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Chapter 1

Day One

We first set some notation to be used throughout the lectures.
Let G be a finite group and p be a prime. We denote by Sylp(G) the set

of Sylow p-subgroups of G. The symbol Irr(G) denotes the set of irreducible
characters of G. Let F be a subfield of C, we denote by IrrF (G) the set of
irreducible characters χ of G such that χ(g) ∈ F for any g ∈ G. Similarly, if
χ ∈ Irr(G), then Q(χ) denotes the field Q[χ(g) | g ∈ G]. In particular, IrrR(G)
denotes the set of real valued irreducible characters of G. We use the symbol
cdF (G) for set {χ(1) | χ ∈ IrrF (G)} and cl(G) for the set of conjugacy classes
of G. The element x of G is said to be real if xg = x−1 for some g ∈ G. In
particular clr(G) denotes the set of conjugacy classes of real elements of G.

The main aim of this short course is proving some the following results.

Theorem 1 (Ito-Michler (CFSGs)) Let G be a finite group and p a prime
number. If p 6| χ(1) for every χ ∈ Irr(G), then P CG, where P ∈ Sylp(G).

Theorem 2 (Dolfi-Navarro-Tiep) If 2 6| χ(1) for every χ ∈ IrrR(G), then
P CG, where P ∈ Syl2(G).

Theorem 3 (Navarro-Tiep) If 2 6| χ(1) for any χ ∈ IrrR(G) non-linear, then
G has a normal 2-complement.

We quote the following two results relating the structure of a finite group G
with | cdF (G)|.

Theorem 4 If | cdC(G)| ≤ 4, then G is solvable.

Clearly, Theorem 4 is the best possible, in fact cdC(Alt(5)) = {1, 3, 4, 5}.

Theorem 5 If | cdR(G)| ≤ 3, then G is solvable.

Clearly, Theorem 5 is the best possible, in fact cdR(Alt(5)) = cdC(Alt(5)) =
{1, 3, 4, 5}.
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Let n be in N. Set Qn = Q[ξ], where ξ ∈ C is a primitive nth root of unity.
It is a classical (easy) result that if Q ⊆ F ⊂ Qn and σ ∈ Gal(F/Q), then σ
extends to some σ̂ in Gal(Qn/Q).

Furthermore, ifG is a finite group and |G| | n, then Gal(Qn/Q) acts naturally
on Irr(G), i.e. (χ, σ) 7→ χσ ∈ Irr(G), where χσ(g) = (χ(g))σ . In other words,
if ρ : G → GL(m,Qn) is the representation affording the irreducible character
χ and σ ∈ Gal(Qn/Q), then χσ is the character afforded by the irreducible
representation ρσ : G → GL(m,Qn) defined by (ρσ)(g) = (aσ

ij)ij , where ρ(g) =
(aij)ij .

Lemma 1 Let H and G be finite groups, ψ ∈ Irr(H) and χ ∈ Irr(G). Assume
Q(ψ),Q(χ) ⊆ Qm, for some m ∈ N. We have Q(χ) ⊆ Q(ψ) if and only if
whenever ψσ = ψ, for some σ ∈ Gal(Qm/Q), then χσ = χ.

Proof. Clear from the definitions and straightforward Galois Theory. �

Lemma 2 Let A be a group acting, as a group of automorphisms, on a finite
group G of order dividing n. Set G = Gal(Qn/Q). The group A acts on Irr(G)

by χa(g) = χ(ga−1

), for a ∈ A, g ∈ G,χ ∈ Irr(G). Furthermore, the action of
A on Irr(G) commutes with the action of G on Irr(G), i.e. (χa)σ = (χσ)a, for
any χ ∈ Irr(G), a ∈ A, g ∈ G.

Proof. Exercise! �

If χ is a character of G and H is a subgroup of G, then χH denotes the
restriction of the character χ to the subgroup H . Furthermore, if N is a normal
subgroup of G and θ ∈ Irr(N), then Irr(G | θ) denotes the set of irreducible
characters of G that restricted to N have constituent θ.

Lemma 3 (Isaacs) Let N be a normal subgroup of a group G. Let H be a
subgroup of G, M = N ∩H and θ be a G-invariant irreducible character of N .
Assume θM = ϕ ∈ Irr(M). Then the map H : Irr(G | θ) → Irr(H | ϕ) defined
by χ 7→ χH is a well-defined bijection.

Proof. Let χ be an element of Irr(G | θ). So, by Clifford’s Theorem,

χN = eθ = χ(1)
θ(1) θ = χ(1)

ϕ(1)θ. Furthermore, χH = e1ξ1 + · · · + e2ξs, for some

ξi ∈ Irr(H | ϕ). In particular,

(†)
χ(1)

ϕ(1)
= e1

ξ1(1)

ϕ(1)
+ · · · + es

ξs(1)

ϕ(1)
.

Similarly, by the hypothesis on ϕ, we have χ(1)
ϕ(1)ϕ.

By Frobenius Reciprocity Law, ξG
i = eiχ+ ∆i. So,

((ξi)
G)N = eiχN + (∆i)N = ei

χ(1)

ϕ(1)
θ + (∆i)N . (1.1)
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But, using MacKey, we get

((ξi)
G)N = ((ξi)M )N =

ξi(1)

ϕ(1)
ϕN =

ξi(1)

ϕ(1)
θ + Λ, (1.2)

where Λ is a character of N not containing θ.

Summing up Equation (1.1), (1.2), we get ei
χ(1)
ϕ(1) ≤ ξi(1)

ϕ(1) . Therefore, e2i
χ(1)
ϕ(1) ≤

ei
ξi(1)
ϕ(1) . Now, using (†), we have e2i

χ(1)
ϕ(1) ≤ χ(1)

χ(1) . Thus, e2i = 1. So, χ(1) = ξi(1).

Therefore, χH = ξi. �

Lemma 4 (Brauer) Let A be a group acting on Irr(G) and on cl(G), such
that χa(xa) = χ(x) for any a ∈ A. Then |{χ ∈ Irr(G) | χa = χ for any a ∈
A}| = |{c ∈ cl(G) | ca = c for any a ∈ A}|.

Lemma 4 has the following well-known application.

Corollary 1 | IrrR(G)| = | clr(G)|.

Proof. Let σ be an element of order 2 and define χσ = χ and (xG)σ = (x−1)G.
Set A = 〈σ〉. Clearly, χσ(xσ) = χ(xσ) = χ(x−1) = χ(x). Therefore, this
proposition follows from Lemma 4. �

Corollary 2 | IrrR(G)| = 1 if and only if |G| has odd order.

Proof. If 2 divides the order of G, then G has an involution x. Clearly, x is a
real element in G\{1}, therefore, by Corollary 1, | IrrR(G)| ≥ 2, a contradiction.

Conversely, if | IrrR(G)| ≥ 2, then, by Corollary 1, there exists x ∈ G\{1}

real. In particular, xg = x−1, for some g ∈ G. Thus xg2

= x. If G has odd
order, we have 〈g2〉 = 〈g〉. This yields x−1 = xg = x. Thence x is an element
of order 2, a contradiction. �

Now, we turn to a subtle problem. Suppose N is a normal subgroup of G,
θ is a character of N and χ is a character of G such that χN = θ. Is there any
control on Q(χ) if Q(θ) is “under control”?

In general, there isn’t much to say. For instance, if G = 〈x〉 ∼= C4 and
N = 〈x2〉, then any character of N is rational but the characters of G are not
rational (they are not even real!).

Shortly we are gonna have to use the following result.

Gallagher’s correspondence
Let N be a normal subgroup of the finite group G, let θ ∈ Irr(N) and χ ∈

Irr(G) extending θ to G. Then Irr(G | θ) = {βχ | β ∈ Irr(G/N)}. Furthermore,

Irr(G/N) Irr(G | θ)
β βχ

is a well-defined bijection.
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Theorem 6 Assume G/N is a group of odd order and θ is a G-invariant ele-
ment of IrrR(N). Then there exists a unique real valued χ ∈ Irr(G | θ). In fact,
χN = θ. Furthermore, Q(χ) = Q(θ).

Proof. We prove that θ has a unique real valued extension by induction on
|G : N |.

Suppose N < M C G. Then |M : N | < |G : N |, so, by induction, θ has
a unique real valued extension η. Note that, by uniqueness, η is G-invariant:
since M is a normal subgroup of G, if g ∈ G, then η, ηg are two real valued
extensions of θ living in M , so, by uniqueness, ηg = η.

Now |G : M | < |G : N |, so η has a unique real valued extension χ, i.e.
χM = η. Note that χN = (χM )N = ηN = θ, therefore χ is an extension of θ.

Assume, by a way of contradiction, that ψ is another real valued extension
of θ to G. So, by Gallagher’s correspondence, ψ = βχ for some β ∈ Irr(G | N).
Now, ψ = ψ = βχ = βχ = βχ. Gallagher’s correspondence yields that β = β
(Gallagher’s correspondence is a bijection!). So, β ∈ IrrR(G/N), but G/N has
odd order, thence β = 1. Thus ψ = χ.

Since, by the Odd Order Theorem, G/N is solvable, it remains to prove
the result when G/N is cyclic of prime order p. In this case, it is well-known
(and easy) that θ extends to G. Let ξ be an extension. The map λ 7→ λξ
is a bijection from Irr(G/N) to Irr(G | θ). Since | Irr(G/N)| = p, we have
| Irr(G | θ)| = p. Now, θ is real, so χG is real. Therefore, complex conjugaction
acts on Irr(G | θ) as a group of order 2 on a odd set. (Another way to see this
is the following. If ψ ∈ Irr(G) and ψN = θ, then, complex conjugaction and
restriction commute, so, (ψ)N = ψN = θ = θ) Therefore, there exists a fixed
point χ, i.e. χ ∈ IrrR(G | θ).

Like in the previous case, Gallagher’s correspondence yields that χ is unique
(If ψ is another real valued extension of θ, then ψ = λχ for some λ ∈ Irr(G/N).
So, ψ = ψ = λχ = λχ. Thus, we have λ = λ. So, λ ∈ IrrR(G/N) = {1}. Thence
ψ = χ and χ is unique).

It remains to prove that Q(χ) = Q(θ). Let n be the order of G. We have
Q(χ),Q(θ) ⊆ Qn. If σ ∈ Gal(Qn/Q) fixes χ, then θσ = (χN )σ = (χσ)N =
χN = θ. So, σ fixes θ. Conversely, assume σ ∈ Gal(Qn/Q) fixes θ. Now,
(χσ)N = (χN )σ = θσ = θ. Furthermore, since Gal(Qn/Q) is an abelian group,
we have χσ = (χ)σ = χσ. This says that χσ is a real valued extension of θ to
G. By uniqueness, χσ = χ. Lemma 1 yields that Q(χ) = Q(θ). �

Theorem 7 (CFSGs) If G has even order, then G has a non-trivial irreducible
rational character

Proof. By induction on |G|. If 1 < N C G and G/N has even order, then,
by induction, we are done. Assume G/N is odd and without loss of generality
we may as well assume that N is a minimal normal subgroup of G. If N is
abelian, then N is an elementary abelian 2-group. So, Irr(N) = IrrQ(N). Pick
1 6= λ ∈ Irr(N). Consider the inertia group T = IG(λ). Now N ≤ T ≤ G.
By Theorem 6, there exists a unique real valued extension χ of λ to T and
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Q(χ) = Q(λ) = Q. Now, by Clifford’s theorem (T is the inertia group of λ!)
χG ∈ Irr(G). Furthermore, since χ is rational, we have that χG is rational.

It remains to prove the result when N is direct product of isomorphic non-
abelian finite simple groups. Now, get your hands dirty and prove that every
finite non-abelian simple group has a non-linear rational character λ. Namely,
if S is a sporadic group, then | IrrQ(S)| ≥ 6. If S is an alternating group, then
| IrrQ(S)| = n− 1. If S is a group of Lie type, then | IrrQ(S)| ≥ 2. With such a
λ the rest of the proof is like in the soluble case. �

Definition. Let χ be the irreducible character afforded by the representation
ρ : G → GL(m,C). Note, that det(ρ) : g 7→ det(ρ(g)) is a linear character of
G (in fact det(ρ) depends only on χ and not on the representation ρ affording
the character χ). Define o(χ) to be the order of the linear character det(χ) as
element of Hom(G,C).

We note that if ρ : G → GL(m,C) is a representation of G affording the
character χ of G and σ ∈ Gal(Qn/Q) (where |G| | n), then o(χ) = o(χσ).
Indeed, ρσ : G → GL(m,C) is the representation affording the character χσ .
So, if det(ρ) = λ, then det(ρσ) = λσ . In particular, λs = 1, iff, (λs)σ = 1, iff,
(λσ)s = 1. Thus o(χ) = o(χσ). In particular, o(χ) = o(χ).

Theorem 8 Let N be a normal subgroup of G, θ be a G-invariant element in
Irr(N). If lcd{θ(1)o(θ), |G : N |} = 1, then θ extends to G. In fact, there exists
a unique extension χ such that o(χ) = o(θ). In particular, Q(χ) = Q(θ).

Lemma 5 Assume P acts on K as a group of automorphisms. If 2 | |P/CP (K)|,
then there exists 1 6= θ ∈ Irr(K) and x ∈ P such that θx = θ.

Proof. Let xCP (K) ∈ P/CP (K) be an involution. There exists k ∈ K such

that kx 6= k, otherwise x ∈ CP (K). Let 1 6= y = k−1kx. Now, yx = (k−1)xkx2

=
(k−1)xk = y−1.

Consider 〈σ〉 a group of order 2. Define an action of σ on Irr(K) by χσ = χx.

This is a well-defined action, indeed, χσ2

(g) = χσ(gx−1) = χ(gx−2) = χ(g), so,

χσ2

= χ. The element σ acts on the classes cl(K), indeed, (gK)σ = ((g−1)x)K .
These two actions are compatible in the sense of Brauer’s lemma. Indeed,
χσ(gσ) = χσ((g−1)x) = χ(g−1) = χ(g). Thus, by Lemma 4, we have that
the number of σ-invariant conjugacy classes of K is equal to the number of σ-
invariant irreducible characters ofK. Since y is a σ-invariant non-trivial element
of K, we have that there exists 1 6= θ ∈ Irr(K) such that θσ = θ, so θ

x
= θ. In

other words, θ = θx. �

Lemma 6 Let G/N be a group of odd order and χ ∈ IrrR(G). Then every
irreducible constituent of χN is real.

Proof. Let θ be an irreducible constituent of χN , so [θ, χN ]N 6= 0. In partic-
ular, θ is an irreducible constituent of χN , indeed, 0 6= [θ, χN ]N = [θ, χN ]N .

So, by Clifford’s Theorem, θ = θg , for some g ∈ G. So, θg2

= θ. Therefore,
g2 ∈ T = IG(θ). Now, N ≤ T ≤ G and G/N is odd, thus 〈gN〉 = 〈g2N〉. This
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yields gN ∈ T/N . So, g ∈ T . So, θ = θg = θ. So θ is real. �

We say that a finite group G is of Chillag-Mann type if every element in
IrrR(G) is linear.

Theorem 9 (Chillag-Mann) If G is of Chillag-Mann type then G = K × P ,
where P ∈ Syl2(G) is of Chillag-Mann type.

Theorem 10 (Tiep) Let S be a non-abelian simple group, S CG, CG(S) = 1
and G/S a 2-group. Then there exists a character χ ∈ IrrR(G) of even degree
such that [χS , 1S ] = 0.

Theorem 11 All elements of IrrR(G) have odd degree if and only if G has a
normal Sylow 2-subgroup P of Chillag-Mann type.

Proof. First we assume that G has a normal Sylow 2-subgroup of Chillag-
Mann type. Let χ be an element in IrrR(G). We have to prove that χ(1) is odd.
Let θ be an irreducible constituent of χP . By Lemma 6, θ lies in IrrR(P ). Thus,

by hypothesis, θ is a linear character. Now, χ(1) = χ(1)
θ(1) | |GP |. Therefore, χ(1)

is odd.
Conveserly. We argue by induction on |G|. Let P be a Sylow 2-subgroup of

G. If N is a nontrivial normal subgroup of G, then every element in IrrR(G/N)
has odd degree, so, by induction, PN/N is a normal subgroup ofG/N of Chillag-
Mann type. Let θ be in IrrR(PN). The character θ has a unique T -invariant
extension ψ to the inertia subgroup T = IG(θ). The uniqueness of ψ yields that
ψ is real valued. Now, χ = ψG is a real valued irreducible character of G. Thus
χ(1) is odd. Hence θ(1) is odd. This says that all elements in IrrR(PN) have
odd degree. If PN < G, then, by induction, P is a normal subgroup of PN of
Chillag-Mann type. Therefore, P is a normal subgroup of G of Chillag-Mann
type (PN is normal in G!).

This shows that we may as well assume that G has a unique minimal normal
subgroup N and G/N is a 2-group.

Assume N is soluble. If 2 | |N |, then G = P and we are done. So, |N | is odd.
Now, CP (N) is a normal of G. If CP (N) = P , then we are done. Therefore
assume CP (N) < P . Now, P is an even group acting (non-trivially) on N , thus,
by Lemma 5, P inverts some irreducible character of N . In other words, there
exists λ ∈ Irr(N)\{1} and x ∈ P , such that λx = λ. Set T = IG(λ) the inertia
group of λ. The character λ has a canonical extension ν to T . Furthermore, ν is
the only extension such that o(ν) = o(λ). Moreover, ’cause ν is it canonical, we
have νx = ν (indeed, λ

x
= λ, so uniqueness of ν yields that the same equation

holds for ν). By Clifford’s theorem, χ = νG is an irreducible character of G.
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χ G

ν T

λ N P

1

We have χ = νG = (ν)G = (νx)G = νG = χ (inducing ν or a conjugate of ν
is the same! so, νG = (νx)G!). So, χ ∈ IrrR(G). Thence, χ(1) is odd. Therefore,
T = G. This proves that λ is G-invariant. Therefore, λ = λx = λ. The group
N has odd order, so, λ = 1, a contradiction.

Assume N is not soluble. So, N = S1 × · · · × St, where the Sis are iso-
morphic non-abelian simple groups. Note that the group G acts transitively on
{S1, . . . , St}. Set S = S1, H = NG(S), CG(S) = C, H/C = H , SC/C = S
and D/C = CH(S) for a suitable subgroup D of G. Since S is a non-abelian
simple group, we have S ∩ CH (S) = 1. Therefore, D ∩ SC = C. Hence,
D ∩ S = D ∩ SC ∩ S = C ∩ S = 1. This proves that D and S are normal sub-
groups of H such that D ∩ S = 1, thus [D,S] = 1. So D = 1 and CH (S) = 1.

G

H

SC

N C

S S2 × · · · × St

1

By Theorem 10, there exists χ ∈ IrrR(H) such that χ(1) is even and [χS , 1S ] =
1. In particular, χ ∈ IrrR(H) with C ⊆ Kerχ and [χS , 1S ] = 0. Let δ 6= 1 be an
irreducible character of S lying under χ. Define ψ = δ × 1S2

× · · · × 1St
. Note

that χ lies over ψ too.
Set T = IG(ψ). We claim T ⊆ H . Let g be in G such that ψg = ψ. In

particular, Kerψ is g-invariant. But, Kerψ = S2 × · · · × St, because δ 6= 1. So,
g normalizes S2 × · · · × St. Thus g normalizes S1. Hence g ∈ H .

Let ξ be in Irr(T | ψ). Now, ξH = χ. Moreover, by definition of T , we get
χG = ξG ∈ Irr(G). Now, χ has even degree because it lies over ψ and it is
real valued. This proves that χG is an irreducible real valued character of even
degree, a contradiction. �
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Chapter 2

Day Two

Some recall on our aims.

Theorem 12 If 2 does not divide χ(1) for any χ ∈ IrrR(G), then G has a
normal Sylow 2-subgroup.

This theorem is false for rational characters: if G = PSL(2, 27), then IrrQ(G) =
{1, θ} where θ(1) = 27.

Theorem 13 If 2 divides χ(1) for any χ ∈ IrrR(G) non-linear, then G has a
normal 2-complement.

This theorem is true even for rational characters, the proof is a very deep!
In the following theorem the symbol Ep(G) denotes the smallest normal

subgroup E such that G/E is an elementary abelian p-group.

Theorem 14 (J.Thompson) Let N be a subgroup of G and p a prime such
that p does not divide |G : N |. Suppose Ep(G)∩N = Ep(N). Then Op(G)∩N =
Op(N).

We’ll soon need the previous theorem.

Lemma 7 Let λ be a linear character of G and x ∈ G. If (o(λ), |x|) = 1, then
λ(x) = 1.

Proof. Now, λo(λ) = 1, so, λo(λ)(x) = 1. Thence λ(xo(λ)) = 1. Therefore,
xo(λ) ∈ Kerλ. Since 〈x〉 = 〈xo(λ)〉, we have x ∈ Kerλ. �

Lemma 8 If λ is a linear character of G, o(λ) = pf and λP = 1 for some
P ∈ Sylp(G), then λ = 1.

Proof. Let x be an element of G. Write x as xpxp′ , where xp is a p-element
and xp′ is a p′-element. By Lemma 7, we have λ(x) = λ(xpxp′) = λ(xp) = 1. �
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Lemma 9 Let P be a Sylow p-subgroup of a finite group G. If λ is a linear
character of a p-group P that extends to G, then there exists a unique (up to a
canonical choice) δ extending λ with the same order, i.e. o(λ) = o(δ).

Proof. Let say that ψ extends λ to G. So, ψP = λ. Since ψ is linear, we can
write ψ = ψpψp′ , where ψp, respectively ψp′ , is the p-part, respectively p′-part,
of ψ. Since (ψp′)P = 1, we may as well assume that ψ = ψp (this is the canonical
choice to make!). In particular o(ψ) = pa. Since ψP = λ, we have (ψo(λ))P = 1.
Therefore, by Lemma 8, we get ψo(λ) = 1. So, o(ψ) ≤ o(λ). Trivially, we have
o(λ) ≤ o(ψ). Thus the lemma is proved. �

Theorem 15 Let G be a finite group and P ∈ Sylp(G), then the followings are
equivalent.

(a) G has a normal p-complement;

(b) every character θ ∈ Irr(P ) extends to G;

(c) every λ ∈ Irr(P/Φ(P )) extends to G.

Proof. Clearly, (a) yields (b), and, (b) yields (c). It remains to prove that (c)
yields (a).

Let λ be a character of P/Φ(P ). Note that o(λ) = 1. By hypothesis, λ
extends to a linear character χλ ∈ Irr(G). By Lemma 9, we can take χλ so
that o(χλ) = p. This yields |G/Kerχλ| = p, therefore Ep(G) ⊆ Kerχλ. So,
Ep(G)∩P ⊆ Ker((χλ)P ) = kerλ. This argument holds for any λ. Thus Ep(G)∩
P ⊆ Φ(P ). Clearly, Ep(G)∩G is a normal subgroup of P and P/(Ep(G)∩P ) is
elementary abelian. Therefore Φ(P ) ⊆ Ep(G)∩P . This proves that Ep(G)∩P =
Φ(G) = Ep(P ).

Now, by Theorem 14, we have Op(G)∩P = Op(P ) = 1. This says that P is
a complement of Op(G) in G, i.e. G has a normal p-complement. �

Theorem 16 If 2 divides χ(1) for any χ ∈ IrrR(G) non-linear, then G has a
normal 2-complement.

Proof. Let P be a Sylow 2-subgroup of G. By Theorem 15, it is enough
to prove that any character λ ∈ Irr(P/Φ(P )) extends to G. Note that the
character λ is rational. Consider λg = ∆1 +∆2+∆3, where ∆1 is the sum of the
constituents of even degree of λG, ∆2 is the sum of the real valued constituents
of odd degree and ∆3 is the sum of the non-real valued constituents of odd
degree.

Let χ be a non-real constituent of odd degree. We have [λG, χ] = [(λG), χ] =
[λG, χ]. This proves that if χ is a non-real constituent of odd degree of λG, then
χ is also a constituent. This says that ∆3 has even degree. In particular,
χ(1) ≡ ∆2(1) mod 2. Now, |G : P | is odd and λ(1) = 1, therefore 1 ≡ ∆2(1)
mod 2. So, ∆2 6= 0. This proves that there exists some character χ real valued
of odd degree over λ. By hypothesis, χ is linear. Hence χ(1) = 1 and χP = λ.
The proof is complete. �
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Theorem 17 If | cdR(G)| = 2, then G is soluble.

Proof. We have cdR(G) = {1,m}. If m is even then, by Theorem 16, G has
a normal 2-complement, and so G is soluble by the Odd Order Theorem. If m
is odd, then, by Theorem 11, G has a normal Sylow 2-subgroup, and so G is
soluble. �

We point out that Theorem 17 is also true if | cdR(G)| = 3, but the proof
requires the CFSGs.

Theorem 18 (Ito) If {|G : CG(x)| | x ∈ G} = {1,m}, then G is nilpotent.

Conjecture 1 (Navarro) If {|G : CG(x)| | x ∈ G, x real} = {1,m}, then G is
solvable.

Note that we cannot replace “solvable” with “nilpotent”. In fact, if G = Alt(4),
then {|G : CG(x)| | x real} = {1, 3}.

The following is going to be useful later on.

Theorem 19 (Gow) If G is soluble, χ ∈ IrrR(G) of odd degree, then χ is
rational. In fact, χ = λG where o(λ) = 2.

Proof. Let N be a normal subgroup of G and θ ∈ Irr(N) a constituent of χN .
We claim that θ is real. In fact, if θ ⊆ χN , then θ ⊆ χN = χN . So, by Clifford’s
correspondence, θ and θ are conjugate, θg = θ. Take T = IG(θ) = IG(θ) =
IG(θg) = IG(θ)g = T g, so g normalizes T and g2 ∈ T . So the order of gT/T
divides 2. The character θ extends to a character ψ in T and ψG = χ. We have
χ(1) = |G : T |ψ(1) odd. So, |NG(T ) : T | is odd. Therefore gT = T and g ∈ T .
Hence θ = θ.

Now, we prove that χ = λG and o(λ) = 2 by induction on G.

Step 1. We can assume that Kerχ = 1.

Step 2. We can assume that O2′(G) = 1. If θ ∈ Irr(O2′ (G)) is under χ, then θ
is real, furthermore |O2′(G)| is odd. Thus θ = 1.

Step 3. We can assume that χ is quasiprimitive, i.e. χN = eθ for any N normal
subgroup G where θ ∈ Irr(N). In fact, let N be a normal subgroup of G, ψ
the corresponding character in the inertia subgroup T . Since θ is real, we have
ψ, ψ ∈ Irr(T | θ). So, χ = ψG = (ψ)G = (ψG) = χ = χ. So, by the uniqueness
in the Clifford’s correspondence, ψ = ψ. So, ψ is odd and real valued. If T < G,
then ψ = λT and o(λ) = 2 for some λ. Then, χ = ψG = (λT )G = λG.

Step 4. Take N = O2(G). Let θ be an irreducible constituent of χN ( so
χN = eθ). By the previous step we have θ is real and G-invariant, so, by Step
1, Ker θ = 1. Now, χ(1) is odd, so θ(1) is odd and N is a 2-group. Thence
θ(1) = 1, i.e. θ is a linear character, in particular o(θ) = 2 and |N : Ker θ| = 2.
But Ker θ = 1 and so we have |N | = 2. Therefore N ⊆ ξ(G), but CG(O2(G)) ⊆
O2(G). This yields G = N and now the theorem is trivially proved. �
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Theorem 20 (Tiep) Let S be a non-abelian simple group. Then there exists
an Aut(S)-orbit Y of characters of S, Y ⊆ Irr(S)\{1} such that

(i) Y is odd;

(ii) if α ∈ Y , then α is rational of odd degree.

In fact, Y can be chosen so that |Y | = 1, except for S = PSL(2, 2f ),PSU(3, 2f )
where |Y | = 3.

Theorem 21 2 divides χ(1) for any χ ∈ IrrQ(G) non-linear if and only if G
has a normal 2-complement.

Proof. Assume G has a normal 2-complement K. Let χ be an element in
IrrR(G) non-linear. We want to prove that 2 divides χ(1). Deny it. Let θ be a
constituent of χ. Now, χ(1)/θ(1) divides |G : K| (a power of 2). So, if 2 does
not divide χ(1), then χK = θ. The character θ is real valued and K has odd
order, so, θ = 1. So, χ ∈ Irr(G/K). Now, G/K is a 2-group and χ(1) is odd,
therefore χ is linear, a contradiction.

Vice versa. We argue by induction on |G|. Let N be a minimal normal
subgroup of G. The group G/N has a normal 2-complement by induction. If N
is abelian, then G is soluble. We claim that any real valued non linear character
of G has even degree and so this theorem would follow from Theorem 16. Let
χ be an irreducible real valued non-linear character of G of odd degree. Then,
by Theorem 19, χ is rational.

We may assume that N = S1 × · · · × St, where the Sis are non-abelian
simple groups. Fix S = S1. We have Si = Sgi , for some gi ∈ G. So, by
Theorem 20, there exists Y a Aut(S)-orbit of Irr(S)\{1} of odd size such that
any element in Y is rational of odd degree. Clearly, this set Y is NG(S)-
invariant, in fact NG(S)/CG(S) ⊆ Aut(S). Take Yi = Y gi ⊆ Irr(Sgi) = Irr(Si).
Set Z = {α1 · · ·αt | αi ∈ Yi} ⊆ Irr(N). Note that if β lies in Z, then β has odd
degree and is rational.

Let P be a Sylow 2-subgroup of G and K a normal 2-complement mod N .

G

K P

N

Now, P/N is a 2-group acting on the odd set Z. So, P/N fixes some β ∈ Irr(N)
rational of odd degree. Set T = IG(β). Now, detβ is a linear character of N ,
thus detβ = 1, so, o(β) = 1. Moreover, β(1) is odd, therefore, (β(1)o(β), |G :
N |) = 1, so, by Theorem 8, there exists β′ ∈ Irr(P ) rational that extends β.
Furthermore, β is real and |T ∩N : N | is odd so, by Theorem 6, there exists a
unique real valued δ extension of β to T ∩K, in fact Q(δ) = Q(β) = Q and so
δ is rational.
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G

K T δ′

δ K ∩ T P β′

N β

The reader might check that the uniqueness of δ yields that δ is P -invariant.
Now, using Lemma 3, we have a bijection

Irr(T | δ) Irr(P | β)
χ χP

Let δ′ be the δ-corresponding character in T , so δ′ is the unique character
in Irr(T | δ) such that (δ′)P = β′.

Let σ be in Gal(Qn/Q), where n = |G|. Now, (δ′)σ is a character of T over
δ ((δ′)σ ∈ Irr(T | δσ) = Irr(T | δ)). Moreover, ((δ′)σ)P = (β′)σ = β′ (β′ is
rational). So, by uniqueness, (δ′)σ = δ′. This proves that δ′ is rational.

Now, by Clifford’s correspondence, (δ′)G = χ is a rational irreducible char-
acter of G of odd degree (in fact |G : T | is odd and (δ′)(1) = δ(1) = β(1) is
odd). This proves that χ is an irreducible rational character of G of odd degree.
Thus, χ is linear! So, β is a linear character of N . Hence β = 1, a contradiction.
The theorem is proved. �

Theorem 21 has the following natural generalization.

Theorem 22 If p divides χ(1) for any χ ∈ IrrQp
(G) non-linear, then G has a

normal p-complement.

From now on G is a soluble group. The rest of this course is devoted in prov-
ing that |{χ ∈ IrrQ(G) | χ(1) is odd}| is locally group theoretically determined.

Lemma 10 (MacKey) If ν ∈ Irr(H) and H ≤ G, then νG is irreducible if
and only if [νH∩Hg , (νg)H∩Hg ] = 0 for any g ∈ G\H.

Proof. This is a trivial application of MacKey’s formula. Recall that if T is a
set of representatives of (H,H)-double cosets of G, i.e. G =

∐
t∈T

HtH , then

(νG)H =
∑

t∈T

((νt)H∩Ht )H .
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Now,

[νG, νG] = [(νG)H , ν]H =
∑

t∈T

[(νt)H∩Hg , νH∩Ht ]H∩Ht

= [ν, ν] +
∑

t∈T ,t/∈H

[(νt)H∩Ht , νH∩Ht ].

This proves that [νG, νG] = 1 if and only if [(νt)H∩Ht , νH∩Ht ] = 0 for any
t ∈ G\H . �

Lemma 11 Let ν, λ be linear characters of G and P ∈ Sylp(G). If νNG(P ) =
λNG(P ), then ν = λ.

Proof. Set δ = λν. By hypothesis, δNG(P ) = 1. So, NG(P ) ⊆ Ker δ C G.
Using the Frattini argument, we get Ker δ = G. Thence, δ = 1 and ν = λ. �

MacKey Conjecture

| Irr
p′

(G)| = | Irr
p′

(NG(P ))|, P ∈ Syl
p

(G).

It is fairly well-known that there cannot be any natural-canonical bijection
between Irrp′(G) and Irrp′(NG(P )).

Let χ be a real valued character of G of odd degree. By Theorem 19, the
character χ is actually rational and χ = λG, for some linear character λ ∈ Irr(H)
and o(λ) = 2. In particular, it is easy to notice that χ has odd degree if and
only if H contains a Sylow 2-subgroup P of G.

Theorem 23 Using the previous notation. (λNG(P ))
NG(P ) ∈ IrrQ,odd(NG(P )).

Proof. It is enough to prove that (λNG(P ))
NG(P ) is irreducible. Note that this

theorem sets a “natural” correspondence between rational irreducible characters
of odd degree of G and rational irreducible characters of odd degree of NG(P ).

Set W = NH(P ), N = NG(P ) and ν = λW . We want to prove that
νN is irreducible. Take n in N\W , by Lemma 10, we have to prove that
[νW∩W n , (νn)W∩W n ] = 0. Deny it. Since, νW∩W n and (νn)W∩W n are both
linear, we have to prove that they coincide. Consider the following picture
(Wn = NHw (P ), W ∩Wn = NH∩Hn(P )).

λ H Hn λn

λH∩Hn H ∩Hn

ν W Wn νn

W ∩Wn

P

The characters λH∩Hn and (λn)H∩Hn restricted to W ∩W n are equal:

(λH∩Hn )W∩W n = νW∩W n = (νn)W∩W n = (λn)W∩W n = ((λn)H∩Hn )W∩W n .
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By Lemma 11, we have λH∩Hn = (λn)H∩Hn . So, [λH∩Hn , (λn)H∩Hn ] 6= 0.
but, λG ∈ Irr(G). So, by Lemma 10, n lies H . This yields n ∈ H ∩ N =
NH(P ) = W , a contradiction. �

Using all the previous results one might check that there exists a well-defined
natural bijection from IrrQ,odd(G) into IrrQ,odd(NG(P )) (one has for example to
check that the character constructed before does not depend on the subgroup
H of G). This result is clearly false if G is not soluble (take G = Alt(6)).

Now it is pretty easy to compute the size of IrrQ,odd(G). Indeed, the size
of IrrQ,odd(NG(P )) is easy to get. We leave it to the reader to check that the
number of elements in IrrQ,odd(NG(P )) is equal to the number of NG(P )-orbits
on P/Φ(P ). Thus, we have:

|IrrQ,odd(G)| = #NG(P )-orbits on P/Φ(P ).

This result holds only for the prime 2, in the sense | IrrQ,p′(G)| 6= | IrrQ,p′(NG(P ))|
(use G = GL(2, 3) and p = 3).
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