PRIME GRAPH COMPONENTS OF FINITE ALMOST SIMPLE GROUPS

MARIA SILVIA LUCIDO

Dipartimento di Matematica Pura e Applicata Università di Padova via Belzoni 7, I–35131 Padova, Italy e-mail address: lucido@pdmat1.math.unipd.it

ABSTRACT. In this paper we describe the almost simple groups G such that the prime graph $\Pi(G)$ is not connected. We construct the prime graph $\Pi(G)$ of a finite group G as follows: its vertices are the primes dividing the order of G and two vertices p, q are joined by an edge, and we write $p \sim q$, if there is an element in G of order pq.

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

Prime graph of almost simple groups

If G is a finite group, we define its prime graph, $\Gamma(G)$, as follows: its vertices are the primes dividing the order of G and two vertices p, q are joined by an edge, and we write $p \sim q$, if there is an element in G of order pq.

We denote the set of all the connected components of the graph $\Gamma(G)$ by { $\Pi_i(G)$, for i = 1, 2, ..., t(G)} and, if the order of G is even, we denote the component containing 2 by $\Pi_1(G) = \Pi_1$. We also denote by $\Pi(n)$ the set of all primes dividing n, if n is a natural number, and by $\Pi(G)$ the set of vertices of $\Gamma(G)$.

The concept of prime graph arose during the investigation of certain cohomological questions associated with integral representations of finite groups. It turned out that $\Gamma(G)$ is not connected if and only if the augmentation ideal of G is decomposable as a module. (see [4]). In addition, nonconnectedness of $\Gamma(G)$ has relations also with the existence of isolated subgroups of G. A proper subgroup H of G is *isolated* if $H \cap H^g = 1$ or H for every $g \in G$ and $C_G(h) \leq H$ for all $h \in H$. It was proved in [10] that G has a nilpotent isolated Hall π -subgroup whenever G is non-soluble and $\pi = \prod_i(G), i > 1$. We have in fact the following equivalences:

Theorem [8]

If G is a finite group, then the following are equivalent:

(1) the augmentation ideal of G decomposes as a module,

(2) the group G contains an isolated subgroup,

(3) the prime graph of G has more than one component.

It is therefore interesting to know when the prime graph of a group G is not connected, i. e. has more than one component. The first classification is a result of Gruenberg and Kegel.

Theorem A [8]

If G is a finite group whose prime graph has more than one component, then G has one of the following structures:

- (a) Frobenius or 2-Frobenius;
- (b) simple;
- (c) an extension of a π_1 -group by a simple group;
- (d) simple by π_1 ;
- (e) π_1 by simple by π_1 .

The case of solvable groups has been completely determined by Gruenberg and Kegel:

Corollary [8]

If G is solvable with more than one prime graph component, then G is either Frobenius or 2-Frobenius and G has exactly two components, one of which consists of the primes dividing the lower Frobenius complement.

Also the case (b) of a simple group has been described by Williams in [10], by Kondratev in [8] and by Iiyori and Yamaki in [7]. A complete list of the simple groups with more than one component can also be found in [9].

In this paper we determine the case (d). The case (d) is in fact the case of an almost simple group with more than one component. A group G is almost simple if there exists a finite simple non abelian group S such that $S \leq G \leq Aut(S)$. First we observe that if $\Gamma(G)$ is not connected then also $\Gamma(S)$ is not connected. Then,

using the Classification of Finite Simple Groups and the results of Williams and Kondratev, respectively in [10] and [8], we consider the various cases.

The main results are then Lemma 2 and Theorem 3, concerning sporadic and alternating groups, and **Theorem 5**, concerning finite simple groups of Lie type. In particular we observe that almost simple groups which are not simple have at most 4 components (see Table IV).

Remark 1

If $\Gamma(G)$ is not connected, and G has a non-nilpotent normal subgroup N, then $\Gamma(N)$ is not connected.

Proof.

We suppose that $\Gamma(N)$ is connected. As $\Gamma(G)$ is not connected, there must be p in $\Pi(G)$ such that $p \not\sim q$ for any q in $\Pi(N)$. Let P be a p-Sylow subgroup of G. If we consider K = NP, where P acts on N by conjugation, then K is a Frobenius group with kernel N, that must be nilpotent, against our hypothesis. \Box

In order to describe almost simple groups with prime graph non-connected it is therefore enough to consider groups G such that $G \leq Aut(S)$ and S is a simple group with prime graph non-connected. A complete description of the simple groups with prime graph non-connected can be found in [10] and [8]. We suppose that S < G.

We use the Classification of Finite Simple Groups. Before beginning with a general study we want to treat a particular case.

Lemma 2

If $S = A_6$, there are four groups $G_1 = S_6, G_2, G_3, G_4 = Aut(A_6)$ such that $S < C_6$ $G_i \leq Aut(S)$. Then

$$\Gamma(G_1) = {}^2 - {}^3 - {}^5 ; \qquad \Gamma(G_2) = {}^2 - {}^5 - {}^3 ; \qquad \Gamma(G_3) = {}^2 - {}^3 - {}^5 ;$$

$$\Gamma(G_4) = {}^3 - {}^2 - {}^5 .$$

Proof. Since Aut(S)/Inn(S) is isomorphic to the Klein group with 4 elements, there are three almost simple groups over S of order 2|S|. Let G_1, G_2, G_3 be such groups. Then $G_1 \cong S_6$ and $2 \sim 3$ in $\Pi(S_6)$. Let θ be an outer automorphism of S_6 of order 2. Since $Aut(A_6) = Aut(S_6)$, we can consider G_2 , the subgroup of $Aut(A_6)$ generated by $Inn(A_6)$ and θ . Then G_2 is a splitting extension of $Inn(A_6)$. Moreover θ centralizes an element of order 5 of A_6 , and θ can not centralize any element of order 3 of A_6 because θ exchange the two conjugacy classes of elements of order 3 of A_6 . Therefore $2 \sim 5$ in $\Pi(G_2)$.

Let G_3 be the other subgroup of $Aut(A_6)$ of order $2|A_6|$. Then G_3 is a non-split extension of A_6 and there is not any involution outside $Inn(A_6)$. Therefore its prime graph is the same as that of A_6 . Let G_4 be $Aut(A_6)$, then $\Gamma(G_4)$ is connected. From these observations we can deduce the structure of the prime graph of the groups $G_i, i = 1, 2, 3, 4.$

Theorem 3

If G = Aut(S) with S an alternating group or a sporadic group, $S \neq A_6$, then $\Gamma(G)$ is not connected if and only if G is one of the following groups and the connected 3

components are as follows:

$S = A_n, \ n = p, p + 1, p$ prime	$\Pi_1(G) = \{2, 3,, q\} \ q < n-1$	$\Pi_2(G) = \{p\}$
$S = M_{12}$	$\Pi_1(G) = \{2, 3, 5\}$	$\Pi_2(G) = \{11\}$
$S = M_{22}$	$\Pi_1(G) = \{2, 3, 5, 7\}$	$\Pi_2(G) = \{11\}$
$S = J_3$	$\Pi_1(G) = \{2, 3, 5, 17\}$	$\Pi_2(G) = \{19\}$
S = HS	$\Pi_1(G) = \{2, 3, 5, 7\}$	$\Pi_2(G) = \{11\}$
S = Sz	$\Pi_1(G) = \{2, 3, 5, 7, 11\}$	$\Pi_2(G) = \{13\}$
S = He	$\Pi_1(G) = \{2, 3, 5, 7\}$	$\Pi_2(G) = \{17\}$
S = O'N	$\Pi_1(G) = \{2, 3, 5, 7, 11, 19\}$	$\Pi_2(G) = \{31\}$
$S = Fi_{22}$	$\Pi_1(G) = \{2, 3, 5, 7, 11\}$	$\Pi_2(G) = \{13\}$
$S = Fi'_{24}$	$\Pi_1(G) = \{2, 3, 5, 7, 11, 13, 17, 23\}$	$\Pi_2(G) = \{29\}$
S = HN	$\Pi_1(G) = \{2, 3, 5, 7, 11\}$	$\Pi_2(G) = \{19\}$

Proof. If $S = A_n$, the alternating group on n letters, $n \neq 6$, we know that $G = S_n$. From [10] we observe that $\Gamma(S)$ is not connected if and only if n = p, (p+1), (p+2) for some prime p. If n = p + 2 the element (1, 2, ..., p) commutes with the element (p+1, p+2) in S_n and then $p \sim 2$ in $\Pi(S_n)$. On the other hand if n = p, p+1 the centralizers of all the elements of order p are exactly the cyclic subgroups of order p that they generate.

If S is a sporadic group, then |G/S| = 2 and the result easily follows from the Atlas [2]. \Box

We now suppose that $S = {}^{d}L_{l}(\bar{q})$ is a finite simple group of Lie type on the field with $\bar{q} = p^{f}$ elements. We recall that, in this case, the connected components $\Pi_{i}(S)$ for i > 1 of $\Gamma(S)$ are exactly sets of type $\Pi(|T|)$ for some maximal torus T such that T is isolated (see Lemma 5 of [10]).

We also observe that $\Pi_1(S)$ is obviously contained in $\Pi_1(G)$.

We use the notation and theorems of [3]. We consider Inndiag(S): it is also a group of Lie type \tilde{S} , in which the maximal tori \tilde{T} have order |T|d, if $T = \tilde{T} \cap S$ and d = |Inndiag(S)/S|. Then d divides $\bar{q}^2 - 1$ and, if $S \neq A_1(q), A_2(4)$, then $\Pi(\bar{q}^2 - 1) \subseteq \Pi_1(S)$.

As \tilde{T} is abelian, it is therefore clear that if $t \in \Pi(|T|) = \Pi_i(S)$ for i > 1, we have $t \sim s$ for $s \in \Pi(\bar{q}^2 - 1)$.

If $S \neq A_1(q), A_2(4)$ and G contains an element of $Inndiag(S) \setminus S$, then by the above argument we can conclude that $\Gamma(G)$ is connected.

We can now consider G such that $Inndiag(S) \cap G = S$. Let α be in $G \setminus S$, then α does not belong to Inndiag(S); we denote by Π_{α} the set of primes dividing $|C_S(\alpha)|$. We also recall from paragraph 9 of [3] that $p \in \Pi_{\alpha}$ for any $\alpha \in G \setminus S$ and therefore $\Pi_{\alpha} \subseteq \Pi_1(G)$ (if $S \neq A_1(q), A_2(4)$). Therefore, if r is a prime dividing |G/S|, then r divides $|\alpha|$ for some $\alpha \in G \setminus S$ and we have $r \sim p$, and so $r \in \Pi_1(G)$.

Let $\Pi_i = \Pi(|T|)$ be a component of $\Gamma(S)$, for some isolated torus T. Then Π_i remains a component of $\Gamma(G)$ if and only if $(|T|, |C_S(\gamma)|) = 1$ for any $\gamma \in G \setminus S$. Then we only have to consider $\Pi(|T|)$ and check if $\Pi(|T|) \subseteq \Pi_1(G)$.

If $\alpha \in G \setminus S$ and $|\alpha| = r$ a prime, then, by theorem 9.1 of [3], α is a field, a graph-field or a graph automorphism (in the sense of paragraph 7 of [3]); in

4

the same theorem $C_S(\alpha)$ is described for α a field or a graph-field automorphism. When α is a graph automorphism, $C_S(\alpha)$ is described in the paper [1], if S is over a field of even characteristic, and in the paper [5], if S is over a field of odd characteristic. If $(|T|, |C_S(\alpha)|) \neq 1$, then $r \sim t$ for some prime $t \in \Pi(|T|)$ and therefore $\Pi_i(S) = \Pi(|T|) \subseteq \Pi_1(G)$.

We now consider $\gamma \in G \setminus S$ and m a positive integer such that $\gamma^m = \alpha$ is an automorphism of order a prime r. If $(|T|, |C_S(\alpha)|) = 1$, then $C_S(\alpha) \cap T = 1$ and, as $C_S(\gamma) \leq C_S(\alpha)$, we also have $C_S(\gamma) \cap T = 1$. Thus γ does not centralize any element x in T. If for any $\alpha \in G \setminus S$ of order a prime r we have that $(|T|, |C_S(\alpha)|) = 1$, then, for any $\gamma \in G \setminus S$, we have $C_S(\gamma) \cap T = 1$. We conclude that, in this case, $\Pi_i(S) = \Pi(|T|)$ is a connected component $\Pi_j(G)$ for some j > 1.

We want to state now a number theoretical lemma:

Lemma 4

If $q = p^f$ and p and l+1 are prime numbers, then i) $(q^m - 1, q^n - 1) = q^{(m,n)} - 1;$ ii) $((q^{l+1}-1)/(q-1), q-1) = (l+1, q-1)$ and $((q^{l+1}-1)/(q-1)(l+1, q-1), q-1) = 1$

Proof.

i) See Hilfsatz 2 a) of [6]. *ii)* Let t be a prime dividing q - 1, then

$$\frac{(q^{l+1}-1)}{(q-1)} = q^l + q^{l-1} + \dots + q + 1 \equiv l+1 \equiv 0 \quad (t) \quad \Longleftrightarrow \quad t = l+1$$

For the second statement we observe that, if (l+1, q-1) = 1, we can conclude by applying the first statement. Otherwise, as l+1 is a prime, (l+1, q-1) = l+1 and therefore if q = 1 + (l+1)m, for a positive integer m, we have

$$\frac{q^l + q^{l-1} + \dots + q + 1}{l+1} = \frac{(1 + (l+1)m)^l + \dots + (1 + (l+1)m) + 1}{l+1} = \frac{(l+1) + (l+1)m(\sum_{j=1}^l \binom{j}{1}) + (l+1)^2s}{(l+1)} = 1 + m(l+1)l/2 + (l+1)s \neq 0 \quad (l+1)$$

where s is a positive integer. \Box

Theorem 5

Let $S < G \leq Aut(S)$ with S a finite simple group of Lie type, then $\Gamma(G)$ is not connected if and only if G is one of the groups described in the Tables I, II, III, IV.

Proof.

The proof is made by a case by case analysis. For the connected components of $\Gamma(S)$, S a finite simple group of Lie type, we refer, without further reference, to [10] and [8]. From the remarks preceding Lemma 4, it is therefore enough to consider automorphisms α of S of order a prime r.

Type A_l

If $S = A_l(\bar{q})$ with l > 1, $S \neq A_2(2)$, $A_2(4)$, then $\Gamma(S)$ is not connected if and only if i) l+1 is a prime and in this case $\Pi_2(S) = \Pi(|T|) = \Pi((\bar{q}^l + \bar{q}^{l-1} + ... + 1)/d)$ where $d = (\bar{q} - 1, l + 1)$;

ii) l is an odd prime and $(\bar{q}-1)|(l+1)$ and in this case

 $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^{l-1} + \bar{q}^{l-2} + \dots + 1).$ We study the different automorphisms of A_l .

i) If α is a field automorphism, then by theorem 9.1 of [3], $\Pi_{\alpha} = \Pi(|A_l(q)|)$, where $\bar{q} = q^r$.

If $r \neq l+1$, then r and l+1 are two distinct primes and therefore

$$\frac{(q^{l+1}-1)}{(q-1)(q-1,l+1)} \quad \text{divides} \quad \frac{(q^{r(l+1)}-1)}{(q^r-1)d} = \frac{(\bar{q}^l + \bar{q}^{l-1} + \ldots + \bar{q} + 1)}{d}$$

This proves that $\Gamma(G)$ is connected.

If r = l + 1, then $(|T|, |A_l(q)|) = 1$. In fact by lemma 4 i), we know that, for any $i \le r$,

$$\left(\frac{(q^{rl}+q^{r(l-1)}+\ldots+1)}{d} = \frac{(q^{(l+1)^2}-1)}{(q^{l+1}-1)d}, q^i-1\right) = 1.$$

Since $(q^{(l+1)^2} - 1)/(q^{l+1} - 1)d = (\bar{q}^{l+1} - 1)/(\bar{q} - 1)(l+1, \bar{q} - 1)$ by Lemma 4 ii), we have

$$\left(\frac{(\bar{q}^{l+1}-1)}{(\bar{q}-1)(l+1,\bar{q}-1)},\bar{q}-1\right) = 1.$$

We can conlude that $\Pi_2(S) = \Pi_2(G)$.

If α is a graph-field automorphism, then by theorem 9.1 of [3], $\Pi_{\alpha} = \Pi(|^2A_l(q)|)$, where $\bar{q} = q^r$ and r = 2. Then $(q^{l+1} + 1)/(q + 1)(q + 1, l + 1)$ divides both $|^2A_l(q)|$ and $|T| = (q^{2(l+1)} - 1)/(q^2 - 1)(q^2 - 1, l + 1)$ and so $\Gamma(G)$ is connected.

If α is a graph automorphism, then r = 2 and by theorems 19.9 of [1] and 4.27 of [5], $\Pi_{\alpha} = \Pi(|B_m(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2 - 1)(\bar{q}^4 - 1)...(\bar{q}^{2m} - 1))$ if l + 1 = 2m + 1.

We already know that $|T| = (\bar{q}^{l+1} - 1)/(\bar{q} - 1)(\bar{q} - 1, l + 1)$ is coprime with all the primes in Π_{α} because Π_{α} is contained in $\Pi_1(S)$. So in this case we have that $\Pi_2(S) = \Pi_2(G)$.

ii) The proof is similar to the one of *i*). We obtain that $\Gamma(G)$ is connected, except in the cases in which α is a field automorphism and r = l, or α is a graph automorphism of order 2.

 $S = A_2(2)$ admits only a graph automorphism α and $\Pi_{\alpha} = \{2, 3\}$ and then $\Pi_1(G) = \{2, 3\}, \Pi_2(G) = \Pi(2^2 + 2 + 1) = \{7\}.$

 $S = A_2(4)$: if α is a diagonal automorphism then $G \ge PGL(3,4)$ and in this case $\Gamma(G)$ is connected.

If α is a field automorphism, then r = 2 and $\Pi_{\alpha} = \{2, 3, 7\}$ and so $\Pi_1(G) = \{2, 3, 7\}$, $\Pi_2(G) = \{5\}$.

If α is a graph-field or a graph automorphism, then r = 2 and $\Pi_{\alpha} = \{2, 3, 5\}$ and so $\Pi_1(G) = \{2, 3, 5\}, \Pi_2(G) = \Pi((4^2 + 4 + 1)/3) = \{7\}.$

 $S = A_1(\bar{q})$: if α is a diagonal automorphism of order 2, then \bar{q} is odd. If $G = PGL(2,\bar{q})$ then $\Pi_1(G) = \Pi(G) \setminus \{p\}, \Pi_2(G) = \{p\}$, because 2 divides the order of every maximal torus T of G.

If α is a field automorphism, $\bar{q} = q^r$, $\Pi_{\alpha} = \Pi(q(q^2 - 1))$. If $(q - 1)/(2, q - 1) \neq 1$ then

$$\begin{split} 1 \neq \frac{q-1}{(2,q-1)} & \text{divides} \quad \frac{\bar{q}-1}{(2,\bar{q}-1)}. \\ & 6 \end{split}$$

If (q-1)/(2, q-1) = 1, then q = 2 or 3, and in this case $\Pi(|T_2|) = \Pi(\bar{q}-1)/(2, \bar{q}-1) = \Pi_2(G)$. Moreover if $r \neq 2$, then

$$1\neq \frac{q+1}{(2,q-1)} \quad \text{divides} \quad \frac{\bar{q}+1}{(2,\bar{q}-1)}.$$

Therefore if $q \neq 2, 3$ and $r \neq 2$, $\Gamma(G)$ is connected, while if r = 2 we have $\Pi_1(G) = \Pi(q(q^2 - 1))$ and $\Pi_2(G) = \Pi((q^2 + 1)/(2, q - 1))$.

If α is a graph automorphism, then r = 2 and $\Pi_{\alpha} = \{2\}$, so that $\Pi_i(G) = \Pi_i(S)$ for i = 1, 2, 3.

Type B_l

If $S = B_l(\bar{q})$, then $\Gamma(S)$ is not connected if and only if *i*) *l* is an odd prime and $\bar{q} = 2, 3$; in this case $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^{l-1} + \bar{q}^{l-2} \dots + 1)$. *ii*) $l = 2^n$; in this case $\Pi_2(S) = \Pi(|T|) = \Pi((\bar{q}^l + 1)/d)$ where $d = (\bar{q} - 1, 2)$; *i*) In this case Aut(S) = Inndiag(S) and so there is nothing else to prove. *ii*) If α is a field automorphism, then $\Pi_{\alpha} = \Pi(|B_l(q)|)$ and $\bar{q} = q^r$. If r is odd, $(q^l + 1)/d$ divides both $|C_S(\alpha)|$ and $(\bar{q}^l + 1)/d$ and then $\Gamma(G)$ is connected. If $r = 2, (\bar{q}^l + 1)/d = (q^{2l} + 1)/d$ is coprime with all the primes in Π_{α} , because Π_{α} is contained in $\Pi_1(S)$. So in this case we have that $\Pi_2(S) = \Pi_2(G)$.

If l = 2 and p = 2, then α can also be a graph automorphism of order 2. Then $\Pi_{\alpha} = \Pi(|^2B_2(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2 - 1)(\bar{q}^4 + 1))$ and then $\Gamma(G)$ is connected.

By proposition 19.5 of [1], we have thus described the centralizers of all $\alpha \in G \setminus S$.

Type D_l

If $S = D_l(\bar{q})$, then $\Gamma(S)$ is not connected if and only if *i*) *l* is an odd prime and $\bar{q} = 2, 3, 5$ and in this case $\Pi_2(S) = \Pi(|T|) = \Pi((\bar{q}^l - 1)/(4, \bar{q}^l - 1));$ *ii*) *l* - 1 is an odd prime and $\bar{q} = 2, 3$ and in this case $\Pi_2(S) = \Pi(|T|) = \Pi((\bar{q}^{l-1} - 1)/(2, \bar{q} - 1)).$

If $l \neq 4$, then the only automorphism α that we have to consider is a graph automorphism of order 2, then $\Pi_{\alpha} = \Pi(|B_{l-1}(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2 - 1)...(\bar{q}^{2(l-1)} - 1))$. Therefore in case i we have that $\Pi_2(S) = \Pi_2(G)$ and in case ii $\Gamma(G)$ is connected.

If l = 4, we have to consider also a graph automorphism of order 3. In this case, by Theorem 9.1(3) of [3], in Aut(S) there are two conjugacy classes of subgroups of order 3 generated by a graph automorphism. We denote these two graph automorphisms by α and β . Then β is obtained from α by multiplying it with an element of order 3 of S, that is $\beta = g\alpha$, $g \in S$. Therefore, as $\Pi_{\beta} \subseteq$ $\Pi_{\alpha} = \Pi(|G_2(\bar{q})|) = \Pi(\bar{q}(\bar{q}^6 - 1))$ and $\Pi_2(S) = \Pi(\bar{q}^3 - 1)$, we have that, in this case, $\Gamma(G)$ is connected.

Type E_6

If $S = E_6(\bar{q})$, then $\Gamma(S)$ is not connected and $\Pi_2(S) = \Pi(|T|) = \Pi((\bar{q}^6 + \bar{q}^3 + 1)/d)$ where $d = (\bar{q} - 1, 3)$.

If α is a field automorphism, then $\bar{q} = q^r$ and $\Pi_{\alpha} = \Pi(|E_6(q)|)$ ([3], Theorem 9.1). If $r \neq 3$, then

$$\frac{(q^6+q^3+1)}{d} = \frac{(q^9-1)}{d(q^3-1)} \quad \text{divides} \quad \frac{(q^{9r}-1)}{d(q^{3r}-1)} = \frac{(\bar{q}^9-1)}{d(\bar{q}^3-1)} = \frac{(\bar{q}^6+\bar{q}^3+1)}{d}.$$

Therefore $\Gamma(G)$ is connected.

If r = 3, then $\Pi_{\alpha} = \Pi(q(q^5 - 1)(q^8 - 1)(q^9 - 1)(q^{12} - 1))$. As $(q^{18} + q^9 + 1)/d$ divides $(q^{27} - 1)/(q^9 - 1)$, by Lemma 4 i) it is clear that $((q^{18} + q^9 + 1)/d, (q^5 - 1)(q^8 - 1)) = 1$. Moreover, if we apply Lemma 4 ii) to q^9 , we have that $(q^{18} + q^9 + 1)/d$ is coprime with $q^9 - 1$. Finally $(q^{18} + q^9 + 1)/d = (\bar{q}^9 - 1)/(\bar{q}^3 - 1)d, \bar{q}^4 - 1 = q^{12} - 1$ and $((\bar{q}^9 - 1)/(\bar{q}^3 - 1)d, \bar{q}^4 - 1) = 1$ again by Lemma 4 i). So in this case we have that $\Pi_2(S) = \Pi_2(G)$.

If α is a graph-field automorphism, then r = 2, $\bar{q} = q^2$ and $\Pi_{\alpha} = \Pi(|^2E_6(\bar{q})|)$ ([3], Theorem 9.1). We observe that $|T| = (q^{12} + q^6 + 1)/d = (q^6 + q^3 + 1)(q^6 - q^3 + 1)/d$ and $(q^6 - q^3 + 1)$ divides $|^2E_6(q^2)|$. Then $\Gamma(G)$ is connected.

If α is a graph automorphism, by lemma 4.25 c) of [5] and 19.9 iii) of [1], we have that $\Pi_{\alpha} \subseteq \Pi(\bar{q}(\bar{q}^8 - 1)(\bar{q}^{12} - 1))$. Since |T| is coprime with all the primes in Π_{α} , we have that $\Pi_2(S) = \Pi_2(G)$.

Type E_7

If $S = E_7(\bar{q})$, then $\Gamma(S)$ is not connected if and only if $\bar{q} = 2, 3$ and in this case S admits only a diagonal automorphism of order 2, and then there is nothing else to prove.

Type E_8

$$\begin{split} &\text{If } S = E_8(\bar{q}), \, \text{then } \Gamma(S) \text{ is not connected and} \\ &\Pi_2(S) = \Pi(|T_0|) = \Pi(x(\bar{q}) = \bar{q}^8 - \bar{q}^4 + 1), \\ &\Pi_3(S) = \Pi(|T_1|) = \Pi(y_1(\bar{q}) = \bar{q}^8 + \bar{q}^7 - \bar{q}^5 - \bar{q}^4 - \bar{q}^3 + \bar{q} + 1), \\ &\Pi_4(S) = \Pi(|T_2|) = \Pi(y_2(\bar{q}) = \bar{q}^8 - \bar{q}^7 + \bar{q}^5 - \bar{q}^4 + \bar{q}^3 - \bar{q} + 1), \\ &\text{moreover, if } \bar{q} \equiv 0, 1, 4 \quad (5), \\ &\Pi_5(S) = \Pi(|T_3|) = \Pi(z(\bar{q}) = \bar{q}^8 - \bar{q}^6 + \bar{q}^4 - \bar{q}^2 + 1) \end{split}$$

In this case α can only be a field automorphism ([3], Theorem 9.1), $\bar{q} = q^r$ and

$$\Pi_{\alpha} = \Pi(|E_8(q)|) = \Pi(q(q^{14} - 1)(q^{18} - 1)(q^{20} - 1)(q^{24} - 1)(q^{30} - 1)).$$

We observe that

$$x(\bar{q}) = \frac{(\bar{q}^{12} + 1)}{(\bar{q}^4 + 1)}; \quad y_1(\bar{q}) = \frac{(\bar{q}^{10} - \bar{q}^5 + 1)}{(\bar{q}^2 - \bar{q} + 1)}; \text{ and}$$
$$y_2(\bar{q}) = \frac{(\bar{q}^{10} + \bar{q}^5 + 1)}{(\bar{q}^2 + \bar{q} + 1)}; \quad z(\bar{q}) = \frac{(\bar{q}^{10} + 1)}{(\bar{q}^2 + 1)}.$$

If $r \neq 2, 3, 5$ we prove that $\Pi(G)$ is connected. In fact

$$\begin{split} r \neq 2, 3 &\Longrightarrow \frac{(q^{12}+1)}{(q^4+1)} & \text{divides } x(\bar{q}); \\ r \neq 2, 5 &\Longrightarrow \frac{(q^{10}+1)}{(q^2+1)} & \text{divides } z(\bar{q}); \\ r \neq 2, 3 &\Longrightarrow \frac{(q^{15}+1)}{(q^5+1)} = q^{10} - q^5 + 1 & \text{divides } \bar{q}^{10} - \bar{q}^5 + 1. \\ 8 \end{split}$$

Since $y_1(\bar{q}) = (\bar{q}^{10} - \bar{q}^5 + 1)/(\bar{q}^2 - \bar{q} + 1)$ we have to prove that $\bar{q}^2 - \bar{q} + 1 = q^{2r} - q^r + 1$ is coprime with $(q^{10} - q^5 + 1)/(q^2 - q + 1)$. In fact

$$r \neq 5 \Longrightarrow \left(\frac{(q^{3r}+1)}{(q^r+1)}, q^{15}+1\right) = (q^{2r}-q^r+1, q^3+1) = q^2 - q + 1 \Longrightarrow$$
$$\left(q^{2r}-q^r+1, \frac{(q^{15}+1)}{q^2-q+1}\right) = (q^{2r}-q^r+1, q+1) = (3, q+1).$$

Finally, since 3 does not divide $(q^{10} - q^5 + 1)/(q^2 - q + 1)$, we have proved the above statement and also that $(q^{10} - q^5 + 1)/(q^2 - q + 1)$ divides $y_1(\bar{q})$. We can prove in a similar way that $(q^{10} + q^5 + 1)/(q^2 + q + 1)$ divides $y_2(\bar{q})$: in this

We can prove in a similar way that $(q^{10} + q^5 + 1)/(q^2 + q + 1)$ divides $y_2(\bar{q})$: in this case it is enough $r \neq 3, 5$. We can conclude that $\Gamma(G)$ is connected

We suppose now that r = 2. Then $y_2(\bar{q}) = (q^{20} + q^{10} + 1)/(q^4 + q^2 + 1)$ divides $q^{30} - 1$ and therefore $\Pi_4(S) \subseteq \Pi_1(G)$.

We want to prove that $x(\bar{q}) = (q^{24} + 1)/(q^8 + 1)$ is coprime with $|C_S(\alpha)|$. We observe that $(x(\bar{q}), q^{24} - 1) = 1$ and therefore

$$(x(\bar{q}), (q^{14} - 1)(q^{18} - 1)(q^{30} - 1)(q^{20} - 1)) = 1.$$

In a similar way we can prove that $z(\bar{q}) = (q^{20}+1)/(q^4+1)$ is coprime with $|C_S(\alpha)|$. Now we consider $y_1(\bar{q})$ which is a divisor of $(q^{30}+1)/(q^{10}+1)$. We observe that

$$(y_1(\bar{q}), (q^{14} - 1)(q^{18} - 1)(q^{30} - 1)(q^{20} - 1)) = 1.$$

Moreover $(y_1(\bar{q}), q^{24} - 1) = (y_1(\bar{q}), q^6 + 1)$ and therefore, since

 $y_1(\bar{q}) = (q^{30}+1)/(q^{10}+1)(q^4-q^2+1) = (q^{30}+1)/(q^6+1)s$, s a positive integer,

we have that $(y_1(\bar{q}), q^6 + 1) = 1$. We have thus proved that $y_1(\bar{q})$ is coprime with $|C_S(\alpha)|$. Therefore for r = 2, we have that $\Pi_2(G) = \Pi_2(S)$, $\Pi_3(G) = \Pi_3(S)$ and, if $\bar{q} \equiv 0, 1, 4$ (5), then $\Pi_4(G) = \Pi_5(S)$.

The proof for the cases r = 3 and 5 are similar to the previous one.

Type F_4

If $S = F_4(\bar{q})$, then $\Gamma(S)$ is not connected and *i*) if \bar{q} is odd, then $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^4 - \bar{q}^2 + 1)$ *ii*) if \bar{q} is even, then $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^4 - \bar{q}^2 + 1)$ and $\Pi_3(S) = \Pi(|T_1|) = \Pi(\bar{q}^4 + 1)$.

i) α must be a field automorphism, $\bar{q} = q^r$ and $\Pi_{\alpha} = \Pi(|F_4(q)|) = \Pi(q(q^8 - 1)(q^{12} - 1))$. We observe that $\bar{q}^4 - \bar{q}^2 + 1 = (q^{6r} + 1)/(q^{2r} + 1)$ If $r \neq 2,3$, then $(q^6 + 1)/(q^2 + 1)$ divides $\bar{q}^4 - \bar{q}^2 + 1$. So in this case $\Gamma(G)$ is connected.

If r = 2 or 3, then $\Pi_{\alpha} \cap \Pi_2(S)$ is empty and therefore $\Pi_2(S) = \Pi_2(G)$.

ii) If α is a field automorphism, $\bar{q} = q^r$ and $\Pi_{\alpha} = \Pi(|F_4(q)|) = \Pi(q(q^8 - 1)(q^{12} - 1))$ and if $r \neq 2$, then $q^4 + 1$ divides $q^{4r} + 1$ and so $\Pi_3(S) \subseteq \Pi_1(G)$. For the component $\Pi_2(S)$, the proof is exactly the same as in part *i*).

If r = 2, then $(\bar{q}^4 + 1) = q^8 + 1$ is coprime with all the primes in Π_{α} ; so in this case $\Pi_3(S) = \Pi_3(G)$.

9

By proposition 19.5 of [1], it is now enough to consider α a graph-field automorphism, $\bar{q} = q^2 = 2^m$ with m odd and $\Pi_{\alpha} = \Pi(|^2 F_4(\bar{q})|) = \Pi(\bar{q}(\bar{q}^3+1)(\bar{q}^4-1)(\bar{q}^6+1))$. As $\bar{q}^4 - \bar{q}^2 + 1$ divides $\bar{q}^6 + 1$, we have that $\Pi_2(S) \subseteq \Pi_1(G)$, while $(\bar{q}^4+1) = q^8 + 1$ is coprime with all the primes in Π_{α} ; so in this case $\Pi_3(S) = \Pi_2(G)$.

Type G_2

If $S = G_2(\bar{q})$, then $\Gamma(S)$ is not connected and *i*) if $\bar{q} \equiv 1$ (3), then $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^2 - \bar{q} + 1)$; *ii*) if $\bar{q} \equiv -1$ (3), then $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^2 + \bar{q} + 1)$; *iii*) if $\bar{q} \equiv 0$ (3), then $\Pi_2(S) = \Pi(|T|) = \Pi(\bar{q}^2 - \bar{q} + 1)$ and $\Pi_3(S) = \Pi(|T|) = \Pi(\bar{q}^2 + \bar{q} + 1)$.

If α is a field automorphism, $\bar{q} = q^r$ and $\Pi_{\alpha} = \Pi(|G_2(q)|) = \Pi(q(q^6 - 1))$. If $r \neq 2, 3$ then $(q^3 + 1)/(q + 1)$ divides $(q^{3r} + 1)/(q^r + 1) = (\bar{q}^2 - \bar{q} + 1)$ and $(q^3 - 1)/(q - 1)$ divides $(q^{3r} - 1)/(q^r - 1) = (\bar{q}^2 + \bar{q} + 1)$ and so $\Gamma(G)$ is connected, in any of the three cases.

i) Let α be a field automorphism. If α has order r = 2, $\bar{q} = q^2$ and $\bar{q}^2 - \bar{q} + 1 = q^4 - q^2 + 1$ divides $q^6 + 1$ and is therefore coprime with $|G_2(q)|$. Similarly if α has order 3. So if r = 2, 3 we have that $\Pi_2(S) = \Pi_2(G)$.

ii) Let α be a field automorphism. If α has order r = 2, $\bar{q} = q^2$ and $\bar{q}^2 + \bar{q} + 1 = q^4 + q^2 + 1$. Since $q^2 + q + 1$ divides both $q^4 + q^2 + 1$ and $|G_2(q)|$, we have $\Pi_2(S) \subseteq \Pi_1(G)$. If α has order r = 3, we use the same argument of *i*) and conclude that $\Pi_2(S) = \Pi_2(G)$.

iii) Let α be a field automorphism. If α has order r = 2, as in case *i*), we have that $\Pi_2(S) = \Pi_2(G)$, while, as in case *ii*), $\Pi_3(S) \subseteq \Pi_1(G)$. If r = 3, we use the same argument of *i*) and conclude that $\Pi_2(S) = \Pi_2(G)$ and $\Pi_3(S) = \Pi_3(G)$.

If α is a graph-field automorphism of order r = 2, then $\bar{q} = q^2 = 3^n$, n an odd integer and $\Pi_{\alpha} = \Pi(|^2G_2(q^2)|) = \Pi(q(q^6+1)(q^2-1))$. As $\bar{q}^2 - \bar{q} + 1 = q^4 - q^2 + 1$ divides $q^6 + 1$, we have $\Pi_2(S) \subseteq \Pi_1(G)$, while $\Pi_3(S) = \Pi_2(G)$.

By lemma 4.22 of [5] and 19.2 of [1], we have thus examined the centralizers of all automorphisms of S.

We now consider the twisted finite simple groups of Lie type. By the hypothesis that $G \cap Inndiag(S) = 1$, we obtain that, in this case, $G/S \cong \langle \gamma \rangle$ and therefore we consider again an automorphism α of order a prime r. We suppose $S \neq {}^{3}D_{4}(\bar{q})$; if $r \neq 2$, α is a field automorphism, if r = 2 then α is a graph automorphism (in the sense of paragraph 7 of [3]). The same is true for $S = {}^{3}D_{4}(\bar{q})$, substituting the prime 3 to the prime 2.

Type ${}^{2}A_{l}$

If $S = {}^{2}A_{l}(\bar{q}^{2})$ with l > 1, $S \neq {}^{2}A_{3}(2^{2})$, ${}^{2}A_{3}(3^{2})$, ${}^{2}A_{5}(2^{2})$, then $\Gamma(S)$ is not connected if and only if i l + 1 is a prime and in this case

 $\begin{aligned} &I_{2}(S) = \Pi(|T|) = \Pi(((-\bar{q})^{l} + (-\bar{q})^{l-1} + \dots - \bar{q} + 1)/d) \text{ where } d = (\bar{q} + 1, l + 1); \\ &I_{2}(S) = \Pi(|T|) = \Pi(((-\bar{q})^{l} + (-\bar{q})^{l-1} + \dots - \bar{q} + 1)/d) \text{ where } d = (\bar{q} + 1, l + 1); \\ &I_{2}(S) = \Pi(|T|) = \Pi(((-\bar{q})^{l-1} + (-\bar{q})^{l-2} + \dots - \bar{q} + 1). \end{aligned}$

i) If $r \neq 2$, then $\bar{q} = q^r$ and $\Pi_{\alpha} = \Pi(|^2 A_l(q^2)|)$ (see Theorem 9.1 of [3]). If $r \neq l+1$, then r and l+1 are two distinct primes and therefore

$$\frac{(q^{l+1}+1)}{(q+1)(q+1,l+1)} \quad \text{divides} \quad \frac{(q^{r(l+1)}+1)}{(q^r+1)d} = \frac{(-\bar{q})^l + (-\bar{q})^{l-1} + \dots - \bar{q} + 1)}{d}$$

Therefore in this case $\Gamma(G)$ is connected.

If r = l + 1, the proof is similar to the one of A_l .

If r = 2, then by theorems 19.9 of [1] and 4.27 of [5] we have that $\Pi_{\alpha} = \Pi(|B_m(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2 - 1)(\bar{q}^4 - 1)...(\bar{q}^{2m} - 1))$, where l + 1 = 2m + 1.

We know that $|T| = (\bar{q}^{l+1} + 1)/(\bar{q} + 1)(\bar{q} + 1, l+1)$ is coprime with all the primes in Π_{α} because Π_{α} is contained in $\Pi_1(S)$. So in this case $\Pi_2(S) = \Pi_2(G)$.

ii) The proof is similar to the one of i) and so $\Gamma(G)$ is connected, except when r = l, 2.

 $S = {}^{2}A_{3}(2^{2})$: it is enough to consider the automorphism of order 2 and so, as before, we have that $\Pi_{2}(S) = \Pi_{2}(G) = \{5\}$.

 $S = {}^{2}A_{3}(3^{2})$: it is enough to consider the automorphism of order 2 and so, as before, we have that $\Pi_{2}(S) = \Pi_{2}(G) = \{5\}$ and $\Pi_{3}(S) = \Pi_{3}(G) = \{7\}$.

 $S = {}^{2}A_{5}(2^{2})$: it is enough to consider the automorphism of order 2 and so, as before, we have that $\Pi_{2}(S) = \Pi_{2}(G) = \{7\}$ and $\Pi_{3}(S) = \Pi_{3}(G) = \{11\}$.

Type ${}^{2}B_{2}$

If $S = {}^{2}B_{2}(\bar{q}^{2})$, then $\Gamma(S)$ is not connected and $\Pi_{2}(S) = \Pi(|T|) = \Pi(\bar{q}^{2} - 1),$ $\Pi_{3}(S) = \Pi(|T_{1}|) = \Pi(\bar{q}^{2} - \sqrt{2}\bar{q} + 1),$

 $\Pi_4(S) = \Pi(|T_2|) = \Pi(\bar{q}^2 + \sqrt{2}\bar{q} + 1).$

We only have to consider the case in which r is an odd prime and $\bar{q}^2 = q^{2r} = 2^m$, m an odd integer. Then $\Pi_{\alpha} = \Pi(|^2B_2(q^2)|) = \Pi(q(q^2 - 1)(q^4 - 1))$ ([3], Theorem 9.1). As $q^2 - 1$ divides $q^{2r} - 1$, it is clear that $\Pi_2(S) \subseteq \Pi_1(G)$.

We observe that $q^4 + 1$ divides $q^{4r} + 1 = (\bar{q}^2 - \sqrt{2}\bar{q} + 1)(\bar{q}^2 + \sqrt{2}\bar{q} + 1)$ because r is odd.

It can be proved that, if $r \equiv 1, 7$ (8), $(q^2 - \sqrt{2}q + 1)$ divides $(\bar{q}^2 - \sqrt{2}\bar{q} + 1)$ and $(q^2 + \sqrt{2}q + 1)$ divides $(\bar{q}^2 + \sqrt{2}\bar{q} + 1)$;

or, if $r \equiv 3, 5$ (8), then $(q^2 - \sqrt{2}q + 1)$ divides $(\bar{q}^2 + \sqrt{2}\bar{q} + 1)$ and $(q^2 + \sqrt{2}q + 1)$ divides $(\bar{q}^2 - \sqrt{2}\bar{q} + 1)$.

So, in any case, we have that $\Gamma(G)$ is connected.

Type $^{2}D_{l}$

If $S = {}^{2}D_{l}(\bar{q}^{2})$, then $\Gamma(S)$ is not connected if and only if $i \mid l = 2^{n}$ and in this case $\Pi_{2}(S) = \Pi(|T|) = \Pi((\bar{q}^{l} + 1)/d)$ where $d = (\bar{q}^{l} + 1, 4)$; $ii \mid \bar{q} = 2$ and $l = 2^{n} + 1$ and in this case $\Pi_{2}(S) = \Pi(|T|) = \Pi(2^{l-1} + 1)$; $iii \mid \bar{q} = 3$ and $\cdot l = 2^{n} + 1$ and l is not a prime and in this case $\Pi_{2}(S) = \Pi(|T|) = \Pi((3^{l-1} + 1/2);$ $\cdot l \neq 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l} + 1/4);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l is a prime and in this case $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi((3^{l-1} + 1/2);$ $\cdot l = 2^{n} + 1$ and l = 1 and l = 1 + 1 + 1 + 1.

i) If $r \neq 2$, then $\bar{q} = q^r$, $\Pi_{\alpha} = \Pi(|{}^2D_l(q^2)|)$ ([3], Theorem 9.1) and $(q^l+1)/d$ divides $(\bar{q}^l+1)/d$; therefore $\Gamma(G)$ is connected.

If r = 2, then $\Pi_{\alpha} = \Pi(|C_{l-1}(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2 - 1)...(\bar{q}^{2(l-1)} - 1))$. Therefore, as Π_{α} is contained in $\Pi_1(G)$, we have that $\Pi_2(S) = \Pi_2(G)$.

ii) We only have to consider an automorphism of order r = 2.

Then $\Pi_{\alpha} = \Pi(|B_{l-1}(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2 - 1)...(\bar{q}^{2(l-1)} - 1))$ and, as $(2^{l-1} + 1)$ divides $|B_{l-1}(2)|$, we can conclude that $\Gamma(G)$ is connected.

iii) As in case ii), we only have to consider the case r = 2.

Then $\Pi_{\alpha} = \Pi(|B_{l-1}(\bar{q})|) = \Pi(\bar{q}(\bar{q}^2-1)...(\bar{q}^{2(l-1)}-1))$ and $(3^{l-1}+1)$ divides $|B_{l-1}(3)|$, while $(3^l+1)/4$ is coprime with $|B_{l-1}(3)|$ by Lemma 4 i), when l is a prime. Therefore, when $l = 2^n + 1$, $\Pi(|T|) \subseteq \Pi_1(G)$ and, when l is a prime, $\Pi(|T_1|) = \Pi_2(G)$.

Type ${}^{2}E_{6}$

If $S = {}^{2}E_{6}(\bar{q}^{2})$, then $\Gamma(S)$ is not connected and *i*) if $\bar{q} = 2$ then $\Pi_{2}(S) = \Pi(|T|) = \Pi((2^{6} - 2^{3} + 1)/3) = \{19\}$, $\Pi_{3}(S) = \Pi(|T_{1}|) = \{17\}$ and $\Pi_{4}(S) = \Pi(|T_{2}|) = \{13\}$. *ii*) if $\bar{q} \neq 2$ then $\Pi_{2}(S) = \Pi(|T|) = \Pi((\bar{q}^{6} - \bar{q}^{3} + 1)/d)$ where $d = (\bar{q} + 1, 3)$. *i*) We only have to consider the case r = 2. Then, by 19.9 iii) of [1], we have $\Pi_{\alpha} = \Pi(2(2^{8} - 1)(2^{12} - 1)) = \{2, 3, 5, 17, 13, 7\}$ and then $\Pi_{3}(S) \subseteq \Pi_{1}(G), \Pi_{4}(S) \subseteq \Pi_{1}(G)$, while $\Pi_{2}(S) = \Pi_{2}(G)$. *ii*) If $r \neq 2$, then $\bar{q} = q^{r}$ and $\Pi_{\alpha} = \Pi(| {}^{2}E_{6}(q^{2})|)$ (see Theorem 9.1 of [3]). If $r \neq 3$, then $(q^{6} - q^{3} + 1)/d$ divides $(\bar{q}^{6} - \bar{q}^{3} + 1)/d$ and therefore $\Gamma(G)$ is connected. If r = 3, then $\Pi_{\alpha} = \Pi(q(q^{5} + 1)(q^{8} - 1)(q^{9} + 1)(q^{12} - 1))$. It can be proved that $\Pi_{\alpha} \cap \Pi_{2}(S)$ is empty and therefore $\Pi_{2}(S) = \Pi_{2}(G)$. If r = 2, then by lemma 4.25 c) of [5] and 19.9 iii) of [1], we have $\Pi_{\alpha} \subseteq \Pi(\bar{q}(\bar{q}^{8} - 1)(\bar{q}^{12} - 1))$. As $(\bar{q}^{6} - \bar{q}^{3} + 1)/d = (\bar{q}^{9} + 1)/(\bar{q}^{3} + 1)d$ by Lemma 4 we can conclude that |T| is coprime with all the primes in Π_{α} ; so in this case we have that $\Pi_{2}(S) = \Pi_{2}(G)$.

Type ${}^{2}F_{4}$

If $S = {}^{2}F_{4}(2)'$, then $\Gamma(S)$ is not connected and $G = {}^{2}F_{4}(2)$ and $\Pi_{2}(G) = \{13\}$ (see [2]).

If $S = {}^{2}F_{4}(\bar{q}^{2})$, then $\Gamma(S)$ is not connected and

 $\Pi_2(S) = \Pi(|T_1|) = \Pi(\bar{q}^4 - \sqrt{2}\bar{q}^3 + \bar{q}^2 - \sqrt{2}\bar{q} + 1),$

 $\Pi_3(S) = \Pi(|T_2|) = \Pi(\bar{q}^4 + \sqrt{2}\bar{q}^3 + \bar{q}^2 + \sqrt{2}\bar{q} + 1).$

We only have to consider the case in which r is an odd prime and $\bar{q}^2 = q^{2r} = 2^m$, m an odd integer. Then $\Pi_{\alpha} = \Pi(|^2 F_4(q^2)|) = \Pi(q(q^8 - 1)(q^6 + 1)(q^{12} + 1))$ ([3], Theorem 9.1). We observe that

$$(\bar{q}^{12}+1)/(\bar{q}^4+1) = (\bar{q}^8 - \bar{q}^4+1) = (\bar{q}^4 - \sqrt{2}\bar{q}^3 + \bar{q}^2 - \sqrt{2}\bar{q}+1)(\bar{q}^4 + \sqrt{2}\bar{q}^3 + \bar{q}^2 + \sqrt{2}\bar{q}+1).$$

If r = 3, $(\bar{q}^8 - \bar{q}^4 + 1) = q^{24} - q^{12} + 1 = (q^{36} + 1)/(q^{12} + 1)$ and it is therefore coprime with $(q^{36} - 1)$. Moreover $(\bar{q}^8 - \bar{q}^4 + 1, q^8 - 1) = (\bar{q}^8 - \bar{q}^4 + 1, q^4 + 1)$ and $(q^4 + 1)$ divides $(q^{12} + 1)$; $(\bar{q}^8 - \bar{q}^4 + 1, q^{12} + 1) = (3, q^{12} + 1) = 1$. Therefore, in this case we have $\Pi_2(S) = \Pi_2(G)$ and $\Pi_3(S) = \Pi_3(G)$.

We can now suppose that $r \neq 3$. It can be proved that if $r \equiv 1, 7, 17, 23$ (24), then

$$(q^4 - \sqrt{2}q^3 + q^2 - \sqrt{2}q + 1)$$
 divides $(\bar{q}^4 - \sqrt{2}\bar{q}^3 + \bar{q}^2 - \sqrt{2}\bar{q} + 1)$ and
 $(q^4 + \sqrt{2}q^3 + q^2 + \sqrt{2}q + 1)$ divides $(\bar{q}^4 + \sqrt{2}\bar{q}^3 + \bar{q}^2 + \sqrt{2}\bar{q} + 1);$

or, if $r \equiv 5, 11, 13, 19$ (24), then

$$(q^4 - \sqrt{2}q^3 + q^2 - \sqrt{2}q + 1) \quad \text{divides} \quad (\bar{q}^4 + \sqrt{2}\bar{q}^3 + \bar{q}^2 + \sqrt{2}\bar{q} + 1) \quad \text{and} \\ (q^4 + \sqrt{2}q^3 + q^2 + \sqrt{2}q + 1) \quad \text{divides} \quad (\bar{q}^4 - \sqrt{2}\bar{q}^3 + \bar{q}^2 - \sqrt{2}\bar{q} + 1). \\ 12$$

So, if $r \neq 3$, we have that $\Pi(G)$ is connected.

Type ${}^{2}G_{2}$

If $S = {}^{2}G_{2}(\bar{q}^{2})$, then $\Gamma(S)$ is not connected and $\Pi_{2}(S) = \Pi(|T_{1}|) = \Pi(\bar{q}^{2} - \sqrt{3}\bar{q} + 1),$ $\Pi_{3}(S) = \Pi(|T_{2}|) = \Pi(\bar{q}^{2} + \sqrt{3}\bar{q} + 1).$

We only have to consider the case in which r is an odd prime and $\bar{q}^2 = q^{2r} = 3^m$, m an odd integer. Then $\Pi_{\alpha} = \Pi(|^2G_2(q^2)|) = \Pi(q(q^2-1)(q^6+1))$ ([**3**], Theorem 9.1). We observe that $(\bar{q}^2 - \sqrt{3}\bar{q} + 1)(\bar{q}^2 + \sqrt{3}\bar{q} + 1) = (\bar{q}^4 - \bar{q}^2 + 1) = (\bar{q}^6 + 1)/(\bar{q}^2 + 1)$. If r = 3, $(\bar{q}^4 - \bar{q}^2 + 1) = q^{12} - q^6 + 1 = (q^{18} + 1)/(q^6 + 1)$ and it is therefore coprime with $(q^2 - 1)$ and also with $(q^6 + 1)$. Therefore, in this case we have $\Pi_2(S) = \Pi_2(G)$ and $\Pi_3(S) = \Pi_3(G)$.

If $r \neq 3$, the proof is similar to the one of ${}^{2}B_{2}$

Type ${}^{3}D_{4}$

If $S = {}^{3}D_{4}(\bar{q}^{3})$, then $\Gamma(S)$ is not connected and $\Pi_{2}(S) = \Pi(\bar{q}^{4} - \bar{q}^{2} + 1)$.

If $r \neq 3$, then $\bar{q} = q^r$ and $\Pi_{\alpha} = \Pi(| {}^{3}D_4(q)|) = \Pi(q(q^2 - 1)(q^8 + q^4 + 1))$ ([3], Theorem 9.1). If $r \neq 2$, then $q^4 - q^2 + 1$ divides both $\bar{q}^4 - \bar{q}^2 + 1$ and $q^8 + q^4 + 1 = (q^4 - q^2 + 1)(q^4 + q^2 + 1)$, and then $\Gamma(G)$ is connected.

If r = 2, $\Pi_2(S) = \Pi(q^8 - q^4 + 1)$ and $(q^8 - q^4 + 1)$ is coprime with $(q^2 - 1)(q^8 + q^4 + 1)$. So in this case we have that $\Pi_2(S) = \Pi_2(G)$.

If r = 3, then by Theorem 9.1(3) of [3], in Aut(S) there are two conjugacy classes of subgroups generated by automorphisms of order 3. We denote these two automorphisms by α and β . Then β is obtained from α by multiplying it with an element of order 3 of S, that is $\beta = g\alpha$, $g \in S$. Therefore, as $\Pi_{\beta} \subseteq \Pi_{\alpha} =$ $\Pi(|G_2(\bar{q})|) = \Pi(\bar{q}(\bar{q}^6 - 1))$ and $(\bar{q}^4 - \bar{q}^2 + 1)$ divides $\bar{q}^6 + 1$, we can conclude that $\Pi_2(S) = \Pi_2(G)$. \Box

We have thus examined all the almost simple groups.

ACKNOWLEDGEMENTS

I wish to thank M. Costantini and C. Casolo for precious suggestions on the topic of this paper. I would also like to thank prof. M Suzuki for a kind remark while I was writing this paper.

REFERENCES

[1] - M. ASCHBACHER and G. M. SEITZ, Involutions in Chevalley groups over fields of even order, *Nagoya Math. J.* **63** (1976), 1-91.

[2] - J. CONWAY, R. CURTIS, S. NORTON, R. PARKER and R. WILSON, Atlas of finite Groups, Clarendon Press, Oxford, 1985.

[3] - D. GORENSTEIN and R. LYONS, The local structure of finite groups of characteristic 2 type, *Memoirs of the American Mathematical Society* n. 276, March 1983 (vol. 42).

[4] - K. W. GRUENBERG and K. W. ROGGENKAMP, Decomposition of the augmentation ideal and relation modules of a finite group, *Proc. London Math. Soc.* **31** (1975), 149-166

[5] - M. E. HARRIS, Finite groups containing an intrinsic 2-component of Chevalley type over a field of odd order, *Trans. Amer. Math. Soc.* **272** (1982), 1-65.

[6] - B. HUPPERT, Singer-Zyklen in klassischen Gruppen, *Math. Zeit.* 117 (1970),141-150.

[7] - N. IIYORI and H. YAMAKI, Prime graph components of the simple groups of Lie Type over the field of even characteristic - *Journal of Algebra* **155** (1993), 335-343.

[8] - A. S. KONDRATÉV, Prime graph components of finite simple groups, *Mat. Sb.* 180 n. 6 (1989), 787-797 (translated in Math. of the USSR 67 (1990), 235-247).

[9] - M.S. LUCIDO, Tesi di Dottorato, Dipartimento di Matematica - Universitá di Padova (1996).

[10] - J.S. WILLIAMS, Prime graph components of finite groups, *Journal of Algebra* 69 (1981), 487-513.

14