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Let G be a finite group and let p be a prime such that (p, |G|)=1. We study conditions
under which the Abelian group Fp[G] has a few G-orbits whose union generate it as
an expander (equivalently, all the discrete Fourier coefficients (in absolute value) of this
generating set are bounded away uniformly from one).
We prove a (nearly sharp) bound on the distribution of dimensions of irreducible

representations of G which implies the existence of such expanding orbits. We further
show a class of groups for which such a bound follows from the expansion properties of G.
Together, these lead to a new iterative construction of expanding Cayley graphs of nearly
constant degree.

1. Introduction

We first describe our results and their context in a high level, relatively
informal style. We then give precise definitions and theorems.

1.1. Background and Motivation

A graph is called an α-expander if the first nonzero eigenvalue of its Lapla-
cian is at least α > 0 (equivalently the ratio between the first and second
largest eigenvalues of its adjacency matrix is at most 1−α<1). An expander
family is a sequence of graphs which are all α -expanders with the same α.
A single graph will be called an expander only in the context of some such
family.

Mathematics Subject Classification (2000): 05C25, 20C15
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Expander graphs are highly connected: all small sets of vertices have
many neighbors; all cuts have many edges; and the random walk converges
to the stationary (uniforms) distribution extremely quickly. Indeed, the orig-
inal definition of expanders (and the reason for their name) was in terms of
connectivity properties, and the connection to the spectral gap was devel-
oped in [20,2,1].

Sparse expanders, especially those which can be explicitly and efficiently
constructed, have numerous diverse applications both in Computer Science
and in pure Mathematics. The challenge to explicitly construct such graphs
was met successfully - there are several explicit families of expanders of con-
stant degree. Until last year, essentially all explicit constructions were of al-
gebraic nature - they were either Cayley graphs of certain groups (e.g. [2,12,
17]), or graphs whose vertices are identified with some algebraic structure on
which there is a natural action of a group preserving adjacency (e.g. [16,7]).
Moreover, the groups used in all of these constructions were finite quotients
of the infinite groups SLn(Z) and their relatives, which posses Kazhdan’s
property T or at least its relative property τ (see [13] for details).

In this paper we’ll give a completely different family of (near-constant
degree) expanding Cayley graphs. In particular, the groups involved will be
solvable, and moreover will have huge Abelian subgroups. Another difference
will be that they will be constructed iteratively, rather than as quotients of
one infinite “mother” group.

The motivation and starting point for our paper are the recent papers [19,
3]. The first paper [19] broke the mold of algebraic expander constructions.
It introduced the zig-zag product on graphs, and proved that it preserves
expansion. This allowed the construction of large expanding graphs from
smaller ones (without enlarging the degree) and led to a combinatorial iter-
ative construction of constant degree expander families. The second paper
[3] observed that the zig-zag graph product can be viewed as a generaliza-
tion of the classical semi-direct product in groups. With some provisos, this
allowed the construction of large expanding Cayley graphs from small ones.
To understand their construction, and how it leads to our work, we give
some more detail.

Let G be a group, and assume it has a small expanding generating set S
(namely the Cayley graph C(G;S) is an expander). Now assume G acts on
another group H. When can we have a small expanding set of generators for
the semi-direct product G�H? A sufficient condition proved in [3] (using
[19]) is that H has an (not necessarily small) expanding generating set which
is the union of a few G-orbits. Furthermore, they prove that this condition
is satisfied for an arbitrary group G, and H is the invariant subspace of



EXPANDERS IN GROUP ALGEBRAS 661

any irreducible representation of G over a fixed finite field (note that H is
Abelian!).

This idea gives hope that sparse expanding Cayley graphs may now be
constructed iteratively (as in [19]), by somehow iterating the above proce-
dure. But understanding the irreducible representations of the newly con-
structed groups seems to be essential for the argument, and this seems quite
complex.

1.2. Overview of our Results

A natural idea to facilitate iteration is to try something more generic, namely
to take H=Fp[G], the group algebra of G over Fp (this is simply the vector
space over Fp whose coordinates are labelled by elements of G). If G were
a Cayley expander, and we could find a few expanding G-orbits in Fp[G]
then G�Fp[G] would be a larger Cayley expander and we could repeat the
argument.

It is interesting to note that in this setting such constant number s of
orbits actually forms the generating matrix of an asymptotically good linear
error correcting code which is highly symmetric. This code is invariant under
the diagonal action of G on Fp[G]s. In contrast with cyclic codes this action
is of course non transitive on the coordinates.

How can we guarantee the existence of such few generating orbits? As in
[3], these s orbits will be chosen randomly. What becomes much harder is
the analysis. A key simplifying factor in the [3] analysis is that, when H is
an irreducible representation, all orbits have full rank. This is not true for
H = Fp[G]. To fix this, we go through a chain of reductions involving the
growth of several group theoretic functions, and their (surprising?) relation
to expansion.

We first note that the analysis in [3] goes through if the number of orbits
of rank r grows at most exponentially with r. We then give a natural con-
dition on G which ensures this growth: the number of irreducible complex
representations of G of dimension d grows at most exponentially with d. We
now show that if G is a monomial1 group, such a bound follows from the
expansion properties of G (which we inductively assume!). We finally prove
that if G is monomial, so is G�Fp[G].

1 We define it later. It is however worth noting that in such groups the number of
subgroups of index i grows exponentially with i, a property which is used to prove the
last implication.
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This facilitates the iterative construction (using distinct primes p), which
can start with any Abelian group2. The components of the construction are
symmetric linear codes, which are ”glued” using the semi-direct (=zig-zag)
product. As each new code is exponentially larger than its predecessor, the
”non-Abelian” part of any group in this sequence is only of logarithmic size!
Moreover, this fact controls the growth of the degrees in our expanders to
be only slightly more than constant.

To summarize, denoting the resulting sequence of groups Gn and their re-
spective generating sets Sn we have the following: all Gn are 1/2-expanders,
with |Sn| ≤ O

(
log(n−log∗n) |Gn|

)
(where log(k) denotes the k time iterated

logarithm function).
We find the connection between the expansion of groups and the growth

rate of the above functions defined by the group interesting in its own right.
We compute them for some concrete groups, and use it to show that the
sufficient conditions we give on the growth functions of ranks and dimensions
are essentially tight.

Finally, we touch the explicitness issue. The basic construction above
(and thus also the iterative one) uses a probabilistic argument to show the
existence of few expanding orbits. This is not explicit, and a derandomiza-
tion of this argument would be very interesting. Nevertheless, it is far more
explicit than generating the whole graph at random. Observe that given
these (randomly chosen) orbit representatives, neighbors of a vertex can be
computed efficiently, and thus an expanding Cayley graph of size exp(n) can
be described by a Boolean circuit of size polynomial in n.

To be completely explicit, we move back into the general setting of a
group G acting on a set X which labels the coordinates of the vector space
H. In this setting, we give the first explicit construction of a constant number
of expanding orbits, for some natural choices of G and X above. We exhibit
two expanding G-orbits in F2[X] where

• X is the finite field Fp and G is the group of affine linear transformations
acting on it;

• X is the projective line Fp∪{∞} and G is the group SL2(p), acting on
X as Mobius transformations.

Note that the second case is exactly the one used by [3] to exhibit a group
which can be expanding with one set of generators and non-expanding with
another. They used a probabilistic argument to obtain the expanding gen-
erators, and the result above completely derandomizes their construction.

2 To allow an arbitrary group as a starting point, we generalize the above to the so
called M�-groups.
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1.3. Definitions and Results

This work uses some elements of the Representation Theory of finite groups.
We try to give precise references for key results we use. Our main general
references are the books of Aschbacher [4] and Isaacs [10].

Let G be a finite group and let F[G] denote the group algebra of G over
the field F. We always assume that the characteristic of F is coprime to
|G|. The Fourier Transform of f =

∑
x∈G f(x)x ∈ F[G] at a representation

ρ :G→GL(Vρ) is given by

f̂(ρ) =
∑
x∈G

f(x)ρ(x−1) ∈ EndF(Vρ).

Let S be a generating multiset of G of cardinality |S| = l and let h =
1
l

∑
s∈S s∈C[G]. The Kazhdan Constant of S is given by

κ̃G(S) = min
ρ

min
{v∈Vρ:‖v‖2=1}

‖ĥ(ρ)v − v‖2 ,

where ρ ranges over all unitary representations of G which do not contain the
trivial representation. It is easy to see that the minimum is always attained
at an irreducible representation.

This definition slightly deviates from the usual definition of the Kazhdan
constant, see e.g. [8]. We take the average (rather than the original definition
which takes the maximum) over the generators; this makes the notion robust
for any number of generators (not necessarily constant), and makes the
expansion based on it equivalent to the one using the spectral gap (see
below).

When S is symmetric, the Kazhdan constant has the following spectral
interpretation: Let C=C(G;S) denote the Cayley graph of G with respect to
S and let M(C) denote the normalized Laplacian of C. Then κ̃G(S) is equal
to the first non-zero eigenvalue of M(C). Equivalently, it is the eigenvalue
gap in the transition probability matrix of the random walk on the graph C.
Thus, in the notation of the first subsection, C is a κ̃G(S)-expander. This
connection has been observed in many previous papers – however, since
they used the original definition of the Kazhdan constant, it was not tight.
Summarizing the above, we have

Fact 1.1. κ̃G(S)= 1−λ(C(G;S)), where λ(C) is the second largest eigen-
value of the random walk matrix on C.

This value controls the expansion properties of C. In some papers, the
second largest in absolute value eigenvalue is used to define expansion. The
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conversion between the two notions is easy – simply add self loops with
probability 1/2 to each vertex (in other words, add |S| identity elements to
the generating set). All eigenvalues become nonnegative, the random walk
becomes ergodic, and the spectral gap shrinks by a factor of 2.

For an Abelian group H it is especially easy to compute the expansion,
as all irreducible representations are 1-dimensional.

κ̃H(S) = min
χ �=1

∣∣∣1
l

∑
s∈S

χ(s)− 1
∣∣∣,(1)

where χ ranges over all non-trivial characters of H.
Let p be a prime such that (p, |G|)=1. We will be interested in expand-

ing generators for the group algebra Fp[G] as an Abelian group. The inner
product of two elements f =

∑
x∈G f(x)x, g =

∑
x∈G g(x)x ∈ Fp[G] is given

by f ·g=∑x∈G f(x)g(x)∈Fp. Let ep(α)=exp(2παi
p ). A multiset A⊂Fp[G] is

δ-balanced if for all 0 �=f ∈Fp[G]∣∣∣∑
h∈A

ep(f · h)
∣∣∣ ≤ (1− δ)|A|.

By (1) if A is δ-balanced then κ̃Fp[G](A)≥δ.
For f ∈Fp[G] let Gf={σf :σ∈G} denote the orbit of f under G. It will

be convenient to regard Gf as a multiset with |G| elements.

This work is concerned with representation theoretic conditions which
guarantee the existence of few orbits whose union form a balanced set in
Fp[G] and with an application to the construction of expanding groups.

Let rd(G;F) denote the number of irreducible representations of G over
F of dimension at most d and let

m(G;F) = max
d≥1

log2 rd(G;F)
d

.

Theorem 1.2. For any δ < 1
2 there exist s=O

(
1

(1−2δ)2 (m(G;Fp)+logp)
)

elements h1, . . . ,hs ∈ Fp[G] such that the multiset A = ∪s
i=1Ghi ⊂ Fp[G] is

δ-balanced. Indeed, a random choice of the elements hi will guarantee this
property with arbitrarily high probability.

The proof of Theorem 1.2 given in section 3 combines the approach of
Alon, Lubotzky and Wigderson [3] with some estimates on the distribution
of ranks in the group algebra given in section 2.

In section 4 we consider the number of the unitary d-dimensional repre-
sentations of G and its connection with the Kazhdan constants of a generat-
ing set S⊂G. Wasserman [21] showed that rd(G)=rd(G;C) can be bounded
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in terms of d, |S| and κ̃G(S) alone. An explicit form of his argument due to
de la Harpe, Robertson and Vallete [8] gives the following:

Theorem 1.3 ([21,8]).

rd(G) ≤
(

1
κ̃G(S)

)O(|S|d2)

.

For applications involving Theorem 1.2 we need a sharper bound which
we can only prove in the following restricted case. A group G is anM�-group
if any complex irreducible representation of G is induced from a representa-
tion of dimension at most ( of some subgroup H⊂G. A group with property
M1 is called a Monomial group.

Theorem 1.4. There exists a constant c such that for any M�-group G and
d≥1

rd(G) ≤
(

c

κ̃G(S)

)2�|S|d
.(2)

As a consequence we obtain:

Theorem 1.5. Let G be an M�-group with a generating set S. Then there

exist s=O
(
logp+(|S| log 1

κ̃G(S)

)
orbits whose union is 1

3 -balanced.

For a group G, let G(k) be given by G(0)=G and G(k)=
[
G(k−1),G(k−1)

]
.

The derived length of a solvable group G is the minimal n such that G(n)=1.
Results of Lubotzky and Weiss [14] imply the following

Proposition 1.6. Let G be a solvable group of derived length n. If S⊆G
is a generating set such that κ̃G(S)≥1/2 then |S|=Ω(log(n) |G|).

In section 5 we combine the Zig-zag construction of Reingold, Vadhan
and Wigderson [19] with Theorem 1.5 to give a simple example (below) of a
sequence of solvable groups which come close to the bound of Proposition 1.6.
Let {pi}i≥1 denote the sequence of odd primes. Let G0 = S0 = F2 and for
n≥0 let Gn+1=Gn �Fpn [Gn].

Theorem 1.7. There exist symmetric generating sets Sn of Gn such that
κ̃Gn(Sn)≥ 1

2 and for sufficiently large n

|Sn| ≤ log(n−log∗ n) |Gn|.
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In section 6 we give an explicit construction of two expanding orbits for
F2[Fp] under the action of the affine group G=Aff(p) where p≡ 1(4). Let
v∈H be the characteristic function of {0} and let u∈H be the characteristic
function of I=

{
1,2, . . . , p−1

2

}
.

Theorem 1.8. The set S={Gv,Gu}⊂H is .01 balanced.

Let v1,u1 ∈F2[PG(2,Fp)] =H1 denote the images of v,u under the em-
bedding x→ (x,1) of Fp in the projective line PG(1,p). Let G1 =SL(2,p),
then:

Theorem 1.9. The set S1={G1v1,G1u1}⊂H1 is .01 balanced.

2. Rank Varieties in Group Algebras

In this section we relate the distribution of ranks in the group algebra of G
to the distribution of dimensions of the irreducible representations of G.

Let F be a field of characteristic coprime to |G| and let Irr(G;F) denote
the set of irreducible representations of G over F. For f =

∑
x∈G f(x)x ∈

F[G] let Tf : F[G]→ F[G] be the linear map given by Tf (h) = hf . Clearly
dimSpanGf=rankTf . Let

Vr(F) = {f ∈ F[G] : rankTf ≤ r}.

While we are mainly interested in the cardinality of Vr(F) when F= Fq is
finite, it is instructive to first determine dimVr(F) when F is algebraically
closed.

Let Md(F) denote the space of d×d matrices over F and let

Rd,k(F) = {A ∈ Md(F) : rankA = k}.

When F is algebraically closed the closure Rd,k(F) is an affine irreducible
algebraic variety and

dimRd,k(F) = k(2d− k).(3)

In the finite field case

|Rd,k(Fq)| = N(q; d, k) =
u(d, q)2

u(k, q)u(d − k, q)2
qk(2d−k) ≤ C(q)qk(2d−k),

where u(m,x)=
∏m

i=1(1−x−i) and C(q)=
∏∞

i=1(1−q−i)−1<4.

Suppose F is algebraically closed and let Irr(G;F) = {ρ1, . . . ,ρt} where
ρi :G→GL(Vi) and dimFVi=di.
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Claim 2.1.

dimVr(F) = max
{ t∑

i=1

ki(2di − ki) : 0 ≤ ki ≤ di,
t∑

i=1

kidi ≤ r
}
.(4)

In particular dimVr≤2r.

Proof. Let

φ : F[G] →
t∏

i=1

End(Vi)

denote the Fourier Transform isomorphism given by

φ(f) = (f̂(ρ1), . . . , f̂(ρt)).

For A = (A1, . . . ,At) ∈
∏t

i=1End(Vi) let SA denote the endomorphism of∏t
i=1End(Vi) given by

SA(X1, . . . ,Xt) = (X1A1, . . . ,XtAt).

Commutativity Sφ(f)φ=φTf implies

rankTf = rankSφ(f) =
t∑

i=1

dirank f̂(ρi).

Therefore

φ(Vr(F)) =
{
(A1, . . . , At) :

t∑
i=1

dirankAi ≤ r
}

and (4) follows from (3).

We now turn to the finite field case. The Galois group Γ =Gal(Fq/Fq) acts
naturally on the set Irr(G;Fq) of irreducible representations of G over Fq. Let
F1, . . . ,Ft denote the orbits of Irr(G;Fq) under Γ and for each 1≤ i≤ t choose
a representative ηi∈Fi of dimension di. Let Γi<Γ denote the stabilizer of
ηi and let σ denote the Frobenius automorphism σ(x)=xq. For ei=(Γ :Γi)
the direct sum ⊕ei−1

j=0 η
σj

i is equivalent to a diei-dimensional irreducible Fq-
representation ρi of G. All irreducible representations of G arise this way,
thus Irr(G;Fq)={ρ1, . . . ,ρt} and

Fq[G] ∼=
t∏

i=1

Mdi
(Fqei ).
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For A = (A1, . . . ,At) ∈
∏t

i=1Mdi
(Fqei ) let SA denote the endomorphism of

the Fq-space
∏t

i=1Mdi
(Fqei ) given by

SA(X1, . . . ,Xt) = (X1A1, . . . ,XtAt).

Clearly

rankSA =
t∑

i=1

dieirankFqei
Ai.

Denoting

Kr =
{
k = (ki : 1 ≤ i ≤ t) : 0 ≤ ki ≤ di,

t∑
i=1

kidiei = r
}
,

it follows that

|{f ∈ Fq[G] : rankTf = r}| =
∑

k∈Kr

t∏
i=1

N(qei ; di, ki).(5)

Let
γ(z) =

∑
f∈Fq[G]

zrankTf

be the generating function of the ranks attained in Fq[G]. Equation (5)
implies the following:

Proposition 2.2.

γ(z) =
t∏

i=1

( di∑
ki=0

N(qei ; di, ki)zeikidi

)
.

3. Balanced Orbits

In this section we prove Theorem 1.2, that when the distribution of ranks
is controlled, the group algebra has a few expanding orbits. In the following
two subsections, we give examples of groups in which (respectively) have/
do not have this property (exhibiting the near tightness of our bounds).

Let |G|= n. We regard Fp[G]s as a probability space with the uniform
distribution.

For f ∈Fp[G] and δ>0 let

Bδ(f) =
{
(h1, . . . , hs) ∈ Fp[G]s :

∣∣∣ 1
sn

s∑
i=1

∑
σ∈G

ep(σhi · f)
∣∣∣ > 1− δ

}
.
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For f1, . . . ,fr∈Fp[G] let

Cδ(f1, . . . , fr) =
{
(h1, . . . , hs) ∈ Fp[G]s :

∣∣∣ 1
rs

s∑
i=1

r∑
j=1

ep(hi · fj)
∣∣∣ > 1− δ

}
.

Claim 3.1. If f1, . . . ,fr are linearly independent in Fp[G] then

Pr(Cδ(f1, . . . , fr)) ≤ 4 exp

(
−(1− δ)2rs

4

)
.(6)

Proof. For 1≤ i≤ s, 1≤ j ≤ r let Xij denote the complex valued random
variable ep(hi ·fj). The Xij are clearly independent and ‖Xij‖∞=1, hence
(6) follows from the Chernoff bound.

The following result uses an idea of Alon, Lubotzky and Wigderson [3].

Proposition 3.2. If rankTf =r then

Pr(Bδ(f)) ≤ 8 exp

(
−(1− 2δ)2rs

4

)
.

Proof. Let τ1, . . . ,τr ∈G such that τ1f, . . . ,τrf are linearly independent in
Fp[G]. Then

1
sn

∑
σ∈G

s∑
i=1

ep(σhi · f) =
1
rsn

∑
σ∈G

s∑
i=1

r∑
j=1

ep(τ−1
j σhi · f)

=
1
n

∑
σ∈G

( 1
rs

s∑
i=1

r∑
j=1

ep(σhi · τjf)
)
.

It follows that if (h1, . . . ,hs)∈Bδ(f) then

(σh1, . . . , σhs) ∈ C2δ(τ1f, . . . , τrf)

for at least n
2 elements σ in G. Hence

Pr(Bδ(f)) ≤ 2Pr(C2δ(τ1f, . . . , τrf)) ≤ 8 exp

(
−(1− 2δ)2rs

4

)
.

Proof of Theorem 1.2. Keeping the notation of section 2 let Irr(G;Fp)=
{ρ1, . . . ,ρt} where ρi is of dimension diei, and

Fp[G] ∼=
t∏

i=1

Mdi
(Fpei ).(7)
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Let m = m(G;Fp), s = 4
(1−2δ)2 (m+ 2log2 p+ 7), λ = 4p2 exp

(
− (1−2δ)2s

4

)
.

Choose h1, . . . ,hs uniformly at random from Fp[G]. The probability that
A(h1, . . . ,hs)=∪s

i=1Ghi is not δ-balanced is

Pr
( ⋃

0�=f∈Fp[G]

Bδ(f)
)
≤

∑
0�=f∈Fp[G]

Pr(Bδ(f))

≤ 8
∑
r≥1

|Vr(Fp)| exp
(
−(1− 2δ)2rs

4

)
= 8γ exp

(
−(1− 2δ)2s

4

)
− 8

≤ 8
t∏

i=1

 di∑
ki=0

4pki(2di−ki)ei exp

(
−(1− 2δ)2skieidi

4

)− 8

≤ 8
t∏

i=1

( ∞∑
ki=0

λdieiki

)
− 8 = 8

t∏
i=1

(1− λdiei)−1 − 8

= 8
∏
l≥1

(1− λl)−|{i:diei=l}| − 8 ≤ 8 exp
(
2
∑
l≥1

(λ2m)l
)
− 8

< 8 exp
(
2

∞∑
l=1

30−l
)
− 8 < 1 .

It follows that there exist h1, . . . ,hs such that A(h1, . . . ,hs) is δ-balanced. To
make the failure probability arbitrarily small, note that the above argument
shows that if s= 4

(1−2δ)2 (m+2log2 p+z) (for any z) then the probability that
A(h1, . . . ,hs) is not δ-balanced is O(2−z).

3.1. Groups whose algebras have few expanding orbits

1. The symmetric group Sn has exp(O(
√
n)) complex irreducible repre-

sentations and only two are of dimension < n − 1. It follows that
m(Sn;Fp)≤m(Sn;C)=O(1). By Theorem 1.2 Fp[Sn] contains 1

3 -balanced
sets which are unions of O(logp) orbits.

2. The special linear group SL2(q) has∼q complex representations of dimen-
sion ∼ q, hence again m(SL2(q);Fp)=O(1). By Theorem 1.2 Fp[SL2(q)]
contains 1

3 -balanced sets which are unions of O(logp) orbits.
3. Let Cn = 〈x〉 denote the cyclic group of odd order n, and let ω be a

primitive n-th root of unity in F2. The characters {χk}n−1
k=0 of Cn over F2

are given by χk(xj) = ωkj. The cardinality of the orbit of χk under the
Galois group Gal(F2/F2) is equal to the order of 2 in the multiplicative
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group of Z n
gcd(k,n)

. It follows that for k≥1

|Orbit(χk)| ≥ log2

(
n

gcd(k, n)
+ 1

)
hence ∣∣∣{1 ≤ k ≤ n− 1 : |Orbit(χk)| = l

}∣∣∣ ≤ 2l − 2

and

rd(Cn;F2) = 1 +
d∑

l=1

∣∣∣{k : |Orbit(χk)| = l
}∣∣∣

l

≤ 1 +
d∑

l=1

2l − 2
l

≤ 2d − 1 .

Therefore m(Cn;F2) ≤ 1 and F2[Cn] contains O
(

1
(1−2δ)2

)
orbits whose

union is δ-balanced.

3.2. Groups whose algebras require many orbits to expand

In this section we show that Theorem 1.2 is nearly sharp for G=F
n
2 .

Proposition 3.3. For sufficiently large n, no union of s= δn
10 orbits in F3[Fn

2 ]
is δ-balanced.

We need the following Ramsey type result of Brown and Buhler [5].

Claim 3.4. If C ⊂ F
n
2 satisfies |C| ≥ 2

(2d−1)n

2d +2
, then C contains an affine

d-dimensional subspace.

Proof of Proposition 3.3. We regard an element h∈F3[Fn
2 ] as a function

h :Fn
2 →F3. The action of x∈F

n
2 on h∈F3[Fn

2 ] is thus given by h
x(y)=h(x+y).

For x=(x1, . . . ,xn), y=(y1, . . . ,yn)∈F
n
2 let x•y=∑n

i=1xiyi∈F2 denote the
standard inner product in F

n
2 .

Let h1, . . . ,hs∈F3[Fn
2 ] with s≥ δn

10 . We have to show that for some 0 �=f ∈
F3[Fn

2 ] ∣∣∣1
s

s∑
i=1

∑
x∈Fn

2

e3(hx
i · f)

∣∣∣ > (1− δ)2n.

For 1≤ i≤s write the Fourier expansion

hi(y) =
∑
z∈Fn

2

aiz(−1)z•y



672 ROY MESHULAM, AVI WIGDERSON

with coefficients aiz ∈ F3. There clearly exist b1, . . . , bs ∈ F3 and a subset
C⊂F

n
2 of cardinality |C|≥3−s2n such that

aiz = bi for all 1 ≤ i ≤ s, z ∈ C.

Let d= �log2(
4
δ )�. If n is large enough then 3−s2n ≥ 2

(2d−1)n

2d +2 hence there
exists a d-dimensional linear subspace U ⊂ F

n
2 and a v ∈ F

n
2 such that L=

v+U⊂C. Let

U⊥ = {x ∈ F
n
2 : x • u = 0 for all u ∈ U}

and define f ∈F3[Fn
2 ] by

f(y) =

{
(−1)y•v y ∈ U⊥,
0 y �∈ U⊥.

Then for any 1≤ i≤s and x∈F
n
2

hx
i · f =

∑
y∈Fn

2

hi(x+ y)f(y) =
∑

y∈U⊥

(−1)v•y
∑
z∈Fn

2

aiz(−1)(x+y)•z

=
∑
z∈Fn

2

aiz(−1)x•z
∑

y∈U⊥

(−1)y•(v+z) = 2n−d
∑

z∈v+U

aiz(−1)x•z

= 2n−dbi
∑

z∈v+U

(−1)x•z = 2nbif(x).

In particular hx
i ·f=0 for all x �∈U⊥. It follows that∣∣∣∣1s

s∑
i=1

∑
x∈Fn

2

e3(hx
i · f)

∣∣∣∣ = ∣∣∣∣2n − |U⊥|+ 1
s

s∑
i=1

∑
x∈U⊥

e3(hx
i · f)

∣∣∣∣
≥ 2n − 2|U⊥| = 2n(1− 2−d+1) ≥ 2n

(
1− δ

2

)
.

4. Counting Representations

In this section we prove Theorem 1.4, showing an exponential upper bound
on the growth rate of dimensions of irreducible representations inM� groups.
The proof depends on several results which are described below. Let F�

denote the class of finite groups whose compositions factors do not include
an alternating group Ak with k>(.

Proposition 4.1. There exists a constant c1 such that if G is an M�-group
then G∈Fc1�.
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Proof. By Jordan’s Theorem (see [10]) for any ( there exists a finite J(()
such that any finite subgroup G⊂GL(C�) contains a normal Abelian sub-
group A such that |G/A|≤J((). Isaacs [11] showed that if G is an M�-group
then every non-Abelian composition factor of G has order bounded by J(().
Weisfeiler [22] nearly sharp estimate J(()≤ (a log �+b((+1)! implies that for
c1 sufficiently large J(()≤ 1

2(c1()! hence G∈Fc1�.

Let am(G) denote the number of subgroups of G of index at most m.
Pyber and Shalev [18] proved the following:

Theorem 4.2 ([18]). There exists a constant c2 such that for any G∈F�

with a generating set S and any m≥1

am(G) ≤
(
c2(

|S|−1
)m

.(8)

Let ‖A‖ = (
∑

i,j |aij |2)1/2 denote the Hilbert–Schmidt norm of a complex
matrix A=(aij). The following observation is due to Wassermann [21].

Lemma 4.3 ([21]). Suppose ρ1,ρ2 are two irreducible unitary representa-
tions of G on C

d. Suppose there exists a non zero matrix A∈Md(C) such
that for all s∈S

‖ρ1(s)A−Aρ2(s)‖ < κ̃G(S)‖A‖.

Then ρ1�ρ2.

Proof. The tensor product representation ρ1 ⊗ ρ∗2 is realized on a matrix
X∈Md(C) by

ρ1 ⊗ ρ∗2(g)(X) = ρ1(g)Xρ2(g)∗.

Suppose ρ1 ��ρ2 and let χi denote the character of ρi. Then the multiplicity
of the trivial representation in ρ1 ⊗ρ∗2 is (χ1χ

∗
2,1) = (χ1,χ2) = 0. It follows

that

κ̃G(S)‖A‖ ≤
∥∥∥∥ 1
|S|

∑
s∈S

ρ1 ⊗ ρ∗2(s)(A)−A

∥∥∥∥
≤ 1

|S|
∑
s∈S

‖ρ1 ⊗ ρ∗2(s)(A) −A‖ = 1
|S|

∑
s∈S

‖ρ1(s)A−Aρ2(s)‖.

It follows that ‖ρ1(s)A−Aρ2(s)‖ ≥ κ̃G(S)‖A‖ for some s ∈ S, a contradic-
tion.

Let U(n)⊂GL(Cn) denote the unitary group. A simple volume argument
shows the following:
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Lemma 4.4. There exists a constant c3 such that U(n) can be covered by

at most ( c3ε )
2n2

balls of radius ε
2

√
n in Mn(C).

Let H be a subgroup of G of index m and let η : H → GL(W ) be an
n-dimensional unitary representation of H. Let G = ∪m

j=1gjH be a coset
decomposition and for g∈G and 1≤j≤m let π(g,gj) be the unique gk such
that ggj ∈ gkH and let u(g,gj) = g−1

k ggj . Let V denote the m-dimensional
vector space with basis g1, . . . ,gd. The induced representation

ρ = indG
Hη : G→ GL(V ⊗W )

is given by
ρ(g)(gj ⊗ w) = π(g, gj)⊗ η(u(g, gj))(w).

In particular, if ψ is another n-dimensional representation of H then

∥∥∥indG
Hη(g) − indG

Hψ(g)
∥∥∥ = ( m∑

j=1

‖η(u(g, gj))− ψ(u(g, gj))‖2
)1/2

.

Proof of Theorem 1.4. Let ρ1, . . . ,ρt denote the complex irreducible rep-
resentations of G of dimension at most d. We show that

t ≤
∑

{(m,n):mn≤d}

(
c2(c1()|S|−1

)m ( c3
κ̃G(S)

)2n2m|S|
<

(
c

κ̃G(S)

)2�d|S|
.(9)

For each 1≤ i≤ t there exists a subgroup Hi<G of index mi and a unitary
representation ηi :Hi →GL(Cni) such that ρi = indG

Hi
ηi, with mini ≤ d and

ni≤( (the later using the assumption that G is an M�-group). Suppose (9)
does not hold. By Proposition 4.1 and Theorem 4.2 there exists a subgroup
H<G of index m, an integer n and subset I⊂ [t] of cardinality

|I| >
(

c3
κ̃G(S)

)2n2m|S|

such that Hi=H and ni=n for all i∈I. For i∈I let Mi be the |S|×m array
of n×n unitary matrices given by

Mi(s, j) = ηi(u(s, gj))

for s ∈ S and 1≤ j ≤m (we are using the notation introduced above). By
Lemma 4.4 and the pigeon-hole principle there exist i �= i′∈I such that

‖Mi(s, j) −Mi′(s, j)‖ < κ̃G(S)
√
n
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for all s∈S and 1≤j≤m. It follows that for all s∈S

‖ρi(s)− ρi′(s)‖ =
∥∥∥indG

Hηi(s)− indG
Hηi′(s)

∥∥∥
=
( m∑

j=1

‖Mi(s, j)−Mi′(s, j)‖2
)1/2

< κ̃G(S)
√
nm = κ̃G(S)‖Inm‖.

Applying Lemma 4.3 with A=Inm we obtain that ρi�ρi′ , a contradiction.

Remarks.

1. The bound is nearly sharp: Let G=Cp �F2[Cp] where p is an odd prime
and Cp is the cyclic group of order p. G is a monomial group and it can
be shown that G has a generating set S of size O(logp) and κ̃G(S)≥1/2.
Hence the bound (2) gives rp(G)=exp(O(p logp)) while the exact value
of rp(G) is 2p+ 2p−2

p .
2. The monomial case of Theorem 1.4 which is needed for Theorem 1.7 ad-

mits a somewhat simpler proof. Proposition 4.1 and Theorem 4.2 can be
respectively replaced by Taketa’s Theorem on the solvability of monomial
groups (see [10]) and by Mann’s result [15] on the exponential subgroup
growth in solvable groups.

Proof of Theorem 1.5. Note that rd(G;Fp)≤ rd(G;Fp)= rd(G) for all d.
Hence by Theorem 1.4

m(G;Fp) ≤ m(G;C) = O

(
(|S| log 1

κ̃G(S)

)
and the result follows from Theorem 1.2.

5. Expanders from Group Algebras

Proposition 1.6 is a direct consequence of the following result of Lubotzky
and Weiss:

Proposition 5.1 ([14]). Let S be a generating set of G with κ̃G(S)≥ 1
2 .

Then for any subgroup H<G(
H : H(1)

)
≤ (4π)|S|·(G:H).(10)

Proof of Proposition 1.6. Let f(k)=
(
G :G(k)

)
. Applying (10) with H=

G(k) we obtain

f(k + 1) = f(k) ·
(
G(k) : G(k+1)

)
≤ f(k) · (4π)|S|f(k).
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Since f(n)= |G|, this implies that |S|=Ω
(
log(n) |G|

)
.

We now prove Theorem 1.7, which shows that Proposition 1.6 is nearly
sharp. We first recall some properties of semi-direct products and their rep-
resentations (see e.g. [10]). Let H act on the left on an Abelian group N and
let G=H�N be the corresponding semi-direct product. The induced action
of H on the character group N̂ is given by h(χ)(n)=χ(h−1(n)). Let K<H

be the stabilizer of some χ ∈ N̂ , and let φ :K →GL(W ) be an irreducible
representation of K. Define φ̃ :K�N→GL(W ) by φ̃(kn)=χ(n)φ(k). Then
indG

K�N φ̃∈ Irr(G) and all ρ∈ Irr(G) arise this way.
Claim 5.2. If (|H|, |N |)=1 and all subgroups of H are monomial then all
subgroups of G=H�N are monomial.

Proof. First we prove that any subgroup G1<G is conjugate to a subgroup
of the form H1�N1, where H1<H and N1<N is invariant underH1. Indeed
let ϕ denote the projection from G1 to H and let N2 = kerϕ<N . Clearly
(|N2|, |G1/N2|)=1 hence by the Schur–Zassenhaus Theorem (see [4]) there
exists an M < G1 such that M ∩N2 = {1} and MN2 = G1. By Taketa’s
Theorem H and therefore G are solvable. Since M<G and (|M |, |N |)=1 it
follows by P. Hall’s Theorem (see [4]) that gMg−1<H for some g∈G. Let
H1=gMg−1, N1=gN2g

−1, then gG1g
−1=H1 �N1.

It therefore suffices to show that G itself is monomial. Let ρ∈ Irr(G) then
ρ is of the form indG

K�N φ̃ described above. By the monomiality of K <H

there exists an L<K and a 1-dimensional ψ∈ Irr(L) such that φ=indK
L (ψ).

Let ψ̃ ∈ Irr(L�N) be given by ψ̃(ln) = χ(n)ψ(l) then φ̃= indK�N
L�N ψ̃ hence

ρ=indG
L�N ψ̃.

Next we describe a special case of the Zig-zag construction of Reingold,
Vadhan and Wigderson [19] used in [3]. Let G = H �N be a semi-direct
product. Suppose S is a symmetric generating multiset (which for simplicity
we assume contains the identity as well) of H with Kazhdan constant κ̃H(S),
and A⊂N is a symmetric set such that

B = OrbitH(A) =
⋃

h∈H

h−1Ah

generates N with Kazhdan constant κ̃N (B). Let

T = SAS = {s1as2 : s1, s2 ∈ S, a ∈ A}.
The following theorem, which states that G is expanding if H and N are,
is stated here in terms of the Kazhdan constants, while in the references it
is stated in terms of the 2nd largest (in absolute value) eigenvalues of the
random walk matrix, but the two are identical as explained in section 1.2.
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Theorem 5.3 ([19,3]). T generates G and

κ̃G(T ) ≥ f(κ̃H(S), κ̃N (B))

where f is a function which satisfies f(λ,µ)>0 whenever λ,µ>0.

Proof of Theorem 1.7. Arguing by induction we show that if Sn−1 is a
symmetric generating set of Gn−1 and κ̃Gn−1(Sn−1)≥1/2 then Gn contains
a symmetric generating set Sn with κ̃Gn(Sn)≥ 1/2 and cardinality |Sn| ≤
O(|Sn−1|c) for some constant c to be specified later.

Let H=Gn−1 and N=Fpn [H]. Repeated applications of Claim 5.2 imply
that H is monomial, hence by Theorem 1.5 there exists a symmetric A⊂N
such that |A| = O(logpn+ |Sn−1|) and B = OrbitHA satisfies κ̃N (B) ≥ 1

3 .
Theorem 5.3 then implies that Gn =H �N contains a generating set T of
cardinality |T |≤|A|·|Sn−1|2=O(|Sn−1|3) such that κ̃Gn(T )≥f(1/2,1/3)=ε.

Let T c denote (the multiset of) all words of length c in the elements of
T . It is easy to check that

κ̃Gn(T
c) ≥ 1− (1− κ̃Gn(T ))

c.

Let c =
⌈

4
ε

⌉
, and set Sn = T c. It follows that κ̃Gn(Sn) ≥ 1

2 and
|Sn| ≤ O(|Sn−1|c). Starting the process with S0 = G0 = F2 we obtain
|Sn| = exp(exp(O(n))). Since |Gn| is bigger then the n-th iterated expo-
nential it follows that |Sn|≤ log(n−log∗n) |Gn| for large enough n.

6. Explicit Construction of Expanding Orbits

Proof of Theorem 1.8. The members of G are all functions ax+ b with
a,b ∈ Fp, a �= 0, acting on the coordinates x ∈ Fp. Let χT be the character
associated with a set T ∈Fp. Similarly, identify each vector in S with the set
of 1’s in it. We want to prove that for every T �=∅ we have∑

A∈S

(−1)|A∩T | ≤ .99 · 2|G| .

Clearly, it suffices if either one of the following two hold:∑
A∈Gv

(−1)|A∩T | ≤ .98 · |G| ,(i)

∑
A∈Gu

(−1)|A∩T | ≤ .98 · |G| .(ii)
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Since v is a singleton vector, condition (i) is satisfied for every T that
is not too small or large, namely p

100 ≤ |T | ≤ 99p
100 . But note that since the

support of u is even, condition (ii) is the same for T and T̄ . Thus proving
that condition (ii) holds for all small sets |T | ≤ p/100 will complete the
proof.

Let us rewrite condition (ii) as

(ii)
∑
a,b

(−1)|I∩aT+b| ≤ .98|G| .

Let us give some intuition first. The key to the proof will be that the
functions in G are good hash functions, and thus well disperse the elements
of any small set T . The dispersion means that most elements of the set aT
for a random a are “isolated”. We say that an element y∈aT is c-isolated if
there are no other elements from aT in the intervals of length c/2 centered
at y and y+(p− 1)/2. Note that if y is isolated, the shifts y+ b near the
edges of the interval I will cause a cancellation of c in the sum above (the
change in parity of the intersection with I in these values of b depends solely
on whether y is in I or not, which happens exactly half the time. Choosing
c=Ω(p/|T |), and making sure that the above happens for most elements of
aT , for most choices of a will complete the proof.

We will omit floor and ceiling notation, since rounding does not affect
the calculations in any significant way.

Let t= |T | and let c= p/100t. Denote by I0 the union of two intervals
[1, c/2]∪[(p−1)/2+1,(p−1+c)/2]. For 0≤j≤(p−1/c−1 let Ij=I0+jc/2. Note
that the k=(p−1)/c sets Ij are form a partition Fp (except 0) into equal size
parts. Assume for simplicity that 0 �∈T . Thus the random mapping x→I(ax)
which maps x∈F

∗
p to j ∈ [k] if ax∈ Ij is a nearly 2-universal mapping (see

[6]), namely we have for a random 0 �= a∈Fp both Pra[I(ax)= j] = 1/k for
every x,j and for x′ �=x Pra[I(ax)=I(ax′)]≤ 3k

2 .
For a fixed a, let BADa contain all x∈T which is not alone in its interval,

namely for some other x′ we have I(ax)=I(ax′). Similar to [9] we can upper
bound the expectation Ea[|BADa|] by twice the number of colliding pairs
x,x′, which is at most 3t2

2k ≤ t/50.
By Markov’s inequality, the fraction of a’s for which |BADa|>t/10 is at

most 3/20. An identical argument shows that if we define new (shifted by
c/4) intervals, I ′j=Ij+c/4, at most 3/20 of the a’s will have the analogous
|BAD′

a|>t/10. But note that an element x which is neither in BADa nor in
BAD′

a satisfied that ax is c-isolated. So we have just proved that for each
of .7 of all a’s, at least .8 of all x satisfy that ax are c-isolated. This yield a
bound of .1 on the expression (ii), which concludes the proof.
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