1 The above lemma is essentially a rephrasing of
w xTheorem 5.1 of 1 . However, we choose to give a proof of the lemma here,

w xrather than refer to 1 , as the method of proof used here is quite different
w xfrom 1 and much more appropriate in the current context.

Ž . Ž .2 We stress that condition i of the above lemma considers
Ž Ž .. Ž Ž ..k N E, U, V -maximality, and does not consider k N E -maximality.L L

This is important in that in general we only have

k N E, U, V F N k U , k VŽ . Ž . Ž .Ž .Ž .L k ŽN ŽE ..L
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and not equality. For an example demonstrating this, see the final section
w xof Remark 4.8 of 1 .

Ž . Ž . Ž .3 With the notation of the above lemma, conditions ii and iii hold
if and only if

x
k U if x g N U, V ;Ž . Ž .LxU l E s x½ E if x g T _ N E N U, V .Ž . Ž .T L

In turn the latter holds if and only if

m l
x i x iU s k U = E ,Ž .Ł Łž / ž /is1 ismq1

Ž . Ž .where x , . . . , x is a right transversal for N E, U, V , in N U, V and1 m L L
Ž .x , . . . , x is a right transversal for N E in T.1 l T

Proof of Lemma 3.16. The discussion immediately prior to the state-
ment of the lemma may be adapted to show the existence of a minimal
normal subgroup E of N such that

˜ ˜k U , k V ,Ž . Ž .Ž .
Ž .where k : N E ª Aut E is induced by conjugation, is a section of E alsoT

˜ ˜ Ž .isomorphic to VrU. We fix this choice of E and k . Given that U, V ,
˜ ˜Ž .U, V are non-abelian simple sections with the former L-contained in

˜ ˜ ˜ ˜the latter, we have that V s UV, and that VrU, VrU are isomorphic
Žnon-abelian simple groups: we deduce that in the following diagram in

.which the maps are the obvious ones all homomorphisms are epimor-
phisms and moreover that all are isomorphisms with the possible exception
of those in the bottom row.

˜ ˜ ˜ ˜ ˜ ˜V U ª k V k U ª k U k V k UŽ .Ž . Ž . Ž . Ž .
x x

˜V U ª k V k U ª k V k U l k VŽ . Ž . Ž . Ž .Ž .

It follows from the commutativity of this diagram that all maps are in fact
isomorphisms, and in particular that

˜k V k U ( V U and k U s k V l k U .Ž . Ž . Ž . Ž . Ž .

Ž Ž . Ž ..We conclude that k U , k V is indeed a section of E isomorphic to
˜ ˜ ˜ ˜Ž Ž .. Ž . Ž .VrU and, on noting that k N E, U, V normalises both k U and k VL

˜ ˜Ž . Ž . Ž Ž . Ž ..since N U, V is contained in N U, V , that k U , k V isL T
˜ ˜Ž Ž .. Ž Ž . Ž ..k N E, U, V -contained in k U , k V .L
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Ž .We turn to the ‘‘Moreover’’ statement. Set S s N U, V and note thatL
Ž . Ž .U, V is L-maximal if and only if U, V is S-maximal. Let x , . . . , x be a1 l

Ž .right transversal for N E in T such that x , . . . , x is a right transversalT 1 m
Ž . Ž . Ž Ž ..for N E in S. Let C, D be a section of E that k N E -containsS S

Ž Ž . Ž ..k U , k V . It is straightforward to see that

m l
x xi iX s C = EŁ Łž / ž /is1 ismq1

is normalised by both S and V. Thus X l V is a normal subgroup of V
that contains U, and so is equal to either U or V as VrU is simple. But
Ž . Ž . Ž . Ž .k X s k U § k V and so X l V s U. Hence U, V is S-contained in

Ž . Ž . Ž .the section X, XV of N, and the necessity of conditions i ] iii follows.
Ž . Ž . Ž .Conversely, suppose that conditions i ] iii all hold and that U, V is

˜ ˜Ž . Ž .S-contained in the section U, V of N. Condition i together with the first
˜ ˜Ž . Ž .part of the lemma implies that k U s k U . Given that S normalises U,

it follows that

m l
x i x iŨ F k U = E ,Ž .Ł Łž / ž /is1 ismq1

Ž . Ž .where by conditions ii and iii the right hand side equals U. Hence
˜ ˜ ˜Ž . Ž .U F U whence the section U, V is equal to U, V as required.

With the notation of the above lemma, it is clear that if E is a minimal
Ž Ž . Ž ..normal subgroup of N such that k U , k V is isomorphic to VrU, then

Ž . Žthe same holds with E replaced by any N U, V -conjugate of E and kT
. Ž .redefined appropriately . Hence, if N U, V is transitive on the minimalT

normal subgroups of N, equivalently if

T s N E N U, V ,Ž . Ž .T T

then E can be replaced by any minimal normal subgroup of N. As this is
often true in the situations arising later in this paper it is worthwhile to
consider this more carefully. For the sake of precision we have the
following definition.

Ž . Ž .DEFINITION 3.18. We say that E, N, T , F, S, f is a 3.18 -tuple if the
following all hold:

Ž .i E is a minimal normal subgroup of the group N which in turn is
a minimal normal subgroup of the group T ;

Ž .ii F is a non-abelian simple group;
Ž . Ž .iii S is a subgroup of T such that T s N E S;T

Ž . Ž .iv f is a homomorphism S ª Aut F such that f S l N G Inn F.
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Ž . Ž .Given a 3.18 -tuple E, N, T , F, S, f we fix the notation k , C, D, h, X,
P, and s as follows.

Ž .The map k is the usual map N E ª Aut E induced by conjugation.T
We stress that we identify E with Inn E so that k restricts to give the
identity map on E. We set

C s k ker f l N and D s k fy1 Inn F l N .Ž . Ž .Ž .

Ž y1Ž ..Note that the section N l ker f, N l f Inn F of N is isomorphic to
F. The remarks immediately prior to Lemma 3.16 coupled with the fact

Ž . Žthat T s N E S equivalently that S is transitive on the minimal normalT
. Ž .subgroups of N , imply that C, D is a section of E isomorphic to F. In

fact it is clear that the map DrC ª F given by

Ck x ¬ f x for all x g N l fy1 Inn F ,Ž . Ž . Ž .

where F is identified with Inn F in the usual way, is an isomorphism. We
Ž .use this isomorphism to identify DrC with F, and let h : N C, D ªAut E

Aut F be induced by the conjugation action on the quotient DrC.
Ž .Let x , . . . , x be any right transversal for N E in S. We set1 l S

l
x iX s C F N.Ł

is1

Notice that X is independent of the transversal chosen and furthermore
Ž y1Ž ..that the section N l ker f, N l f Inn F of N is S-contained in

Ž Ž y1Ž ... Ž Ž y1Ž ...X, X N l f Inn F . We set P s N X, X N l f Inn F , andT
let s : P ª Aut F be defined by requiring that

Ž .s y
f x s f zŽ . Ž .

y1Ž . y y1whenever x, z g N l f Inn F and y g P are such that x z g X. By
Lemma 3.13 the map s is well-defined and extends f. We leave the

Ž . Ž . Ž .reader to verify that for x g N E we have k x g N C, D andP Aut E

s x s h k x . 3.AŽ . Ž . Ž .Ž .

Ž . Ž .LEMMA 3.19. Let E, N, T , F, S, f be a 3.18 -tuple and let k , C, D, h,
X, P, and s be as defined abo¨e. Let x , . . . , x be any right trans̈ ersal for1 l

Ž .N E in S. Then the following all hold:S

Ž . l Ž . x ji N l ker s s Ł E l ker h ;is1

Ž . Ž . Ž Ž Ž ...ii s N l P s Core h N C, D ;fŽS . E
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Ž . Ž . y1Ž Ž Ž Ž ....iii k N l P s E l h Core h N C, D ;fŽS . E

Ž . Ž y1Ž ..iv N l ker s , N l s Inn F is a P-maximal section of N if and
only if

E l ker h , E l hy1 Inn FŽ .Ž .
Ž Ž ..is a k N E -maximal section of E.P

Ž . Ž .Proof. Part i follows by a straightforward calculation. We turn to ii .
Observe that N l P is normalised by P, and so also by S, whence
Ž . Ž . Ž . Ž .s N l P is normalised by s S s f S . As k N l P F E we deduce

Ž .from 3.A that

s N l P F h N C , DŽ . Ž .Ž .E

Ž . Ž . Ž Ž ..and so s N l P is contained in the f S -core of h N C, D . Con-E
Ž Ž Ž ...versely, if x is an element of Core h N C, D thenfŽS . E

l
Ž .f x ix g h N C , D .Ž .Ž .Ž .F E

is1

Ž . Ž . fŽ x i
y1.For each i s 1, . . . , l choose y g N C, D with h y s x , and seti E i

y s y x1 ??? y x l g N.1 l

Ž .We claim that y g P and that s y s x. Certainly y normalises X. To
Ž y1Ž ..show that y also normalises X N l f Inn F we must show that for all

y1Ž . y1Ž .u in the intersection N l f Inn F there exists ¨ g N l f Inn F
with u y¨ g X, or equivalently, given that X s Ł l C x i, we must showis1

y1Ž . y1Ž .that for all u g N l f Inn F there exists ¨ g N l f Inn F with

xy1y ik u ¨ g C for all i s 1, . . . , l.Ž .Ž .
y1Ž . Ž .So suppose u g N l f Inn F . As f N l S G Inn F there exists ¨ g

y1Ž . Ž y1 . Ž . x l x iN l f Inn F with f ¨ s f u . Since N s Ł E and sinceis1
y s y x1 ??? y x l with each y g E we have for each i s 1, . . . , l1 l i

yy1 iy1xy xi ik u s k u ,Ž . Ž .Ž .
whence

yy1 iy1 y1xy x xi i ik u ¨ s k u k ¨ .Ž . Ž . Ž .Ž .
Ž . Ž x i

y1. y iRecalling that y g N C, D and that x g S we see that both k ui E i
Ž x i

y1.and k ¨ are in D. Thus the right hand side above is in C if and only if
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its image under h is trivial. However,

y iy1 y1x xi ih k u k ¨Ž . Ž .ž /
Ž .h yy1 y1ix xi is h k u h k ¨Ž . Ž .Ž . Ž .ž /
Ž . Ž y1 .f x xf xy1 y1i ix xi is h k u h k ¨ , by the choice of y ,Ž . Ž .Ž . Ž .ž / i

Ž . Ž y1 .f x xf xy1 y1i ix xi is f u f ¨ , by 3.AŽ .Ž . Ž .Ž .
Ž y1 .f xx is f u f ¨Ž . Ž .Ž .

which is trivial by the choice of ¨ . Hence we have shown that y g P.
Ž . Ž .Moreover if x g N E and this holds for precisely one i s 1, . . . , l soi S

Ž . Ž x i. k Ž x i. Ž .that k y s k y s y , then by 3.Ai i

Ž Ž .. Ž .h k x f xk Ž x . i iis y s h k y s h y s h y s h y s xŽ . Ž . Ž . Ž .Ž . Ž .i i i

and the claim holds. The reverse containment

Core h N C , D F s N l PŽ . Ž .Ž .Ž .fŽS . E

Ž .follows, whence ii holds.
Ž . Ž . Ž .We turn to iii . By i we have k N l P G E l ker h and so given that

Ž . Ž Ž ..s N l P s h k N l P we have

k N l P s E l hy1 s N l P .Ž . Ž .Ž .
Ž . Ž .Part iii now follows from ii .

Finally, as P G S, whence P is also transitive on the minimal normal
subgroups of N, every proper normal subgroup of N normalised by P is

Ž . Ž .trivial. Part iv follows by assuming part i and by applying Lemma 3.16 to
the section

U, V s N l ker s , N l sy1 Inn FŽ . Ž .Ž .
of N.

Ž . Ž .PROPOSITION 3.20. Let E, N, T , F, S, f be a 3.18 -tuple and let k , C,
D, and h be as defined abo¨e. Then f has no strict extensions in NS if and
only if the following all hold:

Ž . Ž . Ž Ž ..i C, D is a k N E -maximal section of E;S

Ž .ii S l E G C;
Ž . Ž Ž Ž ... Ž .iii Core h N C, D s f S l N .fŽS . E
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Remark 3.21. We note that in the instance where the group C is trivial
Ž .then condition ii of the lemma is trivially satisfied.

Ž .Proof of Proposition 3.20. It is easy to see that if E, N, T , F, S, f is a
Ž . Ž .3.18 -tuple, then so is E, N, NS, F, S, f . Thus it is enough to prove the
lemma under the additional assumption that T s NS.

Let X, P, and s be as above. Note that the conclusions of Lemma 3.19
all hold.

Suppose that f has no strict extensions in T. Then clearly P s S and
Ž . Ž .s s f, whence iii follows from Lemma 3.19 ii . Also by Corollary 3.15

N l ker f , N l fy1 Inn FŽ .Ž .

Ž . Ž . Ž .is an S-maximal section of N, and i and ii follow from Lemma 3.16 i
Ž .and iii , respectively.

Ž . Ž . Ž .Conversely, suppose that i ] iii all hold. Condition ii implies that X
Ž .as defined above is contained in S. As also N l ker f F X F N l ker s
we have

N l ker f F X F S l N l ker s s N l ker f

Ž Ž . .and equality must hold. Now E l ker h, E l ker h D is clearly a sec-
Ž Ž .. Ž . Ž .tion of E that k N E -contains C, D , whence i implies that C s E lS

Ž .ker h. From Lemma 3.19 i we deduce that

N l ker s s X s N l ker f .

Ž . Ž .This coupled with Lemma 3.19 ii and condition iii implies that N l S s
N l P. Now by assumption T s NS and so

P s P l NS s N l P S s SŽ . Ž .

which in turn implies that s s f. Having already seen that C s E l ker h,
Ž . Ž .condition i together with Lemma 3.19 iv shows that

N l ker s , N l sy1 Inn FŽ .Ž .

is a P-maximal section of N. Recall that P is defined as the normaliser in
T of this section. We finish by applying Corollary 3.15 to deduce that s ,
which we know is equal to f, has no strict extensions in T as required.

Ž . Ž .COROLLARY 3.22. Let E, N, T , F, S, f be a 3.18 -tuple such that f
has no strict extensions in NS. Let k , C, D, and h be as defined abo¨e, and
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Ž .let x , . . . , x be a right trans̈ ersal for N E in S. Then C s E l ker h,1 l S

l
x iN l ker f s C 3.BŽ .Ł

is1

and

Y l S s Y l ker f s C x i , 3.CŽ .Ł
xi� 4i : E FY

where Y is any proper normal subgroup of N.

Proof. As in the proof of Proposition 3.20 we may immediately reduce
Ž . Ž .to the case where T s NS. From Proposition 3.20 i we see that C, D is a

Ž Ž ..k N E -maximal section of E whence we certainly have E l ker h s C.S
Let P and s be as in the statement of Lemma 3.19. As f has no strict

Ž . Ž .extensions in T we have s s f whence 3.B follows from Lemma 3.19 i .
Ž .Suppose that Y is a proper normal subgroup of N. As T s N E ST

x x Ž .there exists x g S with E g Y , or equivalently, with Y F C E F ker k .N
Ž .Now by 3.A

f Y x l S s h k Y x l S .Ž . Ž .Ž .

Ž x. x Ž .As k Y is trivial we deduce that Y l S F ker f. Also as f Y l S is
Ž . Ž x . Ž Ž ..f S -conjugate to f Y l S namely by f x , we see that Y l S F ker f,

Ž .whence Y l S s Y l ker f as required. The remainder of 3.C follows
Ž .from 3.B via an easy calculation.

3.23. Subgroup Lattices of Non-Abelian Characteristically Simple Groups.
We shall need two results on subgroup lattices of characteristically simple
groups.

LEMMA 3.24. Let N be a non-abelian characteristically simple group, and
let H be a soluble subgroup of Aut N. Then

N \ MM� 4id mN H

for any m G 0.

Proof. We must show that there exist strictly comparable H-invariant
< <non-trivial proper subgroups of N. We proceed by induction on N . Let Q

be a minimal normal subgroup of H. Note that Q is an elementary abelian
q-group for some prime q.

Ž . Ž w x.Suppose that C Q is trivial. An easy argument cf. 7, 6.2.3 showsN
that N is a q9-group. A generalization of a conjecture due to Frobenius

w xand proved by Wang using CFSG 22 forces N to be soluble}a contradic-
Žtion. Alternatively, we can avoid this use of CFSG as follows: the last part
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w xof the proof of the Aschbacher]O’Nan]Scott theorem as given in 14
shows that Q normalises a unique Sylow p-subgroup P of N where p is

< <any prime dividing N , and by Burnside’s normal p-complement theorem
w x Ž . Ž .7, 7.4.3 either ZZ P and P, or P and N P are strictly comparableN

.H-invariant non-trivial proper subgroups of N.
Ž . Ž .So we may assume that C Q is non-trivial. If C Q is not character-N N

Ž .istically simple then the result clearly follows. If C Q is non-abelian andN
Ž .characteristically simple, then we are done by induction. If C Q isN

abelian and characteristically simple, then by Burnside’s normal p-comple-
w x Ž . Ž Ž ..ment theorem 7, 7.4.3 , C Q and N C Q are strictly comparableN N N

and are certainly H-invariant non-trivial proper subgroups of N.

COROLLARY 3.25. Let F be a non-abelian simple group, and let H be a
subgroup of Aut F. Suppose that

F ( MM� 4id mF H

for some m G 0. Then one of the following holds:

Ž .i m s 0 and H G Inn F;
Ž .ii m s 1 and H l Inn F is a non-trï ial non-abelian characteristi-

cally simple proper subgroup of Inn F.

Proof. The previous lemma shows that H is insoluble, and so by the
‘‘Schreier conjecture’’ H l Inn F is an insoluble, and so non-abelian,
non-trivial subgroup of Inn F. Clearly m s 0 if H l Inn F s Inn F, in

Ž .which case i holds, and so we may assume that H l Inn F is a proper
Ž .subgroup of Inn F, whence m G 1. We must show that ii holds.

Suppose that m ) 1. Identify F with Inn F in the usual way and let L
be a non-trivial H-invariant subgroup of F distinct from H l F. Then
² :H l F, L is an H-invariant subgroup of F strictly containing both

² :H l F and L and so equals F. However, L is normal in H l F, L
which contradicts the simplicity of F. Thus m s 1. Finally observe that
H l F is characteristically simple as if not then it must strictly contain a
non-trivial H-invariant subgroup.

4. THE NOT-T-COMPLEMENT CASE

Ž .In this section we are concerned with the determination of V 2.D . For
Ž . Ž .convenience, we say that the pair G, T is a 2.D -pair of rank n, if the

following both hold:

Ž .A T is a subgroup of G such that

G T ( MM ;n
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Ž .B the socle Soc G of G is a minimal normal subgroup of G, is
non-abelian, and satisfies

� 4Soc G l T s id and Soc G T / G.Ž . Ž .
Thus

V 2.D s n G 16: there exists a 2.D -pair of rank n .� 4Ž . Ž .
Ž .Our first step in the study of V 2.D is to translate the problem into the

language of twisted wreath products.

Ž . Ž .DEFINITION 4.1. We say that the tuple H, T , F, Q, f satisfies 4.1 , or
Ž .is a 4.1 -tuple, if the following all hold:

Ž .i T is a maximal subgroup of the group H and T is core-free
in H;

Ž .ii F is a non-abelian simple group;
Ž .iii Q is a core-free subgroup of H satisfying H s QT ;
Ž . Ž .iv f is a homomorphism Q ª Aut F such that f Q l T G Inn F

<and such that the restriction f : Q l T ª Aut F has no strict exten-Q l T

sions in T.

Ž . Ž .Moreover, we say that the tuple H, T , F, Q, f is a 4.1 -tuple of rank n, if
Ž .it satisfies 4.1 and there exist precisely n y 1 homomorphisms

Ž .f , . . . , f : Q ª Aut F one of which is f such that for each i s1 ny1
1, . . . , n y 1

˜ ˜< <f s f and f s f , 4.AŽ .Q l T Q l Ti i

˜ ˜where f , f are the homomorphisms Q ª Out F obtained by composingi
f , f, respectively, with the natural quotient map Aut F ª Out F.i

Ž .The subset V 4.1 of N is defined by

V 4.1 s n G 16: there exists a 4.1 -tuple of rank n .� 4Ž . Ž .
Ž .The significance of 4.1 -tuples is clear from the following result.

Ž . Ž .THEOREM 4.2. V 2.D s V 4.1 .

Ž .The proof of the theorem will be constructive; given a 4.1 -tuple of rank
Ž .n, we will construct a 2.D -pair of rank n, and conversely, given a

Ž . Ž .2.D -pair of rank n G 3, we will construct a 4.1 -tuple of rank n. Before
Ž .doing so we need to fix some notation concerning 2.D -pairs and to give

some preparatory lemmas.
Ž . Ž .Suppose that G, T is a 2.D -pair of rank n so that there are precisely

n proper overgroups of T in G each of which is maximal in G. Let



REPRESENTING FINITE LATTICES 23

M s Soc G. Set H s MT which is then the unique maximal subgroup ofn
G containing both T and M; let the other n y 1 distinct maximal
subgroups of G containing T be H , . . . , H . Let F be a fixed minimal1 ny1
normal subgroup of M; observe that F is a non-abelian simple group since
M is non-abelian and is a minimal normal subgroup of G.

Ž . Ž .LEMMA 4.3. Suppose that G, T is a 2.D -pair of rank n; let M,
H , . . . , H be as abo¨e. Then the following all hold:1 n

Ž .i G s MH for all i s 1, . . . , n y 1;i

Ž . � 4ii M l H s id for all i s 1, . . . , n y 1;i

Ž . � 4iii Core H s id for all i s 1, . . . , n y 1;G i

Ž . � 4iv if n G 3, then Core T s id for all i s 1, . . . , n y 1;H i

Ž .v M is the unique minimal normal subgroup of H .n

Proof. Suppose that 1 F i F n y 1. Now MH is a subgroup of Gi
containing M, H , and T. As H is the unique maximal subgroup of Gi n
containing both M and T , and as H / H , we have that G s MH and son i i
Ž . Ž .i holds. To see ii observe that M l H is a subgroup of M normalizedi
by T. As T is maximal in H s MT and as M l T is trivial, we deducen
that the only non-trivial subgroup of M that is normalised by T is M
itself. If M l H s M then H G MH s G, a contradiction. Hence M l Hi i i i

Ž .is trivial as required. Part iii now follows since M is the unique minimal
normal subgroup of G.

Suppose now that n G 3. Let a be the natural quotient map G ª GrM.
Ž . Ž . <Parts i and ii of the lemma imply that the homomorphism a : H ªH ii

GrM obtained by restricting a is an isomorphism. Let c : H ª H be1 2
<the isomorphism obtained by composing a : H ª GrM with the in-H 11

< <verse of a : H ª GrM. Note that c is the identity map on T. ThusH T22

Ž .if N is a non-trivial normal subgroup of H contained in T , then c N s N1
is a normal subgroup of H contained in T ; it follows that N is a normal2

² :subgroup of H , H . The maximality of H and H in G implies that1 2 1 2
² :G s H , H . Hence N is a normal subgroup of G. But this is a1 2

contradiction as M is the unique minimal normal subgroup of G and
M g T. So we have shown that T is core-free in H . Likewise T is1

Ž .core-free in H for all i s 1, . . . , n y 1 and iv holds.i
Ž .Finally we verify v . As noted above, M is the only non-trivial subgroup

of M that is normalised by T , and so is certainly a minimal normal
subgroup of H s MT. By definition M is the unique minimal normaln

Ž .subgroup of G and is non-abelian, whence C M is trivial. HenceG
Ž .C M is also trivial, and the uniqueness of M follows.H n

LEMMA 4.4. Let H be a group with subgroups Q, T satisfying H s QT ; let
F be any group with a trï ial centre, and let f be a homomorphism
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Q ª Aut F; let X be the twisted wreath product F twr H. Then the comple-f

ments in X to the base group B of X that contain T are in one-to-onef

correspondence with the homomorphisms j : Q ª Aut F satisfying

˜ ˜< <j s f and j s f , 4.BŽ .Q l T Q l T

˜ ˜where j , f are the maps Q ª Out F obtained by composing j , f, respec-
tï ely, with the natural quotient map Aut F ª Out F.

Remark 4.5. The proof of Lemma 4.4 could be executed in the follow-
ing fashion: firstly, prove the special case in which Q s H, and, secondly,

w xdeduce the result from this by using the results of 8 . We choose instead
to give a direct proof involving the construction of an explicit bijection
between the two sets involved as we feel this to be more illuminating.
However, we must stress that this is precisely the type of result that

w xdepends on the ideas investigated in 8 .

Proof of Lemma 4.4. As mentioned above, the proof is constructive: we
give an explicit bijection between the two sets. For convenience, let SScomp
be the set of complements in X to B that contain T , and let SS be thef map

Ž .set of homomorphisms j : Q ª Aut F satisfying 4.B .
We now set up some notation that will remain in force for the rest of

this proof. Let

F s f g B : f x s id for all x f Q ;Ž .� 4Q f F

observe that F is minimal among the normal subgroups of B that areQ f

Ž w x.normalised by Q and that are isomorphic to F cf. Lemma 2.3 of 3 .
Ž .Identify F with F via the map f ¬ f id for all f g F , and letQ H Q

Ž .x : N F ª Aut F be the map induced by conjugation. Recall that XX Q
can be written as the semi-direct product of B by H; let a : X ª H bef

<the map obtained by quotienting out B so that a is the identity map onHf

H. Let b : Aut F ª Out F be the natural quotient map.
<We claim that the restriction x of x to Q, which is indeed a subgroupQ

Ž .of N F , is equal to f. To see this note that the definition of x ensuresX Q
that for x g F and q g Q

x x Žq. s f q id ,Ž .H

Ž .where f g F is such that f id s x. However,Q H

Ž .f qqf id s f q s f idŽ . Ž . Ž .H H

and the claim holds.
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<Suppose that L g SS . Observe that a is an isomorphism L ª HLcomp
that restricts to give the identity map on T and to give an isomorphism

Ž . Ž . Ž Ž .between N F and N F . The latter holds since B F N F andL Q H Q f X Q
X s B L s B H imply thatf f

N F s B N F s B N F .Ž . Ž . Ž . .X Q f L Q f H Q

Ž .Observe also that Q s N F . We define j : Q ª Aut F to be theH Q L
Ž < .y1 <composition of a with x . We claim that j g SS . WeN ŽF . N ŽF . L mapL Q L Q

< < Ž .consider first the condition j s f . Let t g Q l T ; then a tQ l T Q l TL
s t, whence

j t s x t s f tŽ . Ž . Ž .L

<since x s f as verified in the previous paragraph. We turn to theQ
˜ ˜ Ž . <condition j s f. Since x B s Inn F s ker b and since x s f it isQL f

straightforward to see that the diagram

<a N ŽF .X Q 6

N F QŽ .X Q

6 6

x f̃

b 6

Aut F Out F

commutes. Hence so does

<a N ŽF .L Q 6

N F QŽ .L Q

6 6

<x ˜N ŽF . fL Q

b 6

Aut F Out F

˜< Ž .Recalling that a is an isomorphism N F ª Q we deduce that fN ŽF . L QL Q

Ž < . Ž < .y1is equal to the composition b ( x ( a . This compositionN ŽF . N ŽF .L Q L Q

˜ ˜ ˜is precisely j and so f s j as required.L L
Thus the map g : SS ª SS given bycomp map

L ¬ j for all L g SSL comp

is well-defined. We prove that g is a bijection by exhibiting an inverse.
Suppose that j g SS . Given h g H we define f g B by requiringmap h f

that for all t g T

y1y1 y1 y1f t s u j t hx f t hx , 4.CŽ . Ž . Ž . Ž .ž /h
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where u : F ª Inn F is the natural map taking y g F to ‘‘conjugation by
Ž .y’’ which is an isomorphism as F has a trivial centre by assumption and

where x is any element of T such that ty1 hx g Q. We must verify that fh
is a well-defined element of B . We start by showing that the right handf

Ž .side of 4.C is an element of F well-defined in terms of t. Fix t g T.
Firstly, note that, as H s QT, elements x g T such that ty1 hx g Q do
indeed exist. If x, y g T are such that both ty1 hx and ty1 hy are elements
of Q, then y s xq for some q g Q l T , whence

y1 y1y1 y1 y1 y1j t hy f t hy s j t hxq f t hxqŽ . Ž . Ž . Ž .
y1y1y1 y1s j t hx j q f q f t hxŽ . Ž . Ž . Ž .

<since both j and f are homomorphisms Q ª Aut F. Now j sQ l T
< Ž y1 . Ž y1 .y1f , and it follows that j t hx f t hx is a uniquely determinedQ l T

˜ ˜element of Aut F. Moreover, the condition j s f implies that
Ž y1 . Ž y1 .y1 y1Ž Ž y1 . Ž y1 .y1 .j t hx f t hx lies in Inn F whence u j t hx f t hx is a

well-defined element of F. Thus there exists some map f : H ª F satisfy-h
Ž .ing 4.C . It remains to show that f can be chosen so that f g B , andh h f

moreover, that there is a unique such choice. If t s sq for some s g T and
q g Q, then q g Q l T and

Ž .f qy1Ž .f q y1 y1 y1f s s u j s hy f s hy ,Ž . Ž . Ž .ž /h

where y g T is chosen so that sy1 hy g Q. Here we can assume that y s x
where x is chosen so that ty1 hx g Q since sy1 hx s qty1 hx. Thus

Ž .f qy1Ž .f q y1 y1 y1f s s u j s hx f s hxŽ . Ž . Ž .ž /h

Ž .f qy1 y1y1 y1 y1s u j q j t hx f t hx f qŽ . Ž . Ž . Ž .ž /
s f tŽ .h

Ž . Ž . Ž . y1since j q s f q and since conjugation by f q followed by u is the
y1 Ž .same as u followed by the action of f q . It follows that there does

Ž .indeed exist an element f g B satisfying 4.C ; there is a unique suchh f

element since if g g H, then we can write g s sq for some s g T and
q g Q whence

Ž .f qf g s f s ,Ž . Ž .h h

and the element f g B is determined by its values on elements of T.h f
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We define the subset L : X byj

� 4L s f h : h g H .j h

We claim that L g SS and, moreover, that the map j ¬ L is thej comp j

inverse of g .
We show firstly that L is a subgroup of X. To see this we must showj

that
hy1

f f s f for all h , g g H .Ž .h g h g

Suppose t g T and that x, y g T are chosen so that both ty1 hx and
y1 Ž y1 .y1Ž y1 . y1t hgy lie in Q. Then t hx t hgy s x gy g Q and

y1 y1y1 y1 y1 y1 y1 y1f t f t s u f t hx j t hx j t hgy f t hgyŽ . Ž . Ž . Ž .Ž . Ž . Ž .ž /h h g

y1 y1y1 y1 y1 y1 y1s u f t hx j x gy f x gy f t hxŽ . Ž .Ž . Ž .ž /
Ž y1 .y1f t h xy1y1 y1 y1s u j x gy f x gyŽ . Ž .ž /

Ž y1 y1 .f x h ts f xŽ .g

s f hy1 tŽ .g

hy1

s f tŽ .Ž .g

< < < <as required. Now L is clearly a complement to B in X since L s Hj f j

and since L l B is trivial. To see that T F L we take h g T and showj f j

Ž .that f s id , that is, f t s id for all t g T. To suppose that t g T ;h B h Ff

then x s hy1 t g T satisfies ty1 hx s id g Q and soQ

y1y1f t s u j id f id s id .Ž . Ž . Ž .ž /h Q Q F

Hence L g SS .j comp
Ž .We now consider g L : we must show that this equals j . As B Fj f

Ž .N F it is clear thatX Q

N F s f q : q g Q .� 4Ž .L Q qj

Choose f g F ; thenQ
qŽ .x f q f q y1q qf id s f id s f ff idŽ . Ž . Ž .Ž .H H q q H

s fy1 ff qŽ .Ž .q q

Ž .f qy1s f ff idŽ .Ž .ž /q q H

Ž Ž .. Ž . Ž .u f id f q j qq Hs f id s f idŽ . Ž .H H
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Ž . Ž Ž ..since 4.C with t s x s id and h s q g Q shows that u f id sT q H
Ž . Ž .y1 Ž . Ž . Ž .j q f q . Thus x f q s j q and it follows that g L s j .q j

Ž .Finally we suppose that j s g L for some L g SS . We must showcomp
that L s L. Since T F L , T F L and H s TQ, which implies thatj j

Ž . Ž . Ž .X s N F T , we have that L s TN F and L s TN F . Given thatX Q j L Q L Qj

Ž .L and L have the same order, it is sufficient to show that N F Fj L Q
Ž . Ž .N F . So suppose that l g N F ; clearly we can write l s fq for someL Q L Qj

f g B and q g Q. We will show that f s f where f is defined withf q q
Ž . y1respect to j s g L . Let x, t g T be such that t qx g Q. Note that

y1 t y1 Ž .t lx s f t qx g N F as T F L and as B normalises F . ChooseL Q f Q
Ž . j Ž ty1 q x .g g F and consider g id . By the definition of j we haveQ H

Ž y1 . Ž y1 . y1j t q x x t l x t l xg id s g id s g idŽ . Ž . Ž .H H H

ty1 q xy1t ts f gf idŽ .Ž .ž / H

Ž y1 .f t q xy1s f t g id f tŽ . Ž . Ž .Ž .H

Ž Ž .. Ž y1 . Ž y1 .y1whence u f t s j t qx f t qx . As this holds for any t g T we
have f s f , and so l s f q g L .q q j

We have now finished the proof of Lemma 4.4.

Proof of Theorem 4.2. As already observed, it is enough to show that
Ž . Ž .given a 2.D -pair of rank n G 3 there exists a 4.1 -tuple of the same rank,

Ž . Ž .and conversely, that given a 4.1 -tuple of rank n there exists a 2.D -pair
of the same rank.

Ž . Ž .Suppose that G, T is a 2.D -pair of rank n G 3. Let M, H , . . . , H ,1 n
and F be as defined immediately prior to Lemma 4.3. For each i s

Ž .1, . . . , n y 1 let Q s N F and let f : Q ª Aut F be the homomor-i H i ii

phism induced by the conjugation action of Q on F. Choose and fix ani
Ž .integer i such that 1 F i F n y 1; we claim that H , T , F, Q , f is ai i i

Ž . Ž . Ž .4.1 -tuple. To see this we must verify that conditions i ] iv of Definition
4.1 all hold.

Ž .Certainly ii holds. Now T is a maximal subgroup of H by thei
Ž . Ž .definition of 2.D -pairs, and T is core-free in H by Lemma 4.3 iv ; hencei

Ž .i holds.
Ž .Lemma 4.3 v implies that T is transitive by conjugation on the simple

direct factors of M; as these are precisely the G-conjugates of F we
Ž .deduce that H s TQ . Lemma 4.3 iii , together with the maximality of Hi i i

Ž .in G, implies that G, in its action on the coset space G : H by righti
multiplication, is a primitive permutation group. Furthermore, Lemma

Ž . Ž . Ž4.3 i ] ii imply that M is a regular subgroup of G. A permutation group
is regular if and only if it is transitive and the stabilizer of any point is
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.trivial. Thus the primitive permutation group G has a non-abelian and
regular socle; such primitive permutation groups are commonly referred to

w xas primitive permutation groups of twisted wreath type. The results of 14
Ž w x.see also 3, 8.4 imply that Q , as the normaliser in a point-stabilizer of ai

Žsimple direct factor of the socle, is core-free in H . This deduction usesi
.the ‘‘Schreirer conjecture’’ and hence depends on CFSG. We have veri-

Ž .fied that iii holds.
Ž .We finally consider iv . Lemma 3.5 shows that there exists an isomor-

phism H ª F twr T that maps T F H to the top group T of the twistedn s n
Ž .wreath product where s is the restriction of f to Q l T s N F . As Ti i T

is maximal in H it follows that T is maximal in F twr T and by applyingn s

Ž .Corollary 3.7 we deduce that iv holds.
Ž . Ž .We have shown that H , T , F, Q , f is a 4.1 -tuple; we claim moreoveri i i

Ž .that it is a 4.1 -tuple of rank n. To see this, we once again use Lemma 3.5,
this time to deduce that there exists an isomorphism G ª F twr H thatf ii

maps M to the base group and H to the top group of the twisted wreathi
product. It follows from Lemma 4.3 that there are precisely n y 1 comple-
ments in F twr H to the base group that contain T , namely, the imagesf ii

of H , . . . , H under this isomorphism. We can now apply Lemma 4.4 to1 ny1
find that the rank of the tuple is indeed n.

Ž . Ž .Conversely, suppose that H, T , F, Q, f is a 4.1 -tuple of rank n. Let
Ž .X be the twisted wreath product F twr H. We claim that X, T is af

Ž . Ž .2.D -pair of rank n. To verify this we must show that conditions A and
Ž .B given at the start of this section both hold.

Ž .Certainly T is a subgroup of X. We consider B . Let B be the basef

group of the twisted wreath product X s F twr H. By definition Q isf
y1Ž .core-free in H, whence so is f Inn F . Lemma 3.9, together with the

remarks made before its statement, implies that B is the unique minimalf

normal subgroup of X and so equals the socle of X. Now since T is a
proper subgroup of H, and since H complements B in X, it follows bothf

� 4 Ž .that B l T s id and that B T / X. Hence B holds.f f

w xIt remains only to show that XrT ( MM . Let L be any proper over-n
group of T in X. We consider L l B which is a subgroup of Bf f

<normalised by T. Set s s f and observe that there exists an isomor-Q l T

phism B T ª F twr T given byf s

t ¬ t for all t g T
and <f ¬ f g B for all f g B ,T s f

where B is the base group of F twr T. Applying Corollary 3.7 tos s

Ž .condition iv of Definition 4.1, we deduce that T is a maximal subgroup of
� 4B T , whence the only T-invariant subgroups of B are B and id . Hencef f f

either L l B is trivial or L G B .f f
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If L G B then B T F L. Now the proper subgroups of X s B Hf f f

containing B T are in one-to-one correspondence with the proper sub-f

groups of H containing T ; hence L s B T as T is maximal in H.f

Suppose now that L l B is trivial. Let a be the natural map X ª Hf

Ž . Ž .obtained by quotienting out B . Observe that a L ( L, and so a T is af

Ž . Ž .proper subgroup of a L . However, a T s T and is a maximal subgroup
Ž .of H; we deduce that a L s H, whence L is a complement in X to Bf

that contains T. Lemma 4.4 implies that precisely n y 1 such complements
exist.

We have shown that any non-trivial overgroup of T in X is either equal
to B T , or is a complement to B in X containing T , and also thatf f

w xprecisely n y 1 such complements exist. Hence XrB ( MM as required.f n

Ž . Ž .Remark 4.6. Let H, T , F, Q, f be a 4.1 -tuple of rank n. Then, as
Ž . Ž .shown in the above proof, F twr H, T is a 2.D -pair of rank n withf

Ž .B s Soc F twr H . Using Lemma 4.3 in an argument analogous to thatf f

used in the fourth paragraph of the above proof, we deduce that both
F twr H and F twr T in their actions on respectively the coset spacesf f <Q l T
Ž . Ž .F twr H : H and F twr T : T are primitive permutation groups off f <Q l T
twisted wreath type.

Ž .Having reduced the problem of determining V 2.D to that of determin-
Ž .ing V 4.1 , it is not yet clear that we have made any advance in our

attempt to reduce to questions concerning simple groups. We now correct
this.

Ž .DEFINITION 4.7. Let V 4.7 be the subset of N given by

¡ ¦there exists a 4.1 -tupleŽ .~ ¥V 4.7 s n G 16: .H , T , F , Q, f of rank nŽ . Ž .¢ §with H almost simple

Ž . Ž .THEOREM 4.8. V 4.1 s V 4.7 .

This is an immediate consequence of the following proposition.

Ž . Ž .PROPOSITION 4.9. Suppose that H, T , F, Q, f is a 4.1 -tuple of rank
< < Ž .n G 3, and moreo¨er that H is minimal among all 4.1 -tuple of rank n.

Then H is almost simple.

Before proving the proposition we fix some notation and give some
preparatory results.
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Ž . Ž .Suppose that H, T , F, Q, f is a 4.1 -tuple of rank n. Let f , . . . , f1 ny1
Ž .be the n y 1 homomorphisms Q ª Aut F satisfying 4.A ; let s : Q l

T ª Aut F be the common restriction of f , . . . , f . Set V s1 ny1
y1 ˜ ˜ y1 y1Ž . Ž . Ž .f Inn F . The condition f s f implies that f Inn F s f Inn Fi i

s V for all i s 1, . . . , n y 1.

Ž . Ž .LEMMA 4.10. Suppose that H, T , F, Q, f is a 4.1 -tuple of rank n; let
V, s , and f , . . . , f be as abo¨e. For a subgroup K of Q, let K denote the1 ny1
image of K under the quotient map

Q ª Q F ny1 ker f .is1 i

ny1Then V ( F , the images ker f , . . . , ker f are the n y 1 distinct1 ny1
maximal normal subgroups of V, and V l T( F complements each ker fi
in V.

Ž . Ž .Proof. Since s Q l T G Inn F by assumption, we have s V l T (
< Ž .F. Let 1 F i F n y 1; since f s s we have f V s Inn F sQ l Ti i

Ž . Ž .Ž .f V l T , whence V s ker f V l T and Vrker f ( F. As ker s si i i
Ž .ker f l T , it follows that V l T( F, that V l T complements eachi
ker f in V, and that Vr ker f ( F. The latter implies that, for eachi i
i s 1, . . . , n y 1, ker f is a maximal normal subgroup of V with quotienti
F; we claim that they are all distinct. Suppose that 1 F i F j F n are such
that ker f s ker f . Clearly this forces ker f s ker f . Choose ¨ g V. Asi j i j

Ž .Ž .V s ker f V l T , we can write ¨ s ut where u g ker f s ker f andi i j
t g T. Thus

f ¨ s f u f t s id s t s f u f t s f ¨ ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .i i i Aut F j j j

< <whence f s f . As any automorphism of F is determined uniquely byV Vi j
its action on F, or equivalently by its conjugation action on Inn F, this
forces f s f , whence i s j as required.i j

We have shown that V has n y 1 distinct maximal normal subgroups
that have quotient F and that have a trivial common intersection. This

ny1implies that V ( F and we are finished.

Ž . Ž .COROLLARY 4.11. Suppose that H, T , F, Q, f is a 4.1 -tuple of rank n;
let V be as abo¨e. Then the following all hold:

Ž .i ker f s ker f if and only if i s j;i j

Ž .ii in any chief series of Q there are at least n y 1 chief factors
isomorphic to F;
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Ž . Ž .iii if K is a normal subgroup of V satisfying K ker f s V for alli
i s 1, . . . , n y 1, then

ny1

K ker f s V .F iž /
is1

Ž . Ž . Ž .Proof. Parts i and ii are immediate; iii follows by considering the
ny1 Ž ny1 .normal subgroups of F ( Vr F ker f .is1 i

Ž . Ž .LEMMA 4.12. Suppose that H, T , F, Q, f is a 4.1 -tuple of rank n G 3
and that L is a subgroup of H. Let denote reduction modulo Core Q.L
Suppose further that the following all hold:

Ž .a Q F L;
Ž . ny1b Core Q F F ker f ;L is1 i

Ž .c L l T- L.max

Ž . Ž .Then L, L l T, F, Q, h is a well-defined 4.1 -tuple of rank n, where h is
Ž . Ž .the unique map satisfying h q s f q for all q g Q.

Remark 4.13. Recall from Remark 4.6 that for each i s 1, . . . , n y 1
the twisted wreath product F twr H in its action on the coset spacef i
Ž .F twr H : H is a primitive permutation group of twisted wreath type. Inf i w x Ž . Ž .the terminology of 3, Sect. 8 a subgroup L of H satisfying a and b of
the above lemma is a ‘‘balanced subgroup’’ of each such twisted wreath

w xproduct. The results of 3 show that non-trivial balanced subgroups exist if
and only if the primitive permutation group F twr H possesses a non-triv-f i

Ž w x.ial blow-up decomposition in the sense of 12 . The above lemma works
by essentially using the blow-up decomposition to reduce to a smaller
primitive permutation group of twisted wreath type, namely F twr L.h

Proof of Lemma 4.12. We start by showing that the tuple
Ž .L, L l T, F, Q, h is well-defined. Note that Core Q is a normal sub-L
group of L and so both L and the map L ª L, l ¬ l are well-defined.

Ž . Ž .Thus given a both Q and L l T are well-defined. By b we have
Core Q F ker f and so h is also well-defined.L

Ž . Ž .We now show that L, L l T, F, Q, h is a 4.1 -tuple, i.e., that condi-
Ž . Ž .tions i ] iv of Definition 4.1 all hold.

Ž .Given c we need only verify that L l T is core-free in L to show that
Ž . Ž .i holds. Suppose not, i.e., that Core L l T is non-trivial. Then thereL

Ž . Ž .exists a subgroup N of Core Q r L l T that is normalised by L andL
that strictly contains Core Q. In particular, N is normalised by Q. AsL

y1Ž . Ž .usual set V s f Inn F which is independent of i by 4.A . Now thei
Ž . <facts that H s QT, that f Q l T G Inn F, and that f has noQ l Ti i

Ž .strict extensions in T together imply that f Q G Inn F and that f hasi i
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no strict extensions in H. Lemma 3.12, together with the remarks immedi-
Ž .ately preceding it, implies that either N F ker f or f N l Q G Inn F. Ifi i

the former then certainly N F Q, whence N F Core Q as N is nor-L
Ž .malised by L. Thus we may assume that f N l Q G Inn F whence wei

have

V s V l N ker f for all i s 1, . . . , n y 1.Ž . Ž .i
Now V F Q and so V also normalises N, whence V l N is a normal

Ž .subgroup of V. Applying Corollary 4.11 iii we deduce that

ny1

V s V l N ker f .Ž . F iž /
is1

Ž .Ž . Ž .Recall that Core Q § N F Core Q L l T . Since by b , Core Q F VL L L
Ž .Ž . Ž .we see that V l N F Core Q V l T ; again using b it follows thatL

ny1

V s V l T ker f .Ž . F iž /
is1

But this gives a contradiction for n G 3 as by Lemma 4.10

V F ny1 ker f ( F ny1 whileis1 i

V l T F ny1 ker f F ny1 ker f ( F.Ž . is1 i is1 i

Ž . Ž .That ii holds is immediate. We turn to iii . Since H s QT and Q F L
Ž .by a , we have

L s L l QT s Q L l TŽ . Ž .

Ž .whence L s Q L l T ; as Q is, by the definition of Core L, a core-freeQ
Ž . Ž .subgroup of L we deduce that iii holds. We turn to iv . We claim that

L l T l Q s Q l T.

Certainly Q l TF L l T l Q since Q F L. Suppose that x g L l T and
q g Q are such that x s q. Then x s qu for some u g Core Q andL
consequently, u g Q whence so is x s qu and x g Q l T as required. We
deduce that

h L l T l Q s h Q l T s f Q l T G Inn FŽ .Ž .Ž .
<and that the restriction h possesses a strict extension in L l T if andQlT

<only if the restriction f possesses a strict extension in L l T. As theQ l T
Ž .latter does not possess a strict extension even in T we see that iv holds.
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Ž . Ž .It remains to show that the 4.1 -tuple L, L l T, F, Q, h has rank n.
Define a map a from the set of homomorphisms Q ª Aut F with kernel
containing Core Q to the set of homomorphisms Q ª Aut F given byL

a j q s j q for all q g Q.Ž . Ž . Ž .

It is straightforward, and we leave it to the reader, to show that a restricts
to give a bijection between the set of homomorphisms j : Q ª Aut F
satisfying

˜ ˜< <j s f and j s f ,Q l T Q l T

and the set of homomorphisms j : Q ª Aut F satisfying

˜< <j s h and j s h ,˜QlT QlT

˜where as usual denotes composition with the natural map Aut F ª
Ž .Out F. Hence the rank of L, L l T, F, Q, h is equal to the rank of

Ž .H, T ,F, Q, f and we are finished.

Proof of Proposition 4.9. In Remark 4.6 we noted that F twr H in itsf

Ž .action on the coset space F twr H : H is a primitive permutation groupf

w xof twisted wreath type. The results of 3 give a great deal of information
w xabout H, Q, and f. In particular, Theorem 5.4 of 3 implies that:

Ž .i Soc H is a minimal normal subgroup of H and is non-abelian;
Ž .ii if K is the largest normal subgroup of Soc H that is contained

in Q, then

Q F N K s N C K and ker f G C C K ;Ž . Ž . Ž .Ž . Ž .H H Soc H H Soc H

Ž .iii if Q does not contain a maximal normal subgroup of Soc H,
y1Ž . Ž wthen ker f is determined by knowledge of H and V s f Inn F cf. 3,

x.6.4 ;
Ž .iv if Q does contain a maximal normal subgroup of Soc H, then

E \ F where E is any minimal normal subgroup of Soc H; in fact, F is
Ž w Ž .x.isomorphic to a proper section of E cf. 3, 9.13 1 .

Let E be a minimal normal subgroup of Soc H not contained in Q: this is
possible as Q is a core-free subgroup of H. Note that E is a non-abelian

Ž .simple group as by i , Soc H is a non-abelian minimal normal subgroup of
Ž .H. Set L s N E . It is our intention to apply Lemma 4.12 and to do thisH

Ž . Ž .we must show that conditions a ] c of that lemma all hold.
Recall that by supposition n G 3, whence f , f both exist and may1 2

both play the role of f. Thus Corollary 4.11 implies that ker f is not
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Ž .determined by knowledge of H and V, whence by iii , Q contains some
maximal normal subgroup K of Soc H. As E g Q we must have K s

Ž . Ž . Ž . Ž .C E F Q. By ii , Q F L s N E , whence a holds, and moreover,Soc H H
Ž . Ž . Ž .C E F ker f F Q. Now C E is a normal subgroup of L s N E andH H H

Ž .so C E F Core Q; furthermore, the conjugation action of L on EH L
Ž .induces an isomorphism between the quotient LrC E and some sub-H

group of Aut E. Since E F L induces all inner automorphisms of E, we
Ž . Ž .see that LrC E is almost simple with socle EC E rE ( E. Thus,H H

Ž . Ž .either C E s Core Q, or EC E F Core Q. The latter is impossibleH L H L
Ž . Ž .as E g Q. Condition b follows since again by ii we have

C E F ker f for all i s 1, . . . , n y 1.Ž .H i

Ž .We turn to condition c . Now T is a core-free maximal subgroup of H.
Ž . Ž .We deduce that H s Soc H T and that Soc H l T is a maximal

T-invariant proper subgroup of Soc H. As in Lemma 4.12 we let denote
Ž .reduction modulo Core Q s C E . By arguing as in the proof of theL H

w xAschbacher]O’Nan]Scott theorem as given in 14 , we deduce that either
Ž .N E s N E or that N E - N E . If the latter then c holdsŽ . Ž . Ž . Ž .T H T max H

as required, and so we assume that the former holds, whence

N E s C E N E .Ž . Ž . Ž .H H T

Ž . Ž .As already noted by ii we have C E F ker f for each i s 1, . . . , n y 1,H i
and so

ker f s C E ker f l T s C E ker sŽ . Ž . Ž .i H i H

is independent of i; given that n G 3 this contradicts Corollary 4.11.
Ž .We now finish by applying Lemma 4.12 to see that L, L l T, F, Q, h is

Ž . < < < <again a 4.1 -tuple of rank n. As L is almost simple and L F H the
minimality assumption implies that equality holds and that H ( L is also
almost simple as required.

5. THE T-COMPLEMENT CASE: AN INITIAL
REDUCTION

In this and the following two sections, we are concerned with the
Ž .determination of V 2.E . The purpose of the present section is to translate

the problem into the language of twisted wreath products. In so doing we
identify two natural subcases which are then dealt with separately in
Sections 6 and 7.
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Suppose that T is a subgroup of a group G such that for some n g N
w xthe lattice GrT is isomorphic to MM , and such that the socle of G isn

non-abelian, is a minimal normal subgroup of G, and is complemented by
T. Set M s Soc G. As M is a non-abelian minimal normal subgroup of G,
M is a non-abelian characteristically simple group and so is the direct
product of its minimal normal subgroups, each of which is non-abelian,
simple, and G-conjugate to any other. Let F be a minimal normal

Ž .subgroup of M. Set S s N F and let f : S ª Aut F be induced by theT
conjugation action of S on F. Applying Lemma 3.5 we see that there is an
isomorphism G ª F twr T mapping M to the base group B F and T tof f , T
T. In particular, it follows that B F is the socle of F twr T and so byf, T f

y1Ž .Lemma 3.9 the core of f Inn F in T is trivial. Furthermore, the above
isomorphism G ª F twr T also implies thatf

F � 4B id ( F twr T T ( G T ( MM . 5.AŽ .f , T f nT

Ž .Let L be a f S -invariant non-trivial proper subgroup of F. Then, as
discussed in Subsection 3.4, we may view B L as a T-invariant non-trivialf, T

F Ž .proper subgroup of B . Moreover, if K is also a f S -invariant non-triv-f, T
ial proper subgroup of F and K - L, then B K - B L are a strictlyf, T f , T
comparable pair of T-invariant non-trivial proper subgroups of B F . Asf, T

Ž .this contradicts 5.A it follows that

� 4F id ( MM 5.BŽ .mŽ .f S

Žfor some non-negative integer m F n. Recall that MM is the lattice of0
.length 1. Corollary 3.25 applies and we see that either m s 0 and

Ž . Ž .f S G Inn F, or m s 1 and f S l Inn F is a non-trivial proper sub-
group of Inn F. We consider these two cases separately, but before so

y1Ž .doing we briefly pause to note that in both cases f Inn F is non-trivial,
Ž y1Ž ..whence S is a proper subgroup of T as Core f Inn F is trivial.T

Ž .Firstly we suppose that f S G Inn F. Lemma 3.6 implies that the
T-invariant non-trivial proper subgroups of B F are precisely the sub-f, T
groups of the form B F where r varies over all the strict extensions of fr, T
in T. Noting that B F - B F if and only if s is in turn a strict extensions , T r , T

Ž . Ž .of r we see that the tuple T , F, S, f is a 5.1 -tuple of rank n in the
meaning of the following definition.

Ž . Ž .DEFINITION 5.1. We say that the tuple T , F, S, f satisfies 5.1 , or is a
Ž .5.1 -tuple, if the following all hold:

Ž . Ž .i f is a homomorphism S ª Aut F such that f S G Inn F,
where S is a proper subgroup of T and where F is a non-abelian simple
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group;
Ž . y1Ž .ii f Inn F is a core-free subgroup of T ;
Ž .iii S - R whenever r : R ª Aut F is a strict extension of f inmax

T.

Ž . Ž .Moreover, we say that the tuple T , F, S, f is a 5.1 -tuple of rank n, if it
Ž .satisfies 5.1 and there exist precisely n strict extensions of f in T.

Ž .The subset V 5.1 of N is defined by

V 5.1 s n G 16: there exists a 5.1 -tuple of rank n .� 4Ž . Ž .

Ž . Ž .Secondly we suppose that f S h Inn F. As noted above 5.B together
with Corollary 3.25 implies that

F id ( MMŽ . 1f S

Ž .and that f S l Inn F is a non-trivial proper subgroup of F, and more-
Ž . Ž .over, that f S l Inn F is the unique f S -invariant such subgroup,

Ž . Ž .Ž . Ž .whence f S is a maximal subgroup of f S Inn F and f S normalises
Ž . fŽS .l Inn Fno non-trivial proper subgroup of f S l Inn F. Observe that Bf, T

F Ž .is a T-invariant non-trivial proper subgroup of B . From 5.B we deducef, T
Ž fŽS .l Inn F .that T is a maximal subgroup of B T , or equivalently, that T isf, T

Ž Ž . .a maximal subgroup of f S l Inn F twr T where i(f is the compo-i( f

Ž Ž . . Ž Ž . .sition of f with the map i : N f S l Inn F ª Aut f S l Inn FAut F
induced by conjugation. On noting that Corollary 3.25 also implies that
Ž .f S l Inn F is non-abelian and characteristically simple, we see that the

ideas used to prove Corollary 3.7 can be adapted to show that T is
Ž Ž . . Ž .maximal in f S l Inn F twr T only if f S normalises no non-triviali( f

Ž .proper subgroup of f S l Inn F and there exists no strict extension of
Ž Ž Ž . .. Ži(f in T with image in Aut f S l Inn F . The converse however only
Ž . .holds if f S l Inn F is non-abelian and simple.

Suppose now that X is a T-invariant non-trivial proper subgroup of
B F , and suppose further that there does not exist an extension r of f inf, T

F w F � 4xT with X s B . Since B r id ( MM , Lemma 3.6 implies that X sr, T f , T T n
BfŽS .l Inn F. It follows that the T-invariant non-trivial proper subgroups off, T
B F distinct from BfŽS .l Inn F are all of the form B F for some strictf, T f , T r , T
extension r of f in T. Moreover, given a strict extension r : R ª Aut T
of f in T , we have that

T - F twr T - F twr T .max r max f
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Ž .This, together with Corollary 3.7, implies that r R G Inn F, whence

S F ker r S - ry1 Inn F S F R ,Ž . Ž .

Ž .and that S - R. We deduce that S s ker r S whence ker r s ker f,max
y1Ž . Ž . Ž . Ž .and that R s r Inn F S whence r R s Inn F f S since as noted

Ž . Ž . Ž .above r R G Inn F. We have now shown that T , F, S, f is a 5.2 -tuple
of rank n in the meaning of the following definition.

Ž . Ž .DEFINITION 5.2. We say that the tuple T , F, S, f satisfies 5.2 , or is a
Ž .5.2 -tuple, if the following all hold:

Ž . Ž .i f is a homomorphism S ª Aut F such that f S l Inn F is a
non-trivial proper subgroup of Inn F, where S is a proper subgroup of T
and where F is a non-abelian simple group;

Ž . y1Ž .ii f Inn F is a core-free subgroup of T ;
Ž . Ž . Ž . Ž .iii f S - Inn F f S ;max

Ž . Ž Ž . .iv T - f S l Inn F twr T where i(f is the compositionmax i ( f

Ž Ž . . Ž Ž . .of f with the map i : N f S l Inn F ª Aut f S l Inn F in-Aut F
duced by conjugation;

Ž .v if r : R ª Aut F is a strict extension of f in T , then ker f s
Ž . Ž . Ž .ker r and r R s Inn F f S .

Ž . Ž .Moreover, we say that the tuple T , F, S, f is a 5.2 -tuple of rank n, if it
Ž .satisfies 5.2 and there exist precisely n y 1 strict extensions of f in T.

Ž .The subset V 5.2 of N is defined by

V 5.2 s n G 16: there exists a 5.2 -tuple of rank n .� 4Ž . Ž .

Ž . Ž . Ž .THEOREM 5.3. V 2.E s V 5.1 j V 5.2 .

Proof. We have already seen that

V 2.E : V 5.1 j V 5.2 .Ž . Ž . Ž .

To show the containment in the reverse direction it is sufficient to show
Ž . Ž . Ž .that if T , F, S, f is either a 5.1 -tuple of rank n or a 5.2 -tuple of rank

n, then

F twr T T ( MMf n

Ž . Fand Soc F twr T s B . The verification of this is left to the reader as itf f , T
requires little more than reversing the arguments used above.
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Remark 5.4. We note that an integral part of the above proof is to
Ž . Ž .show that Definition 5.2 iii and iv together imply that

� 4F id ( MM .1Ž .f S

Ž .We close this section with a result that applies both to 5.1 -tuples and
Ž .to 5.2 -tuples.

Ž . Ž .LEMMA 5.5. Let T , F, S, f be either a 5.1 -tuple of rank n or a
Ž .5.2 -tuple of rank n q 1; in either case let r : R ª Aut F for i s 1, . . . , ni i
be the n strict extensions of f in T. Suppose that X is an o¨ergroup of S in T
such that

Core fy1 Inn F F ker f .Ž .Ž .X

y1Ž Ž .. <�Let denote reduction modulo Core f Inn F and set m s i : R FX i
4 <X . Then the condition

h s s f s for all s g SŽ . Ž .

uniquely defines a homomorphism h : S ª Aut F, and moreo¨er, if
Ž . Ž . Ž . Ž .T , F, S, f is a 5.1 -tuple then X, F, S, h is a 5.1 -tuple of rank m, while
Ž . Ž . Ž . Ž .if T , F, S, f is a 5.2 -tuple then X, F, S, h is a 5.2 -tuple of rank m q 1.

Proof. This is straightforward and, other than to say that Lemma 3.8 is
Ž .useful in verifying condition Definition 5.2 iv in the relevant case, we

leave it to the reader.

Ž .6. THE T-COMPLEMENT CASE: SUBCASE f S G Inn F

Ž .In this section we study the problem of determining V 5.1 . We start
with a series of results leading to Corollary 6.3 which is an application of
Lemma 5.5.

Ž . Ž .LEMMA 6.1. Let T , F, S, f be a 5.1 -tuple. Suppose that the homomor-
phisms r , . . . , r : R ª Aut F are distinct strict extensions of f in T with1 m
m G 2 and with a common domain. Then m s 2 and ker f s

Ž y1Ž ..Core f Inn F .R

Proof. For each i s 1, . . . , m we have

ker f s ker r l Si i
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and so either ker f s ker r l ker r , or S h ker r l ker r . If the latter1 2 1 2
holds then

S - ker r l ker r F R ,Ž .1 2

Ž .and the maximality of S in R forces R s ker r l ker r S. However,1 2
this is impossible as the distinct maps r , r agree both on S and on1 2
ker r l ker r , and so also on their common domain R.1 2

Hence ker f s ker r l ker r . This implies that ker f is a normal1 2
subgroup of R. Let denote reduction modulo ker f. Observe that the
homomorphisms R ª Aut F extending f are in a one-to-one correspon-
dence with the homomorphisms R ª Aut F extending the map f : S ª
Aut F defined by

f : q ¬ f q for all q g S.Ž .

Ž .Suppose that ker f s ker r . Then R ( r R is almost simple with1 1
y1socle f Inn F ( F. The ‘‘Schreier conjecture’’ implies that any homo-Ž .

morphism R ª Aut F with image containing Inn F is a monomorphism.
Furthermore, it is clear that any monomorphism R ª Aut F is deter-
mined uniquely by knowledge of its restriction to Soc R. Thus there exists
a unique homomorphism R ª Aut F extending f, contradicting the hy-
pothesis that m G 2.

So ker r ) ker f for all i s 1, . . . , m. Recalling that ker f s ker r li 1
Ž . Ž .ker r it follows that r ker r is a non-trivial normal subgroup of r R ,2 1 2 1

Ž . Ž .whence r ker r contains Inn F; similarly, r ker r G Inn F. We con-1 2 2 1
2Ž .clude that the map R ª Aut F given by

r ¬ r r , r r for all r g RŽ . Ž .Ž .1 2

Ž .2is a well-defined monomorphism with image containing Inn F . Note also
y1 �Ž .that the image of f Inn F is equal to the diagonal subgroup x, x :Ž .

4 Ž .2x g Inn F of Inn F . It is now straightforward to see that there are
precisely two homomorphisms R ª Aut F extending f, namely those

y1Ž .corresponding to r and to r , and that Core f Inn F is trivial;Ž .1 2 R
Ž y1Ž ..equivalently, that m s 2 and that ker f s Core f Inn F as required.R

Ž . Ž .LEMMA 6.2. Let T , F, S, f be a 5.1 -tuple of rank n G 2, and for
i s 1, . . . , m with 2 F m F n let r : R ª Aut F be distinct strict extensionsi i

² :of f in T. Set X s R , . . . , R . Then1 m

Core fy1 Inn F F ker f .Ž .Ž .X

Ž y1Ž ..Proof. For convenience set C s Core f Inn F . Now C is a sub-X
Ž . Ž .group of T and is normalised by each R . Since r R G f S G Inn Fi i i
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and since no strict extensions of r in T exist, we have by Lemma 3.12 andi
Remark 3.14 either that C F ker r , or thati

R s N C l ker r , C l ry1 Inn F . 6.AŽ . Ž .Ž .i T i i

y1Ž .Note that since C F f Inn F F S, we have

C l ker r s C l ker f andi

y1 y1C l r Inn F s C l f Inn F s C.Ž . Ž .i

Thus if C F ker r , then C F ker f as required, and we may thereforei
Ž .suppose that 6.A holds for all i s 1, . . . , m. It follows that

R s N C l ker f , C for all i s 1, . . . , m.Ž .i T

Thus X s R , and we finish by applying Lemma 5.5 to deduce that the1
y1Ž .X-core of f Inn F is ker f which is certainly contained in ker f as

required.

Ž . Ž .COROLLARY 6.3. Let T , F, S, f be a 5.1 -tuple of rank n G 2, and for
i s 1, . . . , n let r : R ª Aut F be the n strict extensions of f in T. Supposei i

< < Ž . ² :that T is minimal among all such 5.1 -tuples. Then T s R , . . . , R .1 n

Proof. This is an immediate corollary of Lemmas 5.5 and 6.2.

Ž .The next result is highly significant in that it says that if T , F, S, f is a
Ž .5.1 -tuple, then the socle of T is non-abelian and minimal normal in T ,
and moreover, that each strict extension r of f in T is uniquely deter-

Ž .mined by the subgroup Soc T l ker r.

Ž . Ž .THEOREM 6.4. Let T , F, S, f be a 5.1 -tuple of rank n G 3. Let N be
any minimal normal subgroup of T. Then the following all hold:

Ž . Ž .i f N l S G Inn F;
Ž . Ž y1Ž ..ii if P s N N l ker f, N l f Inn F and s : P ª Aut F isT

defined by requiring that

Ž .s yy y1f x s f x for all x g N l f Inn F and y g P ,Ž . Ž . Ž .

then s is a well-defined extension of f in T ;
Ž . Žiii N is non-abelian and equals the socle of T whence N is the unique

.minimal normal subgroup of T ;
Ž .iv any strict extension r : R ª Aut F of f in T is uniquely deter-

mined by knowledge of N l ker r : more precisely, if N l ker r s N l ker f
Ž Ž ..then r s s where s is as in ii , and if N l ker r ) N l ker f then
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Ž .R s N l ker r S and r is gï en by

r xy s f y for all x g N l ker f and y g S.Ž . Ž .

Proof. Let N be a minimal normal subgroup of T , and let r : R ª
Aut F be any strict extension of f in T. Suppose that N l ker r ) N l
ker f. As r extends f we have S l ker r s ker f, whence N l ker r g S.

Ž . ŽThus N l ker r S ) S and the maximality of S in R forces R s N l
. Ž . Ž . Ž .ker r S. Noting that r x s id if x g ker r and that r y s f y if y g S

Ž .we see that iv holds for such a strict extension.
Suppose now that N F ker r, or equivalently that N s N l ker r. As r

extends f we have N F S if and only if N F ker f. But by the definition
Ž .of 5.1 -tuples, ker f is a core-free subgroup of T and so N g S, whence

N l ker r s N ) N l S s N l ker r l S s N l ker f .

The preceding paragraph implies that R s NS and that r is the unique
strict extension of f with N in its kernel. Let j : Q ª Aut F be a strict
extension of f distinct from r. Thus N g ker j , whence by Lemma 3.12

Ž . Ž .the image j N l Q is a non-trivial normal subgroup of j Q . Recall that
Ž . Ž . Ž .j Q G f S G Inn F, which means that j Q is almost simple with a

Žunique minimal normal subgroup, namely Inn F. We deduce that j N l
.Q G Inn F. Now N F ker r whence

� 4f N l S s r N l S F r N s id .Ž . Ž . Ž .

Ž .Hence N l Q g S and S - N l Q S F Q. The maximality of S in Q
implies that

Q s N l Q S.Ž .

However, the latter is contained in NS s R and the maximality of S in R
forces Q s R. As by assumption n G 3 and j was any strict extension of f
distinct from r this contradicts Lemma 6.1. We conclude that N g ker r,
and moreover, that ker r is a core-free subgroup of T.

On the other hand, suppose that N l S F ker f. Then it is clear that
the homomorphism r : NS ª Aut F given by

r xs s f s for all x g N and s g SŽ . Ž .

is a well-defined strict extension of f in T with N F ker r. This contra-
Ž .dicts the above conclusion and so f N l S is a non-trivial normal

Ž . Ž . Ž .subgroup of f S . It follows that f N l S G Inn F since f S is almost
Ž .simple with socle Inn F. We conclude that i holds.

Ž . Ž .We turn to part ii . Given part i this is immediate from Remark 3.14.
Ž .From now on we assume that P and s are as defined in ii . Note that
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either s s f and P s S, or s is a strict extension of f and S - P.max
Ž .Now the definition of s forces C N F ker s . If P s S then the factT

Ž .that S is a core-free subgroup of T implies that C N is trivial; on theT
other hand, if P ) S then, as we saw above, ker s is a core-free subgroup

Ž .of T , which again implies that C N is trivial. Hence N is the uniqueT
Ž .minimal normal subgroup of T and so N s Soc T. As part i implies that

Ž .N is non-abelian, we see that iii holds.
Ž .We turn to part iv . Once again let r : R ª Aut F be an arbitrary strict

Ž .extension of f in T. In the first paragraph we saw that iv holds if
N l ker r strictly contains N l ker f, and so it remains only to show that

Ž . Ž .if N l ker r s N l ker f, then r s s . By i we have that f N l S G
Inn F; it follows that

N l ry1 Inn F s N l fy1 Inn FŽ . Ž .

Ž y1Ž ..whence R F N N l ker f, N l f Inn F s P. The maximality of ST
in the domain of any strict extension implies that R s P. Choose x g R

y1Ž . x y1Ž .and y g N l f Inn F . Then y g N l f Inn F and

Ž . Ž .r x r xx xf y s r y s r y s f y .Ž . Ž . Ž . Ž .

As this is precisely the requirement defining s we see that r s s as
required.

Ž . Ž .We remark that given an 5.1 -tuple T , F, S, f of rank n G 3, then the
above theorem implies that T has a unique minimal normal subgroup,
whence the minimal normal subgroup N, the subgroup P, and the exten-
sion s of f in T defined in the statement of the theorem are uniquely
defined. Hence the statement of the following result is sensible.

Ž . Ž .COROLLARY 6.5. Let T , F, S, f be a 5.1 -tuple of rank n G 3. Let P
and s be as defined in Theorem 6.4, and for i s 1, . . . , n let r : R ª Aut Fi i

² :be the n strict extensions of f in T. Suppose that T s R , . . . , R . Then1 n
T s NP.

Proof. Let N be the unique minimal normal subgroup of T. Theorem
Ž .6.4 iv implies that for each i s 1, . . . , n we have either R s P or R si i

Ž .N l ker r S. In either case we have R F NP whencei i

² :R , . . . , R F NP1 n

whence the result follows.
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Ž .In what follows it proves more useful to assume that a given 5.1 -tuple
satisfies the conclusion of the above corollary, rather than to make the
stronger assumption that the hypothesis holds. For convenience we make
the following definition.

Ž . Ž .DEFINITION 6.6. We say that the tuple T , F, S, f is a small- 5.1 -tuple
Ž .of rank n if n G 3, the tuple is a 5.1 -tuple of rank n, and

T s Soc T N Soc T l ker f , Soc T l fy1 Inn F .Ž . Ž . Ž . Ž .Ž .T

Note that Corollaries 6.3 and 6.5 imply that

V 5.1 s n G 16: there exists a small- 5.1 -tuple of rank n . 6.B� 4Ž . Ž . Ž .

Ž .Thus from now on we need only consider small- 5.1 -tuples.
Ž . Ž .Suppose that T , F, S, f is a small- 5.1 -tuple of rank n. Set N s Soc T ,

let E be a minimal normal subgroup of N, and let s , P be as defined in
Ž .Theorem 6.4 ii . In the following we see that P is transitive on the minimal

Ž .normal subgroups of N, and furthermore, that E, N, T , F, P, s is a
Ž .3.18 -tuple. This is then used to show that if n G 4 then S, as well as P, is

Ž .transitive on the minimal normal subgroups of N, whence E, N, T , F, S, f
Ž .is also a 3.18 -tuple.

Ž . Ž .LEMMA 6.7. Let T , F, S, f be a small- 5.1 -tuple of rank n G 4. Then S
is transitï e on the minimal normal subgroups of Soc T.

Proof. As usual set N s Soc T , and let s and P be defined as in
Ž .Theorem 6.4 ii . Also let E be a minimal normal subgroup of N. We

assume that S is intransitive on the minimal normal subgroups of N and
argue for a contradiction. Note that this assumption means that N has at
least two minimal normal subgroups and so E / N.

As T s NP we see that P is transitive on the minimal normal subgroups
Ž . Ž .of N, or equivalently that T s N E P. It follows that E, N, T , F, P, sT

Ž .is a 3.18 -tuple with T s NP. If P F NS then T s NS and the same
argument shows that S is transitive on the minimal normal subgroups of
N, contradicting our assumption. We deduce therefore that P g NS. Thus

S F P l NS s N l P S - P ,Ž . Ž .

Ž .and the maximality of S in P implies that S s N l P S whence N l S s
N l P. It immediately follows that

N l ker f s N l ker s and N l fy1 Inn F s N l sy1 Inn F .Ž . Ž .
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Let k , C, D, and h be as defined after Definition 3.18 in terms of the
Ž . Ž . Ž .3.18 -tuple E, N, T , F, P, s , that is, k : N E ª Aut E is induced byT
conjugation,

C s k N l ker f , D s k N l fy1 Inn F ,Ž . Ž .Ž .
Ž .and h : N C, D ª Aut F is induced by the conjugation action on theAut E

quotient DrC together with the appropriate identification of DrC with
F. As P ) S, the map s is a strict extension of f in T , and so given that
Ž . Ž .T , F, S, f is a 5.1 -tuple s is equal to any map that extends s in T. Let

Ž .x , . . . , x be a right transversal for N E in P. Corollary 3.22 implies that1 l P

l
x xi iN l ker s s C and Y l P s Y l ker s s CŁ Ł

xiis1 � 4i : E FY

6.CŽ .

where Y is any proper normal subgroup of N. Let Y be any proper normal
non-trivial subgroup of N that is normalised by S. As N l ker s s N l
ker f we have Y l P s Y l S F ker f. Thus the map r : YS ª Aut FY
given by

r : ys ¬ f s for all y g Y and s g SŽ .Y

Ž .is well-defined and extends f. Given 6.C an easy calculation shows that

N l ker r s C x i = Y . 6.DŽ .ŁY ž /xi� 4i : E gY

It is then clear that if Y is also a proper normal non-trivial subgroup of N0
normalised by S with Y - Y, then r strictly extends r , which in turn0 Y Y0

Ž . Ž .strictly extends f. However, as T , F, S, f is a 5.1 -tuple, any strict
extension of f in T has itself no strict extensions in T , and we deduce that
the proper normal non-trivial subgroups of N that are normalised by S are
pairwise incomparable by inclusion. Hence S has precisely two orbits on
minimal normal subgroups of N.

On the other hand, if r : R ª Aut F is a strict extension of f in T
Ž .distinct from s , then by Theorem 6.4 we have R s N l ker r S and

Ž .N / N l ker r. Set Y s Core N l ker r which is clearly a proper nor-N
Ž .mal subgroup of N normalised by R. Given that R is equal to N l ker r S

we see that the normal subgroups of N normalised by R are precisely the
same as those normalised by S. As S has two orbits on minimal normal
subgroups we see that R normalises precisely two non-trivial proper
normal subgroups of N, and moreover, that given any minimal normal
subgroup E of N there exists a non-trivial normal subgroup of N0
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normalised by R and not containing E . Now r is a strict extension of f0
Ž .and so r has no strict extensions in T. Corollary 3.15 i together with

Ž . Ž .Lemma 3.16 ii implies that Y s Core N l ker r is a non-trivial sub-N
group of N. Thus r : YS ª Aut F as defined earlier is a strict extensionY
of f in T. Also r is an extension of r as r and r agree on both S andY Y
on Y. We conclude that r s r as S is maximal in the domain of anyY

Žstrict extension of f in T. As there are only two possible choices for Y as
.a non-trivial normal proper subgroup of N normalised by R , there are

Žonly two possible choices for r as a strict extension of f in T distinct
. Ž .from s . This contradicts the hypothesis that T , F, S, f has rank n G 4,

and we are finished.

Ž .Construction 6.8. The input for this construction is a small- 5.1 -tuple
Ž . Ž .T , F, S, f of rank n with either T s Soc T S or n G 4. The output is a
tuple of objects which will be seen to be of key significance in the study of
Ž .T , F, S, f .

As usual let N be the unique minimal normal subgroup of T ; let E be a
Ž .minimal normal subgroup of N and let k : N E ª Aut E be induced byT

Ž . Ž .conjugation. Observe that E, N, T , F, S, f is a 3.18 -tuple}this is im-
mediate if T s NS and follows from the above theorem if n G 4. Let C,

ŽD, P, and s be as defined immediately after Definition 3.18. Note that
we do not yet know that s is the same map as defined in the proof of
Theorem 6.4; however, this will become clear in the course of proving

.Theorem 6.10 below. The output of the construction is then the tuple

C , D , E, k N E , k N E , f S .Ž . Ž . Ž .Ž . Ž .Ž .S P

For convenience, we shall refer to this tuple and its entries as being
Ž .obtained from T , F, S, f via Construction 6.8.

The main thrust of the following is to obtain necessary conditions on an
Ž . Ž .arbitrary ordered tuple C, D, E, K, L, A for it to be the tuple obtained

Ž .from some small- 5.1 -tuple via the above construction. The key conditions
pertain just to C, D, E, and K and are given in Definition 6.9, while the
remainder are given in Definition 6.17. Obviously we would also like such
conditions to be also sufficient, but we are able only to achieve this in
some special cases. The chief obstacle to ensuring sufficiency in all cases

Ž .lies in attempting to construct a suitable small- 5.1 -tuple given a tuple
Ž . Ž . Ž .obtained from a small- 5.1 -tuple T , F, S, f satisfying T / Soc T S.

ŽNote that we do not necessarily want to reconstruct the original tuple, but
Ž . .rather any small- 5.1 -tuple of the same rank. However, we do not view

Ž .this to be a big problem as it is easy to see that if T , F, S, f is a
Ž . Ž . ŽŽ . .small- 5.1 -tuple of rank n G 4 with T / Soc T S, then Soc T S, F, S, f

Ž .is also a small- 5.1 -tuple but of rank n y 1 instead of rank n.
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Ž . Ž .DEFINITION 6.9. We say that the tuple C, D, E, K satisfies 6.9 , or is
Ž .a 6.9 -tuple, if the following conditions both hold:

Ž . Ž .i C, D is a non-abelian simple proper section of the non-abelian
Ž .simple group E with K F N C, D ;Aut E

Ž . Ž . Ž .ii if C, D is strictly K-contained in the section C , D of E, then0 0
Ž .C , D is a K-maximal section of E.0 0

Ž . Ž .Moreover, we say that C, D, E, K is a 6.9 -tuple of degree d, if it satisfies
Ž . Ž .6.9 and there exist precisely d sections of E strictly K-containing C, D .

Ž .The subset D 6.9 of N is defined by

D 6.9 s d g N : there exists a 6.9 -tuple of degree d .� 4Ž . Ž .

Observe that we use the terminology degree and the notation D, rather
than rank and V, as we do not have an exact correspondence between
Ž . Ž .5.1 -tuples and 6.9 -tuples. Instead, we have the following.

Ž . Ž .THEOREM 6.10. Let T , F, S, f be a small- 5.1 -tuple of rank n G 4 and
Ž Ž Ž ...assume the notation of Construction 6.8. Then C, D, E, k N E is aS

Ž . Ž Ž ..6.9 -tuple of degree d with D contained in k N E whereS

n if P s ker s l N S ;Ž .d s ½ n y 1 otherwise.

Moreo¨er, if r is an extension of f in T then

l
x iN l ker r s k N l ker r ,Ž .Ł

is1

Ž .where x , . . . , x is any right trans̈ ersal for N E in S; also, the map1 l S

r ¬ k N l ker r , k N l ker r DŽ . Ž .Ž .

is a bijection between the extensions r of f in T satisfying N l ker r ) N l
Ž .ker f and the sections of E strictly K-containing C, D .

Ž . Ž . � Ž .4COROLLARY 6.11. V 5.1 : D 6.9 j n g N : n y 1 g D 6.9

Proof. This is straightforward.

Ž Ž ..Proof of Theorem 6.10. Set K s k N E . It is clear that E is aS
Ž .non-abelian simple group, that C, D is a section of E isomorphic to the

Ž .non-abelian simple group F, and that D F K F N C, D . Thus Defini-Aut E
Ž . Ž .tion 6.9 i holds provided only that C, D is a proper section of E, or

equivalently that DrC \ E. However, if there exists at least one section of
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Ž . Ž .E strictly K-containing C, D , then C, D is not K-maximal whence DrC
is certainly not isomorphic to E. Thus given that n G 4 and that, as
already noted, D F K, to prove the first assertion it is sufficient to show

Ž .that Definition 6.9 ii holds and that there are precisely d sections of E
Ž .strictly K-containing C, D where d is as defined in the statement of the

theorem.
As usual for i s 1, . . . , n let r : R ª Aut F be the strict extensions ofi i

Ž .f in T. Notice that if P s N l ker s S then either P s S and s s f or
Ž .P / S and N l ker s ) N l ker f. On the other hand P / N l ker s S,

equivalently d s n y 1, if and only if s is a strict extension of f with
N l ker s s N l ker f. We relabel so that if d s n y 1, then r s s .n
For i s 1, . . . , n we define subgroups C , D of E byi i

C s k N l ker r and D s k N l ry1 Inn F .Ž . Ž .Ž .i i i i

Ž . Ž .We claim that C , D , . . . , C , D are distinct K-maximal sections of E,1 1 d d
Ž .all strictly K-containing C, D .

Ž .By the first part of Lemma 3.16 we see that the sections C , D alli i
Ž . Ž .K-contain C, D . Recall that d G n y 1 G 3. If C , D for i s 1, . . . , di i

are distinct K-maximal sections, then they must all strictly K-contain
Ž . Ž . Ž .C, D since if one is equal to C, D , then C, D is K-maximal and so
equal to any section K-containing it. Now by Theorem 6.7 we have

Ž . Ž .T s N E S, whence T s N E R for each i s 1, . . . , n. It follows thatT T i
Ž . Ž .E, N, T , F, R , r is a 3.18 -tuple for each i s 1, . . . , n. Let x , . . . , x bei i 1 l

Ž . Ž .a right transversal for N E in S, and so also for N E in R . As each rS R i ii
Ž .has no strict extensions in T we deduce from Proposition 3.20 that C , Di i

Ž Ž ..is a k N E -maximal section of E, and from Corollary 3.22 thatR i

l
x jN l ker r s C for all i s 1, . . . , n. 6.EŽ .Łi i

js1

By Theorem 6.4 the map r is uniquely determined by the subgroupi
N l ker r , whence the subgroups C , . . . , C are distinct. Suppose thati 1 n

ŽN l ker r ) N l ker f. Then by Theorem 6.4 we have R s N li i
. Ž Ž .. Ž .ker r S, whence k N E s C K. By Proposition 3.11, the section C , Di R i i ii

is K-maximal if and only if it is C K-maximal, and so to verify the claim iti
is enough to show that N l ker r ) N l ker f for i s 1, . . . , d, or equiv-i
alently, that if r is a strict extension of f in T with N l ker r s N l ker f
then d s n y 1 and r s s . Suppose that r is such an extension. Note
that the deduction r s s follows from Theorem 6.4 provided only that the
subgroup P and the map s are precisely the same as those defined by

Ž .Theorem 6.4 ii . On comparing the two alternative definitions of P and s
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we see that they are the same if

l
x jN l ker f s C . 6.FŽ .Ł

js1

Given that d G 3, Theorem 6.4 implies that we may certainly relabel so
Ž .that R s N l ker r S for at least i s 1, 2. It follows thati i

S F N l ker r l ker r S F R l R .Ž .1 2 1 2

Ž .As r , r clearly agree on N l ker r l ker r S we have1 2 1 2

N l ker r l ker r S - R for all i s 1, 2,Ž .1 2 i

Žwhence the maximality of S in R implies that S s N l ker r li 1
.ker r S. We deduce that N l ker f s N l ker r l ker r , whence by2 1 2

Ž .6.E we have

l
x jN l ker f s C l C and k N l ker f s C l C .Ž . Ž .Ł 1 2 1 2

js1

Ž . Ž .As k N l ker f s C we deduce that 6.F holds, and that r does indeed
equal s . Hence P / S and

N l ker r s N l ker s s N l ker f ,

Ž .whence P / N l ker s S and d s n y 1 as required. We conclude that
the claim holds.

To prove the first assertion of the theorem it now remains only to show
Ž . Ž .that if C , D is any section of E strictly K-containing C, D , then0 0

Ž . Ž .C , D is equal to C , D for some i s 1, . . . , d. To see this suppose that0 0 i i
Ž . Ž .C , D strictly K-contains C, D . Thus C is a strict overgroup of C in0 0 0
E, is normalised by K, and meets D in precisely C. It follows that

l
x jCŁ 0

js1

y1Ž .is a subgroup of N normalised by S and meeting N l f Inn F in
Ž l x j.N l ker f. Define a map j : Ł C S ª Aut F byjs1 0

l
x jj : xy ¬ f y for all x g C and y g S.Ž . Ł 0

js1
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Clearly j extends f and so either j s f or j s r for some i s 1, . . . , n.i
Observe that N l ker j s Ł l C x j and thatjs1 0

k N l ker j s C / C s k N l ker f ,Ž . Ž .0

whence N l ker j / N l ker f. Recall that if n ) d s n y 1 then s is a
strict extension of f, N l ker s s N l ker f, and we have labelled so

Ž .that r s s . Thus j s r for some i s 1, . . . , d and by 6.E it follows thatn i
C s C for some i s 1, . . . , d as required.0 i

Finally we turn to the ‘‘Moreover’’ statement. The first part of this holds
Ž . Ž .by 6.E and 6.F , while the second part follows by noting that in the

course of the above we have seen that if r is any extension of f in T
satisfying N l ker r ) N l ker f, then r is one of r , . . . , r and that1 d
Ž . Ž .C , D , . . . , C , D are distinct and are the only sections of E strictly1 1 d d

Ž .K-containing C, D .

Ž . Ž .Given a 6.9 -tuple C, D, E, K of degree d, we fix some notation which
will apply for the rest of this section. Let F be the quotient DrC; note
that by definition F is a non-abelian simple group not isomorphic to E. As
usual we identify F with Inn F and E with Inn E. Observe that there is a

Ž .natural action induced by conjugation of N C, D on F s DrC; letAut E
Ž . Žh : N C, D ª Aut F be the associated map. In the situation whereAut E

Ž . Ž .C, D, E, K is obtained via Construction 6.8 applied with input T , F, S, f
Ž Ž . Ž . .so that E, N, T , F, S, f is a 3.18 -tuple , then we note that the defini-
tion of h just given agrees with that given immediately after Definition

Ž . Ž .3.18 in terms of the 3.18 -tuple E, N, T , F, S, f subject to using f to
. Ž . Ž .identify DrC with F. Let C , D , . . . , C , D be the d sections of E1 1 d d
Ž .that strictly K-contain C, D . Now for each i we have D s C D and soi i

we can identify the quotient D rC with F via the map F s DrC ª D rCi i i i
given by

Cx ¬ C x for all x g D ;i

Ž .let h : N C , D ª Aut F be defined in an analogous fashion to h.i Aut E i i
Ž . Ž .Note that if x g N C, D l N C , D thenAut E Aut E i i

h x s h x .Ž . Ž .i

Ž . Ž .LEMMA 6.12. Let C, D, E, K be a 6.9 -tuple of degree d. Then the
following hold:

Ž . Ž . Ž .1 The tuple C, D, E, DK is a 6.9 -tuple of degree d.
Ž .2 If d G 2 and D F K then

D s K l hy1 Inn F l E and C s K l ker h l E.Ž .
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Proof. We start by noting that DK is, as implicitly assumed in the
Ž .above statement, a subgroup of N C, D since both D and K areAut E

Ž .subgroups of N C, D and since D is normalised by K. Now theAut E
Ž .definition of section containment is such that a section K-contains C, D

Ž . Ž .if and only if it DK-contains C, D ; part 1 follows from this observation.
Ž . y1Ž . Ž .To see 2 suppose that d G 2 and D F K. As h Inn F s D ker h it

is enough to show that C s K l ker h l E. For convenience set C s0
Ž .K l ker h l E. Clearly C F C . Suppose that C - C . As h C is trivial,0 0 0

we have C l D s C. Now K, and so also D, normalises C and so0 0
Ž . Ž .C , C D is a section of E strictly K-containing C, D ; by the definition0 0

Ž . Ž . Ž .of 6.9 -tuples C , D is a K-maximal section of E. Let C , D be a0 0 i i
Ž . Ž .section of E strictly K-containing C, D that is distinct from C , D ; this0 0

is possible as d G 2. However,

C s K l ker h l E F C K l ker h l EŽ .0 i i

Ž .since h and h agree on K. The K-maximality of C , D implies that Ci i i i
Ž .equals C K l ker h l E, whence C F C whereupon the K-maximalityi i 0 i

Ž . Ž .of C , D implies C s C . But the section C , D was chosen to be0 0 0 i i i
Ž .distinct from C , D , a contradiction.0 0

Ž . Ž .Construction 6.13. The input is a 6.9 -tuple C, D, E, K of degree
d G 2 with D F K, together with a subgroup A of Aut F that contains
Ž . Žh K where we assume the notation set out immediately prior to Lemma

. Ž .6.12 . The construction attempts to output a 5.1 -tuple defined in terms of
ˆ ˆ ˆŽ .this input. More precisely, the construction outputs a tuple T , F, S, f and

in Proposition 6.16 below, we give necessary and sufficient conditions for
Ž .this to be a 5.1 -tuple.

ˆ< Ž . < Ž .Set a s A : h K . We construct S as a subgroup of Aut E X S . Ina
ˆ Ža.Ž .fact, we construct S as a subgroup of K X S F N C, D X S . Let ha Aut E a

Ž . Ž .abe the epimorphism K X S ª h K X S with kernel ker h l K in-a a
Ž . Ž .duced by h. Choose and fix a right transversal a s id , a , . . . , a for1 A 2 a

Ž . Ž .h K in A, and let i : A ª h K X S be the map defined bya

i a s a aay1 , . . . , a aay1 p ,Ž . Ž .1 1p a ap

where p g S is defined by the conditiona

h K a a s h K a for all i s 1, . . . , a.Ž . Ž .i ip

Theorem 3.3 shows that i is a well-defined monomorphism. We now
ˆ Ža. ˆŽ .define S to be the full inverse image in K X S under h of i A . Thus Sa

a ˆ ˆŽ . Ž .is a not necessarily split extension of K l ker h by A. Let f : S ª
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Aut F be defined by

ˆ ˆf x s a for all x g S,Ž .

Ž . Ža.Ž .where a g A F Aut F is such that i a s h x . Given our usual identi-
fication of E and Inn E, we see that Ea is a normal subgroup of

ˆ a ˆŽ .Aut E X S . We finish by setting T s E S.a

LEMMA 6.14. With the notation of Construction 6.13, the following all
hold:

a ˆŽ .1 E is the unique minimal normal subgroup of T ;
a ˆ aŽ .2 E l ker f s C ;

Ž . a3 if we identify E with a subgroup of E ¨ia the map

x ¬ x , id , . . . , id for all x g E,Ž .E E

Ž .and let k : N E ª Aut E be induced by conjugation, thenŽAut E .X Sa
Ž Ž ..k N E s K andŜ

f̂ x s h k x for all x g N E ;Ž . Ž . Ž .Ž . Ŝ

ˆ a ˆŽ . Ž . Ž Ž ..4 f E l S s Core h K l E G Inn F.A

ˆ ˆProof. It is clear that S F T is transitive on the simple direct factors of
a ˆ a ˆE F T , whence E is indeed a minimal normal subgroup of T. Moreover,

Ž . a aas the centraliser in Aut E X S of E is trivial, we see that E is thea
Ž .unique such subgroup, and so 1 holds.

By construction we have

aŽa.ˆker f s ker h s K l ker h .Ž .

a ˆ aŽ . Ž . Ž .Thus E l ker f s K l ker h l E and Lemma 6.12 2 implies that 2
holds.

ˆŽ .We turn to 3 . Now S is defined as the inverse image under the
Ža. Ž . Ž .epimorphism h : K X S ª h K X S of the group ı A . Observe thata a

Ž . Ža.N E contains ker h and thatK X Sa

h Ža. N E s x , . . . , x p g h K X S : 1p s 1 .� 4Ž . Ž . Ž .Ž .K X S 1 a aa

Ž .Therefore on inspecting the definition of i we see that N E is preciselyŜ
Ža. ˆŽ Ž ..the inverse image under h of i h K , whence the definition of f

ˆŽ Ž .. Ž . Ž .implies that f N E is equal to h K . Furthermore, if x g N EŜ K X Sa
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Ža.Ž .then h x is of the form

h k x , . . . pŽ .Ž .Ž .
Ž Ž ..for some p g S , while if y g K then i h y is of the forma

h y , . . . tŽ .Ž .

Ž . Ža.Ž .for some t g S ; thus if x g N E and y g K are such that h x sˆa S
Ž Ž .. Ž Ž .. Ž .i h y , then we must have equality between h k x and h y . It follows

ˆby the definition of f that

ˆh k x s f x for all x g N E .Ž . Ž . Ž .Ž . Ŝ

Ž . Ž Ž ..To see the remainder of 3 , namely that k N E s K, we note thatŜ
ˆŽ Ž ..k N E is certainly a subgroup of K as S F K X S . Now by the aboveŜ a

ˆh k N E s f N E s h K ,Ž . Ž . Ž .Ž . Ž .Ž .ˆ ˆS S

Ž Ž .. Ž Ž ..and so k N E s K if and only if k N E G ker h l K. However, theˆ ˆS S
Ž . Ž Ža.. Ž . Ž .alatter holds as N E clearly contains ker h l K X S s ker h l K .Ŝ a

ˆ ˆ aŽ . Ž .Finally we consider 4 . As f S s A and as E is a normal subgroup of
ˆ ˆ ˆ a ˆŽ . Ž .T G S, we see that f E l S is a normal subgroup of A. By 3 we have

ˆ a ˆ a ˆ af E l S s h k E l S F h k E l k N E s h E l K .Ž . Ž . Ž .Ž . Ž . Ž .Ž .Ž . Ŝ

ˆ a ˆŽ . Ž .Hence f E l S is contained in the A-core of h K l E . On the other
hand, the definition of i implies that

a aŽa.i Core h K l E F h K l E s h K l E ,Ž . Ž . Ž .Ž . Ž .Ž . Ž .A

ˆ Ž Ž ..and this together with the definition of f ensures that Core h K l E isA
ˆ a ˆ ˆ a ˆŽ . Ž . Ž Ž ..contained in f E l S . Thus f E l S s Core h K l E , and onA

Ž . Ž . Ž .noting that h K l E contains h D s Inn F, part 4 follows.

Remark 6.15. There is a strong sense in which Construction 6.13
followed by Construction 6.8 has the effect of doing nothing. We leave the
precise formulation of what we mean by this statement, together with its

Ž Ž . .verification of which part 3 of the above lemma is an essential part to
the reader. We stress however that the composition in the other direction,
namely Construction 6.8 followed by Construction 6.13, does not have a
trivial effect.

Ž . Ž .PROPOSITION 6.16. Suppose that C, D, E, K is a 6.9 -tuple of degree
Ž .d G 2 with D F K, and that A is a subgroup of Aut F containing h K

Ž Ž . .where we assume our usual notation in relation to this 6.9 -tuple. Let
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ˆ ˆ ˆŽ .T , F,S, f be the corresponding output of Construction 6.13. Then
ˆ ˆ ˆŽ . Ž .T , F, S, f is a 5.1 -tuple if and only if the following conditions all hold:

Ž .i for all i s 1, . . . , d

a aC C ( MM ;i 0Ŝ

Ž .ii for all i s 1, . . . , d

Core h K l E s Core h N C , D ;Ž . Ž .Ž . Ž .Ž .A A i E i i

Ž .iii either

Core h N C , D s Core h K l E 6.GŽ . Ž . Ž .Ž .Ž .Ž .A E A

or

Core h N C , D Core h K l E ( MM . 6.HŽ . Ž . Ž .Ž .Ž .Ž .A E A 0A

ˆ ˆ ˆŽ . Ž .Moreo¨er, if T , F, S, f is a 5.1 -tuple, then it has rank n where

d if 6.G holds;Ž .n s ½ d q 1 otherwise.

ˆ ˆ ˆŽ .Proof. We start by noting that it is easy to see that the tuple T , F, S, f
Ž . Ž .satisfies the conditions of Definition 5.1 i ] ii . So to prove the first

assertion it is enough to show that the three conditions of the statement
Ž .hold if and only if Definition 5.1 iii holds.

Ž . aAs in Lemma 6.14 3 we identify E with a subgroup of E via the map

x ¬ x , id , . . . , id for all x g E.Ž .E E

a ˆŽ . Ž . Ž .Using Lemma 6.14 1 and Lemma 6.14 4 we see that E, E , T , F, R, r is
ˆ aŽ .a 3.18 -tuple with T equal to E R whenever r : R ª Aut F is an exten-

ˆ ˆsion of f in T.
a ˆ ˆ ˆŽ . Ž .In particular E, E , T , F, S, f is a 3.18 -tuple. Let the overgroup P of

ˆ ˆS and the extension s : P ª Aut F of f in T be as defined immediately
Ž . aprior to Lemma 3.19 in terms of this 3.18 -tuple. Note that since E l

ˆ a a ˆ aŽ . Žker f s C by Lemma 6.14 2 , we in fact have P s N E l ker f, E lT̂
ˆy1Ž ..f Inn F and that s is defined by requiring that

Ž .s y yˆ ˆf x s f xŽ . Ž .
a ˆy1 ˆ a ˆŽ .whenever x g E l f Inn F and y g P. Note also that since T s E S
a ˆ ˆŽ .we have P s E l P S, whence s is a strict extension of f if and only if

a a ˆE l P ) E l S.
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Ž .Recall that for i s 1, . . . , d the section C, D of E is strictly K-
Ž .contained in the section C , D . For each i we claim that the subgroupi i

a a ˆ a ˆC of E is normalised by S and that the intersection C l S is containedi i
ˆ a ˆin ker f. Certainly C is normalised by S as C is normalised by K andi i
ˆ a ˆ Ž .since S F K X S . Now if x g C l S then Lemma 6.14 3 implies thata i

ˆŽ . Ž Ž .. Ž .f x s h k x g h C ; the latter is trivial and so the claim holds. Thusi
a ˆfor i s 1, . . . , d the map r : C S ª Aut F given byi i

ˆ a ˆr : xs ¬ f s for all x g C and x g S,Ž .i i

ˆ ˆ a ˆ Ž .is a well-defined extension of f in T s E S. Moreover, by Lemma 6.14 2

a ˆ a a aE l ker f s C - C F E l ker ri i

ˆand so each such map is a strict extension of f. For convenience we use Ri
a ˆto denote the domain C S of r .i i

ˆNow let r : R ª Aut F be any extension of f in T and assume that r
ˆ Ž .itself has no strict extensions in T. Let x s id , . . . , x be a right transver-1 a

ˆŽ . Ž .sal for N E in S. By applying Lemma 3.19 to the 3.18 -tupleŜ
a ˆŽ .E, E , T , F, R, r we deduce that

a
a x iE l ker r s XŁ

is1

ˆ a ˆŽ . Ž .for some X F E. By Lemma 6.14 4 we have f E l S G Inn F and so

a y1 a a ˆy1E l r Inn F s E l ker r E l f Inn F .Ž . Ž . Ž .Ž .
a a ˆ a y1Ž .Thus if X s C then E l ker r s E l ker f and E l r Inn F s

a ˆy1Ž .E l f Inn F , whence it follows that s , as defined above, is an
extension of r. On the other hand, if X ) C then it is straightforward to
see that X is a subgroup of E normalised by K and satisfying X l D s C,

Ž .whence the definition of 6.9 -tuples ensures that X s C for some i si
Ž .1, . . . , d and it now follows that r is an extension of r for the same i .i

ˆ ˆ ˆŽ . Ž .Hence the tuple T , F, S, f satisfies Definition 5.1 iii if and only if all of
the following conditions hold:

ˆŽ .a S - R for all i s 1, . . . , d;max i

ˆŽ .b r has no strict extension in T for all i s 1, . . . , d;i

ˆ ˆŽ .c either P s S or S - P.max

Ž . Ž .Condition a is easily seen to be equivalent to condition i of the
Ž .statement. By applying Proposition 3.20 to the 3.18 -tuple

a ˆŽ . Ž . Ž .E, E , T , F, R , r we see that b is equivalent to ii . Recall that P si i
a ˆŽ . Ž .E l P S. In the following we apply Lemma 3.19 to the 3.18 -tuple
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a ˆ ˆ ˆŽ . Ž .E, E , T , F, S, f . By Lemma 3.19 i we have

a
x iaE l ker s s E l ker h ,Ž .Ł

is1

ˆŽ . Ž .where as above x s id , . . . , x is a right transversal for N E in S. Weˆ1 a S
consider two cases, namely:

Ž .1 E l ker h ) C;

Ž .2 E l ker h s C.

a a ˆŽ .If 1 holds then E l ker s ) E l ker f and arguing as above for the
arbitrary extension r we see that s is an extension of r for some i. Ini

ˆ Ž . Ž . Ž . Ž .particular, P G R ) S. Hence if a ] c , and consequently i ] ii of thei
ˆstatement, all hold, then for some i s 1, . . . , d we have P s R ) S,i

Ž . Ž . Ž . Ž .s s r , and iii follows from ii . Conversely, if conditions i ] ii of thei
Ž . Ž .statement hold, then we have already seen that both a and b hold,

ˆ Ž .whence it follows that S - R s P, and so c holds. On the otherm a x i
a a ˆŽ . Ž .hand, if 2 holds, then E l ker s s E l ker f and so c is equivalent

to the condition:
ˆ a ˆ a ˆ a ˆŽ . Ž . Ž . Ž .c 9 either f E l S s s E l P or f E l S is a maximal

ˆ aŽ . Ž .f S -invariant subgroup of s E l P .

Ž . Ž . Ž .But by Lemmas 3.19 ii and 6.14 iv the latter is equivalent to iii of the
statement. We have now verified the first assertion of the proposition.

ˆ ˆ ˆŽ .We turn to the ‘‘Moreover’’ statement. So we assume that T , F, S, f is
Ž .a 5.1 -tuple of rank n. In the notation of the above we see that the set of

ˆ ˆ � 4strict extensions of f in T is contained in the set r , . . . , r , s . Con-1 d
ˆversely, r , . . . , r are certainly distinct strict extensions of f ; by inspect-1 d

ˆing the above arguments, we see that s is strict extension of f distinct
ˆŽ .from r , . . . , r if and only if condition 2 above holds and S / P, and1 d

ˆ a ˆŽ .that in turn this conjunction of conditions holds if and only if f E l S is
ˆ aŽ . Ž . Ž .a maximal f S -invariant subgroup of s E l P , or equivalently if 6.H

holds. The ‘‘Moreover’’ statement now follows.

Ž .DEFINITION 6.17. We say that the tuple C, D, E, K, L, A satisfies
Ž . Ž . Ž . Ž .6.17 , or is a 6.17 -tuple, if the following conditions i ] ix all hold:

Ž . Ž . Ž . Ži C, D, E, K is a 6.9 -tuple of degree d G 2 with D F K in
the following we assume that F, h, C , . . . , C and h , . . . , h are defined in1 d 1 d

Ž . Ž . .terms of the 6.9 -tuple C, D, E, K as immediately prior to Lemma 6.12 ;
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Ž . Ž . Ž Ž . Ž .ii h K F A F Aut F note that conditions i and ii are suffi-
cient for the implementation of Construction 6.13: the output tuple
ˆ ˆ ˆŽ . Ž ..T , F, S, f is referred to in condition vii ;

Ž . Ž .iii K F L F N C, D ;Aut E

Ž . Ž .iv h L A is a subgroup of Aut F;
Ž . Ž .v either h L F A or

A - h L A , h K s A l h L , andŽ . Ž . Ž .max

K l ker h s L l ker h ;

Ž . y1Ž Ž Ž Ž ....vi set X s E l ker h and Y s E l h Core h N C, D ;A E
then one of the following mutually exclusive conditions holds:

Ž .a K s XK s YK s L;
Ž .b K - XK s YK s L;
Ž .c K s XK - YK s L;
Ž .d K s XK s YK - L;

Ž .vii for all i s 1, . . . , d

a aC C ( MM ;i 0Ŝ

Ž .viii for all i s 1, . . . , d

Core h K l E s Core h N C , D ;Ž . Ž .Ž . Ž .Ž .A A i E i i

Ž . Ž .Ž .ix if vi c above holds, then

Core h N C , D Core h K l E ( MM .Ž . Ž .Ž .Ž .Ž .A E A 0A

Ž . Ž .Moreover, we say that C, D, E, K, L, A is a 6.17 -tuple of rank n, if it
Ž .satisfies 6.17 and

d if vii a or vii b holds;Ž . Ž . Ž . Ž .n s ½ d q 1 otherwise,

Ž . Ž .where d is the degree of the 6.9 -tuple C, D, E, K .
Ž Ž ..The subset D 6.17 a of N is defined by

there exists a 6.17 -tuple of rank nŽ .
D 6.17 a s n g N : .Ž .Ž . ½ 5such that vi a holdsŽ . Ž .



BADDELEY AND LUCCHINI58

Ž Ž .. Ž Ž .. Ž Ž ..The subsets D 6.17 b , D 6.17 c , and D 6.17 d are defined analogously;
Ž .the subset D 6.17 is defined by

D 6.17 s D 6.17 a j D 6.17 b j D 6.17 c j D 6.17 d .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .

Remark 6.18. It is immediate from the definition that if
Ž . Ž . Ž .C, D, E, K, L, A is a 6.17 -tuple of rank n, then C, D, E, K is a
Ž . Ž .Ž . Ž .Ž .6.9 -tuple of degree n if Definition 6.17 vi a or vi b holds, and of

Ž .Ž .degree n y 1 otherwise; also if Definition 6.17 vi d holds, then
Ž . Ž .C, D, E, K, K, A is a 6.17 -tuple of rank n y 1 satisfying Definition

Ž .Ž .6.17 vi a . Hence

D 6.17 a j D 6.17 b : D 6.9 ,Ž . Ž . Ž .Ž . Ž .
D 6.17 c j D 6.17 d : n : n y 1 g D 6.9� 4Ž . Ž . Ž .Ž . Ž .

and

D 6.17 d : n : n y 1 g D 6.17 a .� 4Ž . Ž .Ž . Ž .

Observe that we use the notation D, rather than V, as we do not have
Ž . Ž .an exact correspondence between 5.1 -tuples and 6.17 -tuples. Instead,

we have the following.

Ž . Ž .THEOREM 6.19. Let T , F, S, f be a small- 5.1 -tuple of rank n with
Ž .either T s Soc T S or n G 4. As usual set N s Soc T and let E be any

minimal normal subgroup of N. Let k , C, D, P, and s be as defined
Ž .immediately after Definition 3.18 in terms of the 3.18 -tuple

Ž .E, N, T , F, S, f . Then the tuple

C , D , E, k N E , k N E , f SŽ . Ž . Ž .Ž . Ž .Ž .S T

Ž . Ž .obtained from T , F, S, f ¨ia Construction 6.8 is a 6.17 -tuple of rank n.
Ž . Ž . Ž .Moreo¨er, the cases a ] d of Definition 6.17 vi are respectï ely equï alent

Ž . Ž .to cases 1 ] 4 below:

Ž . Ž .1 T s NS and S s N l ker s S s P;
Ž . Ž .2 T s NS and S - N l ker s S s P;
Ž . Ž .3 T s NS and S s N l ker s S - P;
Ž .4 T / NS.

COROLLARY 6.20. The following all hold:

Ž . Ž . Ž .1 V 5.1 : D 6.17 .
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Ž . Ž . Ž Ž .. Ž Ž .. Ž Ž .. �2 V 5.1 : D 6.17 a j D 6.17 b j D 6.17 c j n : n y 1 g
Ž Ž ..4D 6.17 a .

Ž . � Ž Ž .. Ž Ž .. Ž Ž ..4 Ž .3 n G 16 : n g D 6.17 a j D 6.17 b j D 6.17 c : V 5.1 .

Ž .Proof. Recall from 6.B that

V 5.1 s n G 16 : there exists a small- 5.1 -tuple of rank n .� 4Ž . Ž .

Ž . Ž .Part 1 is now immediate from Theorem 6.19, and part 2 follows from
Ž .part 1 and Remark 6.18.

Ž . Ž . Ž .To see part 3 suppose that C, D, E, K, L, A is a 6.17 -tuple of rank
Ž .Ž . Ž .n satisfying one of Definition 6.17 vi a ] c . We wish to apply Proposition

Ž .6.16 to demonstrate the existence of a 5.1 -tuple of rank n. To achieve
Ž .this it is enough to show, with respect to C, D, E, K and A, that

Ž . Ž .conditions i and ii of Proposition 6.16 both hold, and that condition
Ž . Ž .Ž . Ž .6.G holds if one of Definition 6.17 vi a ] b applies, while condition
Ž . Ž .Ž . Ž . Ž .6.H holds if Definition 6.17 vi c applies. Now i and ii of Proposition

Ž . Ž .6.16 are identical to vii and viii of Definition 6.17, respectively, and if
Ž .Ž . Ž . Ž .Definition 6.17 vi c applies, then 6.H is identical to Definition 6.17 ix .

Ž . Ž .Ž . Ž .So it remains to show that 6.G holds if one of Definition 6.17 vi a ] b
applies. In either case we have

E l ker h K s E l hy1 Core h N C , D K ;Ž . Ž .Ž .Ž .Ž .Ž .A E

by intersecting both sides with E and then applying h we deduce that

h K l E s Core h N C , D h K l E .Ž . Ž . Ž .Ž .Ž .A E

Ž . Ž Ž Ž ...Thus h K l E G Core h N C, D and soA E

Core h K l E G Core h N C , D .Ž . Ž .Ž . Ž .Ž .A A E

As the containment in the reverse direction follows easily from the
Ž . Ž .observation that K F N C, D , we see that equality, and hence 6.G ,Aut E

holds as required.

The proof of Theorem 6.19 requires the following lemma.

LEMMA 6.21. Let l be a positï e integer and let A, B, H be groups such
that

A - B and H F Aut BlŽ .

with H transitï e on the l direct factors of Bl. Identify B with the first direct
factor of Bl and let L F H be the normaliser in H of B. Suppose that Al is
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in¨ariant under H and that B does not normalise A. Then

l lB A ( MM if and only if B A ( MM .0 0LH

Proof. Firstly note that if Al is invariant under H, then A is invariant
under L and the assertion is sensible.

Now the result in one direction is easy: if A is invariant under L with0
ˆA - A - B then it is straightforward to see that there is a group A0 0

l ˆ l ˆ linvariant under H such that A - A - B and A ( A .0 0 0
We consider the reverse direction. We assume that there are no proper

L-invariant subgroups of B that strictly contain A and suppose that X is a
strict H-invariant overgroup of Al in Bl. We must show that X G Bl as
equality then follows. Let k be the projection Bl ª B which restricts to
give the identity map between the direct factor identified with B and B.

l Ž . Ž .As A - X we have A - k X . Now k X is certainly invariant under L
Ž .as X is invariant under H, and so by assumption k X s B. Recall that B

has been identified with a direct factor of Bl; consider X l B. This is
Ž .normalised by X, and so also by k X s B, is invariant under L, and

contains A. As B does not normalise A, we have A - X l B; our
assumption then forces X l B s B. It follows that X contains the conju-
gates of B under H, and so X G Bl as required.

Ž . Ž .Proof of Theorem 6.19. We suppose that T , F, S, f is a small- 5.1 -
Ž .tuple of rank n with T s Soc T S or n G 4. As in the statement of the

theorem we set N s Soc T and let E be a minimal normal subgroup of N.
Observe that S is transitive on the minimal normal subgroups of T : this is

Žimmediate if T s NS and is implied by Theorem 6.7 if n G 4. Our reason
for not proving a weaker theorem, namely one covering only those small-
Ž .5.1 -tuples of rank n G 4, is that we shall have cause later in the proof to

Ž . Ž .replace T , F, S, f by NS, F, S, f : our hypotheses are thus chosen so
.that they are still satisfied after such a replacement. It follows that

Ž . Ž .E, N, T , F, S, f is a 3.18 -tuple, as is implicitly assumed in the statement
of the theorem. Let k , C, D, h, and P be as in the statement of the

Ž . Ž .theorem, i.e., as defined in terms of the 3.18 -tuple E, N, T , F, S, f as
immediately after Definition 3.18. Note that in the proof of Theorem 6.10
we saw that this definition of P and s is equivalent to that given by

Ž . Ž y1Ž ..Theorem 6.4 ii , that is, P s N N l ker f, N l f Inn F and s : PT
ª Aut F is defined by requiring that

Ž .s y y y1f x s f x for all x g N l f Inn F and y g P .Ž . Ž . Ž .

Ž . Ž Ž .. Ž .We recall from 3.A that k N E F N C, D and thatP Aut E

h k x s s x for all x g N E .Ž . Ž . Ž .Ž . P
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In the following this will often be used without explicit mention. For
Ž Ž .. Ž Ž .. Ž .convenience we set K s k N E , L s k N E , and A s f S . LetS P

Ž .x , . . . , x be a right transversal for N E in S with x s id . We consider1 l S 1 S
Ž . Ž .conditions i ] ix of Definition 6.17.

Ž . Ž . Ž .Definition 6.17 i follows from Theorema 6.10, while conditions ii ] iii
of Definition 6.17 follow by the definition of C, D, K, L, and h. As noted

Ž . Ž .in the first paragraph we have T s N E S, whence P s N E S andT P

s P s s N E s S s h k N E f S s h L A.Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ž .P P

Ž . Ž .As s P is certainly a subgroup of Aut F, Definition 6.17 iv follows.
Ž . Ž .We turn to Definition 6.17 v ; we suppose that h L g A whence A is a

Ž . Ž . Ž .proper subgroup of h L A. Recall that s P s h L A and that A s
Ž . Ž .f S s s S . Using the fact that S is either equal to P or maximal in P

Ž .we deduce that A - h L A as required, and also that ker s s ker f.max
Ž . Ž .Now h K is clearly contained in both A and h L . To see the reverse

Ž . Ž .containment we choose w g h L l A. Then there exist x g N E andP
y g S with

w s h k x s f y .Ž . Ž .Ž .
Ž Ž .. Ž . y1As s extends f and as h k x s s x it follows that xy g ker s . We

have just seen that ker f s ker s F S, whence x g S as y g S. We deduce
Ž . Ž .that x g N E , that k x g K, and consequently thatS

w s h k x g h KŽ . Ž .Ž .
Ž . Ž Ž ..as required. Finally to see the remainder of v observe that since h k x

Ž . Ž .s s x for all x g N E we haveP

K l ker h s k N E and L l ker h s k N E .Ž . Ž .Ž .Ž .ker f ker s

As kerf s ker s we have equality between the above and Definition
Ž .6.17 v holds.

Ž .Before verifying Definition 6.17 vi we claim that P s S if and only if
K s L. In one direction this is obvious. To verify the other direction, we
suppose that S - P: we must show that K - L. Let r : R ª Aut F be a

Ž Ž .strict extension of f distinct from s . This is possible as the small- 5.1 -
Ž . .tuple T , F, S, f has rank n G 3 by Definition 6.6. Note that S nor-

malises

N N l ker f , N l fy1 Inn F s N l ker r l P .Ž .Ž .N l ker r

Ž .Given that r / s , Theorem 6.4 implies that R s N l ker r S, whence
the maximality of S in R forces

N l ker r N l ker f ( MM .0S
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Thus either N l ker r F P or

N l ker r l P s N l ker f . 6.IŽ .

Ž .If the former holds, then R s N l ker r S F P and the maximality of S
y1Ž .in P forces R s P. Choose x g N l f Inn F and y g R s P. Then

Ž . Ž .r y r y y yf x s r x s r x s f xŽ . Ž . Ž . Ž .
y y1Ž .as x g N l f Inn F and as r extends f. On comparing this with the

Ž .definition of s we see that r s s , a contradiction. Hence 6.I holds.
As s is a strict extension of f in T , s itself has no strict extensions in

Ž y1Ž ..T and by Corollary 3.15, N l ker s , N l s Inn F is a P-maximal
Ž .section of N. Given 6.I this implies that N l ker r is not normalised by

l Ž . x iP. By Theorem 6.10, N l ker r is equal to Ł k N l ker r . As Pis1
does not normalise N l ker r it is clear that there exist an integer j with

Ž .1 F j F l and elements x g k N l ker r and y g P such that

x x j y f N l ker r .

y1 Ž .Let 1 F k F l be such that x yx g N E . Then as x , x g S F P, wej k T j k
y1 Ž . x j y xk

y1
have x yx g N E , x g E, andj k P

y1 xy1x y x kj kx f E l N l ker r s E l N l ker r s k N l ker r .Ž . Ž . Ž .

By the definition of k we have x x j y xk
y1 s x k Ž x j y xk

y1. whence

k x yxy1 f N k N l ker r andŽ .Ž .Ž .j k Aut E

L sk N E g N k N l ker r .Ž . Ž .Ž .Ž .P Aut E

As the latter contains K we have L ) K as required.
Ž .We now consider Definition 6.17 vi . As S is either equal to P or

maximal in P it is clear that one, and only one, of the following holds:

Ž . Ž . Ž .A S s N l ker s S s N l P S s P;
Ž . Ž . Ž .B S - N l ker s S s N l P S s P;
Ž . Ž . Ž .C S s N l ker s S - N l P S s P;
Ž . Ž . Ž .D S s N l ker s S s N l P S - P.

Ž . Ž .Furthermore, as T s N E S and as N F N E we see that the aboveT T
cases can be equivalently described as:

Ž . Ž . Ž . Ž . Ž . Ž . Ž .A 9 N E s N l ker s N E s N l P N E s N E ;S S S P

Ž . Ž . Ž . Ž . Ž . Ž . Ž .B 9 N E - N l ker s N E s N l P N E s N E ;S S S P
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Ž . Ž . Ž . Ž . Ž . Ž . Ž .C 9 N E s N l ker s N E - N l P N E s N E ;S S S P

Ž . Ž . Ž . Ž . Ž . Ž . Ž .D 9 N E s N l ker s N E s N l P N E - N E .S S S P

Ž Ž .. Ž Ž .. Ž . Ž .Now K s k N E , L s k N E , and by Lemma 3.19 i and iii weS P
have

X s k N l ker s and Y s k N l P ,Ž . Ž .

Ž .where X and Y are as defined in Definition 6.17 vi . Thus by applying k to
each condition, and noting that by the above claim P s S if and only if

Ž . Ž .K s L, we deduce that the conditions A 9] D 9 are respectively equiva-
Ž . Ž . Ž .lent to the cases a ] d of Definition 6.17 vi .

Ž . Ž .Before proceeding with Definition 6.17 vii ] ix we assume that they do
Ž . Ž .hold and consider the consequences. Thus C, D, E, K, L, A is a 6.17 -

tuple. Using the information that either S s P or S - P and thatmax
Ž Ž . Ž . .T s NP since T , F, S, f is a small- 5.1 -tuple , it is easy to see that the

Ž . Ž . Ž . Ž .cases 1 ] 4 of the theorem are respectively equivalent to cases A ] D
above. The ‘‘Moreover’’ statement follows.

Ž . Ž . ŽNow observe that one of 1 and 2 holds if and only if P s N l
.ker s S. From this together with Theorem 6.10 it follows that

Ž . Ž .C, D, E, K, L, A is indeed a 6.17 -tuple of rank n. We conclude that the
Ž . Ž .theorem holds provided only that the remaining conditions vii ] ix of

Definition 6.17 all hold.
Ž . Ž . Ž .Note that Definition 6.17 vii ] ix depend only on the 6.9 -tuple

Ž . Ž .C, D, E, K and the subgroup A s f S of Aut F, and not on the
Ž .subgroup L of Aut E. Note also that if we replace the small- 5.1 -tuple

Ž . Ž . Ž . Ž .T , F, S, f by the small- 5.1 -tuple NS, F, S, f then the 6.9 -tuple
Ž .C, D, E, K and the subgroup A remain unchanged. Hence we may
assume that T s NS.

Ž .By Theorem 3.3 the map T ª Aut E X S given byl

x ¬ k x xxy1 , . . . , k x xxy1 p ,Ž . Ž .Ž .1 1p l lp

y1 Ž .where p g S is such that x xx g N E , is a monomorphism. We usel i ip T
Ž .this to identify T with a subgroup of Aut E X S . Note that under thisl

identification we have

N s y , . . . , y : y g E ( El ,� 4Ž .1 l i

E s y , id, . . . , id : y g E ( E,� 4Ž .
N E s T l y , . . . , y p g Aut E X S : 1p s 1 ,� 4Ž . Ž . Ž .T 1 l l

S F K X S F Aut E X S ,Ž .l l
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Ž .and the map k : N E ª Aut E is given byT

k : x ¬ y1

Ž . Ž . Žwhere x s y , . . . , y p g N E . These statements depend on our as-1 l T
Ž . .sumption that x , . . . , x is a right transversal for N E in S with x s id .1 l S 1 S

Also note that by Theorem 6.10 we have

l
x iN l ker f s C ,Ł

is1

whence given the above identification

N l ker f s y , . . . , y : y g C s C l .� 4Ž .1 l i

Ž . lIt is clear that K X S , and so also S, normalises the subgroup K l ker hl
Ž . Ž . lof Aut E X S . Set S s K l ker h S and observe that NS is a well-l 0 0

Ž .defined subgroup of Aut E X S as N is a normal subgroup of the latter.l
Ž . l Ž .If x g K l ker h l S, then x g N E andS

f x s h k x s id.Ž . Ž .Ž .

Ž . lHence K l ker h l S F ker f and the map f : S ª Aut F given by0 0

l
f : xs ¬ f s for all x g K l ker h and s g SŽ . Ž .0

Ž . Ž .is well-defined. We claim that NS , F, S , f is small- 5.1 -tuple of the0 0 0
Ž . Ž .same rank as T , F, S, f , and moreover, that if we replace T , F, S, f by

Ž . Ž . Ž .NS , F, S , f then the 6.9 -tuple C, D, E, K and the subgroup A of0 0 0
Aut F remain unchanged. This is straightforward and left to the reader.

Ž . lHence we may assume that S G K l ker h .
As in the proof of Theorem 6.10 for i s 1, . . . , n we let r : R ª Aut Fi i

be the n strict extensions of f in T labelled so that r s s if n s d q 1,n
Ž . Ž . Žwhere d is the degree of the 6.9 -tuple C, D, E, K , and set C s k N li

. Ž .ker r . Given the current identification of T with a subgroup of Aut E Xi
S we deduce from Theorems 6.10 and 6.4 thatl

N l ker r s C l for all i s 1, . . . , ni i

and that R s C lS for all i s 1, . . . , d.i i
Ž .We turn to Definition 6.17 vii . The maximality of S in each R impliesi

that

lC S S ( MM for all i s 1, . . . , d. 6.JŽ .i 0
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l Ž Ž .. lGiven that for i s 1, . . . , d we have C S s C K l ker h S while S li i
ker r s ker f implies thati

l ll lS l C s C and S l C K l ker h s K l ker h ,Ž . Ž .Ž .i i

Ž .we deduce that 6.J is equivalent to either of

l lC C ( MM for all i s 1, . . . , d , 6.KŽ .i 0S

l lC K l ker h K l ker h ( MM for all i s 1, . . . , d. 6.LŽ . Ž . Ž .Ž .i 0S

ˆ< Ž . <On the other hand, if a s A : h K and S is defined in terms
Ž . Žof C, D, E, K and A as in Construction 6.13, then given that K l

a ˆ. Ž . Ž .ker h F S we see that Definition 6.17 vii is equivalent to either 6.K or
ˆŽ .6.L , but with l replaced by a and with S replaced by S. If for all

Ž .i s 1, . . . , d the subgroup C K l ker h does not normalise K l ker h,i
Ž .then Definition 6.17 vii follows via two applications of Lemma 6.21}the
Ž . w Ž . Ž .xfirst deducing from 6.L that C K l ker h r K l ker h ( MM fori K 0

Ž .i s 1, . . . , d, and the second deducing from this that 6.L holds, but with l
ˆreplaced by a and with S replaced by S. Hence we may assume that for

Ž .some i s 1, . . . , d that K l ker h is normalised by C K l ker h . Withi
Ž .this assumption we claim that ker f F N E .S

The claim essentially follows from the observation that, as ker f is
normal in S, the ker f-orbits on minimal normal subgroups of N form a
system of imprimitivity for the action of S on such subgroups}this system
of imprimitivity, if non-trivial, can be used to construct a strict S-invariant

Ž . l Ž Ž .. lovergroup of K l ker h that is strictly contained in C K l ker h ,i
Ž .contrary to 6.L . More formally, to see the claim we proceed as follows.

Ž .We assume that the transversal x , . . . , x for N E in S is chosen so that1 l S
for all j, k s 1, . . . , l

x xy1 g N E ker f if and only if x xy1 g ker f .Ž . Ž .j k S j k

Ž Ž .This can be achieved by firstly choosing a right transversal for N E inker f

Ž .Ž .ker f and a right transversal for N E ker f in S, and then combiningS
Ž . .these to give a right transversal for N E in S. Define the subgroup W ofS

Ž Ž .. lC K l ker h byi

l y1W s y , . . . , y g C K l ker h : y y g K l ker hŽ . Ž .Ž .½ 1 l i j k

whenever x xy1 g ker f .5j k

Ž . lObserve that W strictly contains K l ker h , and moreover, that W is a
Ž Ž .. l Ž .proper subgroup of C K l ker h if and only if ker f g N E . Hence,i S
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Ž .given that 6.L holds, to verify the claim it suffices to show that W is
Ž .normalised by S. Choose x g S and y s y , . . . , y g W. Let p g S be1 l l

y1 Ž .such that x xx g N E for all j s 1, . . . , l so that x is identified withj jp S
the element

k x xxy1 , . . . , k x xxy1 pŽ . Ž .Ž .1 1p l lp

Ž .of Aut E X S . Thusl

x k x y1 xxy1 k x y1 xxy1Ž . Ž .1p 1 lp ly s y , . . . , y .y1 y1ž /1p lp

Now

x xy1 s x xy1 xy1 x xy1 x xxy1 g N E x xy1N E .Ž . Ž .jp kp jp j j k k kp S j k S

Ž .Recalling that ker f is a normal subgroup of S G N E , we see thatS
y1 Ž .Ž . y1 Ž .Ž .x x is in N E ker f if and only if x x g N E ker f , and so byj k S jp kp S

the choice of transversal, x xy1 g ker f if and only if x xy1 g ker f.j k jp kp

Suppose x xy1 g ker f ; to show that y x g W we must show thatj k

y1y1 y1y1k x xx y1k x xxŽ . Ž .jp j kp ky y g K l ker h .y1 y1ž /jp kp

Now

Ž y1 .y1y1 k x x xkp ky1 y1 y1 y1y1y1 y1 y1k x xx k x xx x x xy1k x xxŽ . Ž . y1Ž .jp j jp j k kpkp k y1y y s y y .y1 y1y1 kpž / ž /jp jpkp

But

h k x y1 xxy1 x xy1 xy1
y1 s f x y1 xxy1 x xy1 xy1

y1Ž . Ž .ž /jp j k kp jp j k kp

s f x y1 xxy1 xy1
y1 , as x xy1 g ker f ,Ž .jp kp j k

s f x y1 xy1
y1Ž .jp kp

s id , as x y1 xy1
y1 g ker f ,Aut F jp kp

Ž y1 y1 y1 .y1 y1whence k x xx x x x g K l ker h. Hencejp j k kp

y1y1 y1y1k x xx y1k x xxŽ . Ž .jp j kp ky yy1 y1ž /jp kp

Ž y1 .y1k x x xkp ky1
y1 y1g K l ker h y y , since C normalises K l ker h ,Ž .Ž .jp kp i

Ž y1 .y1k x x x y1kp k y1 y1g K l ker h , since x x g ker f ,Ž . jp kp

g K l ker h , since K l ker h is normal in K s k N E .Ž .Ž .S
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We have now shown that S normalises W and so have verified the claim
Ž . Ž . Ž .that ker f F N E . We deduce that f x , . . . , f x is a right transversalS 1 l

Ž . Ž Ž .. Ž .for h K , which equals f N E , in A s f S . It follows that l s a, andS
ˆmore significantly, that if S is constructed using the transversal

ˆŽ . Ž . Ž .f x , . . . , f x , then S s S. Definition 6.17 vii holds as it is now identi-1 l
Ž .cal to 6.K and as it does not depend on the transversal chosen in

Construction 6.13.
Ž .We turn to Definition 6.17 viii . Note that for each i s 1, . . . , d the

Ž . Ž .tuple E, N, T , F, R , r is a 3.18 -tuple such that r has no strict exten-i i i
sions in T. Applying Proposition 3.20 we see that

r N l R s Core h N C , D for all i s 1, . . . , d ,Ž . Ž .Ž .Ž .i i r ŽR . i E i ii i

where h is as defined immediately prior to Lemma 6.12. Now for eachi
l l Ž .i s 1, . . . , d we have R s C S and C s N l ker r , whence r R si i i i i i

Ž . Ž .r S s f S s A andi

r N l R s r C l N l S s r N l S s f N l S .Ž . Ž . Ž . Ž .Ž .i i i i i

Ž . Ž .Clearly k N l S F K l E, while f N l S is a normal subgroup of
Ž . Ž . Ž Ž ..f S s A. Hence f N l S s h k N l S is certainly contained in the

Ž .A-core of h K l E . Summarising we have

Core h N C , D s r N l R s f N l S F Core h K l EŽ . Ž . Ž . Ž .Ž .Ž .Ž .A i E i i i i A

Ž .for all i s 1, . . . , d. Recalling that h and h agree on K F N C , D , iti Aut E i i
Ž . Ž Ž ..is immediate that h K l E is contained in h N C , D , whence thei E i i

A-core of the former is contained in the A-core of the latter. Definition
Ž . Ž . Ž Ž6.17 viii follows. We also deduce that f N l S is equal to Core h K lA

..E .
Ž .Finally we turn to Definition 6.17 ix . We assume that Definition

Ž .Ž . Ž .6.17 vi c holds, or equivalently that C above holds, i.e., that

S s N l ker s S - N l P S s P .Ž . Ž .

The maximality of S in P implies that

N l P N l S ( MM . 6.MŽ .0S

Ž . Ž .Now S s N l ker s S forces N l ker f s N l ker s , whence 6.M
holds if and only if

s N l P f N l S ( MM .Ž . Ž . 0Ž .f S

Ž . Ž ŽAt the end of the previous paragraph we saw that f N l S s Core h KA
.. Ž . Ž .l E , while by applying Lemma 3.19 to the 3.18 -tuple E, N, T , F, S, f



BADDELEY AND LUCCHINI68

we have that

s N l P s Core h N C , D .Ž . Ž .Ž .Ž .ŽA E

Ž .Definition 6.17 ix follows and we are finished.

Ž .7. THE T-COMPLEMENT CASE: SUBCASE f S h Inn F

Ž .In this section we study the problem of determining V 5.2 . We start
Ž .with some easy consequences of the definition of 5.2 -tuples.

Ž . Ž .LEMMA 7.1. Let T , F, S, f be a 5.2 -tuple, and let r : R ª Aut F be a
strict extension of f in T. Then the following all hold:

Ž .i T is a maximal subgroup of the twisted wreath product F twr T ;r

Ž .ii the twisted wreath product F twr T in its action on the coset spacer

Ž .F twr T : T is a primitï e permutation group with a non-abelian regularr

normal subgroup;
Ž .iii the socle Soc T of T is non-abelian and is the unique minimal

normal subgroup of T ;
Ž . Ž .iv r Soc T l R G Inn F;
Ž . Ž y1Ž ..v R s Soc T l r Inn F S;
Ž . Ž .vi R s Soc T l R S.

Ž .Proof. By Definition 5.2 v and Corollary 3.7, the top group T is
Ž . Ž .maximal in F twr T and i follows. The action of F twr T on the rightr r

cosets of T is thus primitive. As T complements B in F twr T we see thatr r

ŽB acts both regularly and faithfully in this action that is, B is transitiver r

.and meets every point-stabilizer trivially . We can therefore identify the
cosets of T with elements of B so that the action of T becomes that ofr

Ž .conjugation on B . Hence the kernel of the action is equal to C Br T r

Ž .which by Lemma 3.9 equals Core ker r . The latter is trivial as byT
Ž . Ž .Definition 5.2 ii and v , the kernel ker r is a core-free subgroup of T.

Given that F is a non-abelian simple group, whence B is indeed ar

Ž . Ž .non-abelian regular normal subgroup, we see that ii holds. That iii and
Ž . Ž . w x Ž .iv hold follows from ii together with 3, 5.4 . From iv we see that

r Soc T l ry1 Inn F s Inn F ,Ž .Ž .
Ž . y1Ž .whence by Definition 5.2 i , Soc T l r Inn F g S. Now S normalises

y1Ž . Ž y1Ž ..Soc T l r Inn F and so Soc T l r Inn F S is a strict overgroup of
Ž . Ž . Ž .S in R. Part v follows as by Definition 5.2 v S - R. Finally vi is anmax

Ž .immediate consequence of v .
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Ž .Recall that a 5.2 -tuple has rank n if and only if there exist n y 1 strict
extensions of f in T. In the following corollary to Lemma 5.5 we consider
Ž .5.2 -tuples of rank n G 2 so that such strict extensions exist.

Ž . Ž .COROLLARY 7.2. Let T , F, S, f be a 5.2 -tuple of rank n G 2, and for
i s 1, . . . , n y 1 let r : R ª Aut F be the strict extensions of f in T.i i

< < Ž .Suppose that T is minimal among all such 5.2 -tuples. Then

² :T s R , . . . , R .1 ny1

² :Proof. Set X s R , . . . , R . The result follows from Lemma 5.51 ny1
provided that

Core fy1 Inn F F ker f .Ž .Ž .X

In fact, since R F X it is enough to show that1

Core fy1 Inn F F ker f .Ž .Ž .R1

Ž .By Definition 5.2 v , ker f s ker r and on applying the homomorphism1
Ž .r we see that the above holds if and only if f S l Inn F is a core-free1

Ž . Ž .subgroup of r R . But the latter is true, since by Definition 5.2 v the1 1
Ž . Ž .image r R is almost simple with socle Inn F, while by Definition 5.2 i1 1

Ž .the intersection f S l Inn F is a proper subgroup of Inn F.

The conclusion of the above result turns out to be fundamental in what
follows and for convenience we give the following definition.

Ž . Ž .DEFINITION 7.3. We say that the tuple T , F, S, f is a small- 5.2 -tuple
Ž .of rank n if n G 2, the tuple is a 5.2 -tuple of rank n, and the conclusion

of Corollary 7.2 holds, i.e.,

² :T s R , . . . , R ,1 ny1

where for i s 1, . . . , n y 1 the maps r : R ª Aut F are the strict exten-i i
sions of f in T.

Ž . Ž .PROPOSITION 7.4. Let T , F, S, f be a small- 5.2 -tuple of rank n, and
for i s 1, . . . , n y 1 let r : R ª Aut F be the strict extensions of f in T.i i
Then the following all hold:

Ž . Ž .i T s Soc T S;
Ž .ii ker f is trï ial;
Ž . y1Ž .iii for each i s 1, . . . , n y 1 the in¨erse image r Inn F is ai

subgroup of Soc T isomorphic to Inn F ¨ia r , and moreo¨er,i

Soc T s ry1 Inn F , . . . , ry1 Inn F .² :Ž . Ž .1 ny1
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Ž . Ž .Proof. By Lemma 7.1 vi we have R F Soc T S for all i s 1, . . . , n yi
1, whence

² :R , . . . , R F Soc T S F T .Ž .1 ny1

Ž . Ž .Equality follows by the definition of small- 5.2 -tuples, and so i holds.
Ž . Ž .We turn to ii ; by Definition 5.2 v , ker f s ker r for all i s 1, . . . , n yi

² :1 and so ker f is normalised by R , . . . , R . As the latter is equal to T1 ny1
by assumption we see that ker f is a normal subgroup of T whence by

Ž .Definition 5.2 ii , ker f is trivial as required.
Ž . Ž . Ž .To see iii note that by ii and Definition 5.2 v the kernel ker r isi

y1Ž .trivial for all i s 1, . . . , n y 1, whence the inverse image r Inn F isi
Ž .isomorphic to a subgroup of Inn F via r . However, by Lemma 7.1 iv ,i

y1Ž . y1Ž .Soc T l r Inn F is a subgroup of r Inn F with Inn F as a homo-i i
morphic image, whence equality holds and

ry1 Inn F F Soc T for all i s 1, . . . , n y 1.Ž .i

Ž .Finally by repeating the argument used to prove i , but using Lemma
Ž . Ž .7.1 v in place of Lemma 7.1 vi , we see that

² y1 y1 :T s r Inn F , . . . , r Inn F S.Ž . Ž .1 ny1

² y1Ž . y1 Ž .:As r Inn F , . . . , r Inn F is normalised by both itself and by S,1 ny1
we see that it is a normal subgroup of T . Noting that
² y1Ž . y1 Ž .:r Inn F , . . . , r Inn F is non-trivial and is contained in Soc T ,1 ny1

Ž .which by Lemma 7.1 iii is a minimal normal subgroup of T , we deduce
that

Soc T s ry1 Inn F , . . . , ry1 Inn F² :Ž . Ž .1 ny1

and are finished.

Ž . Ž .Suppose that T , F, S, f is a small- 5.2 -tuple of rank n so that the
conclusions of Lemma 7.1 and Proposition 7.4 all hold. Let E be a
minimal normal subgroup of Soc T. As Soc T is non-abelian and minimal
normal in T the group E is non-abelian and simple, and Soc T is the

Ž .direct product of the T-conjugates of E. Let k : N E ª Aut E beT
induced by conjugation; we identify E with Inn E in the usual way so that
k restricts to give the identity on E. As usual for i s 1, . . . , n y 1 let
r : R ª Aut F be the strict extensions of f in T. Now by Propositioni i

Ž . y1Ž .7.4 iii the inverse image r Inn F is a subgroup of Soc T isomorphic toi
Ž .Inn F via r . Note that by Proposition 7.4 i the group S, and so also eachi

R , is transitive on the minimal normal subgroups of Soc T. This meansi
y1Ž .that the projections of r Inn F onto each simple direct factor of Soc Ti
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y1Ž .are isomorphic to each other. As r Inn F is non-trivial we see thati
Ž y1Ž .. y1Ž .k r Inn F is non-trivial. Furthermore, as r Inn F is simple we seei i

y1Ž .that k restricts to give an isomorphism between r Inn F and its imagei
Ž y1Ž .under k . For later reference we note also that r Inn F meets everyi

.proper normal subgroup of Soc T trivially. For each i s 1, . . . , n y 1 we
define the monomorphism a : Inn F ª E byi

a r x s k x for all x g ry1 Inn F .Ž . Ž . Ž .Ž .i i i

Ž .We also set L s f S .

Ž .DEFINITION 7.5. The tuple E, F, a , . . . , a , L as defined in the1 ny1
Ž .above discussion is referred to as the tuple obtained from the small- 5.2 -

Ž .tuple T , F, S, f .

Ž . Ž .In Theorem 7.10 we see that the small- 5.2 -tuple T , F, S, f is recover-
Ž .able from the tuple E, F, a , . . . , a , L obtained from it. However,1 ny1

before defining exactly what we mean by recoverable we wish to make
Ž .explicit the more important properties of the tuple E, F, a , . . . , a , L .1 ny1

DEFINITION 7.6. Let m be a positive integer. We say that
Ž . Ž .E, F, a , . . . , a , L is a 7.6 -tuple if the following all hold:1 m

Ž .i E and F are non-abelian simple groups;
Ž .ii a , . . . , a are distinct monomorphisms F ª E such that their1 m

² Ž . Ž .:images generate E, that is, E s a F , . . . , a F ;1 m

Ž . Ž� 4 Ž ..iii for each i s 1, . . . , m the section id , a F is a maximali
section of E;

Ž .iv L is a subgroup of Aut F such that

� 4F id ( MM ;F 1L

Ž .v for all i, j s 1, . . . , m we have

< <a s a .Ll Inn F Ll Inn Fi j

Ž Ž .Note that in v we have implicitly assumed our usual identification
.between F and Inn F.

Ž . Ž .Furthermore, a 7.6 -tuple E, F, a , . . . , a , L is said to be either a1 m
Ž Ž .. Ž Ž ..7.6 a -tuple, or a 7.6 b -tuple, depending on which of the following
holds:

Ž .a E \ F;
Ž .b E ( F.
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Ž .We refer to the integer m as the degree of the 7.6 -tuple, and define the
Ž Ž .. Ž Ž .. Ž .subsets D 7.6 a , D 7.6 b , and D 7.6 of N by

D 7.6 a s n G 16 : there exists a 7.6 a -tuple of degree n y 1 ,� 4Ž . Ž .Ž . Ž .
D 7.6 b s n G 16 : there exists a 7.6 b -tuple of degree n y 1 ,� 4Ž . Ž .Ž . Ž .

and

D 7.6 s D 7.6 a j D 7.6 b .Ž . Ž . Ž .Ž . Ž .

We remark that the notation and terminology, D and degree, have been
used to emphasize the fact that we do not have a complete correspondence

Ž . Ž .between 5.2 -tuples and 7.6 -tuples. We do however have the following.

Ž . Ž .THEOREM 7.7. V 5.2 : D 7.6 .

Ž . Ž .The theorem is proved by supposing that T , F, S, f is a small- 5.2 -tuple
Ž .of degree n G 2, and then showing that the tuple E, F, a , . . . , a , L1 ny1

Ž . Ž .obtained from T , F, S, f is a 7.6 -tuple. However, we note that the tuple
Ž . Ž .E, F, a , . . . , a , L is not uniquely defined by the small- 5.2 -tuple1 ny1
Ž .T , F, S, f : indeed, it is defined only up to the choice of the minimal
normal subgroup E of Soc T and up to ordering of the maps a , . . . , a .1 ny1

Ž . Ž .DEFINITION 7.8. Let the tuple E, F, a , . . . , a , L be either a 7.6 -1 m
Ž . Žtuple or be a tuple obtained from some small- 5.2 -tuple; let D, F,

.b , . . . , b , L be another such tuple. We say that the two tuples are1 l
equï alent if there exists an isomorphism x : D ª E such that

� 4 � 4a , . . . , a s x ( b , . . . , x ( b ,1 m 1 l

where x ( b denotes the composition of b followed by x .i i

Ž .Observe that two 7.6 -tuples are equivalent only if they have the same
degree; observe also that if two tuples are equivalent and one is a
Ž .7.6 -tuple, then so is the other.

Proof of Theorem 7.7. As noted above we prove the theorem by
Ž . Ž .supposing that T , F, S, f is a small- 5.2 -tuple of degree n G 2, and then

Ž . Ž .showing that the tuple E, F, a , . . . , a , L obtained from T , F, S, f is1 ny1
Ž . Ž . Ž . Ža 7.6 -tuple, i.e., that conditions i ] v of Definition 7.6 all hold. Note

that by the above observations it does not matter which tuple obtained
Ž .from T , F, S, f is considered as they are clearly equivalent to each
.other.

Ž . Ž .It is clear that Definition 7.6 i holds. We consider Definition 7.6 ii .
Given our usual identification between F and Inn F, we certainly have
that a , . . . , a are monomorphisms F ª E. Suppose that a s a . We1 ny1 i j
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claim that this forces r s r . To see this we start by consideringi j
y1Ž .r Inn F which we recall is a subgroup of Soc T isomorphic to Inn Fi

and such that the projection k restricts to give an isomorphism between
y1Ž . Ž .r Inn F and a F . Now as noted above S is transitive on the simplei i

< Ž . <direct factors of Soc T. Set l s S : N E ; the transitivity of S implies thatS
Ž .there exist s s id , . . . , s g S with1 S l

Soc T s Es1 = ??? = Esl ,

whence for all x g Soc T we have

s s1 ly1 y1s s1 lx s k x ??? k x . 7.AŽ .Ž . Ž .Ž . Ž .
y1Ž . s y1Ž .Choose x g r Inn F F Soc T. For each s g S we have x g r Inn Fi i

y1Ž . Ž s. Ž .fŽ s.since S normalises r Inn F . Now r x s r x since r is a homo-i i i i
morphism extending f, while by the definition of a we havei

a r x s s k x s .Ž . Ž .Ž .i i

Hence for each k s 1, . . . , l we have

y1 Ž y1 .f ss kkk x s a r x .Ž .Ž . ž /i i

Ž .This, together with 7.A , implies that

s s1 ly1 y1Ž . Ž .f s f s1 lx s a r x ??? a r x . 7.BŽ . Ž . Ž .ž / ž /ž / ž /i i i i

y1Ž . Ž . Ž .Suppose now that x g r Inn F is such that r x s r x . As a s a ,˜ ˜j j i i j
Ž .inspection of 7.B shows that x s x. We conclude that not only are the˜

y1Ž . y1Ž .subgroups r Inn F and r Inn F identical, but also that r and ri j i j
agree on these subgroups. Since they also agree on S we deduce from

Ž .Lemma 7.1 v that r s r . Since the r are distinct, it follows thati j i
a , . . . , a are also all distinct.1 ny1

Ž . Ž .To see that E is generated by the images a F , . . . , a F note that1 ny1
Ž .by Proposition 7.4 iii

Soc T s ry1 Inn F , . . . , ry1 Inn F ;² :Ž . Ž .i ny1

the required result follows by applying k to both sides and recalling that
Ž . Ž y1Ž ..a F is equal to k r Inn F by the definition of a . We have nowi i i

Ž .shown that Definition 7.6 ii holds.
Ž .To see Definition 7.6 iii we note that for each i s 1, . . . , n y 1 the

Ž . Ž . Ž .tuple E, Soc T , T , F, R , r is a 3.18 -tuple with T s Soc T R , and suchi i i
Ž .that r has no strict extensions in T ; Definition 7.6 iii then follows fromi
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Ž . Ž .Proposition 3.20 i . Definition 7.6 iv is immediate from Remark 5.4.
Ž .Finally Definition 7.6 v is an easy consequence of the fact that the

y1Ž .restrictions of each r to r Inn F l S are all equal.i i

Ž Ž ..We must stress here that the concept of a 7.6 a -tuple is an extremely
Ž .restricted one: certainly Definition 7.6 iv imposes a great restriction on L
Ž .and F, and if E \ F, then Definition 7.6 iii severely limits the possibilities

for E and the monomorphisms a , . . . , a . Our intuitive feeling is that the1 m
Ž Ž ..set D 7.6 a is likely to be empty. On the other hand, if E ( F then

Ž . Ž Ž ..Definition 7.6 iii is trivially satisfied, and the concept of a 7.6 b -tuple is
Ž Ž .. �not a useful one. Indeed, we note in Remark 8.5 that D 7.6 b s n g

4N: n G 16 ! Thus we must establish what extra conditions must be satisfied
Ž . Ž . Ž .by a 7.6 -tuple so that it is a 7.6 -tuple obtained from some small- 5.2 -

tuple. The key to doing this is the already advertised result, Theorem 7.10,
Ž . Ž .which says among other things that if E, F, a , . . . , a , L is the1 ny1

Ž . Ž . Ž .7.6 -tuple of degree n y 1 obtained from the small- 5.2 -tuple T , F, S, f
Ž . Ž .of rank n, then T , F, S, f is recoverable from E, F, a , . . . , a , L . To1 ny1

be precise about what is meant by ‘‘recoverable’’ we need the following
construction.

Ž .Construction 7.9. The input to this construction is a 7.6 -tuple

E, F , a , . . . , a , LŽ .1 m

Ž .of degree m, and the output is a tuple T , F, S, f . En route to construct-
ing the output tuple we shall have cause to construct various objects: in
their order of definition these are denoted

h , . . . , h , h , K , a , l , c .1 m

In addition to these objects which are an integral part of the construction
we shall also define maps x and i that will be useful later. For conve-
nience, we will often subsequently refer to the input tuple as x, to the

Ž .output tuple as G x , and to the components of the output tuple and
associated objects as T , F etc.x x

Ž . Ž .So we start with a 7.6 -tuple E, F, a , . . . , a , L of degree m. For1 m
Ž Ž ..each i s 1, . . . , m we define a homomorphism h : N a F ª Aut Fi Aut E i

Ž Ž .. Ž .by requiring that for all x g N a F the automorphism h x of F isAut E i i
such that the following diagram commutes:

Ž .h xi 6

F F

6 6

a a 7.CŽ .i i

conjugation by x 6

E E
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m Ž Ž .. Ž .mWe define a homomorphism h : F N a F ª Aut F byis1 Aut E i

m

h x s h x , . . . , h x for all x g N a F . 7.DŽ . Ž . Ž . Ž . Ž .Ž . Ž .F1 m Aut E i
is1

Observe that x g Aut E is in the kernel of h if and only if x centralizes
Ž . Ž .a F for all i s 1, . . . , m; by Definition 7.6 ii this holds if and only if xi

centralizes E. We conclude that h is a monomorphism.
Let K be the subgroup of L given by

K s x g L : x , . . . , x g Im h , 7.E� 4Ž . Ž .
m Ž Ž ..and define a map a : K ª F N a F by requiring thatis1 Aut E i

h a x s x , . . . , x for all x g K ; 7.FŽ . Ž . Ž .Ž .
observe that a is a well-defined monomorphism, and moreover that for all
i s 1, . . . , m

Ž .a xxa y s a y for all y g F and x g K . 7.GŽ . Ž . Ž .i i

Ž .We deduce from Definition 7.6 v that L l Inn F F K and moreover that

< <a s a for all i s 1, . . . , m. 7.HŽ .Ll Inn F Ll Inn Fi

< <Set l s L : K and choose a right transversal x , . . . , x for K in L. Define1 l
a map c : L ª Aut E X S byl

c : x ¬ a x xxy1 , . . . , a x xxy1 p for all x g L, 7.IŽ .Ž . Ž .Ž .1 1p l lp

where p g S is such that x xxy1 g K for all i s 1, . . . , l. Theorem 3.3l i ip
Ž .shows that c is a monomorphism. Let f : c L ª Aut F be inverse to c .

Ž . Ž . lNote that c L normalises Inn E F Aut E X S ; let T be the subgroupl
Ž . l Ž .of Aut E X S given by T s Inn E c L .l

Ž . Ž .Finally we set S s c L so that the output tuple T , F, S, f of the
construction has now been defined.

Ž .Before moving on we define in terms of the 7.6 -tuple x two more
objects, namely x and i which play a role later.

Ž Ž .. ŽDefine the homomorphism x : N a L l Inn F ª Aut L lAut E
. Ž Ž ..Inn F by requiring that for each x g N a L l Inn F the automor-Aut E

Ž .phism x x of L l Inn F is such that the following diagram commutes:
Ž .x x 6

L l Inn F L l Inn F

6 6

a a 7.JŽ .

conjugation by x 6

E E
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Ž . Ž .Also define the homomorphism i : N L l Inn F ª Aut L l Inn FAut F
to be that induced by the conjugation action on L l Inn F. We observe

Ž . Ž Ž ..that a K is contained in N a L l Inn F , and moreover thatAut E

y x Ža Ž x .. s y x s y iŽ x . for all x g K and y g L l Inn F .

Ž . Ž .THEOREM 7.10. Let x s E, F, a , . . . , a , L and y be equï alent 7.6 -1 m
Ž . Ž .tuples of degree m, and let G x , G y be the outputs of Construction 7.9 as

applied to x, y, respectï ely. Then the following all hold.

Ž . Ž . Ž . Ž . Ž .i if G x is a 5.2 -tuple of rank m q 1, then both G x and G y
Ž . Ž . Ž .are small- 5.2 -tuples and moreo¨er, the 7.6 -tuple obtained from G x is

equï alent to x;
Ž . Ž .ii if x is obtained from some small- 5.2 -tuple of rank m q 1, then

Ž . Ž .G x is a small- 5.2 -tuple of rank m q 1;
Ž . Ž . Ž .iii the tuple G x is a 5.2 -tuple of rank m q 1 if and only if x is

Ž .obtained from some small- 5.2 -tuple of rank m q 1.

The proof of Theorem 7.10 uses the following two lemmas.

Ž . Ž .LEMMA 7.11. Let x s E, F, a , . . . , a , L be a 7.6 -tuple of degree m.1 m
Ž . Ž .Let G x s T , F, S, f be the output of Construction 7.9 as applied to x.

In the following we use the notation of Construction 7.9, in particular
Ž .x s id , . . . , x is the right trans̈ ersal for K in L chosen in the process of1 l

Ž .constructing G x .
Ž . lFor each i s 1, . . . , m let b : F ª Inn E F T be gï en byi

b x s a x x1
y1

, . . . , a x xl
y1

for all x g F .Ž . Ž . Ž .Ž .i i i

ŽNote that b is a well-defined monomorphism as for j s 1, . . . , l each a is ai j
.monomorphism F ª E and each x is an automorphism of F. Then thej

Ž . Ž .images b F , . . . , b F are all normalised by S, and moreo¨er, for i s1 m
Ž .1, . . . , m the maps r : b F S ª Aut F gï en byi i

r : b x y ¬ xf y for all x g F and y g S, 7.KŽ . Ž . Ž .i i

are well-defined distinct monomorphisms strictly extending f in T.

Ž . Ž .Proof. We fix i and choose x g F and y g L so that c y g c L s S.
Let p g S be such that x yxy1 g K for all j s 1, . . . , l. By the definitionl j jp

Ž .of c , 7.I ,

c y s a x yxy1 , . . . , a x yxy1 pŽ . Ž . Ž .Ž .1 1p l lp
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whence

Ž y1 . Ž y1 .y1 y1a x y x a x y xy1 y1Ž . 1p 1 lp lc y x xy1 y11p lpb x s a x , . . . , a x .Ž . Ž . Ž .i i iž /
Ž . Ž Ž .. Ž .Now a K is contained in N a F and by the definition of h , 7.C ,Aut E i i

we have

Ž y1 . Ž Ž y1 ..y1 y1a x y x h a x y xy1 y1jp j i jp jx xy1 y1jp jpa x s a xŽ . Ž .i i ž /
Ž Ž ..for all j s 1, . . . , l. But a is defined so that h a t s t for all t g K andi

so

Ž . y1 y1c y y x y x y1 lb x s a x , . . . , a x s b x . 7.LŽ . Ž . Ž .Ž . Ž .Ž .i i i i

Ž . Ž .Thus b F is normalised by c L s S.i
To see that r is a well-defined homomorphism we must show, firstlyi

that
y f Ž y .r b x s x for all x g F and y g S,Ž .Ž .i i

Ž . Ž . Ž .and secondly that if y s b x g b F l S then x s f y , or equiva-i i
lently given the definition of f, that if x g F and z g L are such that
Ž . Ž .b x s c z then x s z. The former follows immediately from the defini-i

Ž .tions of f and r and from 7.L . To see the latter suppose x g F andi
Ž . Ž .z g L are such that b x s c z . Nowi

c z s a x zxy1 , . . . , a x zxy1 p ,Ž . Ž . Ž .Ž .1 1p l lp

where p g S satisfies x zxy1 g K for all j s 1, . . . , l. By comparingl j jp
Ž .this with the expression given for b x we deduce that p s id, whencei

y1 Ž y1 . Ž .x zx g K for all j s 1, . . . , l, and that a x zx g a F for all j sj j j j i
Ž . Ž .1, . . . , l. In particular, and on recalling that x s id, we have a z g a F .1 i

Ž . Ž .From 7.G we deduce that conjugation by a z is an inner automorphism
Ž .of a F if and only if conjugation by z is an inner automorphism of F.i

Ž . Ž .Hence a z g a F implies that z g Inn F. On the other hand, if z g Li
Ž . Ž . Ž .l Inn F F F, then by using 7.H it is easy to see that c z s b z , andi

Ž . Ž .so b x s c z forces x s z as b is a monomorphism.i i
To see that r is a monomorphism, suppose that x g F and z g L arei

Ž . Ž .such that b x c z g ker r . Theni i

id s r b x c z s xz ,Ž . Ž .Ž .i i

y1 Ž .whence z s x g L l Inn F. As noted above, this means that c z s
Ž . Ž . Ž .b z , whence b x c z s id and the kernel of r is trivial as required.i i i
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It is clear from its definition that r extends f in T. Moreover r strictlyi i
Ž Ž . . Ž Ž .. Ž .extends f as r b F S G r b F s Inn F while f S s L which byi i i i

Ž .Definition 7.6 iv and Corollary 3.25 does not contain Inn F.
Finally to see that r , . . . , r are distinct we let k be the projection map1 m

Ž . lInn E ª Inn E given by

y , . . . , y ¬ y for all y , . . . , y g Inn E.Ž .1 l 1 1 l

Observe that the map F ª E given by

x ¬ k b x for all x g FŽ .Ž .i

Ž .is equal both to a given our usual identification between E and Inn Ei
and to the composition of ry1 followed by k . As a , . . . , a are distincti 1 m
we see that r , . . . , r are also distinct.1 m

LEMMA 7.12. Let E be a non-abelian simple group with subgroups
K , . . . , K , and let l be a positï e integer. For each i s 1, . . . , m let1 m
b , . . . , b be automorphisms of K . Define subgroups V , . . . , V of El byi1 i l i 1 m

V s k b i1 , . . . , k b i l : k g K ( K .Ž .� 4i i i

l ² :Then E s V , . . . , V if and only if both of the following hold:1 m

Ž . ² :i E s K , . . . , K ;1 m

Ž .ii there do not exist integers 1 F j - k F l and an automorphism
m Ž .b g Aut E such that b g F N K and such that for each i sis1 Aut E i

1, . . . , m

x b i j b s x b i k for all x g K .i

Proof. The necessity of the two conditions is easy to see. To see that
they are also sufficient we assume that they both hold and set H s
² : lV , . . . , V . For each i s 1, . . . , l, let p : E ª E be the projection map1 m i

e , . . . , e ¬ e .Ž .1 l i

Now for each i s 1, . . . , l

² :² :p H s p V , . . . , p V s K , . . . , KŽ . Ž . Ž .i i 1 i m 1 m

Ž . lwhence by condition i , H is a subgroup of E projecting onto each simple
Ždirect factor. A standard argument see for instance the lemma on p. 328

w x.of 20 shows that H is the direct product of full diagonal subgroups, and
we deduce that H - El if and only if there exist integers 1 F j - k F l
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and an automorphism b g Aut E such that H F X where X is given by

X s x , . . . , x g El : x b s x .Ž .� 41 l j k

Now for i s 1, . . . , m, the subgroup V is contained in X if and only ifi

x b i j b s x b i k for all x g K .i

If the latter holds for a given i, then

bb b bi j i kK s x : x g K s x : x g K s K ,� 4 � 4i i i i

Ž .that is, b normalises K . Hence condition ii implies that one of V , . . . , Vi 1 m
is not contained in X, whence H s El as required.

Proof of Theorem 7.10. We assume the notation of Construction 7.9; in
Ž .particular, we assume that x s id , . . . , x is the right transversal for K in1 l

Ž .L chosen in the process of constructing the tuple G x . For i s 1, . . . , m
we let b and r be as in Lemma 7.11.i i

Ž . Ž . Ž . Ž .We start with part i and assume that G x s T , F, S, f is a 5.2 -tuple
of rank m q 1. By Lemma 7.11 the maps r , . . . , r are distinct strict1 m
extensions of f in T , and so they are the only strict extensions of f in T.

Ž . Ž .Thus to show that G x is a small- 5.2 -tuple we must show that

² :T s b F S, . . . , b F S .Ž . Ž .1 m

Ž . lBy construction T s Inn E S and so it is enough to show that

l ² :Inn E s b F , . . . , b F .Ž . Ž . Ž .1 m

Ž .To do this we aim to apply Lemma 7.12. For i s 1, . . . , m set K s a F .i i
Recall that for x g F

b x s a x x1
y1

, . . . , a x x l
y1

.Ž . Ž . Ž .Ž .i i i

For i s 1, . . . , m and j s 1, . . . , l let b be the automorphism of K si j i
Ž .a F given byi

b a x s a x x j
y1

for all x g F . 7.MŽ . Ž .Ž .Ž .i j i i

Ž . l ² Ž . Ž .:By Lemma 7.12 we have Inn E s b F , . . . , b F if and only if1 m
Ž . Ž . Ž .conditions i and ii of Lemma 7.12 both hold. Lemma 7.12 i is precisely

Ž . Ž .Definition 7.6 ii and so holds as x is a 7.6 -tuple. Suppose that Lemma
Ž .7.12 ii does not hold, i.e., that there exist integers 1 F j - k F l and an

m Ž Ž ..automorphism b g F N a F such that for each i s 1, . . . , mis1 Aut E i

x b i j b s x b i k for all x g a F .Ž .i
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m Ž Ž ..As b g F N a F we can consider the image of b underis1 Aut E i
h , . . . , h and h. Recalling the definition of h we see that1 m i

b y1b bh Ž b . i j i kia x s a x s a x for all x g F .Ž . Ž . Ž .i i i

Ž .But 7.M implies that for x g F

by1b y1y1 x x xi j i k j j ka x s b b a x s b a x s a x .Ž . Ž . Ž . Ž .Ž . Ž .Ž .i i k i j i i k i i

Ž . y1It follows that h b s x x and is independent of i. Hencei j k

h b s x xy1 , . . . , x xy1Ž . Ž .j k j k

and the definition of K forces x xy1 g K. This is impossible as x , x arej k j k
distinct elements in a transversal for K in L. We conclude that Lemma

Ž .7.12 ii holds as required.
Ž . Ž .Having shown that G x is a small- 5.2 -tuple we must show that the

Ž . Ž .7.6 -tuple obtained from G x is equivalent to x. By construction S s
Ž . Ž .c L is a subgroup of Aut E X S acting transitively on the l componentsl
Ž . l Ž . l Ž . Ž . lof Aut E and so T s Inn E c L contains Inn E as a minimal

Ž . Ž .normal subgroup. As by assumption G x is a 5.2 -tuple and so has a
Ž .unique minimal normal subgroup by Lemma 7.1 iii , we have Soc T s

Ž . l Ž . Ž .Inn E . To construct the 7.6 -tuple obtained from G x we start by
choosing a minimal normal subgroup of Soc T. We choose this to be E
where we identify E with the subgroup

x , id, . . . , id : x g Inn E� 4Ž .

Ž . lof Inn E in the obvious way. With this choice of minimal normal
subgroup of Soc T and recalling that the maps r , . . . , r given in Lemma1 m
7.11 are the strict extensions of f in T , it is now straightforward to see

Ž . Ž .that the 7.6 -tuple obtained from G x is, up to possible reordering of
Ž . Ž .a , . . . , a , precisely x s E, F, a , . . . , a , L . To see that i holds it1 m 1 m
Ž . Ž .remains only to show that G y is also a small- 5.2 -tuple, given that y is a

Ž . Ž .7.6 -tuple equivalent to x. By the definition of equivalence 7.8 we have
Ž .y s D, F, x ( a , . . . , x ( a , L for some isomorphism x : E ª D. It is1 m

straightforward to construct, using the isomorphism x , an isomorphism
Ž .x :T ª T such that x S s S and such that˜ ˜x y x y

f w s f x w for all w g S .Ž . Ž .Ž .˜x y x

Ž . Ž .Having already shown that G x is a small- 5.2 -tuple, it is now immediate
Ž . Ž . Ž .that G y is also a small- 5.2 -tuple. Hence i holds.
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Ž . Ž .We turn to ii . We assume that x is obtained from a small- 5.2 -tuple
Ž . Ž .T , F, S, f , and to distinguish this tuple from the tuple G x we attach a

Ž . Ž .subscript x to the components of G x , that is, we write G x s
Ž . Ž .T , F , S , f . To show that ii holds, it is clearly enough, given thatx x x x

Ž .F s F , to show that there exists an isomorphism j : T ª T with j S sx x
S andx

f j y s f y for all y g S.Ž . Ž .Ž .x

Ž . Ž .Now as x s E, F, a , . . . , a , L is obtained from T , F, S, f we have1 m
Ž .that E is a minimal normal subgroup of Soc T. Let k : N E ª Aut E beT

Ž . Ž .induced by the conjugation action of N E on E. Since Soc T F N E ,T T
Ž . Ž .Proposition 7.4 i implies that T s N E S and so a right transversal forT

Ž . Ž . < Ž . <N E in S is also a right transversal for N E in T. Set k s S : N ES T S
Ž .and let y , . . . , y be a right transversal for N E in S. Define a map1 k S

Ž .j : T ª Aut E X S byk

j : x ¬ k y xyy1 , . . . , k y xyy1 p for all x g T , 7.NŽ .Ž . Ž .Ž .1 1p k kp

y1 Ž .where p g S is such that y xy g N E for all i s 1, . . . , k. Theoremk i ip T
Ž Ž ..3.3 shows that j is a homomorphism and that ker j s Core C E . NowT T

Ž Ž .. Ž .Core C E is equal to C Soc T since a normal subgroup of TT T T
centralizing E must also centralize the T-conjugates of E and since Soc T

Ž .is the direct product of the T-conjugates of E. From Lemma 7.1 iii we
deduce that ker j is trivial, whence j is a monomorphism. Observe also

Ž . Ž .k Ž . Ž .that j Soc T s Inn E whence by Proposition 7.4 i , j T s
Ž .k Ž .Inn E j S . We claim that k s l and that y , . . . , y can be chosen so1 l

Ž .that j S s S andx

f j y s f y for all y g S.Ž . Ž .Ž .x

Ž . Ž .k Ž .Given the observation that j T s Inn E j S , verification of this claim
Ž .is enough to prove that ii holds.

Ž . y1Ž .To see the claim we start by showing that N E s f K where K isS
Ž . Ž . y1Ž .as defined by 7.E . The containment N E : f K is straightforward.S

Ž .To see the reverse containment we suppose that there exists x g S _ N ES
Ž .with f x g K, and argue for a contradiction. Let r , . . . , r be the strict1 m

extensions of f in T , and let V , . . . , V be the subgroups of1 m
y1Ž . y1Ž . Ž .r Inn F , . . . , r Inn F , which by Proposition 7.4 iii are subgroups of1 m

Soc T isomorphic to Inn F and that generate Soc T. Note that x nor-
Ž Ž ..malises each of the V and that a f x is an automorphism of Ei

Ž . Ž . Ž .normalising each of the images k V s a F , where a is given by 7.F .i i
In fact the definition of a is such that

Ž Ž ..a f xxk y s k y for all y g V , i s 1, . . . , m.Ž . Ž . i
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² :From this we deduce that Soc T / V , . . . , V , which gives the required1 m
contradiction, either by choosing any identification between Soc T and Ek

and then applying Lemma 7.12, or by adapting the argument given in
Lemma 7.12 to the present notation.

On recalling that f is a monomorphism we see that

< <k s S : N E s f S : K s L : K s lŽ . Ž .S

as required. Moreover we see that if y , . . . , y are chosen so that1 l

f y s x for all i s 1, . . . , l ,Ž .i i

where we recall that x , . . . , x is the given right transversal for K in L,1 l
Ž .then y , . . . , y is a right transversal for N E in S. It is now a routine1 l S

calculation to verify that the claim holds given this choice of transversal.
Ž . Ž . Ž .Finally we note that iii is an immediate consequence of i and ii .

Ž .Theorem 7.10 means that instead of studying 5.2 -tuples of rank n, we
Ž . Ž .can study 7.6 -tuples x of degree n y 1 such that the tuple G x obtained

Ž .via Construction 7.9 is a 5.2 -tuple of rank n. Our next task in this section
Ž . Ž .is to find necessary and sufficient conditions on the 7.6 -tuple x for G x

Ž .to be a 5.2 -tuple.

Ž .DEFINITION 7.13. We say that the tuple x s E, F, a , . . . , a , L satis-1 m
Ž . Ž . Ž .fies 7.13 , or is a 7.13 -tuple, if x is a 7.6 -tuple and if the following

Žconditions all hold in which K, a , h , . . . , h , i, x are as defined in1 m
.Construction 7.9 :

Ž . Ž .i if b is a monomorphism F ª E such that b F is normalised
Ž .by a K and such that for all x g F and y g K

Ž .a yyb x s b x ,Ž . Ž .

then b s a for some i s 1, . . . , m;i

Ž . Ž� 4 Ž .. Ž .ii for each i s 1, . . . , m the section id , a F of E is a K -E i
maximal;

Ž .iii for each i s 1, . . . , m

Core h N a F s Inn F Core ay1 EŽ . Ž . Ž .Ž . Ž .Ž .Ž .ŽInn F .L i E i L

Ž y1Ž . � Ž . 4.where a E s x g K : a x g E ;
Ž .iv one of the following holds:

Ž .a L l Inn F is a non-abelian simple group, the section
Ž� 4 Ž .. Ž .id , a L l Inn F of E is a K -maximal, and

Core x N a L l Inn F s i Core ay1 E ;Ž . Ž .Ž .Ž . Ž .Ž . Ž .iŽL. E L
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Ž . Ž Ž .. Ž .b K s L, N a L l Inn F F a K , and if D is any mini-E
mal normal subgroup of L l Inn F, then

C a D F a KŽ . Ž .Ž .E

Ž Ž Ž .. Ž . Ž Ž ... Ž .and the section C a D , a D C a D of E is a K -maximal.E E

Ž . Ž .Moreover, we say that x is a 7.13 -tuple of rank n, if it satisfies 7.13
Ž .and n s m q 1, where m is the degree of x as a 7.6 -tuple.

Ž .The subset V 7.13 of N is defined by

V 7.13 s n G 16 : there exists a 7.13 -tuple of rank n .� 4Ž . Ž .

Remark 7.14. In the course of proving Theorem 7.15 below we see that
Ž . Ž . Ž .Definition 7.13 ii is implied by Definition 7.13 iv . Thus Definition 7.13 ii

could be omitted in the above definition. However, it has not been so
Ž .because we feel that Definition 7.13 ii provides a starting point in deter-

Ž .mining V 7.13 by directing attention towards maximal non-abelian simple
sections of non-abelian simple groups.

Before giving the results that justify the above definition we pause to
Ž . Ž . Ž .consider Definition 7.13 iv . Let x s E, F, a , . . . , a , L be a 7.6 -tuple,1 m

and assume the notation of Construction 7.9. Clearly the following cases
are exhaustive and mutually exclusive:

Ž .A K s L and L l Inn F is non-abelian and simple;
Ž .B K / L and L l Inn F is non-abelian and simple;
Ž .C K s L and L l Inn F is either abelian or not simple;
Ž .D K / L and L l Inn F is either abelian or not simple.

Ž . Ž .Ž . Ž .Ž .Obviously if D applies then neither Definition 7.13 iv a nor iv b can
Ž . Ž .Ž . Ž .hold; if C applies then only Definition 7.13 iv b can hold; if B applies

Ž .Ž . Ž .then only Definition 7.13 iv a can hold. However, if A applies then it
appears that either can hold. In fact the situation is simpler than it may

Ž . Ž .Ž .first appear as if A holds, then Definition 7.13 iv b is implied by
Ž .Ž .Definition 7.13 iv a .

Ž .To see this suppose that A does hold. Further suppose that Definition
Ž .Ž .7.13 iv a holds. Let D be a minimal normal subgroup of L l Inn F. As

Ž .the latter is simple we have D s L l Inn F. Now a L l Inn F ( L l
Inn F is non-abelian and simple, and so has a trivial centre. Hence

Ž Ž .. Ž . Ž Ž ..C a L l Inn F meets a L l Inn F trivially. As C a L l Inn F isE E
Ž .normalised by a K we see that the section

C a L l Inn F , C a L l Inn F a L l Inn FŽ . Ž . Ž .Ž . Ž .Ž .E E
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Ž . Ž� 4 Ž Ž ..a K -contains the section id , a L l Inn F of E. But the latter is
Ž . Ž .a K -maximal, whence both sections are a K -maximal and in fact are

Ž Ž ..equal. It follows that C a L l Inn F is trivial and is certainly con-E
Ž .tained in a K . Now by assumption K s L. Also the composition

Ž . Ž . Ž .x ( a : K ª Aut L l Inn F is identical to the map i. As a K s a L
Ž Ž ..normalises N a L l Inn F we deduce thatE

Core x N a L l Inn F s x N a L l Inn F .Ž . Ž .Ž . Ž .Ž . Ž .Ž .iŽL. E E

Ž .Ž . Ž Ž y1Ž ...By Definition 7.13 iv a the latter is contained in i Core a E whichL
Ž .in turn is clearly contained in i L . Thus

x N a L l Inn F F i LŽ . Ž .Ž .Ž .E

Ž Ž .. Ž . Ž Ž ..and on recalling that C a L l Inn F s kerx l N a L l Inn F isE E
y1 Ž Žtrivial and by applying x to both sides we deduce that N a L lE

.. Ž . Ž . Ž .Ž .Inn F F a L s a K as required. Definition 7.13 iv b follows.

Ž . Ž .THEOREM 7.15. Let x s E, F, a , . . . , a , L be a 7.6 -tuple of degree1 m
Ž . Ž .m G 1 and let G x s T , F, S, f be the output of Construction 7.9 as

applied to x. Then the following all hold:

Ž . Ž . Ž . Ž .i G x satisfies Definition 5.2 i ] iii ;
Ž . Ž . Ž .ii G x satisfies Definition 5.2 iv if and only if x satisfies either

Ž .Ž . Ž .Ž .Definition 7.13 iv a or iv b ;
Ž . Ž . Ž . Ž .iii G x is a 5.2 -tuple of rank m q 1 if and only if x is a 7.13 -tuple.

Ž . Ž .COROLLARY 7.16. V 5.2 s V 7.13 .

Ž .Proof. This is immediate from Theorem 7.15 iii .

Ž .Proof of Theorem 7.15. Let x and G x be as in the statement of the
theorem. We assume the notation of Construction 7.9 and of Lemma 7.11.

Ž .In particular, x s id , . . . , x is the right transversal for K in L used to1 m
Ž .define G x , and r , . . . , r are the distinct strict extensions of f in T as1 m

Ž .defined by 7.K .
Ž . l Ž .Recall that T is constructed as the subgroup Inn E S of Aut E X S .l

Ž . lWe claim that Inn E is the unique minimal normal subgroup of T , and
Ž .so equal to the socle Soc T of T. Certainly its centralizer in Aut E X S ,l

Ž . land so also its centralizer in T , is trivial. Furthermore, Inn E is minimal
Ž . lnormal in T as S is transitive on the l simple direct factors of Inn E .

The claim now follows.
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Throughout the proof we identify E with a minimal normal subgroup of
Ž . lSoc T s Inn E via the map

x ¬ x , id , . . . , id for all x g E, 7.OŽ . Ž .E E

Ž .and let k : N E ª Aut E be the map induced by conjugation. Note thatT
Ž . Ž .N E s c K and that for all x g KS

k c x s a x . 7.PŽ . Ž . Ž .Ž .

On several occasions in the proof we shall have cause to apply earlier
Ž .results on 3.18 -tuples. To facilitate this we now determine the subgroup

Ž .c L l Soc T. Recall that for x g L we have

c x s a x xxy1 , . . . , a x xxy1 p ,Ž . Ž . Ž .Ž .1 1p l lp

where x , . . . , x is the chosen right transversal for K in L and where1 l
y1 Ž . Ž . lp g S is such that x xx g K for all i s 1, . . . , l. Thus c x g Aut El i ip

if and only if

x xxy1 g K for all i s 1, . . . , l ,i i

Ž . Ž . land moreover, c x g Inn E if and only if

x xxy1 g ay1 E for all i s 1, . . . , l.Ž .i i

Ž . Ž . l Ž .Hence c L l Aut E s c Core K andL

l y1c L l Inn E s c Core a E .Ž . Ž . Ž .Ž .L

Ž .We now consider part i of the theorem. We must show that Definition
Ž . Ž . Ž . Ž .5.2 i ] iii all hold with respect to the tuple G x s T , F, S, f . Certainly

f is a homomorphism S ª Aut F and F is a non-abelian simple group.
Ž . Ž .By Definition 7.6 iv and Corollary 3.25, the intersection f S l Inn F s

L l Inn F is a non-trivial proper subgroup of Inn F. As strict extensions
of f in T exist, namely r , . . . , r , we see that S is a proper subgroup of1 m

Ž .T. Thus Definition 5.2 i holds.
Ž . lNow we have already seen that Inn E is the socle of T and is the

Ž . lunique minimal normal subgroup of T. Note that Inn E is not contained
Ž . l Žin S as T s Inn E S and as S is a proper subgroup of T as proved in the

. y1Ž .preceding paragraph . We deduce that S, and so also f Inn F , is a
Ž .core-free subgroup of T , whence Definition 5.2 ii holds. Finally Definition

Ž . Ž .5.2 iii is an immediate consequence of Definition 7.6 iv .
Ž . Ž .We turn to part ii . By Definition 7.6 iv and Corollary 3.25, the

intersection L l Inn F is non-abelian and is a minimal normal subgroup
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of L. Let D be a minimal normal subgroup of L l Inn F. Then D is a
non-abelian simple group and L l Inn F is the direct product of the
L-conjugates of D. As c is a monomorphism the same statement holds

Ž . Ž .with D, L l Inn F, and L replaced respectively by c D , c L l Inn F ,
Ž . Ž Ž .. Ž Ž ..and c L s S. Let s : N c D s c N D ª Aut D be induced byS L

Ž .conjugation and the isomorphism D ª c D obtained by restricting c . It
is straightforward, in fact it is an application of Lemma 3.5, to see that

Ž .Definition 5.2 iv holds if and only if T is a maximal subgroup of the
twisted wreath product D twr T.s

Ž . Ž . Ž . lObserve that as a L l Inn F F E we have c L l Inn F F Inn E ,
Ž . Ž .which by the proof of part i is the socle of T. Thus c D F Soc T. Note

Ž . Ž Ž ..also that c D is contained in the domain of s and that s c D s
Inn D. Hence

Soc T l sy1 Inn D s c D Soc T l ker sŽ . Ž . Ž .
Ž y1Ž .. ŽŽ Ž ..and s Soc T l s Inn D s Inn D. By definition ker s s c C DL

and so by Corollaries 3.7 and 3.15 the following statements are equivalent:

Ž . Ž .a Definition 5.2 iv holds;
Ž .b there exist no strict extensions of s in T ;
Ž .c the section

Soc T l c C D , c D Soc T l c C DŽ . Ž . Ž .Ž . Ž .Ž .Ž .L L

Ž Ž ..is a c N D -maximal section of Soc T with normaliser in T equal toL
Ž Ž ..c N D .L

Ž .We split into two cases: if K s L then we show that Definition 5.2 iv
Ž .Ž .holds if and only if 7.13 iv b holds, while if K / L then we show that

Ž . Ž .Ž .Definition 5.2 iv holds if and only if Definition 7.13 iv a holds. Given the
discussion immediately prior to the statement of the theorem this is

Ž .sufficient to prove part ii .
Suppose that K s L. Note that in such circumstances Construction 7.9

is much simplified, indeed l s 1, a s c , T F Aut E and we can identify E
with Soc T s Inn E. Recall that a : K s L ª Aut E is a monomorphism;

Ž .for convenience we use a to identify L with S s a L F T. With these
Ž .conventions condition c above becomes

Ž . Ž Ž . Ž Ž .. Ž .c 9 the section E l C D , D E l C D is a N D -maximalL L L
Ž .section of E with normaliser in T equal to N D .L

Ž .Assume now that Definition 5.2 iv does indeed hold, or equivalently that
Ž . Ž . Ž . Žc 9 holds. Observe that C D is normalised by N D and meets D E lE L

Ž .. Ž . Ž . Ž .C D in E l C D . Thus the N D -maximality of section given in c 9L L L
Ž . Ž .implies that C D s E l C D is a subgroup of L and that the sectionE L
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Ž .given in c 9 is equal to the section

C D , DC DŽ . Ž .Ž .E E

Ž . Žof E. As a section is certainly L-maximal if it is N D -maximal sinceL
Ž . . Ž .Ž .N D F L , to verify Definition 7.13 iv b it remains only to show thatL
Ž . Ž .N L l Inn F F L; in fact we show that N L l Inn F F L. NowE T
Ž .N L l Inn F clearly contains L and acts on the minimal normal sub-T

groups of L l Inn F. As L acts transitively on such subgroups, one of
which is D, we have

N L l Inn F s N D , L l Inn F L.Ž . Ž .T T

Ž . Ž Ž . Ž .. Ž .But N D certainly normalises the section C D , DC D ; as by c 9T E E
Ž .the normaliser in T of this section is contained in L we have N D F L,T

Ž .whence N L l Inn F F L as required.T
Ž .Ž .Conversely, we assume that Definition 7.13 iv b holds. It is enough to

Ž . Ž .Ž .show that c 9 holds. By Definition 7.13 iv b we have, in particular,
Ž . Ž . Ž .C D F L whence E l C D is equal to C D . Thus the section givenE L E
Ž .in c 9 is equal to

C D , DC D .Ž . Ž .Ž .E E

ŽWe claim that the normaliser in T of this section is contained in N D,T
. Ž`.L l Inn F . For any group H let H be the normal subgroup of H that

is minimal subject to HrH Ž`. being soluble; note that H Ž`. is a character-
istic subgroup of H. Now L l Inn F is contained in E and so

C D F C D F L.Ž . Ž .Ll Inn F E

As L l Inn F is non-abelian and characteristically simple and as by the
‘‘Schreier conjecture’’ LrL l Inn F is soluble we see that

Ž .Ž . ``C D s C D and L l Inn F s DC D .Ž . Ž . Ž .Ž .Ll Inn F E E

Ž Ž . Ž ..Hence the normaliser of the section C D , DC D also normalisesE E
Ž .C D , L l Inn F, andLl Inn F

C C D s D ,Ž .Ž .Ll Inn F Ll Inn F

Ž .and so is contained in N D, L l Inn F . The claim follows.T
Ž Ž . Ž .. Ž .By the claim N C D , DC D is contained in N L l Inn F . AsT E E T

T s EL we have

N L l Inn F s N L l Inn F LŽ . Ž .T E
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Ž .Ž . Ž .which is contained in L as by Definition 7.13 iv b , N L l Inn F F L.E
We deduce that

N C D , DC D F N D , L l Inn F l L s N D .Ž . Ž . Ž . Ž .Ž .T E E T L

Ž . Ž Ž .On the other hand, N D certainly normalises the section C D ,L E
Ž .. Ž .DC D and so N D is indeed equal to the normaliser in T of thisE L

Ž . Ž .section. It remains only to show that the section given in c 9 is N D -L
maximal. This follows from the assumption that it is L-maximal together
with the observation that its normaliser in T , and so also in L, is contained

Ž .in N D .L
We now consider the second case referred to above, namely that in

which K / L. Let D and s be as above. We initially show that if either
Ž . Ž .Ž . Ž Ž ..Definition 5.2 iv or 7.13 iv a holds, then Soc T l c C D is trivial.L

Ž . Ž .Assume that Definition 5.2 iv holds, whence condition c above holds.
In particular, the section

Soc T l c C D , c D Soc T l c C DŽ . Ž . Ž .Ž . Ž .Ž .Ž .L L

is a maximal section of Soc T. Lemma 3.16 together with Remark 3.17
implies that

Soc T l c C D s W l c C D , 7.RŽ . Ž . Ž .Ž . Ž .ŁL L
W e Soc Tmin

where the direct product is taken over all minimal normal subgroups W of
Ž Ž .. Ž Ž .. Ž . Ž .Soc T. Now c C D F c N D F c L s S. Also S F b F S whereL L 1

b is as defined by Lemma 7.11. In Lemma 7.11 it was shown that r is a1 1
Ž . Ž Ž ..monomorphism mapping b F S to a subgroup of Aut F with r b F1 1 1

Ž . Ž .s Inn F. Hence b F is the unique minimal normal subgroup of b F S.1 1
Recall that l ) 1 since K / L; observe that the map b is defined so that1
Ž . Ž . lb F meets every non-trivial normal subgroup of Soc T s Inn E triv-1

ially. As

W l b F SŽ .Ž .Ł 1
W e Soc Tmin

Ž .is a normal subgroup of b F S, it is non-trivial if and only if1

b F F W l b F S .Ž . Ž .Ž .Ł1 1
W e Soc Tmin

As above, for any group H let H Ž`. be the normal subgroup of H that is
Ž`. Ž .Ž`. Ž .minimal subject to HrH being soluble. As b F s b F , while1 1

Ž .`

� 4 � 4Wl b F S F Wlb F s id s id ,Ž . Ž .Ž .Ł Ł Ł1 1ž /
W e Soc T W e Soc Tmin min
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Ž Ž . . Ž .we deduce that Ł W l b F S is trivial, whence by 7.R andW e Soc T 1min
Ž Ž .. Ž . Ž Ž ..the containment c C D F b F S we see that Soc T l c C D isL 1 L

also trivial.
Ž .Ž .On the other hand, assume that Definition 7.13 iv a holds. Then

L l Inn F is a non-abelian simple group, whence D s L l Inn F. As
Ž� 4 Ž .. Ž Ž .. � 4id , a L l Inn F is a maximal section of E, we have C a D s id .E

Ž Ž ..An easy calculation shows that C c D is also trivial, whence Soc TSoc T
Ž Ž ..l c C D is trivial as required.L

Given the above two paragraphs it is enough to make the extra assump-
Ž Ž .. Ž .tion that Soc T l c C D is trivial and to show that Definition 5.2 ivL

Ž .Ž . Ž Ž ..holds if and only if Definition 7.13 iv a holds. As c C D FLl Inn F
Ž Ž ..Soc T l c C D , it follows that D s L l Inn F is a non-abelian simpleL

Ž Ž ..group, that N c D s S, and that the restriction to L of the homomor-S
Ž . Ž .phism i : N L l Inn F ª Aut L l Inn F defined at the end ofAut F

Construction 7.9 is identical to the composition of c followed by s . Recall
that we have identified E with a minimal normal subgroup of Soc T s
Ž . l Ž . Ž .Inn E via 7.O and that the map k : N E ª Aut E is induced byT
conjugation. We claim that

E, Soc T , T , L l Inn F , S, sŽ .

Ž . Ž .is a 3.18 -tuple with T s Soc T S. Certainly E is a minimal normal
subgroup of Soc T ; also at the beginning of this proof we saw the

Ž . lSoc T s Inn E is the unique minimal normal subgroup of T , whence
Ž . Ž .Definition 3.18 i holds. That Definition 3.18 ii holds is immediate. By

Ž . Ž .construction T s Soc T S and so Definition 3.18 iii holds since Soc T is
Ž . Ž . Ž . Ž Ž y1Ž ...contained in N E . By 7.Q we have S l Soc T s c Core a ET L

and so

s S l Soc T s s c Core ay1 E s i Core ay1 E .Ž . Ž . Ž .Ž . Ž . Ž .Ž . Ž .Ž .L L

y1Ž .Now a E G L l Inn F which is a normal subgroup of L, whence

s S l Soc T G i L l Inn F s Inn L l Inn FŽ . Ž . Ž .Ž .

Ž .and Definition 3.18 iv holds. The claim follows.
Ž Ž .. ŽFrom above Soc T l c C L l Inn F is trivial, whence k Soc T lL

. � 4ker s s id and

k c L l Inn F Soc T l c C L l Inn FŽ . Ž .Ž .Ž .Ž .L

s k c L l Inn F s a L l Inn F .Ž . Ž .Ž .

Ž .From Proposition 3.20 we deduce that condition b above holds if and
Ž� 4 Ž .. Ž .only if the section id , a L l Inn F is a a K -maximal section of E
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and if

Core x N a L l Inn F s s S l Soc T .Ž . Ž .Ž .Ž .Ž .iŽL. E

We have just seen that

s S l Soc T s i Core ay1 EŽ . Ž .Ž .L

Ž .and so we have shown that condition b holds if and only if Definition
Ž .Ž . Ž .7.13 iv a holds: part ii follows.

Ž . Ž . Ž .Finally we turn to part iii . By parts i and ii it is enough to assume
Ž . Ž .that G x satisfies Definition 5.2 iv , and then to show that x satisfies

Ž . Ž . Ž . Ž .Definition 7.13 i ] iii if and only if G x satisfies Definition 5.2 v and
there are precisely m strict extensions of f in T. Recall that by Lemma
7.11, r , . . . , r are distinct strict extensions of f in T with1 m

� 4ker r s ker f s id and Im r s Inn F L s Inn F f SŽ . Ž . Ž .i i

for all i s 1, . . . , m. Thus it is in fact enough to show that Definition
Ž . Ž .7.13 i ] iii hold if and only if r s r for some i s 1, . . . , m whenever r isi

a strict extension of f in T.
Suppose that r : R ª Aut F is a strict extension of f in T. We claim

that

S s ry1 N L l Inn F . 7.SŽ . Ž .Ž .Aut F

y1Ž Ž ..Suppose not. Set X s r N L l Inn F . Note that the restrictionAut F
<r of r to X is a map X ª Aut F strictly extending f. Thus theX

Ž < .composition i( r is a strict extension of the composition i(f contra-X
Ž . Ž .dicting the assumption that Definition 5.2 iv holds. Hence 7.S holds. As

ker f s ker r l S we deduce that ker f s ker r.
Ž Ž .Recall that in Remark 7.14 we claimed that Definition 7.13 ii is a

Ž . Ž .consequence of Definition 7.13 iv , or equivalently given part ii , that
Ž . Ž .Definition 7.13 ii is a consequence of Definition 5.2 iv . The purpose of

the present paragraph is merely to justify this and does not form part of
the proof of Theorem 7.15. Fix i s 1, . . . , m and consider the strict
extension r of f in T. Note that any extension of r in T is necessarily ai i
strict extension of f in T. Thus the previous paragraph shows that

� 4ker r s ker r s ker f s id whenever r is an extension of r . By thei i
Ž . Ž . l Ž Ž ..definition of b we have b F F Soc T s Inn E and r b F s Inn F.i i i i

From Lemma 3.13 we deduce that the section

y1 � 4Soc T l ker r , Soc T l r Inn F s id , b FŽ . Ž . Ž .Ž .Ž .i i i

Ž . Ž .is a b F S-maximal section of Soc T. As in part ii we identify E with ai
Ž .minimal normal subgroup of Soc T via the map given by 7.O , and let
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Ž . Ž Ž ..k : N E ª Aut E be induced by conjugation. Observe that k b F sT i
Ž . Ž . Ž . Ž Ž .. Ž .a F , that N E s c K , and that k c K s a K . By Lemma 3.16i S

Ž Ž� 4. Ž Ž ... Ž� 4 Ž ..the section k id , k b F , which is equal to the section id , a F , isi i
Ž . Ž . .a a K -maximal section of E and Definition 7.13 ii holds.

We return to the proof proper and continue with the assumptions in
place before the bracketed paragraph. Thus r : R ª Aut F is assumed to
be a strict extension of f in T. We have already seen that ker r s ker f

Ž . Ž . Ž .and that r R g N L l Inn F . We now claim that r R G Inn F. ToAut F
Ž .see this observe that r R l Inn F contains L l Inn F and is normalised

Ž . Ž . Ž .by both L s f S and r R . As r R does not normalise L l Inn F we
Ž .see that r R l Inn F is a strict overgroup of L l Inn F in Inn F. From

Ž . Ž .Definition 7.6 iv , r R l Inn F must equal Inn F and the claim holds.
y1Ž .We conclude that R is almost simple with socle r Inn F . Since

� 4 Ž .RlSoc T is a normal subgroup of R and since id /c LlInn F F
y1Ž . Ž .Soc TlR we deduce that r Inn F FSoc T. As above let k : N E ªT

Aut E be as defined following the identification of E with a subgroup of
Ž .Soc T given by 7.O . Define b : F ª E by

r x ¬ k x for all x g ry1 Inn F .Ž . Ž . Ž .
It is straightforward to see that b is a monomorphism F ª E such that
Ž . Ž .b F is normalised by a K and such that for all x g F and y g K

Ž .a yyb x s b x ,Ž . Ž .
and moreover, that

ry1 Inn F s b x x1
y1

, . . . , b x x l
y1

: x g F .Ž . Ž . Ž .Ž .½ 5
Ž .On comparing this with the definition of b F for i s 1, . . . , m we seei

that every strict extension of f in T is a strict extension of r for somei
Ž .i s 1, . . . , m if and only if Definition 7.13 i holds. We have thus reduced

to showing that for i s 1, . . . , m no strict extensions of r exist if and onlyi
Ž . Ž .if Definition 7.13 ii ] iii both hold. Observe that for each i s 1, . . . , m the

Ž Ž . . Ž . Ž .tuple E, Soc T , T , F, b F S, r is a 3.18 -tuple with T s Soc T S. Byi i
Proposition 3.20, r has no strict extensions for i s 1, . . . , m if and only ifi

Ž .Definition 7.13 ii holds and

Core h N a F s r b F S l Soc TŽ . Ž .Ž . Ž .Ž . Ž .Ž .ŽInn F .L i E i i i

for all i s 1, . . . , m. 7.TŽ .
Ž . Ž .On noting that b F F Soc T and that r extends f, and by using 7.Q ,i i

we see that

r b F S l Soc T s r b F f S l Soc TŽ . Ž . Ž .Ž . Ž .Ž .i i i i

s Inn F Core ay1 E .Ž . Ž .Ž .L
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Ž . Ž .Hence 7.T is equivalent to Definition 7.13 iii and the proof of Theorem
7.15 is finished.

Ž . Ž .Let x s E, F, a , . . . , a , L be a 7.6 -tuple. Recall that Definition 7.61 m
Ž Ž .. Ž Ž ..identified x as a 7.6 a -tuple, or as a 7.6 b -tuple, depending on whether:

Ž . Ž .a E \ F; or b E ( F. If the latter then the conditions of Definition
7.13 can be greatly simplified; our final task in this section is to make use

Ž . Ž .of this simplification to replace the concept of a 7.13 -tuple satisfying b
above with an equivalent concept that is much more amenable to analysis.

Ž . Ž Ž ..We start by supposing that E, F, a , . . . , a , L is a 7.6 b -tuple. Thus1 m
the monomorphism a : F ª E is in fact an isomorphism and so the tuple1
Ž . Ž y1 y1 .E, F, . . . is equivalent to the tuple F, F, a ( a , . . . , a ( a , L . Note1 1 1 m
that ay1 ( a is the identity map F ª F, and moreover, that for i s1 1
1, . . . , m the monomorphisms ay1 ( a are automorphisms of F. Con-1 i
versely we have the following result.

ŽLEMMA 7.17. Let F be a non-abelian simple group. As usual we identify
.F with Inn F. Let a , . . . , a be distinct automorphisms of F with a s1 m 1

Ž .id , let L be a subgroup of Aut F, and set x s F, F, a , . . . , a , L .Aut F 1 m
Ž .Then x is a 7.13 -tuple if and only if the following conditions all hold:

Ž . w � 4x1 Fr id ( MM ;L 1

Ž . Ž .2 a g C L l Inn F for all i s 1, . . . , m;i Aut F

Ž . � 4 Ž Ž . Ž ..3 a , . . . , a s C C a l ??? l C a ;1 m Aut F L 1 L m

Ž .4 one of the following holds:
Ž . Ž� 4 .a L l F is non-abelian and simple, and id , L l F is a

m Ž .F C a -maximal section of F;is1 L i

Ž . Ž .b a g C L for all i s 1, . . . , m, and if D is any minimali Aut F
Ž .normal subgroup of L l Inn F, then C D D s L l F.F

Ž . Ž . Ž .Proof. Now x is a 7.6 -tuple if and only if Definition 7.6 i ] v all hold.
Ž . Ž . Ž . Ž .Definition 7.6 i ] iii are trivially satisfied, while Definition 7.6 iv and v

Ž . Ž .are equivalent to conditions 1 and 2 , respectively. Hence x is a
Ž . Ž . Ž .7.6 -tuple if and only if 1 and 2 both hold. It is thus enough to assume

Ž . Ž .that x is a 7.6 -tuple, and then to show that x is a 7.13 -tuple if and only
Ž . Ž .if conditions 3 and 4 both hold. To do this we must first determine the

objects h , . . . , h , K, a , i, x defined in the course of applying Construc-1 m
tion 7.9 to x.

Ž .For each i s 1, . . . , m the image a F is equal to F, and so the mapsi
h , . . . , h are automorphisms of Aut F; in fact we have1 m

h x s a xay1 for all x g Aut F , i s 1, . . . , m.Ž .i i i
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In particular, h is the identity map on Aut F. It follows that1

m m
y1K s C a s C a ,Ž .Ž .F FL i L i

is1 is1

and that the map a : K ª Aut F is the identity map on K. The homomor-
Ž . Ž .phisms i and x are equal to the map N L l F ª Aut L l FAut F

induced by the conjugation action on Aut F.
Given the above information it is straightforward to verify that Defini-

Ž . Ž .tion 7.13 i ] iv can be rewritten respectively as:

Ž .i if b is an automorphism of F such that F is normalised by
m Ž . Ž .F C a which is a subgroup of Aut F and such that b centralisesis1 L i
m Ž .F C a , then b s a for some i s 1, . . . , m;is1 L i i

Ž . Ž� 4 . m Ž .ii for each i s 1, . . . , m the section id , F of F is F C a -is1 L i
maximal;

Ž .iii for each i s 1, . . . , m,

F s F ;

Ž .iv one of the following holds:
Ž .a L l Inn F is a non-abelian simple group, the section

Ž� 4 . m Ž .id , L l Inn F of F is F C a -maximal, andis1 L i

L l Inn F s L l Inn F ;

Ž . m Ž .b L s F C a , L l Inn F F K, and if D is any mini-is1 L i
mal normal subgroup of L l Inn F, then

C D F KŽ .F

Ž Ž . Ž ..and the section C D , DC D of F is L-maximal.F F

Ž . Ž . Ž . Ž .Clearly Definition 7.13 ii and iii are trivial, while given that 1 and 2
Ž . Ž . Ž . Ž .hold, it follows that Definition 7.13 i and iv are equivalent to 3 and 4 ,

respectively, as required.

Ž . Ž .DEFINITION 7.18. We say that the tuple F, K, L satisfies 7.18 , or is a
Ž .7.18 -tuple, if the following conditions all hold:

Ž .i F is a non-abelian simple group;
Ž .ii K and L are subgroups of Aut F with L l Inn F F K F L;
Ž . w � 4xiii Fr id ( MM ;L 1
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Ž . Ž Ž ..iv K s C C K ;L Aut F

Ž .v one of the following holds:
Ž . Ž� 4 .a L l Inn F is a non-abelian simple group, and id , L l Inn F

is a K-maximal section of F;
Ž .b K s L and if D is any minimal normal subgroup of L l Inn F,

then
DC D s L l Inn F .Ž .Inn F

Ž . Ž .Moreover we say that F, K, L is a 7.18 -tuple of rank n if it satisfies
Ž .7.18 and

n s C K q 1.Ž .Aut F

Ž .The subset V 7.18 of N is defined by

V 7.18 s n G 16 : there exists a 7.18 -tuple of rank n .� 4Ž . Ž .
COROLLARY 7.19.

¡ ¦there exists a 7.13 -tupleŽ .~ ¥E, F , a , . . . , a , LV 7.18 s n G 16 : .Ž .Ž . 1 m¢ §of rank n with E ( F

Proof. Given the remarks preceding Lemma 7.17 together with the
Ž . Ž .implication of Theorem 7.10 that a 7.6 -tuple is a 7.13 -tuple if and only

if any of its equivalents are, the corollary is a straightforward application
of Lemma 7.17.

8. FINAL COMMENTS AND EXAMPLES

Ž .From the Results Diagram Fig. 1 we see that

� 4V : V 4.7 j n F 50 : n g V j D 6.9Ž . Ž .
j n g N : n y 1 g D 6.9 j D 7.6 a� 4Ž . Ž .Ž .
j V 7.18 j KK j SS .Ž .

Ž . Ž . Ž Ž ..It is our hope that further investigation of the sets V 4.7 , D 6.9 , D 7.6 a ,
Ž .V 7.18 , and SS will be sufficient to show that V / N. We comment on the

difficulties involved in the determination of the first four of these sets.

Ž .Problem 1. Determine V 4.7 .
Ž .It seems likely that V 4.7 is the empty set; we offer three reasons for

this.
Ž . Ž .Firstly, we have no examples of a 4.1 -tuple H, T , F, Q, f of rank n

with H almost simple and with n G 3. We do however have an example
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Ž .with n s 2. Let H s A , let F s L 2 , and let T , Q be maximal sub-8 3
3 Ž .groups of H with T ( A and with Q ( 2 : L 2 . Then there exist obvious7 3

homomorphisms f : Q ª Aut F with kernel isomorphic to 23. Moreover,
Ž .if f is any such homomorphism, then it is easy to see that H, T , F, Q, f

Ž .is a 4.1 -tuple of rank 2 with H almost simple.
Ž .Secondly, suppose that n g V 4.7 : then n G 16 and there exists a

Ž . Ž .4.1 -tuple H, T , F, Q, f of rank n with H almost simple. In what follows
we assume the notation of Lemma 4.10. Thus F ny1 ker f and V areis1 i
normal subgroups of Q such that the quotient

ny1V s V F ker fis1 i

ny1 ny1Ž .is isomorphic to F . Let X s N F ker f , V so that X acts on VH is1 i
˜by conjugation. Further, let X F S be the permutation group inducedny1

by the action of X on the n y 1 maximal proper normal subgroups of V.
Ž .It is an easy consequence of Definition 4.1 that f Q G Inn F and that fi i

has no strict extensions in H. By Corollary 3.15 we have

Q s N ker f , V ,Ž .H i

Ž .whence in particular Q s N ker f for all i s 1, . . . , n y 1. Thus theX i
ny1action of X on the n y 1 maximal proper normal subgroups of V ( F

is such that the stabilizer of any one stabilizes all others; equivalently, the
˜stabilizer in X F S of any point is trivial. It is our intuitive feeling that,ny1

˜for H almost simple, the permutation group X is likely to be ‘‘close’’ to
S . This intuition, together with the above regularity condition, suggestsny1
that n must be small, perhaps even that n F 4.

Ž .Thirdly, and more significantly, our investigation to date of V 4.7 has
produced the following result:

Ž . Ž .If H, T , F, Q, f is a 4.1 -tuple with n G 16 and H almost simple, then H is not
alternating, sporadic, or exceptional of Lie type.

The major tools used in proving this result are the classification of
non-trivial maximal factorisations of almost simple groups due to Liebeck,

w xPraeger, and Saxl 15 , and, in the alternating case, a description of the
w x Žmaximal non-abelian simple sections of the alternating groups 2 . The

Ž . Ž . .former is relevant to Definition 4.1 iii , and the latter to Definition 4.1 iv .
Resolution of the one remaining case depends upon developing a useful
description of the maximal non-abelian simple sections of the classical
groups, but we are hopeful that this can be achieved.

Ž .Problem 2. Determine D 6.9 .
Ž . Ž .Progress on this problem, in view of Definition 6.9 i ] ii , depends on

the existence of an adequate theory of non-abelian simple sections of
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non-abelian simple groups. As mentioned above, we already have a de-
scription of the maximal non-abelian simple sections of the alternating

w xgroups 2 , and it is hoped that analogous descriptions can be obtained in
the remaining cases.

We remark that if the concept of a proper non-abelian simple section
Ž .C, D is replaced in Definition 6.9 by that of a proper subgroup, then we

Ž .obtain the definition of, instead the set D 6.9 , the set SS . Hence we can
Ž .expect the degree of difficulty involved in the determination of D 6.9 to

be comparable to that involved in the determination of SS . Furthermore,
given that our intuition suggests that SS is a highly restricted set, possibly

Ž .even bounded, then it seems reasonable to expect D 6.9 to be similarly
restricted.

Ž .Finally we note that we have examples of 6.9 -tuples of degree d only
Ž .for d F 2. Of these examples, some give rise to 6.17 -tuples of ranks d

and d q 1, while others do not. Below we give an example of the latter
behaviour as this seems to best illustrate the delicacy of the conditions
involved in Definition 6.17.

Ž .EXAMPLE 8.1. For n ) 2, let E s GL 2 , the group of all 2n = 2n2 n
matrices over the field F of two elements, and define the subgroups2
Ž .C, D of E as

I BnC s : B g M 2 ,Ž .n½ 5ž /0 In

A BD s : A g GL 2 , B g M 2 ,Ž . Ž .n n½ 5ž /0 A

Ž .where M 2 is the set of all n = n matrices over F , and where I is then 2 n
Ž . Ž .identity matrix. Note that C, D is a section of E isomorphic to GL 2 :n

let F be the quotient DrC. We claim that:

Ž . Ž . Ž .1 C, D, E, D is a 6.9 -tuple of degree 2;
Ž . Ž . Ž .2 C, D, E, D, D, F is a 6.17 -tuple of rank 2.

w xTo see the claim we note that in Example 4.10 of 3 it is shown that

A BD̂ s : A , C g GL 2 , B g M 2Ž . Ž .n n½ 5ž /0 C

ˆis the unique maximal subgroup of E containing D. As D normalises C
ˆwith quotient DrC ( F = F, it follows that there are precisely two sec-

Ž .tions of E strictly D-containing C, D . Given this the verification of the
claim is straightforward.
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Further let s be the involutory automorphism of E given by first taking
0 Inthe inverse transpose, and then conjugating by : direct calculationI 0ž /n

ˆshows that C, D, and D are all s-invariant, and we also use s to denote
the involutory automorphism of F s DrC induced by s . In Example 4.10

w x Ž . ² :of 3 it is also shown that C, D is a D, s -maximal section of E, and it
Ž ² : ² :. Ž .is tempting to hope that C, D, E, D, D, s , F, s is a 6.17 -tuple of

rank 3. However, this is not the case}explicit calculation shows that
Ž .Definition 6.17 vii fails. Moreover, such a calculation can be generalised

to give a proof of the following result:
Ž . Ž . Ž . Ž .Let C, D, E, K, L, A be a 6.17 -tuple. Suppose that C , D , C , D are1 1 2 2

Ž . Ž .sections of E strictly K-containing C, D with C F N D . Then D s D and1 E 2 1 2
Ž .A s h K , where h is the homomorphism induced by the conjugation action of
Ž . Ž .N C, D on the quotient F s DrC as in Construction 6.13 .Aut E

Ž Ž ..Problem 3. Determine D 7.6 a .
As in the previous problem, progress here depends on being able to

count maximal non-abelian simple sections of non-abelian simple groups
Ž Ž ..subject to various conditions. We must stress that the set D 7.6 a could

prove to be bounded above, which is the desirable outcome, or if not, then
it would be likely to contain all but finitely many positive integers. The
reason for this is the following observation.

Ž . Ž .If E, F, a , . . . , a , L is a 7.6 -tuple with1 m

� 4C L l Inn F s b , . . . , b ,Ž .Aut F 1 r

Ž . Ž .then E, F, g , . . . , g , L is a 7.6 -tuple, where g , . . . , g are any distinct1 s 1 s
elements of the set

a ( b : i s 1, . . . , m , j s 1, . . . , r� 4i j

² Ž . Ž .:chosen so that E s g F , . . . , g F .1 s
If the latter unbounded scenario occurs, then we would have to incorpo-

Ž .rate some version of the extra conditions as satisfied by 7.13 -tuples;
Ž .probably the most helpful being some version of Definition 7.13 i .

Ž .We note that we have no examples of 7.6 -tuples of degree d with
d G 4.

qŽ .EXAMPLE 8.2. Let E s O q with q ) 2, and let F be a maximal8
Ž .subgroup of E with F ( O q . Let t be a triality automorphism of E,7

that is, t 3 s id and t induces a non-trivial symmetry of the DynkinAut E
< 2 < Ž . wdiagram of E. Set a s id, a s t , a s t , and L s C t . By 9,F F1 2 3 F

Ž .x3.1.1 vi we have

L s F a1 l F a2 s F a2 l F a3 s F a1 l F a3 ( G q .Ž .2
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Also L is non-abelian and simple and L is a maximal subgroup of F, and
Ž .moreover, it is straightforward to verify that E, F, a , a , a , L is both a1 2 3

Ž . Ž .7.6 -tuple of degree 3 and a 7.13 -tuple of rank 4.

Ž .Problem 4. Determine V 7.18 .
This problem contrasts with the earlier ones in that the fundamental

information required is not that of maximal non-abelian simple sections of
non-abelian simple groups. Instead it seems sensible to focus on the
following necessary condition.

Ž . Ž .If F, K, L is a 7.18 -tuple of rank n, then F is a non-abelian simple
group with L F Aut F such that

� 4F iid ( MM and n y 1 C L l Inn F .Ž . Ž .1 Aut FL

Note that this necessary condition does not involve K ; in fact we are
hopeful that it may be enough for our purposes to only find those F, L,

Ž .and n satisfying this condition. Note also that C L l Inn F is iso-Aut F
Ž .morphic to a subgroup of Out F since C L l Inn F is trivial: thus toInn F

Ž . Ž .find all 7.18 -tuples F, K, L of degree n with n G 16, we need only
consider F of Lie type, and not alternating or sporadic.

Ž .We stress that V 7.18 is unbounded as the following examples show.

Ž 2 . 2EXAMPLE 8.3. Let F s PSL q with n s q y 1 be the quotient ofn
Ž 2 .SL q by its centre Z, and define the subgroup D of F byn

1 0 2 2D s Z : A g SL q ( PSL q .Ž . Ž .ny1 ny1½ 5ž /0 A

Let s g Aut F be given by

y1qs : a Z ¬ a Z,Ž . Ž .i j ji

² : < Ž . < Ž .and set K s L s D, s . Then C L s q q 1 and F, K, L is aAut F
Ž .7.18 -tuple of rank q q 2.

Ž f .EXAMPLE 8.4. Let F s PSL p with both p and f prime, and let2
Ž .K s L s PSL p , which we view as a subgroup of F in the natural way.2

< Ž . < Ž . Ž .Then C L s f and F, K, L is a 7.18 -tuple of rank f q 1.Aut E

Remark 8.5. Either of the above two examples can be used to show
Ž Ž .. � 4that D 7.6 b s n g N : n G 16 , thus justifying the dichotomy intro-

duced in Definition 7.6.

Our final comment on Problem 4 is that the conditions defining a
Ž .7.18 -tuple are similar, but not identical, to those investigated by the
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w xsecond author in the ‘‘Crucial Case’’ of 16 . Given that the latter was
resolved successfully, it seems reasonable to hope that the present problem
can also be resolved.

We finish by stressing the two general problems on which the successful
resolution of Problems 1]4 depend:

v Describe the maximal non-abelian simple sections of the non-abelian
Ž w x.simple groups cf. 2 .

v Ž .Describe all pairs F, L with F non-abelian and simple, L F Aut F,
w � 4xand Fr id ( MM .L 1
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