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Abstract

We investigate Quillen complexes of symmetric groups using hypergraph matching
complexes and p-cycle complexes. We determine the homotopy type of the Quillen complex
of S3, at the prime p. We show that there is torsion in the homology of the Quillen complex of
S13 at the prime 3, thereby providing the first example of a Quillen complex of a finite group
whose homology is not free.
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1. Introduction

Let G be a finite group and let p be a prime dividing |G|. The Quillen complex of G
at p is the order complex of the poset .Z,(G) of nontrivial elementary abelian
p-subgroups of G. (Recall that a p-subgroup of a group G is simply a subgroup
whose order is a power of p, and that such a subgroup is elementary abelian if it is
isomorphic to a direct product of copies of the cyclic group Z,. Recall also that for
any poset P, the order complex A(P) is the abstract simplicial complex whose
k-dimensional faces are the chains xp<---<x; from P.) Interest in Quillen
complexes of finite groups was ignited by the paper of Quillen [Qu]. (The study of
p-group complexes for a large class of not necessarily finite groups was initiated in
the papers [Brl,Br2] of Brown.)
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This paper is about Quillen complexes of symmetric groups at odd primes. It is an
outgrowth of the work of Ksontini in [Ks1], see also [Ks2]. Among the results in
Ksontini’s work is one which says that 4(.e/,,(S,)) is simply connected if and only if
3p+2<n<p* or n=p*>+p. In addition, in [Ksl] the fundamental group
71 (4(,(S,))) is determined in all cases except those where p>5 and ne {3p,3p +
1} and that where p = 3 and n = 10. (The study of simple connectivity of Quillen
complexes was initiated in the paper of Aschbacher [As].) One of the results in this
paper is the determination of the homotopy type, and therefore the fundamental
group, of A(.+7,(S3,)) when p>5, see Theorem 3.1.

Important in Ksontini’s work and the work herein is the poset 7 ,(n), which is the
subposet of .«Z,(S,) consisting of all nontrivial elementary abelian subgroups of S,
which are generated by p-cycles (a p-cycle is simply an element of order p whose
support has size p), along with the poset Z,(n) of all partitions of [1] into subsets of
size 1 and p (ordered by refinement). Note that if Pe .7 ,(n) then the partition of [n]
into the orbits of P lies in Z,(n). (The use of these posets in the study of A(.Z,(S,))
when p = 2, in which case 7 ,(n) = Z,(n), was initiated in the paper [Bo] of Bouc. As
we shall see, the posets Z,(n) are face posets of simplicial complexes, called
hypergraph matching complexes. The study of such complexes (with p not
necessarily prime) was initiated in the paper [BLVZ] of Bjoérner, Lovasz, Vrécica
and Zivaljevi¢, and the most recent results are surveyed in the paper [Wa] of Wachs.)

The value of studying  ,(n) comes from the fact that when # is small with respect
to p, the complexes 4(.o/,,(S,)) and 4(7 ,(n)) have similar topology. In [Ks1,Ks2],
Quillen’s fiber lemma (see [Qu, Proposition 1.6]) is used to obtain the following result.

Lemma 1.1 (Ksontini [Ksl, Corollary 3.3, Ks2, Corollary 3.2]). If n<p? then
A(L(S,)) and A(T ,(n)) are homotopy equivalent.

Close examination of .«Z,,(S,) when p> <n<p? + p combined with the fiber lemma
gives the next result.

Lemma 1.2 (Ksontini [Ks1, Proposition 8.8]). Assume p>*<n<p* + p and set

n!
W

TP -1 p+ )o—p)

Then
A(t p(Sn)) = A(T p(n)) v \/ s'.

Here ~ indicates homotopy equivalence, v means wedge and
\/ S/J
a

is a wedge of a spheres of dimension b.
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We will provide an extension of Lemmas 1.1 and 1.2, showing that if p>2 and
P>+ p<n<2p* then A(</,(S,)) is homotopy equivalent to a wedge of 4(7 ,(n)) and
another (explicitly described) complex I" (see Theorem 4.13). If n<p? + 2p then I is
(homotopy equivalent to) a wedge of spheres of dimension two (an explicit formula
for the number of spheres is provided, see Corollary 4.14).

In order to use the results just mentioned to obtain information about A(.<Z,(S,)),
it is necessary to understand the topology of 7 ,(n), and this is where the smaller
(when p>3) complex Z,(n) enters the picture. It was shown in [Ksl] that
information on the topology of Z,(n) can be used to obtain information on that of
7 ,(n). Here, using a recent result of Bjorner et al. in [BWW], we will make precise
the relationship between Z,(n) and 7 ,(n). In the language of [BWW], 4(7 ,(n)) is
(homotopy equivalent to) an inflation of (a complex homotopy equivalent to)
A(Z,(n)), and we will use this fact to show that A4(7 ,(n)) is homotopy equivalent to
a complex built from the complexes 4(Z,(m)), where m<n and m = nmod p, using
the wedge, join and suspension operations (see Theorem 2.2). In particular, the
homology of 4(Z,(n)) embeds in that of 4(7 ,(n)). In the cases n<2p* mentioned
above, it follows from the results described that the homology of 4(7 ,(n)) embeds
in that of A(.o/,(S,)).

Although the homology of the complexes 4(Z,(n)) seems by no means simple to
determine, some results are available (see [Bo,Ks1,Wa]). In addition, if p and n are
small enough, the integral homology of 4(Z,(n)) can be computed using software
developed by Dumas, Heckenbach, Saunders and Welker. (This software works with
the GAP package, and can be used online at http://www-Ilmc.imag.fr/SimpHom)/.)
Dumas has used this software to examine the complex A4(%23(13)), and the
computations show that H,(4(Z5(13))) contains an element whose order is a power
of two [Du]. It follows that A(.73(S13)) does not have torsion free homology and
therefore does not have the homotopy type of a wedge of spheres (see Corollary
4.17). This torsion in the homology of a Quillen complex seems to be the first such
example, and it provides a negative answer to a question attributed to Thévenaz in
the paper [PW] of Pulkus and Welker. There are various results exhibiting classes of
groups G and primes p such that the homology of 4(.«7,(G)) is free (see for example
[Qu, Sections 3,10-12]; [D1,D2]), and the contrasting conclusion of Corollary 4.17
makes it (in the author’s opinion) the most interesting result in this paper.
Consequently, it seems desirable to have a proof which does not rely on computer
calculations. Moreover, such a proof might indicate how one could obtain similar
results on torsion in Quillen complexes of various symmetric groups, using Corollary
4.15.

2. Comparing 7 ,(n) and Z,(n)

We begin by examining the relationship between A(J ,(n)) and 4(Z,(n)). As
noted in [Ksl], each of 7 ,(n) and Z,(n) is a simplicial poset. That is, there exist
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simplicial complexes 4. ,(n) and ¥%,(n) whose face posets are J ,(n) and Z,(n),
respectively. Indeed, the k-simplices of € ,(n) are sets

{<o0>, ... Cor>},

where the <{o;) are groups generated by p-cycles from S, whose supports are
pairwise disjoint, and the k-simplices of %, (n) are sets

{Xo, ..., Xic}
of pairwise disjoint subsets of [r] all of which have size p. (The complexes ¥Z,(n) are
the hypergraph matching complexes mentioned in the introduction.)

Now A(J ,(n)) and 4(Z,(n)) are homeomorphic to the barycentric subdivisions
of .7 ,(n) and €Z,(n), respectively (see [Bj, p. 1844]), so we have

AT p(n))=CT y(n)
and

A(Zy () = (n).
The key concept from [BWW] for our purposes is that of an inflation of a simplicial
complex. Let 4 be a simplicial complex on vertex set X = {x,...,x,;} and let m =

(my, ...,m,;) be a t-tuple of positive integers. The m-inflation of A is the simplicial
complex A4, whose vertex set is

X = {(x1,)) = i€[t],j€[mi]}
with

{(xi,571)5 ey (X5, J0) } S Xom
a face of 4,, if and only if

o x;, #x; for 1<k<I<r, and
o {x;,...,x;} is a face of 4.

Before stating the key result from [BWW] on inflations, we must introduce some
more (standard) notation. The reader may consult [Bj] for definitions of any terms
not defined here. For a face F' of a simplicial complex 4, Ik, F is the link of F in 4. If
A and I' are complexes then 4 * I is the join of 4 and I" and for any positive integer
m, 2" (4) is the m-fold suspension of 4. We write X(4) for X'(4).

Theorem 2.1 (Bjorner et al. [BWW, Theorem 6.2]). Let A be a simplicial complex on
vertex set {xi,...,x;} and let m = (my, ...,m;)eN". For a face Fe A, set

v(F,m) = [ (m;i—1).

x;eF
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If A is connected then

A~ \/ \/ SVl 4 F)
Fed \ v(F,m)
If A has connected components AV, ..., A" then

VIV 2 k0F)

I FeA® \v(F,m)

An =~

-

1

Now if A<[n] with |A4| = p then there are exactly (p — 1)! p-cycles in S, with
support 4. Since each group generated by a p-cycle contains p — 1 p-cycles, there are
exactly (p — 2)! cyclic subgroups of S, with order p whose support is 4. It follows
that if we set

m=(p-2)Lp-2),.., - 2)!)6[\1(;)
then
€T ,(n)=CZ,(n),,,
and we can apply Theorem 2.1. For a prime p and a positive integer k, set
V(p,k) = ((p—2)t = '
If Fe%%,(n) has dimension k (size k + 1) then
k4, mF=€Z,(n—plk+1)),
and, in the language of Theorem 2.1,
v(F,m) = y(p, k).

For —1<k<|[%] — 1, the complex ¥%,(n) contains

¢(n,p. k) ?ﬁ f!(n;ip)

k-simplices (the empty set is the unique (—1)-simplex).
Applying Theorem 2.1, we get the following result.

Theorem 2.2. If €%,(n) is connected then

211
7= V[V 26,0t 1)
k==1\ ¢(n.p.k)y (p.k)
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Before continuing, we make the following remarks:

(1) As noted in [Ks1, Proposition 4.3], if €Z,(n) is not connected then p<n<2p.
It is easy to determine the homotopy types of both .7 ,(n) and ¥Z,(n) in this case
(see [Ks1, Examples 3.7, 4.7] or [Ks2, Example 3] for €7 ,(n)).

(2) When k = —1 we have ¢(n,p,k) = y(p, k) = 1, S* = {0} and ¢Z,(n — p(k +
1)) = €2,(n). Therefore one of the factors in the wedge described in the theorem is a
copy of €2,(n). It follows that (as shown in [Ksl, Proposition 4.5]) there is some
graded module M such that

H. (6T ,(n)) = H.(¢Z,(n)) ®M.
Also, there is some group G such that
m (€T ,(n))=m1(6Z,(n)) * G.

Moreover, the factors in the wedge given in the theorem which arise from all k> 1
are all simply connected, and if n>3p then so are the factors which arise from
ke{0,1}. (This follows from [Bj, 9.20] and simple observations about ¥, (m) when
m is small.) Therefore, if n>3p then (67 ,(n)) =n1(6Z,(n)).

(3) If pe{2, 3} then for each p-set X = [n] there is a unique group generated by a p-
cycle with support X. Therefore €%,(n) and 4.7 ,(n) are isomorphic. This makes the
formula of the theorem appear somewhat disturbing until one notices that in this
case Y(p, k) =0 for all k> — 1, so all the factors in the wedge associated with any
k> — 1 are just the point at which the wedge is formed.

A more precise statement about homology than the one made in the second
remark above is given in the next corollary, which follows easily from Theorem 2.2
and basic facts about the homology of joins and suspensions. Corollary 6.3 of
[BWW] gives the general version of this result. For an abelian group 4 and a
nonnegative integer ¢, we write ¢4 for the #-fold direct sum of 4 (so t4 = 0if t = 0).

Corollary 2.3. If €2,(n) is connected then for each 1 =0 we have
HE

H|(6T ,(n)) = kg]gl & (n, p, kW (p, )V H 11 (€F,(n — p(k + 1))).

3. The case n = 3p

Using Theorem 2.2, we can determine the homotopy type of 47 ,(3p) once we
know the homotopy type of €%, (n) for ne{0,p,2p,3p}. It is not hard to determine
the required information, all of which appears in [Ksl, Example 4.7]. We summarize
the numerical and topological information which we need in the table below. We
write y for the reduced Euler characteristic %(¢%,(3p)) and set

0-i(%)



J. Shareshian | Journal of Combinatorial Theory, Series A 106 (2004) 299-314 305

Homotopy type

k ¢(3p,p.k) of €7,(p(3 —k—1)) ¥(p, k)
—1 1 Vst 1
0 (3p> (p\flso (p—2)!—1
p we)-
1 i3\ (2 point (p—2)—1)7°
P)\p

Note that
2

1=y (=) 6Gp.p,k).

k=1

Applying Theorem 2.2 and Lemma 1.1, along with the facts that

° Zm(\/a Sb): va Sb+m, and
e X" (point) ~ point,

we get the following result.

Theorem 3.1. Let p>3 be prime and let n = 3p. Then both €7 ,(n) and A(</,(S,))
have the homotopy type of a wedge of spheres. More precisely, if we set

a4 = (3P)!((p o) 1>3

6 p!
and

= () -1 )

then

A(Ay(S,)) =CT p(n) ~ <\/ S2> v (\/ Sl).
a b
In particular, 1,(A(2,(S,))) is free of rank b.

Again some remarks are in order.

(1) In [Ksl, Corollary 8.3] it is shown that if n = dp with d>3 then Hy_(.#,(S,)) is
free of rank

(ﬁ)!(@_i?!_ 1)””

which agrees with the number of 2-spheres in our wedge when d = 3.
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(2) The homotopy types of A(.e72(Ss)) and A(=/3(Sy)) are given in [Ksl, Example
2.12 and Proposition 15.3], see also [Ks2, Example 2] for 4(.72(Se)).

(3) In order to determine the homotopy type of A(/,(S3p4+1)) for p=3 we must
“only” determine the homotopy type of ¥%,(3p+ 1), as it is easy to find the
homotopy type of €Z,(n) for ne{l,p+1,2p+1}. In fact, one can easily
compute the number a such that

CT,(3p+ 1)~62,3p+1)v \/ S
a

However, the determination of the homotopy type of €Z,(3p + 1) seems likely
to be difficult. Indeed, one of the most striking results on matching complexes is
that of Bouc, (see [Bo, Proposition 3]), which says that n;(42,(7)) is cyclic of
order three. By Lemmas 1.1 and 1.2 (and Theorem 2.2), if the integral homology
of 2,(3p + 1) has torsion for some p>3 then so does that of 4(.eZ,(S3p41)).
However, computer calculations show that the integral homology of €25(10) is
free.

4. The case p* + p<n<2p?

Now we examine the case where p? + p<n<2p*. Our first step is to determine the
maximal elements of .«/,(S,). Let n be arbitrary and let Pe.«/,(S,) have orbits

Qy,...,Q,. For each ie[r] the action of P on Q; determines a homomorphism
w;: P—Sp,. Set
r
=] (P
i=1

Now P<P* and P*e€.Z/,(S,), so if P is maximal then P = P*. Each w;(P) is a
transitive abelian subgroup of Sg,. Therefore (see for example [DM, Theorem
4.2A(i1,v)] and recall that a transitive permutation group is called regular if each
nonidentity element is a derangement),

e w;(P) acts regularly on Q;, and
e the centralizer of w;(P) in Sq, is w;(P).

Now Cg, (P*) must preserve (setwise) each nontrivial orbit of P*. It follows that if
Z 1s the set of fixed points of P* then

Cs,(P") = P* x Sz.
If |#|<p then P* is a Sylow p-subgroup of Cs, (P*) and therefore maximal in

o/ p(Sy), while if |#|>=p then there is some nontrivial O<Sz such that P* x
Qe o/,(S,). We now have the following result.
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Lemma 4.1. Let Pe .o/ ,(S,). Then P is maximal in </ ,(S,) if and only if P = P* and P
fixes at most p — 1 points from [n]. In particular, if p*> + p<n<2p* then P is maximal
in o/ ,(Sy) if and only if one of the following conditions holds.

(1) P is a maximal element of T ,(n), or
(2) P=X x Y, where | X| = p* and X acts regularly on its support, while Y € 7 ,(n)
has rank L%J and support disjoint from that of X .

Now assume that p? +p<n<2p®. Set
Xy ={Xedy(S,):|X| =p>, X acts regularly on supp(X)}.
For Pe.o/,(S,), set
Ip = {Qe/,(S,) : Q<P}.
For Xe4%,, set
M(X) ={PeAy(S,): X<P and P is maximal in <Z,(S,)}

and

JX)= J Ir
Pe./(X)
Note that if X' € Z, then no element of .7 ,(n) contains X. Therefore, .#(X) consists
of all maximal elements of .<7,(S,) which contain X and satisfy condition (2) of
Lemma 4.1. Now, continuing to borrow the notation from [Ks1,Ks2], we define (for
arbitrary n)

Totpy(n)= |J Ip.

Pe7 ,(n)

Note that .7 .27, (n) consists of those Q€.27,(S,) such that all orbits of Q on [n] have
size 1 or p. The next lemma follows immediately from the definitions and the fact
that both 7 .o/, (n) and Uy, #(X) are ideals in </, (S,).

Lemma 4.2. If p* + p<n<2p® then

Ap(Sn) = T pmyo ) #(X),
XeZ,

N

We want to use the decomposition given in Lemma 4.2 to determine the homotopy
type of A(e7,(S,)). The next lemma, which is a slight generalization of [Bj, Lemma
10.4(i1)], is the key one. A proof appears in [Sh]. Recall (see for example [Bj, p. 1846])
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that for a nonnegative integer k, a complex 4 is called k-connected if m;(A) is trivial
for all i<k. Also, a complex 4 is (—1)-connected if 4 contains a nonempty face.

Lemma 4.3. Let

be a simplicial complex with each A; a subcomplex. Assume there is some k=0 such
that

e Ay is k-connected,
o dim(4;ndp) <k if 1<i<r, and
o A;nA;= A if1<i<j<r.

Then

A= Agv \/ 4;/(4i0 A0).

i=1

If A; is contractible for 1 <i<r then

A= 4gv \/ Z(4;0 4).
i=1

Our immediate goal is to apply Lemma 4.3 with
o = AT <ty (n)
and
{4;:1<i<r} ={4(F(X)) : XeZ,}.

The following result is Lemma 3.2 of [Ksl] and Lemma 3.1 of [Ks2]. One can
prove it using Quillen’s fiber lemma after noting that J ,(n) consists of all those
groups which can be obtained by intersecting the elements of some collection of
maximal elements of J.<7,(n).

Lemma 4.4. For all primes p and all n we have

AT o p(n)) = A(T p(n)).

For positive integers n, / define

o= 151
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Lemma 4.5. For all positive integers n and all primes p, the complex A(T </ ,(n)) is
(u(n,p) — 1)-connected.

Proof. Since A(T .o/ ,(n)) ~A(T ,(n)) ~€T p(n), it suffices to show that €7 ,(n) is
(u(n,p) — 1)-connected. Athanasiadis has shown (see [At]) that the u(m, p)-skeleton
of €%,(m) is vertex decomposable and therefore shellable for all positive integers m,
p. It follows that ¥2,(m) is (u(m,p) — 1)-connected for all m,p. Note that since
p<p+ 1, we have

w(m — p,p)=p(m,p) — 1

for all m. Also (see [Bj, 9.20]), if I' is k-connected then X" (I') is (k 4+ m)-connected.
Certainly a wedge of k-connected spaces is k-connected. Given these facts, the
lemma follows from Theorem 2.2. [

Lemma 4.6. Assume p*> +p<n<2p>. Let X€Z,. Then

n—p?
dm(A(I (X)) N A(T A, (n))) = L p” J

Proof. Let P = X x Y be a maximal element of .#(X), and let Q< P. Let n: P> X
be the standard projection. Every proper subgroup of X has order p and therefore
liesin J .o/, (n). So Qe T o/ ,(n) if and only if n(Q) # X. Since X has rank two and Y

has rank L";”zj, we see that every maximal element of .#(X)N.7 ./, (n) has rank

1+ L%J and the lemma follows. [

Lemma 4.7. If p>3 is prime and n<2p* then

u(np) — 1> V psz-

Proof. When p = 3 the lemma can be proved by inspection. If p>5 we have ;ﬁ —

5

1>"7 when n<2p®. O

Lemma 4.8. If p* + p<n<2p®> and V, X are distinct elements of X, then
AV A (X)) AT o1, (n).

Proof. It suffices to show thatif P= 1 x W and R = X X Y are maximal elements
of (V) and #(X), respectively, then T := PnReJ ./,(n). Let m,p,t be the
elements of the partition lattice I1,, determined by the orbits of P, R, T, respectively
(so each of these partitions lies in Z,(n)). Let m;, p; be the unique parts of size P?
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in 7, p, respectively. Note that
T, TAP.

Since every part of 7 has size 1,p or p?, we see that if T¢7 o ,(n) then m = p, is the
unique orbit of 7" with size greater than p. If ; = p, then both V', X act regularly
on 7y, which means that for distinct i,jen; there is a unique element of ¥ which
sends 7 to j, and the same holds for X. Since VV'#X there exist some i,jen; such
that no element of VX maps i to j. Since W, Y act trivially on 7, there is no
element of T" which maps i to j, so m; is not an orbit of 7 and 7 has no orbit
of size p?. [

Lemma 4.9. If p> + p<n<2p* and X e X, then A(F (X)) is contractible.

Proof. Let /" be the nerve of the covering of 4(.#(X)) by the set
{A(Ip) : Pe M (X)}

(see [Bj, pp. 1849-1850] for a discussion of nerves). Note that for P, Qe.«Z,(S,) we
have

A(IP(\Q) PﬂQ#l,
0, PnQ=1.

For each Pe.«Z,(S,), A(Ip) is a cone (with apex P), and therefore contractible. So,
we have (see [Bj, Theorem 10.6])

A(I(X)) =N

A(IP)(\A(IQ) = {

Since each Pe.#(X) contains X, we see that ./ is a simplex and therefore
contractible. [

Collecting our results from Lemmas 4.2 through 4.9, we have the following result.

Corollary 4.10. If p=3 and p* + p<n<2p?* then

Mt (SN =AT st yw)v \] EAF(X) T dp(n)).
XeZ,

As noted above, we have
ANT oA y(n)~CT ,(n).

Finally, we obtain further information about the remaining factors in the wedge of
Corollary 4.10.

Lemma 4.11. If p> + p<n<2p® and X e X, then

AI(X) Tt y(n))~CT y(n—p*) + \/ S°.
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Proof. We may assume that the unique nontrivial orbit of X is [n]\[n — p?]. For
PeJ(X)nT o/p(n) there are homomorphisms m;:P—X and 7 :P—S),_
determined by the action of P. Let Py, P, be the images of these homomorphisms,
respectively. Note that P; is a proper subgroup of X and Pre .7 .o/,(n — p?). Define

PJr = Pl X (Pz)*

Then P<P" and Pt e J(X)nT o/ ,(n). Also, if Q<P then Q" <P*. It follows (see
[Qu, Section 1] or [Bj, Corollary 10.12]) that if we set

P ={P":PeI(X)nT A,(n)}
then
A(I(X) Tt p(n)) ~ A(P).

Let I" be a discrete complex whose points are the nontrivial proper subgroups of X,
and set

A=T*CT ,(n—p*).

Let 2 be the poset of nonempty faces of A, and let f : 2— 2t map each face of 4 to
the group generated by its elements. Then f is an isomorphism. Since A(2) is the
barycentric subdivision of A, we have

A(PT)~A.

Finally, since X has rank two, there are p+ 1 nontrivial proper subgroups
of X, so

F:\/SO. O
P

Lemma 4.12. If p* + p<n<2p? then
!

n!
(n=p)p*(p— D> —1)

|%n|:

Proof. An element of Z, is uniquely determined by first choosing a subset Q of size
p? from [n] and then choosing a regular elementary abelian subgroup of Sg. A
regular elementary abelian subgroup of Sg is determined by choosing a bijection
f1Z, x Z,— Q. Since Sq acts transitively on the set of all such bijections, all regular
elementary abelian subgroups of Sp are conjugate in Sp. Let X be one such
subgroup. Since X is transitive and abelian, we have Cs,(X) = X and Ns,(X) is
isomorphic to the holomorph of X, that is,

Ns,(X)=AGL,(p)
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(see for example [DM, Section 4.7]). Thus there are
(r*)! (r*)!
PIGL(p)|  pP(p — D(p* — 1)

conjugates of X in Sp and the lemma follows. [

We can now state our main result.

Theorem 4.13. Let p>3 be prime and assume p* + p<n<2p*. Set

n!

YO =)

U=

Then

u

A(Ay(Sn))=CT p(n)v \/ (fmp(n -\ 51).

Proof. This follows from Corollary 4.10 and Lemmas 4.11 and 4.12, along with the
facts that

e X(I') =T xS° for any complex I,
o SO0x\/, 8%~V S! for any number a, and
e the join operation is commutative and associative. [

When a = n — p? is small enough so that we know the homotopy type of €T p(a),
we can make the formula in Theorem 4.13 more specific. For example, we have the
following result.

Corollary 4.14. Let p>3 be prime and let n = p*> + a with p<a<2p. Let u be as
defined in Theorem 4.13 and set

(o1

Then
A(tp(Sn) =T p(n)v \[ S

Proof. In this case 4.7 ,(n — p*) is a discrete set of size 5+ 1, that s,

CT p(n—p*)~ \/ S0
v/p
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The corollary now follows from the fact (see [BW, Lemma 2.5(i1)]) that for any
a,b,c,d we have

\/ s\ six\/ st O
a b

ab
The next corollary is more interesting.

Corollary 4.15. Let p>3 be prime and assume p* + p<n<2p>.

(M Ifﬁi((g@p(n)) is not free then neither is I?,-(A(%,,(Sn))).
(2) If p=5 and there is some m<n such that m = nmod p and ﬁi(%@p(m)) is not free
then neither is ﬁi+w(A(&/p(Sn))).
P

Proof. By Theorem 4.13, H.(%4.7 ,(n)) is a direct summand in H,(.Z,(S,)). The
corollary now follows from Corollary 2.3. [

According to computer calculations performed by Dumas [Du], we have the
following result

Proposition 4.16. H>(¢%3(13)) contains an nonidentity element whose order is a
power of two.

If we accept this proposition then we have the following result.

Corollary 4.17. Hy(A(</3(S13))) contains an nonidentity element whose order is a
power of two.
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