Characters, Fields and Degrees

Gabriel Navarro

March 31, 2007

Abstract

Lectures given at Universitá Degli Studi di Milano Statale March 22-23, (2007), (prepared by Пablo Spiga) I have relied mainly on my notes from the lectures. So, any errors are the product of the note-taking and are not to be attributed to the content of the lectures

Contents

1 Day One 2
2 Day Two 9

Chapter 1

Day One

We first set some notation to be used throughout the lectures.
Let G be a finite group and p be a prime. We denote by $\operatorname{Syl}_{p}(G)$ the set of Sylow p-subgroups of G. The symbol $\operatorname{Irr}(G)$ denotes the set of irreducible characters of G. Let F be a subfield of \mathbb{C}, we denote by $\operatorname{Irr}_{F}(G)$ the set of irreducible characters χ of G such that $\chi(g) \in F$ for any $g \in G$. Similarly, if $\chi \in \operatorname{Irr}(G)$, then $\mathbb{Q}(\chi)$ denotes the field $\mathbb{Q}[\chi(g) \mid g \in G]$. In particular, $\operatorname{Irr}_{\mathbb{R}}(G)$ denotes the set of real valued irreducible characters of G. We use the symbol $\operatorname{cd}_{F}(G)$ for set $\left\{\chi(1) \mid \chi \in \operatorname{Irr}_{F}(G)\right\}$ and $\operatorname{cl}(G)$ for the set of conjugacy classes of G. The element x of G is said to be real if $x^{g}=x^{-1}$ for some $g \in G$. In particular $\operatorname{cl}_{r}(G)$ denotes the set of conjugacy classes of real elements of G.

The main aim of this short course is proving some the following results.
Theorem 1 (Ito-Michler (CFSGs)) Let G be a finite group and p a prime number. If $p \bigvee \chi(1)$ for every $\chi \in \operatorname{Irr}(G)$, then $P \triangleleft G$, where $P \in \operatorname{Syl}_{p}(G)$.

Theorem 2 (Dolfi-Navarro-Tiep) If $2 \vee \chi(1)$ for every $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$, then $P \triangleleft G$, where $P \in \operatorname{Syl}_{2}(G)$.

Theorem 3 (Navarro-Tiep) If $2 \vee \chi(1)$ for any $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$ non-linear, then G has a normal 2-complement.

We quote the following two results relating the structure of a finite group G with $\left|\operatorname{cd}_{F}(G)\right|$.

Theorem 4 If $\left|\operatorname{cd}_{\mathbb{C}}(G)\right| \leq 4$, then G is solvable.
Clearly, Theorem 4 is the best possible, in fact $\operatorname{cd}_{\mathbb{C}}(\operatorname{Alt}(5))=\{1,3,4,5\}$.
Theorem 5 If $\left|\operatorname{cd}_{\mathbb{R}}(G)\right| \leq 3$, then G is solvable.
Clearly, Theorem 5 is the best possible, in fact $\operatorname{cd}_{R}(\operatorname{Alt}(5))=\operatorname{cd}_{\mathbb{C}}(\operatorname{Alt}(5))=$ $\{1,3,4,5\}$.

Let n be in \mathbb{N}. Set $\mathbb{Q}_{n}=\mathbb{Q}[\xi]$, where $\xi \in \mathbb{C}$ is a primitive nth root of unity. It is a classical (easy) result that if $\mathbb{Q} \subseteq F \subset \mathbb{Q}_{n}$ and $\sigma \in \operatorname{Gal}(F / \mathbb{Q})$, then σ extends to some $\hat{\sigma}$ in $\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$.

Furthermore, if G is a finite group and $|G| \mid n$, then $\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$ acts naturally on $\operatorname{Irr}(G)$, i.e. $(\chi, \sigma) \mapsto \chi^{\sigma} \in \operatorname{Irr}(G)$, where $\chi^{\sigma}(g)=(\chi(g))^{\sigma}$. In other words, if $\rho: G \rightarrow \mathrm{GL}\left(m, \mathbb{Q}_{n}\right)$ is the representation affording the irreducible character χ and $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$, then χ^{σ} is the character afforded by the irreducible representation $\rho^{\sigma}: G \rightarrow \operatorname{GL}\left(m, \mathbb{Q}_{n}\right)$ defined by $\left(\rho^{\sigma}\right)(g)=\left(a_{i j}^{\sigma}\right)_{i j}$, where $\rho(g)=$ $\left(a_{i j}\right)_{i j}$.

Lemma 1 Let H and G be finite groups, $\psi \in \operatorname{Irr}(H)$ and $\chi \in \operatorname{Irr}(G)$. Assume $\mathbb{Q}(\psi), \mathbb{Q}(\chi) \subseteq \mathbb{Q}_{m}$, for some $m \in \mathbb{N}$. We have $\mathbb{Q}(\chi) \subseteq \mathbb{Q}(\psi)$ if and only if whenever $\psi^{\sigma}=\psi$, for some $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{m} / \mathbb{Q}\right)$, then $\chi^{\sigma}=\chi$.

Proof. Clear from the definitions and straightforward Galois Theory.
Lemma 2 Let A be a group acting, as a group of automorphisms, on a finite group G of order dividing n. Set $\mathcal{G}=\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$. The group A acts on $\operatorname{Irr}(G)$ by $\chi^{a}(g)=\chi\left(g^{a^{-1}}\right)$, for $a \in A, g \in G, \chi \in \operatorname{Irr}(G)$. Furthermore, the action of A on $\operatorname{Irr}(G)$ commutes with the action of \mathcal{G} on $\operatorname{Irr}(G)$, i.e. $\left(\chi^{a}\right)^{\sigma}=\left(\chi^{\sigma}\right)^{a}$, for any $\chi \in \operatorname{Irr}(G), a \in A, g \in \mathcal{G}$.

Proof. Exercise!

If χ is a character of G and H is a subgroup of G, then χ_{H} denotes the restriction of the character χ to the subgroup H. Furthermore, if N is a normal subgroup of G and $\theta \in \operatorname{Irr}(N)$, then $\operatorname{Irr}(G \mid \theta)$ denotes the set of irreducible characters of G that restricted to N have constituent θ.

Lemma 3 (Isaacs) Let N be a normal subgroup of a group G. Let H be a subgroup of $G, M=N \cap H$ and θ be a G-invariant irreducible character of N. Assume $\theta_{M}=\varphi \in \operatorname{Irr}(M)$. Then the map ${ }_{H}: \operatorname{Irr}(G \mid \theta) \rightarrow \operatorname{Irr}(H \mid \varphi)$ defined by $\chi \mapsto \chi_{H}$ is a well-defined bijection.

Proof. Let χ be an element of $\operatorname{Irr}(G \mid \theta)$. So, by Clifford's Theorem, $\chi_{N}=e \theta=\frac{\chi(1)}{\theta(1)} \theta=\frac{\chi(1)}{\varphi(1)} \theta$. Furthermore, $\chi_{H}=e_{1} \xi_{1}+\cdots+e_{2} \xi_{s}$, for some $\xi_{i} \in \operatorname{Irr}(H \mid \varphi)$. In particular,

$$
\frac{\chi(1)}{\varphi(1)}=e_{1} \frac{\xi_{1}(1)}{\varphi(1)}+\cdots+e_{s} \frac{\xi_{s}(1)}{\varphi(1)}
$$

Similarly, by the hypothesis on φ, we have $\frac{\chi(1)}{\varphi(1)} \varphi$.
By Frobenius Reciprocity Law, $\xi_{i}^{G}=e_{i} \chi+\Delta_{i}$. So,

$$
\begin{equation*}
\left(\left(\xi_{i}\right)^{G}\right)_{N}=e_{i} \chi_{N}+\left(\Delta_{i}\right)_{N}=e_{i} \frac{\chi(1)}{\varphi(1)} \theta+\left(\Delta_{i}\right)_{N} \tag{1.1}
\end{equation*}
$$

But, using MacKey, we get

$$
\begin{equation*}
\left(\left(\xi_{i}\right)^{G}\right)_{N}=\left(\left(\xi_{i}\right)_{M}\right)^{N}=\frac{\xi_{i}(1)}{\varphi(1)} \varphi^{N}=\frac{\xi_{i}(1)}{\varphi(1)} \theta+\Lambda \tag{1.2}
\end{equation*}
$$

where Λ is a character of N not containing θ.
Summing up Equation (1.1), (1.2), we get $e_{i} \frac{\chi(1)}{\varphi(1)} \leq \frac{\xi_{i}(1)}{\varphi(1)}$. Therefore, $e_{i}^{2} \frac{\chi(1)}{\varphi(1)} \leq$ $e_{i} \frac{\xi_{i}(1)}{\varphi(1)}$. Now, using (\dagger), we have $e_{i}^{2} \frac{\chi(1)}{\varphi(1)} \leq \frac{\chi(1)}{\chi(1)}$. Thus, $e_{i}^{2}=1$. So, $\chi(1)=\xi_{i}(1)$. Therefore, $\chi_{H}=\xi_{i}$.

Lemma 4 (Brauer) Let A be a group acting on $\operatorname{Irr}(G)$ and on $\operatorname{cl}(G)$, such that $\chi^{a}\left(x^{a}\right)=\chi(x)$ for any $a \in A$. Then $\mid\left\{\chi \in \operatorname{Irr}(G) \mid \chi^{a}=\chi\right.$ for any $a \in$ $A\}|=|\left\{c \in \operatorname{cl}(G) \mid c^{a}=c\right.$ for any $\left.a \in A\right\} \mid$.

Lemma 4 has the following well-known application.
Corollary $1\left|\operatorname{Irr}_{\mathbb{R}}(G)\right|=\left|\operatorname{cl}_{r}(G)\right|$.
Proof. Let σ be an element of order 2 and define $\chi^{\sigma}=\bar{\chi}$ and $\left(x^{G}\right)^{\sigma}=\left(x^{-1}\right)^{G}$. Set $A=\langle\sigma\rangle$. Clearly, $\chi^{\sigma}\left(x^{\sigma}\right)=\overline{\chi\left(x^{\sigma}\right)}=\overline{\chi\left(x^{-1}\right)}=\chi(x)$. Therefore, this proposition follows from Lemma 4.

Corollary $2\left|\operatorname{Irr}_{\mathbb{R}}(G)\right|=1$ if and only if $|G|$ has odd order.
Proof. If 2 divides the order of G, then G has an involution x. Clearly, x is a real element in $G \backslash\{1\}$, therefore, by Corollary $1,\left|\operatorname{Irr}_{\mathbb{R}}(G)\right| \geq 2$, a contradiction.

Conversely, if $\left|\operatorname{Irr}_{\mathbb{R}}(G)\right| \geq 2$, then, by Corollary 1, there exists $x \in G \backslash\{1\}$ real. In particular, $x^{g}=x^{-1}$, for some $g \in G$. Thus $x^{g^{2}}=x$. If G has odd order, we have $\left\langle g^{2}\right\rangle=\langle g\rangle$. This yields $x^{-1}=x^{g}=x$. Thence x is an element of order 2, a contradiction.

Now, we turn to a subtle problem. Suppose N is a normal subgroup of G, θ is a character of N and χ is a character of G such that $\chi_{N}=\theta$. Is there any control on $\mathbb{Q}(\chi)$ if $\mathbb{Q}(\theta)$ is "under control"?

In general, there isn't much to say. For instance, if $G=\langle x\rangle \cong C_{4}$ and $N=\left\langle x^{2}\right\rangle$, then any character of N is rational but the characters of G are not rational (they are not even real!).

Shortly we are gonna have to use the following result.

Gallagher's correspondence

Let N be a normal subgroup of the finite group G, let $\theta \in \operatorname{Irr}(N)$ and $\chi \in$ $\operatorname{Irr}(G)$ extending θ to G. Then $\operatorname{Irr}(G \mid \theta)=\{\beta \chi \mid \beta \in \operatorname{Irr}(G / N)\}$. Furthermore,

is a well-defined bijection.

Theorem 6 Assume G / N is a group of odd order and θ is a G-invariant element of $\operatorname{Irr}_{\mathbb{R}}(N)$. Then there exists a unique real valued $\chi \in \operatorname{Irr}(G \mid \theta)$. In fact, $\chi_{N}=\theta$. Furthermore, $\mathbb{Q}(\chi)=\mathbb{Q}(\theta)$.

Proof. We prove that θ has a unique real valued extension by induction on $|G: N|$.

Suppose $N<M \triangleleft G$. Then $|M: N|<|G: N|$, so, by induction, θ has a unique real valued extension η. Note that, by uniqueness, η is G-invariant: since M is a normal subgroup of G, if $g \in G$, then η, η^{g} are two real valued extensions of θ living in M, so, by uniqueness, $\eta^{g}=\eta$.

Now $|G: M|<|G: N|$, so η has a unique real valued extension χ, i.e. $\chi_{M}=\eta$. Note that $\chi_{N}=\left(\chi_{M}\right)_{N}=\eta_{N}=\theta$, therefore χ is an extension of θ.

Assume, by a way of contradiction, that ψ is another real valued extension of θ to G. So, by Gallagher's correspondence, $\psi=\beta \chi$ for some $\beta \in \operatorname{Irr}(G \mid N)$. Now, $\psi=\bar{\psi}=\overline{\beta \chi}=\bar{\beta} \bar{\chi}=\bar{\beta} \chi$. Gallagher's correspondence yields that $\beta=\bar{\beta}$ (Gallagher's correspondence is a bijection!). So, $\beta \in \operatorname{Irr}_{\mathbb{R}}(G / N)$, but G / N has odd order, thence $\beta=1$. Thus $\psi=\chi$.

Since, by the Odd Order Theorem, G / N is solvable, it remains to prove the result when G / N is cyclic of prime order p. In this case, it is well-known (and easy) that θ extends to G. Let ξ be an extension. The map $\lambda \mapsto \lambda \xi$ is a bijection from $\operatorname{Irr}(G / N)$ to $\operatorname{Irr}(G \mid \theta)$. Since $|\operatorname{Irr}(G / N)|=p$, we have $|\operatorname{Irr}(G \mid \theta)|=p$. Now, θ is real, so χ^{G} is real. Therefore, complex conjugaction acts on $\operatorname{Irr}(G \mid \theta)$ as a group of order 2 on a odd set. (Another way to see this is the following. If $\psi \in \operatorname{Irr}(G)$ and $\psi_{N}=\theta$, then, complex conjugaction and restriction commute, so, $(\bar{\psi})_{N}=\overline{\psi_{N}}=\bar{\theta}=\theta$) Therefore, there exists a fixed point χ, i.e. $\chi \in \operatorname{Irr}_{\mathbb{R}}(G \mid \theta)$.

Like in the previous case, Gallagher's correspondence yields that χ is unique (If ψ is another real valued extension of θ, then $\psi=\lambda \chi$ for some $\lambda \in \operatorname{Irr}(G / N)$. So, $\psi=\bar{\psi}=\overline{\lambda \chi}=\bar{\lambda} \chi$. Thus, we have $\lambda=\bar{\lambda}$. So, $\lambda \in \operatorname{Irr}_{\mathbb{R}}(G / N)=\{1\}$. Thence $\psi=\chi$ and χ is unique).

It remains to prove that $\mathbb{Q}(\chi)=\mathbb{Q}(\theta)$. Let n be the order of G. We have $\mathbb{Q}(\chi), \mathbb{Q}(\theta) \subseteq \mathbb{Q}_{n}$. If $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$ fixes χ, then $\theta^{\sigma}=\left(\chi_{N}\right)^{\sigma}=\left(\chi^{\sigma}\right)_{N}=$ $\chi_{N}=\theta$. So, σ fixes θ. Conversely, assume $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$ fixes θ. Now, $\left(\chi^{\sigma}\right)_{N}=\left(\chi_{N}\right)^{\sigma}=\theta^{\sigma}=\theta$. Furthermore, since $\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$ is an abelian group, we have $\overline{\chi^{\sigma}}=(\bar{\chi})^{\sigma}=\chi^{\sigma}$. This says that χ^{σ} is a real valued extension of θ to G. By uniqueness, $\chi^{\sigma}=\chi$. Lemma 1 yields that $\mathbb{Q}(\chi)=\mathbb{Q}(\theta)$.

Theorem 7 (CFSGs) If G has even order, then G has a non-trivial irreducible rational character

Proof. By induction on $|G|$. If $1<N \triangleleft G$ and G / N has even order, then, by induction, we are done. Assume G / N is odd and without loss of generality we may as well assume that N is a minimal normal subgroup of G. If N is abelian, then N is an elementary abelian 2-group. So, $\operatorname{Irr}(N)=\operatorname{Irr}_{\mathbb{Q}}(N)$. Pick $1 \neq \lambda \in \operatorname{Irr}(N)$. Consider the inertia group $T=I_{G}(\lambda)$. Now $N \leq T \leq G$. By Theorem 6, there exists a unique real valued extension χ of λ to T and
$\mathbb{Q}(\chi)=\mathbb{Q}(\lambda)=\mathbb{Q}$. Now, by Clifford's theorem $(T$ is the inertia group of $\lambda!)$ $\chi^{G} \in \operatorname{Irr}(G)$. Furthermore, since χ is rational, we have that χ^{G} is rational.

It remains to prove the result when N is direct product of isomorphic nonabelian finite simple groups. Now, get your hands dirty and prove that every finite non-abelian simple group has a non-linear rational character λ. Namely, if S is a sporadic group, then $\left|\operatorname{Irr}_{\mathbb{Q}}(S)\right| \geq 6$. If S is an alternating group, then $\left|\operatorname{Irr}_{\mathbb{Q}}(S)\right|=n-1$. If S is a group of Lie type, then $\left|\operatorname{Irr}_{\mathbb{Q}}(S)\right| \geq 2$. With such a λ the rest of the proof is like in the soluble case.

Definition. Let χ be the irreducible character afforded by the representation $\rho: G \rightarrow \mathrm{GL}(m, \mathbb{C})$. Note, that $\operatorname{det}(\rho): g \mapsto \operatorname{det}(\rho(g))$ is a linear character of G (in fact $\operatorname{det}(\rho)$ depends only on χ and not on the representation ρ affording the character $\chi)$. Define $o(\chi)$ to be the order of the linear character $\operatorname{det}(\chi)$ as element of $\operatorname{Hom}(G, \mathbb{C})$.

We note that if $\rho: G \rightarrow \operatorname{GL}(m, \mathbb{C})$ is a representation of G affording the character χ of G and $\sigma \in \operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$ (where $\left.|G| \mid n\right)$, then $o(\chi)=o\left(\chi^{\sigma}\right)$. Indeed, $\rho^{\sigma}: G \rightarrow \mathrm{GL}(m, \mathbb{C})$ is the representation affording the character χ^{σ}. So, if $\operatorname{det}(\rho)=\lambda$, then $\operatorname{det}\left(\rho^{\sigma}\right)=\lambda^{\sigma}$. In particular, $\lambda^{s}=1$, iff, $\left(\lambda^{s}\right)^{\sigma}=1$, iff, $\left(\lambda^{\sigma}\right)^{s}=1$. Thus $o(\chi)=o\left(\chi^{\sigma}\right)$. In particular, $o(\chi)=o(\bar{\chi})$.

Theorem 8 Let N be a normal subgroup of G, θ be a G-invariant element in $\operatorname{Irr}(N)$. If $\operatorname{lcd}\{\theta(1) o(\theta),|G: N|\}=1$, then θ extends to G. In fact, there exists a unique extension χ such that $o(\chi)=o(\theta)$. In particular, $\mathbb{Q}(\chi)=\mathbb{Q}(\theta)$.

Lemma 5 Assume P acts on K as a group of automorphisms. If $2\left|\left|P / C_{P}(K)\right|\right.$, then there exists $1 \neq \theta \in \operatorname{Irr}(K)$ and $x \in P$ such that $\theta^{x}=\bar{\theta}$.

Proof. Let $x C_{P}(K) \in P / C_{P}(K)$ be an involution. There exists $k \in K$ such that $k^{x} \neq k$, otherwise $x \in C_{P}(K)$. Let $1 \neq y=k^{-1} k^{x}$. Now, $y^{x}=\left(k^{-1}\right)^{x} k^{x^{2}}=$ $\left(k^{-1}\right) x k=y^{-1}$.

Consider $\langle\sigma\rangle$ a group of order 2. Define an action of σ on $\operatorname{Irr}(K)$ by $\chi^{\sigma}=\bar{\chi}^{x}$. This is a well-defined action, indeed, $\chi^{\sigma^{2}}(g)=\overline{\chi^{\sigma}\left(g^{x^{-1}}\right)}=\overline{\overline{\chi\left(g^{x^{-2}}\right)}}=\chi(g)$, so, $\chi^{\sigma^{2}}=\chi$. The element σ acts on the classes $\operatorname{cl}(K)$, indeed, $\left(g^{K}\right)^{\sigma}=\left(\left(g^{-1}\right)^{x}\right)^{K}$. These two actions are compatible in the sense of Brauer's lemma. Indeed, $\chi^{\sigma}\left(g^{\sigma}\right)=\chi^{\sigma}\left(\left(g^{-1}\right)^{x}\right)=\overline{\chi\left(g^{-1}\right)}=\chi(g)$. Thus, by Lemma 4, we have that the number of σ-invariant conjugacy classes of K is equal to the number of σ invariant irreducible characters of K. Since y is a σ-invariant non-trivial element of K, we have that there exists $1 \neq \theta \in \operatorname{Irr}(K)$ such that $\theta^{\sigma}=\theta$, so $\bar{\theta}^{x}=\theta$. In other words, $\bar{\theta}=\theta^{x}$.

Lemma 6 Let G / N be a group of odd order and $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$. Then every irreducible constituent of χ_{N} is real.

Proof. Let θ be an irreducible constituent of χ_{N}, so $\left[\theta, \chi_{N}\right]_{N} \neq 0$. In particular, $\bar{\theta}$ is an irreducible constituent of χ_{N}, indeed, $0 \neq \overline{\left[\theta, \chi_{N}\right]_{N}}=\left[\bar{\theta}, \chi_{N}\right]_{N}$.

So, by Clifford's Theorem, $\bar{\theta}=\theta^{g}$, for some $g \in G$. So, $\theta^{g^{2}}=\theta$. Therefore, $g^{2} \in T=I_{G}(\theta)$. Now, $N \leq T \leq G$ and G / N is odd, thus $\langle g N\rangle=\left\langle g^{2} N\right\rangle$. This
yields $g N \in T / N$. So, $g \in T$. So, $\bar{\theta}=\theta^{g}=\theta$. So θ is real.
We say that a finite group G is of Chillag-Mann type if every element in $\operatorname{Irr}_{\mathbb{R}}(G)$ is linear.

Theorem 9 (Chillag-Mann) If G is of Chillag-Mann type then $G=K \times P$, where $P \in \operatorname{Syl}_{2}(G)$ is of Chillag-Mann type.

Theorem 10 (Tiep) Let S be a non-abelian simple group, $S \triangleleft G, C_{G}(S)=1$ and G / S a 2-group. Then there exists a character $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$ of even degree such that $\left[\chi_{S}, 1_{S}\right]=0$.

Theorem 11 All elements of $\operatorname{Irr}_{\mathbb{R}}(G)$ have odd degree if and only if G has a normal Sylow 2-subgroup P of Chillag-Mann type.

Proof. First we assume that G has a normal Sylow 2-subgroup of ChillagMann type. Let χ be an element in $\operatorname{Irr}_{\mathbb{R}}(G)$. We have to prove that $\chi(1)$ is odd. Let θ be an irreducible constituent of χ_{P}. By Lemma $6, \theta$ lies in $\operatorname{Irr}_{\mathbb{R}}(P)$. Thus, by hypothesis, θ is a linear character. Now, $\left.\chi(1)=\frac{\chi(1)}{\theta(1)}| | G_{P} \right\rvert\,$. Therefore, $\chi(1)$ is odd.

Conveserly. We argue by induction on $|G|$. Let P be a Sylow 2-subgroup of G. If N is a nontrivial normal subgroup of G, then every element in $\operatorname{Irr}_{\mathbb{R}}(G / N)$ has odd degree, so, by induction, $P N / N$ is a normal subgroup of G / N of ChillagMann type. Let θ be in $\operatorname{Irr}_{\mathbb{R}}(P N)$. The character θ has a unique T-invariant extension ψ to the inertia subgroup $T=I_{G}(\theta)$. The uniqueness of ψ yields that ψ is real valued. Now, $\chi=\psi^{G}$ is a real valued irreducible character of G. Thus $\chi(1)$ is odd. Hence $\theta(1)$ is odd. This says that all elements in $\operatorname{Irr}_{\mathbb{R}}(P N)$ have odd degree. If $P N<G$, then, by induction, P is a normal subgroup of $P N$ of Chillag-Mann type. Therefore, P is a normal subgroup of G of Chillag-Mann type ($P N$ is normal in $G!$).

This shows that we may as well assume that G has a unique minimal normal subgroup N and G / N is a 2 -group.

Assume N is soluble. If $2||N|$, then $G=P$ and we are done. So, $| N \mid$ is odd. Now, $C_{P}(N)$ is a normal of G. If $C_{P}(N)=P$, then we are done. Therefore assume $C_{P}(N)<P$. Now, P is an even group acting (non-trivially) on N, thus, by Lemma $5, P$ inverts some irreducible character of N. In other words, there exists $\lambda \in \operatorname{Irr}(N) \backslash\{1\}$ and $x \in P$, such that $\lambda^{x}=\bar{\lambda}$. Set $T=I_{G}(\lambda)$ the inertia group of λ. The character λ has a canonical extension ν to T. Furthermore, ν is the only extension such that $o(\nu)=o(\lambda)$. Moreover, 'cause ν is it canonical, we have $\bar{\nu}^{x}=\nu$ (indeed, $\bar{\lambda}^{x}=\lambda$, so uniqueness of ν yields that the same equation holds for ν). By Clifford's theorem, $\chi=\nu^{G}$ is an irreducible character of G.

We have $\bar{\chi}=\overline{\nu^{G}}=(\bar{\nu})^{G}=\left(\nu^{x}\right)^{G}=\nu^{G}=\chi$ (inducing ν or a conjugate of ν is the same! so, $\nu^{G}=\left(\nu^{x}\right)^{G}!$). So, $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$. Thence, $\chi(1)$ is odd. Therefore, $T=G$. This proves that λ is G-invariant. Therefore, $\bar{\lambda}=\lambda^{x}=\lambda$. The group N has odd order, so, $\lambda=1$, a contradiction.

Assume N is not soluble. So, $N=S_{1} \times \cdots \times S_{t}$, where the S_{i} s are isomorphic non-abelian simple groups. Note that the group G acts transitively on $\left\{S_{1}, \ldots, S_{t}\right\}$. Set $S=S_{1}, H=N_{G}(S), C_{G}(S)=C, H / C=\bar{H}, S C / C=\bar{S}$ and $D / C=C_{\bar{H}}(\bar{S})$ for a suitable subgroup D of G. Since \bar{S} is a non-abelian simple group, we have $\bar{S} \cap C_{\bar{H}}(\bar{S})=1$. Therefore, $D \cap S C=C$. Hence, $D \cap S=D \cap S C \cap S=C \cap S=1$. This proves that D and S are normal subgroups of H such that $D \cap S=1$, thus $[D, S]=1$. So $D=1$ and $C_{\bar{H}}(\bar{S})=1$.

By Theorem 10 , there exists $\chi \in \operatorname{Irr}_{\mathbb{R}}(\bar{H})$ such that $\chi(1)$ is even and $\left[\chi_{\bar{S}}, 1_{\bar{S}}\right]=$ 1. In particular, $\chi \in \operatorname{Irr}_{\mathbb{R}}(H)$ with $C \subseteq \operatorname{Ker} \chi$ and $\left[\chi_{S}, 1_{S}\right]=0$. Let $\delta \neq 1$ be an irreducible character of S lying under χ. Define $\psi=\delta \times 1_{S_{2}} \times \cdots \times 1_{S_{t}}$. Note that χ lies over ψ too.

Set $T=I_{G}(\psi)$. We claim $T \subseteq H$. Let g be in G such that $\psi^{g}=\psi$. In particular, $\operatorname{Ker} \psi$ is g-invariant. But, $\operatorname{Ker} \psi=S_{2} \times \cdots \times S_{t}$, because $\delta \neq 1$. So, g normalizes $S_{2} \times \cdots \times S_{t}$. Thus g normalizes S_{1}. Hence $g \in H$.

Let ξ be in $\operatorname{Irr}(T \mid \psi)$. Now, $\xi^{H}=\chi$. Moreover, by definition of T, we get $\chi^{G}=\xi^{G} \in \operatorname{Irr}(G)$. Now, χ has even degree because it lies over ψ and it is real valued. This proves that χ^{G} is an irreducible real valued character of even degree, a contradiction.

Chapter 2

Day Two

Some recall on our aims.
Theorem 12 If 2 does not divide $\chi(1)$ for any $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$, then G has a normal Sylow 2-subgroup.

This theorem is false for rational characters: if $G=\operatorname{PSL}(2,27)$, then $\operatorname{Irr}_{\mathbb{Q}}(G)=$ $\{1, \theta\}$ where $\theta(1)=27$.

Theorem 13 If 2 divides $\chi(1)$ for any $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$ non-linear, then G has a normal 2-complement.

This theorem is true even for rational characters, the proof is a very deep!
In the following theorem the symbol $E^{p}(G)$ denotes the smallest normal subgroup E such that G / E is an elementary abelian p-group.

Theorem 14 (J.Thompson) Let N be a subgroup of G and p a prime such that p does not divide $|G: N|$. Suppose $E^{p}(G) \cap N=E^{p}(N)$. Then $O^{p}(G) \cap N=$ $O^{p}(N)$.

We'll soon need the previous theorem.
Lemma 7 Let λ be a linear character of G and $x \in G$. If $(o(\lambda),|x|)=1$, then $\lambda(x)=1$.

Proof. Now, $\lambda^{o(\lambda)}=1$, so, $\lambda^{o(\lambda)}(x)=1$. Thence $\lambda\left(x^{o(\lambda)}\right)=1$. Therefore, $x^{o(\lambda)} \in \operatorname{Ker} \lambda$. Since $\langle x\rangle=\left\langle x^{o(\lambda)}\right\rangle$, we have $x \in \operatorname{Ker} \lambda$.

Lemma 8 If λ is a linear character of $G, o(\lambda)=p^{f}$ and $\lambda_{P}=1$ for some $P \in \operatorname{Syl}_{p}(G)$, then $\lambda=1$.

Proof. Let x be an element of G. Write x as $x_{p} x_{p^{\prime}}$, where x_{p} is a p-element and $x_{p^{\prime}}$ is a p^{\prime}-element. By Lemma 7 , we have $\lambda(x)=\lambda\left(x_{p} x_{p^{\prime}}\right)=\lambda\left(x_{p}\right)=1$.

Lemma 9 Let P be a Sylow p-subgroup of a finite group G. If λ is a linear character of a p-group P that extends to G, then there exists a unique (up to a canonical choice) δ extending λ with the same order, i.e. $o(\lambda)=o(\delta)$.

Proof. Let say that ψ extends λ to G. So, $\psi_{P}=\lambda$. Since ψ is linear, we can write $\psi=\psi_{p} \psi_{p^{\prime}}$, where ψ_{p}, respectively $\psi_{p^{\prime}}$, is the p-part, respectively p^{\prime}-part, of ψ. Since $\left(\psi_{p^{\prime}}\right)_{P}=1$, we may as well assume that $\psi=\psi_{p}$ (this is the canonical choice to make!). In particular $o(\psi)=p^{a}$. Since $\psi_{P}=\lambda$, we have $\left(\psi^{o(\lambda)}\right)_{P}=1$. Therefore, by Lemma 8, we get $\psi^{o(\lambda)}=1$. So, $o(\psi) \leq o(\lambda)$. Trivially, we have $o(\lambda) \leq o(\psi)$. Thus the lemma is proved.

Theorem 15 Let G be a finite group and $P \in \operatorname{Syl}_{p}(G)$, then the followings are equivalent.
(a) G has a normal p-complement;
(b) every character $\theta \in \operatorname{Irr}(P)$ extends to G;
(c) every $\lambda \in \operatorname{Irr}(P / \Phi(P))$ extends to G.

Proof. Clearly, (a) yields (b), and, (b) yields (c). It remains to prove that (c) yields (a).

Let λ be a character of $P / \Phi(P)$. Note that $o(\lambda)=1$. By hypothesis, λ extends to a linear character $\chi_{\lambda} \in \operatorname{Irr}(G)$. By Lemma 9, we can take χ_{λ} so that $o\left(\chi_{\lambda}\right)=p$. This yields $\left|G / \operatorname{Ker} \chi_{\lambda}\right|=p$, therefore $E^{p}(G) \subseteq \operatorname{Ker} \chi_{\lambda}$. So, $E^{p}(G) \cap P \subseteq \operatorname{Ker}\left(\left(\chi_{\lambda}\right)_{P}\right)=\operatorname{ker} \lambda$. This argument holds for any λ. Thus $E^{p}(G) \cap$ $P \subseteq \Phi(P)$. Clearly, $E^{p}(G) \cap G$ is a normal subgroup of P and $P /\left(E^{p}(G) \cap P\right)$ is elementary abelian. Therefore $\Phi(P) \subseteq E^{p}(G) \cap P$. This proves that $E^{p}(G) \cap P=$ $\Phi(G)=E^{p}(P)$.

Now, by Theorem 14, we have $O^{p}(G) \cap P=O^{p}(P)=1$. This says that P is a complement of $O^{p}(G)$ in G, i.e. G has a normal p-complement.

Theorem 16 If 2 divides $\chi(1)$ for any $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$ non-linear, then G has a normal 2 -complement.

Proof. Let P be a Sylow 2-subgroup of G. By Theorem 15, it is enough to prove that any character $\lambda \in \operatorname{Irr}(P / \Phi(P))$ extends to G. Note that the character λ is rational. Consider $\lambda^{g}=\Delta_{1}+\Delta_{2}+\Delta_{3}$, where Δ_{1} is the sum of the constituents of even degree of λ^{G}, Δ_{2} is the sum of the real valued constituents of odd degree and Δ_{3} is the sum of the non-real valued constituents of odd degree.

Let χ be a non-real constituent of odd degree. We have $\left[\lambda^{G}, \chi\right]=\left[\overline{\left(\lambda^{G}\right)}, \bar{\chi}\right]=$ $\left[\lambda^{G}, \bar{\chi}\right.$. This proves that if χ is a non-real constituent of odd degree of λ^{G}, then $\bar{\chi}$ is also a constituent. This says that Δ_{3} has even degree. In particular, $\chi(1) \equiv \Delta_{2}(1) \bmod 2$. Now, $|G: P|$ is odd and $\lambda(1)=1$, therefore $1 \equiv \Delta_{2}(1)$ $\bmod 2$. So, $\Delta_{2} \neq 0$. This proves that there exists some character χ real valued of odd degree over λ. By hypothesis, χ is linear. Hence $\chi(1)=1$ and $\chi_{P}=\lambda$. The proof is complete.

Theorem 17 If $\left|\operatorname{cd}_{\mathbb{R}}(G)\right|=2$, then G is soluble.
Proof. We have $\operatorname{cd}_{\mathbb{R}}(G)=\{1, m\}$. If m is even then, by Theorem $16, G$ has a normal 2-complement, and so G is soluble by the Odd Order Theorem. If m is odd, then, by Theorem 11, G has a normal Sylow 2-subgroup, and so G is soluble.

We point out that Theorem 17 is also true if $\left|\operatorname{cd}_{\mathbb{R}}(G)\right|=3$, but the proof requires the CFSGs.
Theorem 18 (Ito) If $\left\{\left|G: C_{G}(x)\right| \mid x \in G\right\}=\{1, m\}$, then G is nilpotent.
Conjecture 1 (Navarro) If $\left\{\left|G: C_{G}(x)\right| \mid x \in G, x\right.$ real $\}=\{1, m\}$, then G is solvable.

Note that we cannot replace "solvable" with "nilpotent". In fact, if $G=\operatorname{Alt}(4)$, then $\left\{\left|G: C_{G}(x)\right| \mid x\right.$ real $\}=\{1,3\}$.

The following is going to be useful later on.
Theorem 19 (Gow) If G is soluble, $\chi \in \operatorname{Irr}_{\mathbb{R}}(G)$ of odd degree, then χ is rational. In fact, $\chi=\lambda^{G}$ where $o(\lambda)=2$.

Proof. Let N be a normal subgroup of G and $\theta \in \operatorname{Irr}(N)$ a constituent of χ_{N}. We claim that θ is real. In fact, if $\theta \subseteq \chi_{N}$, then $\bar{\theta} \subseteq \overline{\chi_{N}}=\chi_{N}$. So, by Clifford's correspondence, θ and $\bar{\theta}$ are conjugate, $\theta^{g}=\bar{\theta}$. Take $T=I_{G}(\theta)=I_{G}(\bar{\theta})=$ $I_{G}\left(\theta^{g}\right)=I_{G}(\theta)^{g}=T^{g}$, so g normalizes T and $g^{2} \in T$. So the order of $g T / T$ divides 2. The character θ extends to a character ψ in T and $\psi^{G}=\chi$. We have $\chi(1)=|G: T| \psi(1)$ odd. So, $\left|N_{G}(T): T\right|$ is odd. Therefore $g T=T$ and $g \in T$. Hence $\bar{\theta}=\theta$.

Now, we prove that $\chi=\lambda^{G}$ and $o(\lambda)=2$ by induction on G.
Step 1. We can assume that $\operatorname{Ker} \chi=1$.
Step 2. We can assume that $O_{2^{\prime}}(G)=1$. If $\theta \in \operatorname{Irr}\left(O_{2^{\prime}}(G)\right)$ is under χ, then θ is real, furthermore $\left|O_{2^{\prime}}(G)\right|$ is odd. Thus $\theta=1$.

Step 3. We can assume that χ is quasiprimitive, i.e. $\chi_{N}=e \theta$ for any N normal subgroup G where $\theta \in \operatorname{Irr}(N)$. In fact, let N be a normal subgroup of G, ψ the corresponding character in the inertia subgroup T. Since θ is real, we have $\psi, \bar{\psi} \in \operatorname{Irr}(T \mid \theta)$. So, $\chi=\psi^{G}=(\bar{\psi})^{G}=\overline{\left(\psi^{G}\right)}=\bar{\chi}=\chi$. So, by the uniqueness in the Clifford's correspondence, $\psi=\bar{\psi}$. So, ψ is odd and real valued. If $T<G$, then $\psi=\lambda^{T}$ and $o(\lambda)=2$ for some λ. Then, $\chi=\psi^{G}=\left(\lambda^{T}\right)^{G}=\lambda^{G}$.

Step 4. Take $N=O_{2}(G)$. Let θ be an irreducible constituent of χ_{N} (so $\left.\chi_{N}=e \theta\right)$. By the previous step we have θ is real and G-invariant, so, by Step $1, \operatorname{Ker} \theta=1$. Now, $\chi(1)$ is odd, so $\theta(1)$ is odd and N is a 2 -group. Thence $\theta(1)=1$, i.e. θ is a linear character, in particular $o(\theta)=2$ and $|N: \operatorname{Ker} \theta|=2$. But $\operatorname{Ker} \theta=1$ and so we have $|N|=2$. Therefore $N \subseteq \xi(G)$, but $C_{G}\left(O_{2}(G)\right) \subseteq$ $O_{2}(G)$. This yields $G=N$ and now the theorem is trivially proved.

Theorem 20 (Tiep) Let S be a non-abelian simple group. Then there exists an $\operatorname{Aut}(S)$-orbit Y of characters of $S, Y \subseteq \operatorname{Irr}(S) \backslash\{1\}$ such that
(i) Y is odd;
(ii) if $\alpha \in Y$, then α is rational of odd degree.

In fact, Y can be chosen so that $|Y|=1$, except for $S=\operatorname{PSL}\left(2,2^{f}\right), \operatorname{PSU}\left(3,2^{f}\right)$ where $|Y|=3$.

Theorem 212 divides $\chi(1)$ for any $\chi \in \operatorname{Irr}_{\mathbb{Q}}(G)$ non-linear if and only if G has a normal 2-complement.

Proof. Assume G has a normal 2-complement K. Let χ be an element in $\operatorname{Irr}_{\mathbb{R}}(G)$ non-linear. We want to prove that 2 divides $\chi(1)$. Deny it. Let θ be a constituent of χ. Now, $\chi(1) / \theta(1)$ divides $|G: K|$ (a power of 2). So, if 2 does not divide $\chi(1)$, then $\chi_{K}=\theta$. The character θ is real valued and K has odd order, so, $\theta=1$. So, $\chi \in \operatorname{Irr}(G / K)$. Now, G / K is a 2 -group and $\chi(1)$ is odd, therefore χ is linear, a contradiction.

Vice versa. We argue by induction on $|G|$. Let N be a minimal normal subgroup of G. The group G / N has a normal 2-complement by induction. If N is abelian, then G is soluble. We claim that any real valued non linear character of G has even degree and so this theorem would follow from Theorem 16. Let χ be an irreducible real valued non-linear character of G of odd degree. Then, by Theorem 19, χ is rational.

We may assume that $N=S_{1} \times \cdots \times S_{t}$, where the S_{i} s are non-abelian simple groups. Fix $S=S_{1}$. We have $S_{i}=S^{g_{i}}$, for some $g_{i} \in G$. So, by Theorem 20, there exists Y a $\operatorname{Aut}(S)$-orbit of $\operatorname{Irr}(S) \backslash\{1\}$ of odd size such that any element in Y is rational of odd degree. Clearly, this set Y is $N_{G}(S)$ invariant, in fact $N_{G}(S) / C_{G}(S) \subseteq \operatorname{Aut}(S)$. Take $Y_{i}=Y^{g_{i}} \subseteq \operatorname{Irr}\left(S^{g_{i}}\right)=\operatorname{Irr}\left(S_{i}\right)$. Set $Z=\left\{\alpha_{1} \cdots \alpha_{t} \mid \alpha_{i} \in Y_{i}\right\} \subseteq \operatorname{Irr}(N)$. Note that if β lies in Z, then β has odd degree and is rational.

Let P be a Sylow 2-subgroup of G and K a normal 2 -complement $\bmod N$.

Now, P / N is a 2 -group acting on the odd set Z. So, P / N fixes some $\beta \in \operatorname{Irr}(N)$ rational of odd degree. Set $T=I_{G}(\beta)$. Now, $\operatorname{det} \beta$ is a linear character of N, thus $\operatorname{det} \beta=1$, so, $o(\beta)=1$. Moreover, $\beta(1)$ is odd, therefore, $(\beta(1) o(\beta), \mid G$: $N \mid)=1$, so, by Theorem 8 , there exists $\beta^{\prime} \in \operatorname{Irr}(P)$ rational that extends β. Furthermore, β is real and $|T \cap N: N|$ is odd so, by Theorem 6, there exists a unique real valued δ extension of β to $T \cap K$, in fact $\mathbb{Q}(\delta)=\mathbb{Q}(\beta)=\mathbb{Q}$ and so δ is rational.

The reader might check that the uniqueness of δ yields that δ is P-invariant. Now, using Lemma 3, we have a bijection

Let δ^{\prime} be the δ-corresponding character in T, so δ^{\prime} is the unique character in $\operatorname{Irr}(T \mid \delta)$ such that $\left(\delta^{\prime}\right)_{P}=\beta^{\prime}$.

Let σ be in $\operatorname{Gal}\left(\mathbb{Q}_{n} / \mathbb{Q}\right)$, where $n=|G|$. Now, $\left(\delta^{\prime}\right)^{\sigma}$ is a character of T over $\delta\left(\left(\delta^{\prime}\right)^{\sigma} \in \operatorname{Irr}\left(T \mid \delta^{\sigma}\right)=\operatorname{Irr}(T \mid \delta)\right)$. Moreover, $\left(\left(\delta^{\prime}\right)^{\sigma}\right)_{P}=\left(\beta^{\prime}\right)^{\sigma}=\beta^{\prime}\left(\beta^{\prime}\right.$ is rational). So, by uniqueness, $\left(\delta^{\prime}\right)^{\sigma}=\delta^{\prime}$. This proves that δ^{\prime} is rational.

Now, by Clifford's correspondence, $\left(\delta^{\prime}\right)^{G}=\chi$ is a rational irreducible character of G of odd degree (in fact $|G: T|$ is odd and $\left(\delta^{\prime}\right)(1)=\delta(1)=\beta(1)$ is odd). This proves that χ is an irreducible rational character of G of odd degree. Thus, χ is linear! So, β is a linear character of N. Hence $\beta=1$, a contradiction. The theorem is proved.

Theorem 21 has the following natural generalization.
Theorem 22 If p divides $\chi(1)$ for any $\chi \in \operatorname{Irr}_{\mathbb{Q}_{p}}(G)$ non-linear, then G has a normal p-complement.

From now on G is a soluble group. The rest of this course is devoted in proving that $\mid\left\{\chi \in \operatorname{Irr}_{\mathbb{Q}}(G) \mid \chi(1)\right.$ is odd $\} \mid$ is locally group theoretically determined.

Lemma 10 (MacKey) If $\nu \in \operatorname{Irr}(H)$ and $H \leq G$, then ν^{G} is irreducible if and only if $\left[\nu_{H \cap H^{g}},\left(\nu^{g}\right)_{H \cap H^{g}}\right]=0$ for any $g \in G \backslash H$.

Proof. This is a trivial application of MacKey's formula. Recall that if \mathcal{T} is a set of representatives of (H, H)-double cosets of G, i.e. $G=\coprod_{t \in \mathcal{T}} H t H$, then

$$
\left(\nu^{G}\right)_{H}=\sum_{t \in \mathcal{T}}\left(\left(\nu^{t}\right)_{H \cap H^{t}}\right)^{H}
$$

Now,

$$
\begin{aligned}
{\left[\nu^{G}, \nu^{G}\right] } & =\left[\left(\nu^{G}\right)_{H}, \nu\right]_{H}=\sum_{t \in \mathcal{T}}\left[\left(\nu^{t}\right)_{H \cap H^{g}}, \nu_{H \cap H^{t}}\right]_{H \cap H^{t}} \\
& =[\nu, \nu]+\sum_{t \in \mathcal{T}, t \notin H}\left[\left(\nu^{t}\right)_{H \cap H^{t}}, \nu_{H \cap H^{t}}\right] .
\end{aligned}
$$

This proves that $\left[\nu^{G}, \nu^{G}\right]=1$ if and only if $\left[\left(\nu^{t}\right)_{H \cap H^{t}}, \nu_{H \cap H^{t}}\right]=0$ for any $t \in G \backslash H$.

Lemma 11 Let ν, λ be linear characters of G and $P \in \operatorname{Syl}_{p}(G)$. If $\nu_{N_{G}(P)}=$ $\lambda_{N_{G}(P)}$, then $\nu=\lambda$.

Proof. Set $\delta=\lambda \bar{\nu}$. By hypothesis, $\delta_{N_{G}(P)}=1$. So, $N_{G}(P) \subseteq \operatorname{Ker} \delta \triangleleft G$. Using the Frattini argument, we get $\operatorname{Ker} \delta=G$. Thence, $\delta=1$ and $\nu=\lambda$.

MacKey Conjecture

$$
\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)\right|, \quad P \in \underset{p}{\operatorname{Syl}(G)}
$$

It is fairly well-known that there cannot be any natural-canonical bijection between $\operatorname{Irr}_{p^{\prime}}(G)$ and $\operatorname{Irr}_{p^{\prime}}\left(N_{G}(P)\right)$.

Let χ be a real valued character of G of odd degree. By Theorem 19, the character χ is actually rational and $\chi=\lambda^{G}$, for some linear character $\lambda \in \operatorname{Irr}(H)$ and $o(\lambda)=2$. In particular, it is easy to notice that χ has odd degree if and only if H contains a Sylow 2 -subgroup P of G.

Theorem 23 Using the previous notation. $\left(\lambda_{N_{G}(P)}\right)^{N_{G}(P)} \in \operatorname{Irr}_{\mathbb{Q}, \text { odd }}\left(N_{G}(P)\right)$.
Proof. It is enough to prove that $\left(\lambda_{N_{G}(P)}\right)^{N_{G}(P)}$ is irreducible. Note that this theorem sets a "natural" correspondence between rational irreducible characters of odd degree of G and rational irreducible characters of odd degree of $N_{G}(P)$.

Set $W=N_{H}(P), N=N_{G}(P)$ and $\nu=\lambda_{W}$. We want to prove that ν^{N} is irreducible. Take n in $N \backslash W$, by Lemma 10, we have to prove that $\left[\nu_{W \cap W^{n}},\left(\nu^{n}\right)_{W \cap W^{n}}\right]=0$. Deny it. Since, $\nu_{W \cap W^{n}}$ and $\left(\nu^{n}\right)_{W \cap W^{n}}$ are both linear, we have to prove that they coincide. Consider the following picture $\left(W^{n}=N_{H^{w}}(P), W \cap W^{n}=N_{H \cap H^{n}}(P)\right)$.

The characters $\lambda_{H \cap H^{n}}$ and $\left(\lambda^{n}\right)_{H \cap H^{n}}$ restricted to $W \cap W^{n}$ are equal:

$$
\left(\lambda_{H \cap H^{n}}\right)_{W \cap W^{n}}=\nu_{W \cap W^{n}}=\left(\nu^{n}\right)_{W \cap W^{n}}=\left(\lambda^{n}\right)_{W \cap W^{n}}=\left(\left(\lambda^{n}\right)_{H \cap H^{n}}\right)_{W \cap W^{n}}
$$

By Lemma 11, we have $\lambda_{H \cap H^{n}}=\left(\lambda^{n}\right)_{H \cap H^{n}}$. So, $\left[\lambda_{H \cap H^{n}},\left(\lambda^{n}\right)_{H \cap H^{n}}\right] \neq 0$. but, $\lambda^{G} \in \operatorname{Irr}(G)$. So, by Lemma 10, n lies H. This yields $n \in H \cap N=$ $N_{H}(P)=W$, a contradiction.

Using all the previous results one might check that there exists a well-defined natural bijection from $\operatorname{Irr}_{\mathbb{Q}, \text { odd }}(G)$ into $\operatorname{Irr}_{\mathbb{Q}, o d d}\left(N_{G}(P)\right)$ (one has for example to check that the character constructed before does not depend on the subgroup H of G). This result is clearly false if G is not soluble (take $G=\operatorname{Alt}(6)$).

Now it is pretty easy to compute the size of $\operatorname{Irr}_{\mathbb{Q}, o d d}(G)$. Indeed, the size of $\operatorname{Irr}_{\mathbb{Q}, o d d}\left(N_{G}(P)\right)$ is easy to get. We leave it to the reader to check that the number of elements in $\operatorname{Irr}_{\mathbb{Q}, \text { odd }}\left(N_{G}(P)\right)$ is equal to the number of $N_{G}(P)$-orbits on $P / \Phi(P)$. Thus, we have:

$$
\left|\operatorname{Irr}_{\mathbb{Q}, o d d}(G)\right|=\# N_{G}(P) \text {-orbits on } P / \Phi(P) .
$$

This result holds only for the prime 2 , in the sense $\left|\operatorname{Irr}_{\mathbb{Q}, p^{\prime}}(G)\right| \neq\left|\operatorname{Irr}_{\mathbb{Q}, p^{\prime}}\left(N_{G}(P)\right)\right|$ (use $G=\operatorname{GL}(2,3)$ and $p=3$).

