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Abstract. In this paper we describe the almost simple groups G such that the prime
graph Π(G) is not connected. We construct the prime graph Π(G) of a finite group

G as follows: its vertices are the primes dividing the order of G and two vertices p,
q are joined by an edge, and we write p ∼ q, if there is an element in G of order pq.
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Prime graph of almost simple groups

If G is a finite group, we define its prime graph, Γ(G), as follows: its vertices are
the primes dividing the order of G and two vertices p, q are joined by an edge, and
we write p ∼ q, if there is an element in G of order pq.
We denote the set of all the connected components of the graph Γ(G) by {Πi(G), for
i = 1, 2,..., t(G)} and, if the order of G is even, we denote the component containing
2 by Π1(G) = Π1. We also denote by Π(n) the set of all primes dividing n, if n is
a natural number, and by Π(G) the set of vertices of Γ(G).
The concept of prime graph arose during the investigation of certain cohomological
questions associated with integral representations of finite groups. It turned out
that Γ(G) is not connected if and only if the augmentation ideal of G is decompos-
able as a module. (see [4]). In addition, nonconnectedness of Γ(G) has relations
also with the existence of isolated subgroups of G. A proper subgroup H of G is
isolated if H ∩ Hg = 1 or H for every g ∈ G and CG(h) ≤ H for all h ∈ H. It
was proved in [10] that G has a nilpotent isolated Hall π-subgroup whenever G is
non-soluble and π = Πi(G), i > 1. We have in fact the following equivalences:

Theorem [8]
If G is a finite group, then the following are equivalent:
(1) the augmentation ideal of G decomposes as a module,
(2) the group G contains an isolated subgroup,
(3) the prime graph of G has more than one component.

It is therefore interesting to know when the prime graph of a group G is not con-
nected, i. e. has more than one component. The first classification is a result of
Gruenberg and Kegel.

Theorem A [8]
If G is a finite group whose prime graph has more than one component, then G has
one of the following structures:
(a) Frobenius or 2-Frobenius;
(b) simple;
(c) an extension of a π1-group by a simple group;
(d) simple by π1;
(e) π1 by simple by π1.

The case of solvable groups has been completely determined by Gruenberg and
Kegel:

Corollary [8]
If G is solvable with more than one prime graph component, then G is either Frobe-
nius or 2-Frobenius and G has exactly two components, one of which consists of the
primes dividing the lower Frobenius complement.

Also the case (b) of a simple group has been described by Williams in [10], by
Kondratev in [8] and by Iiyori and Yamaki in [7]. A complete list of the simple
groups with more than one component can also be found in [9].
In this paper we determine the case (d). The case (d) is in fact the case of an
almost simple group with more than one component. A group G is almost simple if
there exists a finite simple non abelian group S such that S ≤ G ≤ Aut(S). First
we observe that if Γ(G) is not connected then also Γ(S) is not connected. Then,
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using the Classification of Finite Simple Groups and the results of Williams and
Kondratev, respectively in [10] and [8], we consider the various cases.
The main results are then Lemma 2 and Theorem 3, concerning sporadic and
alternating groups, and Theorem 5, concerning finite simple groups of Lie type.
In particular we observe that almost simple groups which are not simple have at
most 4 components (see Table IV).

Remark 1
If Γ(G) is not connected, and G has a non-nilpotent normal subgroup N , then Γ(N)
is not connected.

Proof.
We suppose that Γ(N) is connected. As Γ(G) is not connected, there must be p in
Π(G) such that p 6∼ q for any q in Π(N). Let P be a p-Sylow subgroup of G. If we
consider K = NP , where P acts on N by conjugation, then K is a Frobenius group
with kernel N, that must be nilpotent, against our hypothesis. �

In order to describe almost simple groups with prime graph non-connected it is
therefore enough to consider groups G such that G ≤ Aut(S) and S is a simple
group with prime graph non-connected. A complete description of the simple groups
with prime graph non-connected can be found in [10] and [8]. We suppose that
S < G.
We use the Classification of Finite Simple Groups. Before beginning with a general
study we want to treat a particular case.

Lemma 2
If S = A6, there are four groups G1 = S6, G2, G3, G4 = Aut(A6) such that S <
Gi ≤ Aut(S). Then

Γ(G1) =
2·— 3· 5· ; Γ(G2) =

2·— 5· 3· ; Γ(G3) =
2· 3· 5· ;

Γ(G4) =
3·— 2· — 5· .

Proof. Since Aut(S)/Inn(S) is isomorphic to the Klein group with 4 elements,
there are three almost simple groups over S of order 2|S|. Let G1, G2, G3 be such
groups. Then G1

∼= S6 and 2 ∼ 3 in Π(S6). Let θ be an outer automorphism
of S6 of order 2. Since Aut(A6) = Aut(S6), we can consider G2, the subgroup of
Aut(A6) generated by Inn(A6) and θ. Then G2 is a splitting extension of Inn(A6).
Moreover θ centralizes an element of order 5 of A6, and θ can not centralize any
element of order 3 of A6 because θ exchange the two conjugacy classes of elements
of order 3 of A6. Therefore 2 ∼ 5 in Π(G2).
Let G3 be the other subgroup of Aut(A6) of order 2|A6|. Then G3 is a non-split
extension of A6 and there is not any involution outside Inn(A6). Therefore its prime
graph is the same as that of A6. Let G4 be Aut(A6), then Γ(G4) is connected. From
these observations we can deduce the structure of the prime graph of the groups
Gi, i = 1, 2, 3, 4. �

Theorem 3
If G = Aut(S) with S an alternating group or a sporadic group, S 6= A6, then Γ(G)
is not connected if and only if G is one of the following groups and the connected
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components are as follows:

S = An, n = p, p + 1, p prime Π1(G) = {2, 3, ..., q} q < n− 1 Π2(G) = {p}
S = M12 Π1(G) = {2, 3, 5} Π2(G) = {11}
S = M22 Π1(G) = {2, 3, 5, 7} Π2(G) = {11}
S = J3 Π1(G) = {2, 3, 5, 17} Π2(G) = {19}
S = HS Π1(G) = {2, 3, 5, 7} Π2(G) = {11}
S = Sz Π1(G) = {2, 3, 5, 7, 11} Π2(G) = {13}
S = He Π1(G) = {2, 3, 5, 7} Π2(G) = {17}
S = O′N Π1(G) = {2, 3, 5, 7, 11, 19} Π2(G) = {31}
S = Fi22 Π1(G) = {2, 3, 5, 7, 11} Π2(G) = {13}
S = Fi′24 Π1(G) = {2, 3, 5, 7, 11, 13, 17, 23} Π2(G) = {29}
S = HN Π1(G) = {2, 3, 5, 7, 11} Π2(G) = {19}

Proof. If S = An, the alternating group on n letters, n 6= 6, we know that G = Sn.
From [10] we observe that Γ(S) is not connected if and only if n = p, (p+1), (p+2)
for some prime p. If n = p + 2 the element (1, 2, ..., p) commutes with the element
(p + 1, p + 2) in Sn and then p ∼ 2 in Π(Sn). On the other hand if n = p, p + 1 the
centralizers of all the elements of order p are exactly the cyclic subgroups of order
p that they generate.
If S is a sporadic group, then |G/S| = 2 and the result easily follows from the Atlas
[2]. �

We now suppose that S = dLl(q̄) is a finite simple group of Lie type on the field
with q̄ = pf elements. We recall that, in this case, the connected components Πi(S)
for i > 1 of Γ(S) are exactly sets of type Π(|T |) for some maximal torus T such
that T is isolated (see Lemma 5 of [10]).
We also observe that Π1(S) is obviously contained in Π1(G).
We use the notation and theorems of [3]. We consider Inndiag(S): it is also a
group of Lie type S̃, in which the maximal tori T̃ have order |T |d, if T = T̃ ∩ S
and d = |Inndiag(S)/S|. Then d divides q̄2 − 1 and, if S 6= A1(q), A2(4), then
Π(q̄2 − 1) ⊆ Π1(S).
As T̃ is abelian, it is therefore clear that if t ∈ Π(|T |) = Πi(S) for i > 1, we have
t ∼ s for s ∈ Π(q̄2 − 1).
If S 6= A1(q), A2(4) and G contains an element of Inndiag(S)\S, then by the above
argument we can conclude that Γ(G) is connected.

We can now consider G such that Inndiag(S) ∩G = S. Let α be in G \ S, then α
does not belong to Inndiag(S); we denote by Πα the set of primes dividing |CS(α)|.
We also recall from paragraph 9 of [3] that p ∈ Πα for any α ∈ G \S and therefore
Πα⊆ Π1(G) (if S 6= A1(q), A2(4)). Therefore, if r is a prime dividing |G/S|, then
r divides |α| for some α ∈ G \ S and we have r ∼ p, and so r ∈ Π1(G).
Let Πi = Π(|T |) be a component of Γ(S), for some isolated torus T . Then Πi

remains a component of Γ(G) if and only if (|T |, |CS(γ)|) = 1 for any γ ∈ G \ S.
Then we only have to consider Π(|T |) and check if Π(|T |) ⊆ Π1(G).
If α ∈ G \ S and |α| = r a prime, then, by theorem 9.1 of [3], α is a field,
a graph-field or a graph automorphism (in the sense of paragraph 7 of [3]); in

4



the same theorem CS(α) is described for α a field or a graph-field automorphism.
When α is a graph automorphism, CS(α) is described in the paper [1], if S is
over a field of even characteristic, and in the paper [5], if S is over a field of odd
characteristic. If (|T |, |CS(α)|) 6= 1, then r ∼ t for some prime t ∈ Π(|T |) and
therefore Πi(S) = Π(|T |) ⊆ Π1(G).
We now consider γ ∈ G \ S and m a positive integer such that γm = α is an
automorphism of order a prime r. If (|T |, |CS(α)|) = 1, then CS(α)∩T = 1 and, as
CS(γ) ≤ CS(α), we also have CS(γ)∩T = 1. Thus γ does not centralize any element
x in T . If for any α ∈ G \ S of order a prime r we have that (|T |, |CS(α)|) = 1,
then, for any γ ∈ G \ S, we have CS(γ) ∩ T = 1. We conclude that, in this case,
Πi(S) = Π(|T |) is a connected component Πj(G) for some j > 1.

We want to state now a number theoretical lemma:

Lemma 4
If q = pf and p and l + 1 are prime numbers, then
i) (qm − 1, qn − 1) = q(m,n) − 1;
ii) ((ql+1−1)/(q−1), q−1) = (l+1, q−1) and ((ql+1−1)/(q−1)(l+1, q−1), q−1) = 1

Proof.
i) See Hilfsatz 2 a) of [6].
ii) Let t be a prime dividing q − 1, then

(ql+1 − 1)
(q − 1)

= ql + ql−1 + ... + q + 1 ≡ l + 1 ≡ 0 (t) ⇐⇒ t = l + 1.

For the second statement we observe that, if (l + 1, q − 1) = 1, we can conclude by
applying the first statement. Otherwise, as l + 1 is a prime, (l + 1, q − 1) = l + 1
and therefore if q = 1 + (l + 1)m, for a positive integer m, we have

ql + ql−1 + ... + q + 1
l + 1

=
(1 + (l + 1)m)l + ... + (1 + (l + 1)m) + 1

l + 1
=

(l + 1) + (l + 1)m(
∑l

j=1

(
j
1

)
) + (l + 1)2s

(l + 1)
= 1 + m(l + 1)l/2 + (l + 1)s 6≡ 0 (l + 1),

where s is a positive integer. �

Theorem 5
Let S < G ≤ Aut(S) with S a finite simple group of Lie type, then Γ(G) is not
connected if and only if G is one of the groups described in the Tables I, II, III, IV.

Proof.
The proof is made by a case by case analysis. For the connected components of
Γ(S), S a finite simple group of Lie type, we refer, without further reference, to [10]
and [8]. From the remarks preceding Lemma 4, it is therefore enough to consider
automorphisms α of S of order a prime r.

Type Al

If S = Al(q̄) with l > 1, S 6= A2(2), A2(4), then Γ(S) is not connected if and only if
i) l+1 is a prime and in this case Π2(S) = Π(|T |) = Π((q̄l + q̄l−1 + ...+1)/d) where
d = (q̄ − 1, l + 1);
ii) l is an odd prime and (q̄ − 1)|(l + 1) and in this case
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Π2(S) = Π(|T |) = Π(q̄l−1 + q̄l−2 + ... + 1).
We study the different automorphisms of Al.

i) If α is a field automorphism, then by theorem 9.1 of [3], Πα=Π(|Al(q)|), where
q̄ = qr.
If r 6= l + 1, then r and l + 1 are two distinct primes and therefore

(ql+1 − 1)
(q − 1)(q − 1, l + 1)

divides
(qr(l+1) − 1)

(qr − 1)d
=

(q̄l + q̄l−1 + ... + q̄ + 1)
d

.

This proves that Γ(G) is connected.
If r = l + 1, then (|T |, |Al(q)|) = 1. In fact by lemma 4 i), we know that, for any
i ≤ r, (

(qrl + qr(l−1) + ... + 1)
d

=
(q(l+1)2 − 1)
(ql+1 − 1)d

, qi − 1
)

= 1.

Since (q(l+1)2 − 1)/(ql+1− 1)d = (q̄l+1− 1)/(q̄− 1)(l + 1, q̄− 1) by Lemma 4 ii), we
have (

(q̄l+1 − 1)
(q̄ − 1)(l + 1, q̄ − 1)

, q̄ − 1
)

= 1.

We can conlcude that Π2(S) = Π2(G).

If α is a graph-field automorphism, then by theorem 9.1 of [3], Πα= Π(|2Al(q)|),
where q̄ = qr and r = 2. Then (ql+1 + 1)/(q + 1)(q + 1, l + 1) divides both |2Al(q)|
and |T | = (q2(l+1) − 1)/(q2 − 1)(q2 − 1, l + 1) and so Γ(G) is connected.

If α is a graph automorphism, then r = 2 and by theorems 19.9 of [1] and 4.27 of
[5], Πα=Π(|Bm(q̄)|) = Π(q̄(q̄2 − 1)(q̄4 − 1)...(q̄2m − 1)) if l + 1 = 2m + 1.
We already know that |T | = (q̄l+1 − 1)/(q̄ − 1)(q̄ − 1, l + 1) is coprime with all
the primes in Πα because Πα is contained in Π1(S). So in this case we have that
Π2(S) = Π2(G).

ii) The proof is similar to the one of i). We obtain that Γ(G) is connected, except in
the cases in which α is a field automorphism and r = l, or α is a graph automorphism
of order 2.

S = A2(2) admits only a graph automorphism α and Πα={2, 3} and then Π1(G) =
{2, 3}, Π2(G) = Π(22 + 2 + 1) = {7}.
S = A2(4): if α is a diagonal automorphism then G ≥ PGL(3, 4) and in this case
Γ(G) is connected.
If α is a field automorphism, then r = 2 and Πα={2, 3, 7} and so Π1(G) = {2, 3, 7},
Π2(G) = {5}.
If α is a graph-field or a graph automorphism, then r = 2 and Πα={2, 3, 5} and so
Π1(G) = {2, 3, 5}, Π2(G) = Π((42 + 4 + 1)/3) = {7}.
S = A1(q̄): if α is a diagonal automorphism of order 2, then q̄ is odd. If G =
PGL(2, q̄) then Π1(G) = Π(G) \ {p}, Π2(G) = {p}, because 2 divides the order of
every maximal torus T of G.
If α is a field automorphism, q̄ = qr, Πα=Π(q(q2 − 1)). If (q − 1)/(2, q − 1) 6= 1
then

1 6= q − 1
(2, q − 1)

divides
q̄ − 1

(2, q̄ − 1)
.
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If (q− 1)/(2, q− 1) = 1, then q = 2 or 3, and in this case Π(|T2|) = Π(q̄− 1)/(2, q̄−
1) = Π2(G). Moreover if r 6= 2, then

1 6= q + 1
(2, q − 1)

divides
q̄ + 1

(2, q̄ − 1)
.

Therefore if q 6= 2, 3 and r 6= 2, Γ(G) is connected, while if r = 2 we have Π1(G) =
Π(q(q2 − 1)) and Π2(G) = Π((q2 + 1)/(2, q − 1)).
If α is a graph automorphism, then r = 2 and Πα={2}, so that Πi(G) = Πi(S) for
i = 1, 2, 3.

Type Bl

If S = Bl(q̄), then Γ(S) is not connected if and only if
i) l is an odd prime and q̄ = 2, 3; in this case Π2(S) = Π(|T |) = Π(q̄l−1+ q̄l−2...+1).
ii) l = 2n; in this case Π2(S) = Π(|T |) = Π((q̄l + 1)/d) where d = (q̄ − 1, 2);
i) In this case Aut(S) = Inndiag(S) and so there is nothing else to prove.
ii) If α is a field automorphism, then Πα=Π(|Bl(q)|) and q̄ = qr. If r is odd,
(ql + 1)/d divides both |CS(α)| and (q̄l + 1)/d and then Γ(G) is connected.
If r = 2, (q̄l + 1)/d = (q2l + 1)/d is coprime with all the primes in Πα, because Πα

is contained in Π1(S). So in this case we have that Π2(S) = Π2(G).
If l = 2 and p = 2, then α can also be a graph automorphism of order 2. Then
Πα=Π(|2B2(q̄)|) = Π(q̄(q̄2 − 1)(q̄4 + 1)) and then Γ(G) is connected.
By proposition 19.5 of [1], we have thus described the centralizers of all α ∈ G \S.

Type Dl

If S = Dl(q̄), then Γ(S) is not connected if and only if
i) l is an odd prime and q̄ = 2, 3, 5 and in this case
Π2(S) = Π(|T |) = Π((q̄l − 1)/(4, q̄l − 1));
ii) l − 1 is an odd prime and q̄ = 2, 3 and in this case
Π2(S) = Π(|T |) = Π((q̄l−1 − 1)/(2, q̄ − 1)).
If l 6= 4, then the only automorphism α that we have to consider is a graph automor-
phism of order 2, then Πα= Π(|Bl−1(q̄)|) = Π(q̄(q̄2 − 1)...(q̄2(l−1) − 1)). Therefore
in case i) we have that Π2(S) = Π2(G) and in case ii) Γ(G) is connected.
If l = 4, we have to consider also a graph automorphism of order 3. In this
case, by Theorem 9.1(3) of [3], in Aut(S) there are two conjugacy classes of sub-
groups of order 3 generated by a graph automorphism. We denote these two
graph automorphisms by α and β. Then β is obtained from α by multiplying
it with an element of order 3 of S, that is β = gα, g ∈ S. Therefore, as Πβ ⊆
Πα=Π(|G2(q̄)|) = Π(q̄(q̄6 − 1)) and Π2(S) = Π(q̄3 − 1), we have that, in this case,
Γ(G) is connected.

Type E6

If S = E6(q̄), then Γ(S) is not connected and Π2(S) = Π(|T |) = Π((q̄6 + q̄3 + 1)/d)
where d = (q̄ − 1, 3).
If α is a field automorphism, then q̄ = qr and Πα=Π(|E6(q)|) ([3], Theorem 9.1).
If r 6= 3, then

(q6 + q3 + 1)
d

=
(q9 − 1)
d(q3 − 1)

divides
(q9r − 1)
d(q3r − 1)

=
(q̄9 − 1)
d(q̄3 − 1)

=
(q̄6 + q̄3 + 1)

d
.
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Therefore Γ(G) is connected.
If r = 3, then Πα=Π(q(q5− 1)(q8− 1)(q9− 1)(q12− 1)). As (q18 + q9 +1)/d divides
(q27−1)/(q9−1), by Lemma 4 i) it is clear that ((q18+q9+1)/d, (q5−1)(q8−1)) = 1.
Moreover, if we apply Lemma 4 ii) to q9, we have that (q18 + q9 + 1)/d is coprime
with q9 − 1. Finally (q18 + q9 + 1)/d = (q̄9 − 1)/(q̄3 − 1)d, q̄4 − 1 = q12 − 1 and
((q̄9 − 1)/(q̄3 − 1)d, q̄4 − 1) = 1 again by Lemma 4 i). So in this case we have that
Π2(S) = Π2(G).

If α is a graph-field automorphism, then r = 2, q̄ = q2 and Πα=Π(|2E6(q̄)|) ([3],
Theorem 9.1). We observe that |T | = (q12 + q6 +1)/d = (q6 + q3 +1)(q6− q3 +1)/d
and (q6 − q3 + 1) divides |2E6(q2)|. Then Γ(G) is connected.

If α is a graph automorphism, by lemma 4.25 c) of [5] and 19.9 iii) of [1], we have
that Πα⊆ Π(q̄(q̄8− 1)(q̄12− 1)). Since |T | is coprime with all the primes in Πα, we
have that Π2(S) = Π2(G).

Type E7

If S = E7(q̄), then Γ(S) is not connected if and only if q̄ = 2, 3 and in this case S
admits only a diagonal automorphism of order 2, and then there is nothing else to
prove.

Type E8

If S = E8(q̄), then Γ(S) is not connected and
Π2(S) = Π(|T0|) = Π(x(q̄) = q̄8 − q̄4 + 1),
Π3(S) = Π(|T1|) = Π(y1(q̄) = q̄8 + q̄7 − q̄5 − q̄4 − q̄3 + q̄ + 1),
Π4(S) = Π(|T2|) = Π(y2(q̄) = q̄8 − q̄7 + q̄5 − q̄4 + q̄3 − q̄ + 1),

moreover, if q̄ ≡ 0, 1, 4 (5),
Π5(S) = Π(|T3|) = Π(z(q̄) = q̄8 − q̄6 + q̄4 − q̄2 + 1)

In this case α can only be a field automorphism ([3], Theorem 9.1), q̄ = qr and

Πα = Π(|E8(q)|) = Π(q(q14 − 1)(q18 − 1)(q20 − 1)(q24 − 1)(q30 − 1)).

We observe that

x(q̄) =
(q̄12 + 1)
(q̄4 + 1)

; y1(q̄) =
(q̄10 − q̄5 + 1)
(q̄2 − q̄ + 1)

; and

y2(q̄) =
(q̄10 + q̄5 + 1)
(q̄2 + q̄ + 1)

; z(q̄) =
(q̄10 + 1)
(q̄2 + 1)

.

If r 6= 2, 3, 5 we prove that Π(G) is connected. In fact

r 6= 2, 3 =⇒ (q12 + 1)
(q4 + 1)

divides x(q̄);

r 6= 2, 5 =⇒ (q10 + 1)
(q2 + 1)

divides z(q̄);

r 6= 2, 3 =⇒ (q15 + 1)
(q5 + 1)

= q10 − q5 + 1 divides q̄10 − q̄5 + 1.
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Since y1(q̄) = (q̄10− q̄5+1)/(q̄2− q̄+1) we have to prove that q̄2− q̄+1 = q2r−qr +1
is coprime with (q10 − q5 + 1)/(q2 − q + 1). In fact

r 6= 5 =⇒
(

(q3r + 1)
(qr + 1)

, q15 + 1
)

= (q2r − qr + 1, q3 + 1) = q2 − q + 1 =⇒

(
q2r − qr + 1,

(q15 + 1)
q2 − q + 1

)
= (q2r − qr + 1, q + 1) = (3, q + 1).

Finally, since 3 does not divide (q10−q5 +1)/(q2−q+1), we have proved the above
statement and also that (q10 − q5 + 1)/(q2 − q + 1) divides y1(q̄).
We can prove in a similar way that (q10 + q5 + 1)/(q2 + q + 1) divides y2(q̄): in this
case it is enough r 6= 3, 5. We can conclude that Γ(G) is connected
We suppose now that r = 2. Then y2(q̄) = (q20 + q10 + 1)/(q4 + q2 + 1) divides
q30 − 1 and therefore Π4(S) ⊆ Π1(G).
We want to prove that x(q̄) = (q24 + 1)/(q8 + 1) is coprime with |CS(α)|. We
observe that (x(q̄), q24 − 1) = 1 and therefore

(x(q̄), (q14 − 1)(q18 − 1)(q30 − 1)(q20 − 1)) = 1.

In a similar way we can prove that z(q̄) = (q20+1)/(q4+1) is coprime with |CS(α)|.
Now we consider y1(q̄) which is a divisor of (q30 + 1)/(q10 + 1). We observe that

(y1(q̄), (q14 − 1)(q18 − 1)(q30 − 1)(q20 − 1)) = 1.

Moreover (y1(q̄), q24 − 1) = (y1(q̄), q6 + 1) and therefore, since

y1(q̄) = (q30 + 1)/(q10 + 1)(q4− q2 + 1) = (q30 + 1)/(q6 + 1)s, s a positive integer,

we have that (y1(q̄), q6 + 1) = 1. We have thus proved that y1(q̄) is coprime with
|CS(α)|. Therefore for r = 2, we have that Π2(G) = Π2(S), Π3(G) = Π3(S) and, if
q̄ ≡ 0, 1, 4 (5), then Π4(G) = Π5(S).
The proof for the cases r = 3 and 5 are similar to the previous one.

Type F4

If S = F4(q̄), then Γ(S) is not connected and
i) if q̄ is odd, then Π2(S) = Π(|T |) = Π(q̄4 − q̄2 + 1)
ii) if q̄ is even, then Π2(S) = Π(|T |) = Π(q̄4 − q̄2 + 1)) and Π3(S) = Π(|T1|) =
Π(q̄4 + 1).
i) α must be a field automorphism, q̄ = qr and Πα=Π(|F4(q)|) = Π(q(q8− 1)(q12−
1)). We observe that q̄4 − q̄2 + 1 = (q6r + 1)/(q2r + 1)
If r 6= 2, 3, then (q6 + 1)/(q2 + 1) divides q̄4 − q̄2 + 1. So in this case Γ(G) is
connected.
If r = 2 or 3, then Πα ∩Π2(S) is empty and therefore Π2(S) = Π2(G).
ii) If α is a field automorphism, q̄ = qr and Πα=Π(|F4(q)|) = Π(q(q8− 1)(q12− 1))
and if r 6= 2, then q4 + 1 divides q4r + 1 and so Π3(S) ⊆ Π1(G).
For the component Π2(S), the proof is exactly the same as in part i).
If r = 2, then (q̄4 + 1) = q8 + 1 is coprime with all the primes in Πα; so in this case
Π3(S) = Π3(G).
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By proposition 19.5 of [1], it is now enough to consider α a graph-field automor-
phism, q̄ = q2 = 2m with m odd and Πα= Π(|2F4(q̄)|) = Π(q̄(q̄3+1)(q̄4−1)(q̄6+1)).
As q̄4− q̄2 + 1 divides q̄6 + 1, we have that Π2(S) ⊆ Π1(G), while (q̄4 + 1) = q8 + 1
is coprime with all the primes in Πα; so in this case Π3(S) = Π2(G).

Type G2

If S = G2(q̄), then Γ(S) is not connected and
i) if q̄ ≡ 1 (3), then Π2(S) = Π(|T |) = Π(q̄2 − q̄ + 1);
ii) if q̄ ≡ −1 (3), then Π2(S) = Π(|T |) = Π(q̄2 + q̄ + 1);
iii) if q̄ ≡ 0 (3), then Π2(S) = Π(|T |) = Π(q̄2 − q̄ + 1) and Π3(S) = Π(|T |) =
Π(q̄2 + q̄ + 1).
If α is a field automorphism, q̄ = qr and Πα=Π(|G2(q)|) = Π(q(q6− 1)). If r 6= 2, 3
then (q3 + 1)/(q + 1) divides (q3r + 1)/(qr + 1) = (q̄2 − q̄ + 1) and (q3 − 1)/(q − 1)
divides (q3r − 1)/(qr − 1) = (q̄2 + q̄ + 1) and so Γ(G) is connected, in any of the
three cases.
i) Let α be a field automorphism. If α has order r = 2, q̄ = q2 and q̄2 − q̄ + 1 =
q4 − q2 + 1 divides q6 + 1 and is therefore coprime with |G2(q)|. Similarly if α has
order 3. So if r = 2, 3 we have that Π2(S) = Π2(G).
ii) Let α be a field automorphism. If α has order r = 2, q̄ = q2 and q̄2 + q̄ +
1 = q4 + q2 + 1. Since q2 + q + 1 divides both q4 + q2 + 1 and |G2(q)|, we have
Π2(S) ⊆ Π1(G). If α has order r = 3, we use the same argument of i) and conclude
that Π2(S) = Π2(G).
iii) Let α be a field automorphism. If α has order r = 2, as in case i), we have that
Π2(S) = Π2(G), while, as in case ii), Π3(S) ⊆ Π1(G). If r = 3, we use the same
argument of i) and conclude that Π2(S) = Π2(G) and Π3(S) = Π3(G).
If α is a graph-field automorphism of order r = 2, then q̄ = q2 = 3n, n an odd
integer and Πα=Π(|2G2(q2)|) = Π(q(q6 + 1)(q2 − 1)). As q̄2 − q̄ + 1 = q4 − q2 + 1
divides q6 + 1, we have Π2(S) ⊆ Π1(G), while Π3(S) = Π2(G).
By lemma 4.22 of [5] and 19.2 of [1], we have thus examined the centralizers of all
automorphisms of S.

We now consider the twisted finite simple groups of Lie type. By the hypothesis
that G ∩ Inndiag(S) = 1, we obtain that, in this case, G/S ∼=< γ > and therefore
we consider again an automorphism α of order a prime r. We suppose S 6= 3D4(q̄);
if r 6= 2, α is a field automorphism, if r = 2 then α is a graph automorphism (in
the sense of paragraph 7 of [3]). The same is true for S = 3D4(q̄), substituting the
prime 3 to the prime 2.

Type 2Al

If S = 2Al(q̄2) with l > 1, S 6= 2A3(22), 2A3(32), 2A5(22), then Γ(S) is not
connected if and only if
i) l + 1 is a prime and in this case
Π2(S) = Π(|T |) = Π(((−q̄)l + (−q̄)l−1 + ...− q̄ + 1)/d) where d = (q̄ + 1, l + 1);
ii) l is an odd prime and (q̄ + 1)|(l + 1) and in this case
Π2(S) = Π(|T |) = Π((−q̄)l−1 + (−q̄)l−2 + ...− q̄ + 1).
i) If r 6= 2, then q̄ = qr and Πα=Π(|2Al(q2)|) (see Theorem 9.1 of [3]). If r 6= l + 1,
then r and l + 1 are two distinct primes and therefore

(ql+1 + 1)
(q + 1)(q + 1, l + 1)

divides
(qr(l+1) + 1)

(qr + 1)d
=

(−q̄)l + (−q̄)l−1 + ...− q̄ + 1)
d

.
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Therefore in this case Γ(G) is connected.
If r = l + 1, the proof is similar to the one of Al.
If r = 2, then by theorems 19.9 of [1] and 4.27 of [5] we have that Πα=Π(|Bm(q̄)|) =
Π(q̄(q̄2 − 1)(q̄4 − 1)...(q̄2m − 1)),where l + 1 = 2m + 1.
We know that |T | = (q̄l+1 + 1)/(q̄ + 1)(q̄ + 1, l + 1) is coprime with all the primes
in Πα because Πα is contained in Π1(S). So in this case Π2(S) = Π2(G).
ii) The proof is similar to the one of i) and so Γ(G) is connected, except when
r = l, 2.
S = 2A3(22): it is enough to consider the automorphism of order 2 and so, as
before, we have that Π2(S) = Π2(G) = {5}.
S = 2A3(32): it is enough to consider the automorphism of order 2 and so, as
before, we have that Π2(S) = Π2(G) = {5} and Π3(S) = Π3(G) = {7}.
S = 2A5(22): it is enough to consider the automorphism of order 2 and so, as
before, we have that Π2(S) = Π2(G) = {7} and Π3(S) = Π3(G) = {11}.

Type 2B2

If S = 2B2(q̄2), then Γ(S) is not connected and
Π2(S) = Π(|T |) = Π(q̄2 − 1),
Π3(S) = Π(|T1|) = Π(q̄2 −

√
2q̄ + 1),

Π4(S) = Π(|T2|) = Π(q̄2 +
√

2q̄ + 1).
We only have to consider the case in which r is an odd prime and q̄2 = q2r = 2m,
m an odd integer. Then Πα=Π(|2B2(q2)|) = Π(q(q2 − 1)(q4 − 1)) ([3], Theorem
9.1). As q2 − 1 divides q2r − 1, it is clear that Π2(S) ⊆ Π1(G).
We observe that q4 + 1 divides q4r + 1 = (q̄2 −

√
2q̄ + 1)(q̄2 +

√
2q̄ + 1) because r

is odd.
It can be proved that, if r ≡ 1, 7 (8), (q2 −

√
2q + 1) divides (q̄2 −

√
2q̄ + 1) and

(q2 +
√

2q + 1) divides (q̄2 +
√

2q̄ + 1);
or, if r ≡ 3, 5 (8), then (q2 −

√
2q + 1) divides (q̄2 +

√
2q̄ + 1) and (q2 +

√
2q + 1)

divides (q̄2 −
√

2q̄ + 1).
So, in any case, we have that Γ(G) is connected.

Type 2Dl

If S = 2Dl(q̄2), then Γ(S) is not connected if and only if
i) l = 2n and in this case Π2(S) = Π(|T |) = Π((q̄l + 1)/d) where d = (q̄l + 1, 4);
ii) q̄ = 2 and l = 2n + 1 and in this case Π2(S) = Π(|T |) = Π(2l−1 + 1);
iii) q̄ = 3 and
· l = 2n + 1 and l is not a prime and in this case Π2(S) = Π(|T |) = Π((3l−1 + 1/2);
· l 6= 2n + 1 and l is a prime and in this case Π2(S) = Π(|T1|) = Π((3l + 1/4);
· l = 2n + 1 and l is a prime and in this case Π2(S) = Π(|T |) = Π((3l−1 + 1/2) and
Π3(S) = Π(|T1|) = Π((3l + 1/4).
i) If r 6= 2, then q̄ = qr, Πα=Π(| 2Dl(q2)|) ([3], Theorem 9.1) and (ql +1)/d divides
(q̄l + 1)/d; therefore Γ(G) is connected.
If r = 2, then Πα= Π(|Cl−1(q̄)|) = Π(q̄(q̄2 − 1)...(q̄2(l−1) − 1)). Therefore, as Πα is
contained in Π1(G), we have that Π2(S) = Π2(G).
ii) We only have to consider an automorphism of order r = 2.
Then Πα= Π(|Bl−1(q̄)|)=Π(q̄(q̄2 − 1)...(q̄2(l−1) − 1)) and, as (2l−1 + 1) divides
|Bl−1(2)|, we can conclude that Γ(G) is connected.
iii) As in case ii), we only have to consider the case r = 2.
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Then Πα= Π(|Bl−1(q̄)|) = Π(q̄(q̄2−1)...(q̄2(l−1)−1)) and (3l−1+1) divides |Bl−1(3)|,
while (3l + 1)/4 is coprime with |Bl−1(3)| by Lemma 4 i), when l is a prime.
Therefore, when l = 2n + 1, Π(|T |) ⊆ Π1(G) and, when l is a prime, Π(|T1|) =
Π2(G).

Type 2E6

If S = 2E6(q̄2), then Γ(S) is not connected and
i) if q̄ = 2 then Π2(S) = Π(|T |) = Π((26 − 23 + 1)/3) = {19},
Π3(S) = Π(|T1|) = {17} and Π4(S) = Π(|T2|) = {13} .
ii) if q̄ 6= 2 then Π2(S) = Π(|T |) = Π((q̄6 − q̄3 + 1)/d) where d = (q̄ + 1, 3).
i) We only have to consider the case r = 2. Then, by 19.9 iii) of [1], we have
Πα=Π(2(28 − 1)(212 − 1)) = {2, 3, 5, 17, 13, 7} and then Π3(S) ⊆ Π1(G), Π4(S) ⊆
Π1(G), while Π2(S) = Π2(G).
ii) If r 6= 2, then q̄ = qr and Πα=Π(| 2E6(q2)|) (see Theorem 9.1 of [3]). If r 6= 3,
then (q6 − q3 + 1)/d divides (q̄6 − q̄3 + 1)/d and therefore Γ(G) is connected.
If r = 3, then Πα=Π(q(q5 + 1)(q8 − 1)(q9 + 1)(q12 − 1)). It can be proved that
Πα ∩Π2(S) is empty and therefore Π2(S) = Π2(G).
If r = 2, then by lemma 4.25 c) of [5] and 19.9 iii) of [1], we have
Πα⊆ Π(q̄(q̄8 − 1)(q̄12 − 1)). As (q̄6 − q̄3 + 1)/d = (q̄9 + 1)/(q̄3 + 1)d by Lemma 4
we can conclude that |T | is coprime with all the primes in Πα; so in this case we
have that Π2(S) = Π2(G).

Type 2F4

If S = 2F4(2)
′
, then Γ(S) is not connected and G = 2F4(2) and Π2(G) = {13} (see

[2]).
If S = 2F4(q̄2), then Γ(S) is not connected and
Π2(S) = Π(|T1|) = Π(q̄4 −

√
2q̄3 + q̄2 −

√
2q̄ + 1),

Π3(S) = Π(|T2|) = Π(q̄4 +
√

2q̄3 + q̄2 +
√

2q̄ + 1).
We only have to consider the case in which r is an odd prime and q̄2 = q2r = 2m,
m an odd integer. Then Πα=Π(|2F4(q2)|) = Π(q(q8 − 1)(q6 + 1)(q12 + 1)) ([3],
Theorem 9.1). We observe that

(q̄12+1)/(q̄4+1) = (q̄8−q̄4+1) = (q̄4−
√

2q̄3+q̄2−
√

2q̄+1)(q̄4+
√

2q̄3+q̄2+
√

2q̄+1).

If r = 3, (q̄8 − q̄4 + 1) = q24 − q12 + 1 = (q36 + 1)/(q12 + 1) and it is therefore
coprime with (q36 − 1). Moreover (q̄8 − q̄4 + 1, q8 − 1) = (q̄8 − q̄4 + 1, q4 + 1) and
(q4 +1) divides (q12 +1); (q̄8− q̄4 +1, q12 +1) = (3, q12 +1) = 1. Therefore, in this
case we have Π2(S) = Π2(G) and Π3(S) = Π3(G).
We can now suppose that r 6= 3. It can be proved that if r ≡ 1, 7, 17, 23 (24), then

(q4 −
√

2q3 + q2 −
√

2q + 1) divides (q̄4 −
√

2q̄3 + q̄2 −
√

2q̄ + 1) and

(q4 +
√

2q3 + q2 +
√

2q + 1) divides (q̄4 +
√

2q̄3 + q̄2 +
√

2q̄ + 1);

or, if r ≡ 5, 11, 13, 19 (24), then

(q4 −
√

2q3 + q2 −
√

2q + 1) divides (q̄4 +
√

2q̄3 + q̄2 +
√

2q̄ + 1) and

(q4 +
√

2q3 + q2 +
√

2q + 1) divides (q̄4 −
√

2q̄3 + q̄2 −
√

2q̄ + 1).
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So, if r 6= 3, we have that Π(G) is connected.

Type 2G2

If S = 2G2(q̄2), then Γ(S) is not connected and
Π2(S) = Π(|T1|) = Π(q̄2 −

√
3q̄ + 1),

Π3(S) = Π(|T2|) = Π(q̄2 +
√

3q̄ + 1).

We only have to consider the case in which r is an odd prime and q̄2 = q2r = 3m, m
an odd integer. Then Πα=Π(|2G2(q2)|) = Π(q(q2 − 1)(q6 + 1)) ([3], Theorem 9.1).
We observe that (q̄2 −

√
3q̄ + 1)(q̄2 +

√
3q̄ + 1) = (q̄4 − q̄2 + 1) = (q̄6 + 1)/(q̄2 + 1).

If r = 3, (q̄4− q̄2 +1) = q12− q6 +1 = (q18 +1)/(q6 +1) and it is therefore coprime
with (q2−1) and also with (q6 +1). Therefore, in this case we have Π2(S) = Π2(G)
and Π3(S) = Π3(G).
If r 6= 3, the proof is similar to the one of 2B2

Type 3D4

If S = 3D4(q̄3), then Γ(S) is not connected and Π2(S) = Π(q̄4 − q̄2 + 1).

If r 6= 3, then q̄ = qr and Πα=Π(| 3D4(q)|) = Π(q(q2 − 1)(q8 + q4 + 1) ([3],
Theorem 9.1). If r 6= 2, then q4 − q2 + 1 divides both q̄4 − q̄2 + 1 and q8 + q4 + 1 =
(q4 − q2 + 1)(q4 + q2 + 1), and then Γ(G) is connected.
If r = 2, Π2(S) = Π(q8−q4+1) and (q8−q4+1) is coprime with (q2−1)(q8+q4+1).
So in this case we have that Π2(S) = Π2(G).
If r = 3, then by Theorem 9.1(3) of [3], in Aut(S) there are two conjugacy classes
of subgroups generated by automorphisms of order 3. We denote these two au-
tomorphisms by α and β. Then β is obtained from α by multiplying it with
an element of order 3 of S, that is β = gα, g ∈ S. Therefore, as Πβ ⊆ Πα=
Π(|G2(q̄)|) = Π(q̄(q̄6 − 1)) and (q̄4 − q̄2 + 1) divides q̄6 + 1, we can conclude that
Π2(S) = Π2(G). �

We have thus examined all the almost simple groups.
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